
HEDGE: Efficient Traffic Classification of

Encrypted and Compressed Packets

Fran Casino
Department of Informatics

University of Piraeus

Kim-Kwang Raymond Choo
Department of Information Systems and Cyber Security

University of Texas at San Antonio

Constantinos Patsakis
Department of Informatics

University of Piraeus

May 29, 2019

Abstract

As the size and source of network traffic increase, so does the chal-
lenge of monitoring and analysing network traffic. Therefore, sampling
algorithms are often used to alleviate these scalability issues. However,
the use of high entropy data streams, through the use of either encryption
or compression, further compounds the challenge as current state of the
art algorithms cannot accurately and efficiently differentiate between en-
crypted and compressed packets. In this work, we propose a novel traffic
classification method named HEDGE (High Entropy DistinGuishEr) to
distinguish between compressed and encrypted traffic. HEDGE is based
on the evaluation of the randomness of the data streams and can be ap-
plied to individual packets without the need to have access to the entire
stream. Findings from the evaluation show that our approach outperforms
current state of the art. We also make available our statistically sound
dataset, based on known benchmarks, to the wider research community.

1 Introduction

Network traffic is increasing at an unprecedented race. For example, studies
from IBM1 and CISCO2 reportedly estimated that significant amount of today’s

1https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-

quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
2https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/vni-hyperconnectivity-wp.html

1

ar
X

iv
:1

90
5.

11
87

3v
1

 [
cs

.C
R

]
 2

8
M

ay
 2

01
9

https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

data were created in the past few years. In our current landscape, a significant
amount of data is generated and exchanged through mobile and Internet of
Things (IoT) devices, such as those found in smart homes and smart cities.
There are also corresponding security and privacy risks and challenges associated
with such a trend. A typical measure is to perform network traffic monitoring
to prioritise and balance traffic load (e.g. to ensure quality of service – QoS),
as well as guaranteeing security and privacy for user data and systems (e.g. by
detecting and preventing malicious behaviours).

Currently, network data (data-in-transit) are generally encrypted, as non-
encrypted traffic can be subject to a broad range of attacks (e.g., impersonation
attack, man-in-the-middle attacks and false data injection attacks), as well as
surveillance by both honest-but-curious and malicious threat actors (e.g. vio-
lating user anonymity). By analysing the features and characteristics of traffic
flows, including encrypted traffic flows, one may be able to identify specific
user behaviours [7, 48]. For example, the authors in [57] presented a machine
learning-based approach to identify WeChat (a widely used social and pay-
ment mobile application) packets and identified transfer transactions by simply
analysing the intercepted TLS/SSL traffic. However, current state-of-the-art ap-
proaches are generally not capable of differentiating high entropy streams with
high accuracy. As later discussed in Section 2, only few works focus on distin-
guishing between encrypted and compressed data, being the work presented in
[17] the most similar to ours as other methods exploit additional features of the
collected packages.

Most security and privacy mechanisms rely on (strong) encryption algo-
rithms to protect the communications. However, flawed implementations often
use cleartext communication [55] to transfer sensitive information. The latter
is often in IoT devices due to their lack of processing resources. The problem
is amplified by the fact that IoT firmware is closed source and cannot be easily
extracted since access to the storage and processing units can be concealed or
access-protected [58]. The use of compression instead of encryption [17] from
some devices may perplex the problem even more as there are no efficient and
accurate methods to distinguish high entropy sources, e.g. encryption from com-
pression. Therefore, a security investigator cannot easily determine whether a
device is using a custom compression algorithm or encryption when evaluating
its security.

On the contrary, an adversary may penetrate an internal network. To cover
his/her actions, the adversary may choose to use compression instead of encryp-
tion when exfiltrating data from hosts as encrypted channels may not be avail-
able and are not always easy to establish, e.g when pivoting from one machine to
another. Note that the compression of data would render many signature-based
detection methods useless in network level. The above should also be considered
in the context of big data, which may prevent many mechanisms to examine all
packages in real-time.

It is, therefore, mandatory to be able to detect encrypted and unencrypted
data in network traffic to ensure proper management, auditing and abnormal
behaviour detection [20, 49]. Most of state-of-the-art methods are able to detect

2

cleartext/plaintext communications or low entropy file-types (e.g. images and
binaries), but are not able to discern between high-entropy files, especially in the
case of compressed and encrypted data [55, 17]. This hinders proper detection
of unprotected data being transmitted, which in the case of compressed files
can be easily recovered. Therefore, tasks such as detecting devices transmitting
unprotected information from individuals, as well as the proper application of
privacy policies are difficult to accomplish.

Thus, in this paper we propose a novel traffic classification method named
HEDGE, which stands for High Entropy DistinGuishEr. HEDGE is based on
the randomness evaluation of the payload information in randomly selected net-
work traffic packets. Unlike majority of existing approaches, we do not analyse
all network traffic. Instead, we only analyse random subsets to enable real-time
detection. We select a set of randomness tests from the literature according
to their accuracy and efficiency, and implement a threshold-based approach to
distinguish between encrypted and non-encrypted high-entropy data streams in
real-time.

We also develop a statistically sound dataset using well-known benchmarks
and propose a set of strategies to evaluate the utility of our proposal. The
dataset has an equally distributed number of file-types; thus, avoiding biases
and enhancing the reliability of the outcomes. The code and implementations
are publicly available in GitHub3.

Based on the evaluation using this dataset, our proposed method correctly
classifies 94.72% of random packets of 64 KB, outperforming current state of
the art. Notably, our worst classification results are with small packets of 1
KB each, where the accuracy is slightly above 68.68%. For instance, the most
accurate state-of-the-art work up-to-date that considers random packet inspec-
tion [17] achieves an accuracy of 66.9% using another sound benchmark, whilst
our method achieves an accuracy above 70.6% using the same dataset. Note
that a 4% is a significant enhancement in this context, especially for small size
files, without the use of training or heavy computations. Similar works that
study compressed and encrypted packet classification can be found in [52] and
[19]. More concretely, Lin [52] proposes an SVM classifier according to a set of
features to identify the type of traffic, including compressed and encrypted files.
In the case of encrypted classification, they compute a set of features and train
a model using SVM as well as Jensen Shannon divergence (JSD) [27]. Contrary
to our proposal, this approach uses other traffic features to train their model
achieving at most 79.8% accuracy with variable-sized packets, in all cases bigger
than 1KB. In [19] authors use a similar approach to the one presented in [52]
and compare it with a CART decision tree classifier. Nevertheless, they utilise
traffic and packet information, as well as the first bits of each packet (i.e. magic
header bytes) where characteristic information of the protocol/method used can
be obtained. Although this approach has a series of constraints (e.g. scalability)
to be used in real-time classification and thus differs from our approach, authors
are able to obtain accuracies near 75% with SVM and CART and between 76%

3https://github.com/francasino/traffic_analysis

3

https://github.com/francasino/traffic_analysis

and 85% after testing several feature configurations with different file sizes (their
tests consider sizes up to 64KB).

A comparative summary of the proposed method with the approaches in
[17], [52] and [19] is presented in Figure 1. Moreover, our method is efficient and
easy-to-adopt, avoiding costly training procedures and similarity computations.
Further relevant findings when analysing behaviour of compressed and encrypted
data depending on the input file-type are also discovered and documented in
the paper. For instance, our method manages to distinguish with high accuracy
between the file-types from single random packages.

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

20

40

60

80

100

Packet size

A
cc
u
ra
cy

Figure 1: A comparative summary of the classification accuracy of the proposed
method for each packet size and that of [17] (in red), which was only tested for
1KB files. Note that, contrary to us, in the case of [52] (in green) and [19]
(in yellow), authors use additional traffic information as well as the first magic
header bytes to train their classifiers.

The rest of this paper is organised as follows: Section 2 provides the reader
with relevant background on network traffic analysis and existing approaches,
and widely-used randomness tests. Section 3 is devoted to explaining HEDGE,
our proposed method. Section 4 describes the experimental setup, the bench-
marks and the tests performed to evaluate our proposal. The evaluation findings
are later discussed in Section 5. Finally, Section 6 concludes the paper and iden-
tifies possible directions for future research.

2 Related Work

In network traffic analysis approaches, data streams are analysed and classified
according to flow and packet information, payload content and statistics (includ-
ing among others packet size and average times). Based on such information,
we can distinguish between: (i) feature-based techniques, which determine a set
of characteristics/features regarding the traffic flow as well as internal packet

4

information and its structure (i.e. it differs depending on the protocol used),
and (ii) payload-based techniques, which inspect the data payload content and
apply relevant methods to extract statistical properties and identify, for exam-
ple, the type of information being transmitted (e.g. text, image, video, music,
compressed or encrypted). We refer the interested reader to [20, 49] for a classifi-
cation of network traffic analysis models based on input data, applied techniques
applied and their corresponding outcomes.

Most feature-based techniques create a structure or vector containing the
features of data flows and then classify them using statistical or machine learn-
ing methods [21, 35]. For instance, in [33] close to 250 discriminators/features
are identified, which can be used for flow record classification. In the case
of payload-based methods, different methodologies to accurately classify data
streams according to their payload characteristics [54] have been studied in the
last decade. Machine learning-based techniques generally focus on identifying
the application associated with the stream or whether a flow contains some code.
Signature-based approaches include hybrid schemes and usually try to exploit
characteristics of protocols in some of the first bytes of the packet payloads.
In the literature they have been used for identifying widely used application
protocols (HTTP, FTP, SMTP) using features such as packet size, port, timing
characteristics, and packet payload [13, 24, 9, 12, 61]. Another widely used
method is byte frequency distribution, in which each file-type is classified ac-
cording to its signature [50, 59]. In [2], the authors evaluated state-of-the art
classifiers and compared them with a genetic algorithm. Experiments performed
using two benchmarks (SSH and non-SSH samples) show a similar level of ac-
curacy, but genetic algorithm achieves higher efficiency. In [5], the authors used
k-nearest neighbours (k-NN) and k-means for flow classification. Their imple-
mentation enables efficient similarity computation, since only c comparisons are
required (considering that files have been classified in c clusters) to find the
closest flows and classify them accordingly.

Entropy-based classification methods have also been the focus of ongoing
research [47, 53, 45, 30]. In addition to the use of Shannon entropy [44] or the
chi-square test [8] to classify data streams, approaches such as those reported
in [41, 16, 25] have been used to model the structure of files. Such techniques,
however, incur high computational costs for outcome validation. The costs also
increase with the amount of traffic analysed.

Although encrypted traffic hides all content from a potential eavesdropper,
the first steps (initial handshake, connection parameter negotiation, protocol
version) are performed in plaintext and therefore have distinguishable features.
Exploiting the latter, machine learning and other classification methods can in-
fer the underlying application protocols from encrypted traffic [3, 10, 56, 36], for
example in SSH and web browsing traffic analysis [26, 46]. Specifically, classifica-
tion algorithms used to detect encrypted web traffic rely on static object lengths
and the previous creation feature-based libraries (i.e. training models). An as-
sociated limitation is that these methods are not reliable for dynamic encryption
schemes applied to different file sizes and lengths, padding or other techniques.
In the work of Zhang et al. [60], the authors analysed browsing traffic to detect

5

self-decrypting exploit code. In [4], the authors used three techniques (i.e. a
multi-objective genetic algorithm (MOGA) [34], the C4.5 algorithm [42] and a
semi-supervised k-means [14]) on different benchmark datasets to classify en-
crypted data streams on SSH. They performed binary identification of SSH
traffic in the following two settings: (i) using test data from the training model,
and (ii) using test data from a different network. Findings from their evaluation
showed that MOGA performs better in the first case, whilst C4.5 outperforms
the rest in the second. In [22], the authors characterised the differences between
encrypted and non-encrypted traffic and designed a function to correlate the
encrypted and non-encrypted traffic according to their features, as well as the
minimum number of packets to guarantee an accurate classification.

Encrypted data is known to be more uniformly distributed than unencrypted
data [31, 44]. Therefore, a number of approaches rely on this characteristic to
locate cryptographic keys stored in memory and file system dumps [43]. The
authors generally analysed big data streams, divided them into small blocks,
and computed their entropy. Therefore, high entropy blocks may indicate the
presence of encrypted data. Similarly, the authors in [37] and [11] first com-
puted the entropy of packet payloads and then compared it with the entropy of
uniformly randomly distributed sequences of the same length. However, the en-
tropy estimation approach is not effective when the number of samples is small
[38, 39]. Moreover, entropy measures are not reliable when other data which
has high entropy is present such as compressed, MP3 or PDF files.

There has been renewed interest in distinguishing between compressed and
encrypted data streams, partly due to the increasing use of end-to-end encryp-
tion in online communications. As discussed earlier, one of the most prevalent
strategies is to use Shannon entropy or the chi-square test, among other mea-
sures over fixed-size sliding data streams (1KB, 2KB and so on) to distinguish
between different types of data, as well as compressed and encrypted. How-
ever, one of the most challenging aspects, beyond distinguishing between high
entropy files, is the time required to develop this classification in continuous
traffic monitoring; thus, limiting its applicability in real-time scenarios.

As claimed by Malhotra et. al. [31], most traffic analysis tools analyse the
contents of the data packets but they are not capable of determining whether
data are encrypted. According to their research findings, Shannon entropy can
be used to accurately classify low entropy streams. However, other techniques
such as the chi-square test are needed to differentiate high entropy streams.
Moreover, the authors noted that many compression algorithms have a finger-
print as their first bytes (magic header bytes) imply their format and thus,
such information can enhance classification’s accuracy. In [52], the authors
used entropy and frequencies of characters to distinguish the type of payload
content (e.g. text, picture, audio, video, compressed, base64-encoded image,
base64-encoded text and encrypted), with small computing space and notable
accuracy. In [19], the authors claimed that if the probability distribution of each
subset of a file is similar, we can distinguish such file from others. However, such
differences may be too small in the case of high-entropy compressed files and
encrypted files, especially if we consider small files (< 4KB). In another work

6

[6], the authors performed k-NN classification to distinguish between random,
compressed and encrypted data streams. In [51], authors use chi-square test to
distinguish between encrypted and encoded (compressed) data to bypass DRM
protection in streaming media services. Nevertheless, authors need to use a con-
siderable amount of data (i.e. more than 380KB) to ensure reliable classification
outcomes.

Existing methods generally rely on continuous traffic information to enhance
their accuracy by collecting information about complete packet transmission, the
beginning and the end of a connection or of a file and etc. Therefore, real-time
monitoring is inefficient using such schemes, since they require the analysis
of huge volumes of data. However, these schemes can be useful in studying
past-events or analysing only specific connections. Hence, to enable real-time
monitoring, our aim is to analyse the payload of a random subset of packets
and infer as much information as possible. Similar to our approach, the work
of Hahn et al. [17] presents the first, to the best of our knowledge, technique to
distinguish encrypted from compressed unencrypted network transmissions by
analysing random packets. The authors applied three machine learning models,
with the convolutional neural network (CNN) model achieving the best results.
However, more efficient solutions are needed to perform practical real-time traf-
fic classification even in the case of random data stream analysis, as the methods
applied in [17] (i.e. CNN and k-NN) are computationally expensive and require
proper training.

3 Proposed Approach

In this section, first we state the assumptions that we make for our approach
e.g. capabilities of the entities involved and the requirements that are needed
from any such a solution. Then, we discuss how we perform the feature selection
and the steps of our methodology.

3.1 Basic assumptions and requirements

In our model, we assume Alice and Bob are exchanging messages over a public
channel and the exchanged message can either be plaintext, encrypted or com-
pressed. Therefore, messages where one part is encrypted and the other part
plaintext are beyond the scope of this study. Moreover, we assume that another
entity, Eve (i.e. the adversary), can passively intercept the traffic between Alice
and Bob. Typically in the literature, Eve is considered malicious, however, we
do not assume malicious motives for her actions. That is because Eve might
be a firewall, intercepting the traffic only to determine its content and block
malicious requests or packets that may expose the nodes of the internal network
to threats. Additionally, we assume that Eve cannot determine whether two or
more packets belong in the same message or session, therefore, each packet is
studied individually. The latter enables a more generic scenario with a weak
assumption, compared to the bulk of the literature [52, 19]. Therefore, we as-

7

sume that Eve can analyse only a fragment of packets due to e.g. high volume
of network traffic or processing constraints. Figure 2 shows an overview of the
proposed scenario.

Furthermore, in order to enhance the applicability of our solution, we require
the following properties:

• Accurate: The proposed solution should be able to distinguish between
plaintext, compressed and encrypted files with high accuracy. If possible,
the solution should be able to differentiate file-types (image, binary, etc.)
as well.

• Efficient: The performed tests or methods must provide fast and robust
responses. In addition to method efficiency, we want to implement a tree-
based threshold system, so that in most cases, we do not need to run
all tests to discard or classify an element (message); thus, improving the
efficiency of the method.

• Adaptable: The proposed solution must allow fine-tuning of parameters,
depending on the network traffic, to achieve better classification accuracy
than static methods.

• Reproducible: The proposed methodology has to be easy to implement
and reproduce, in order to facilitate adoption and verification. To address
this, we will use state-of-the-art methods and a set of predefined strategies
to automate the database creation and randomness tests.

3.2 Feature Selection

Alice Bob

Eve

01010101011100100100001

01010101011100100100001

Encrypted

Compressed

11111110011110101011000

11100101000100100100101
10101001001010001001001

Figure 2: An overview of the proposed approach.

8

Table 1: Features selected from each randomness test. Therefore, a total of
3 features will be used to define the threshold. Note that we aggregate the
outcomes of NIST tests.

Method Features

Chi square test Absolute value

Chi square test χ% of confidence

NIST SP 800-22 Aggregate number of failed blocks

Table 2: Threshold values for each selected feature. The value x denotes the
outcome of the randomness test for a single bit stream.

Chi abs. val. χ% NIST SP 800-22

x ∈ AV G± σ χ% > 99% ‖ χ% < 1% 0 fails

After evaluating the performance and the computational cost of the meth-
ods described in Appendix .1 using random data from well-known benchmark
datasets (later described in Section 4), only a subset of them met the require-
ments to be used in HEDGE. More precisely, the chi-square test can efficiently
recognise true random bit streams from non-random ones and the % of confi-
dence is a reliable indicator, exhibiting (according to our architecture) a better
trade-off between computational time and accuracy than other distribution-
based approaches such as Kolmogorov-Smirnov and Anderson-Darlong. FIPS-
2-140 tests are very stable in the case of encrypted bit streams, that is pass-
ing the FIPS-2-140 test without fails. After discarding the common tests of
SP 800-22 and FIPS-2-140, as they were already performed in the latter, we
selected a small subset of SP 800-22 tests that could efficiently distinguish be-
tween compressed and encrypted files, without the 20.000 bits limitation though
to accommodate for small packets. After experimenting with all tests of this
suite, we identified that the ones that fit the requirements were the frequency
within block test, the cumulative sums test, and the approximate entropy test.

The average and correlation tests, although having slightly more accuracy
and less variability in encrypted than in compressed streams, do not provide
reliable outcomes for small size files with high entropy. The other remaining
methods could not be used as either (1) they did not provide a good indicator –
both encrypted and compressed files had indistinguishable results, considering
the standard deviation of the outcomes– or (2) they are computationally costly.
For instance, the entropy is a good indicator only between raw files and the rest,
according to our tests and [55, 17], and the Diehard most common tests (e.g.
birthday spacing, parking lot or random spheres) are usually passed by both
compressed and encrypted files. Moreover, Diehard tests, as well as TestU01
tests, require a considerable amount of time to be computed and thus, they are
not suitable for real-time traffic analysis. A summary of the selected features is
described in Table 1.

9

Figure 3: Step by step of our methodology.

To enable data payload classification, HEDGE implements a threshold-based
method that takes into account the set of features selected from Table 1. The
threshold values selected for each feature are described in Table 2. More con-
cretely, we consider the average and its standard deviation σ for the chi square
test. The χ% most relaxed confidence (i.e. χ% > 99% ‖ χ% < 1%) is also
considered (see Section .1). Finally, we set the threshold of the number of NIST
SP 800-22 tests failed to 0. The values for each category have been selected after
analysing the outcomes of a huge set of random encrypted files for each test.
The threshold values selected reflect the stability of their outcomes regardless of
the input file-type (e.g. text, image, binary and etc). Therefore, the results of
the tests are almost indistinguishable between encrypted files, a feature which
is discussed with more details in Section 4.

To introduce some variability and provide a more adaptable threshold to
the input bit streams, HEDGE adds a gain factor γ to the threshold values.
Therefore, we can apply relaxed or strict policies in our detection system (as
later described in Figure 5 and Table 7), observe its behaviour and select the
one that provides better outcomes according to the input data. In this regard, γ
is added as a factor of the standard deviation of the threshold values in the case
of the chi-square absolute value. The remaining features will not be affected by
γ. For instance, the chi-square % confidence should be a fixed factor, as well as
the NIST SP 800-22 test fails. Note that accepting one fail in NIST SP 800-22
test implies a considerable amount of false positives.

An overview of our method is depicted in Figure 3. First, we apply the
randomness tests to the input bit stream and check whether the outcomes pass
our threshold (according to a desired level and γ). We consider the data stream
encrypted if, and only if, it passes all thresholds. Note that our approach can be
easily parallelised, since it can be executed in independent machines regardless of
the input data. Therefore, there is no need for a centralised database to compute
distances/similarities, such as in the case of k-NN or clustering methods.

10

Table 3: Set of encryption and compression methods. Considering all encryption
and compression variants, and each input generates a total of 10 different new
files.

Encryption Compression

AES (128 / 192 / 256) ZIP RAR BZIP2 GZIP

Camelia (128 / 192 / 256)

Table 4: Datasets used to obtain raw files for our experiments. All data have
been randomly selected.

File-type Benchmark

IMG COCO Dataset 4

IMG Microsoft Research 5

PDF ArXiv 6

TXT Project Gutenberg 7

MP3 9th Symphony of Beethoven

VIDEO Cambridge-driving Labeled Video Database 8

BIN/EXEC
/System32 in Win10 x64

/sbin in Ubuntu 16.04

4 Experiments

In this section, we detail the experimental setup and the tests performed to
validate the efficacy of HEDGE. In Section 5, we present the results.

As stated in Table 1, we use the chi-square and a subset of NIST SP 800-22
tests. However, since the outcomes of some tests vary depending on the file size,
we apply our method to different bit stream sizes.

The first step of the experiment is to create a statistically sound dataset.
Therefore, we use a random set of files retrieved from well-known benchmarks,
summarised in Table 4, to create a heterogeneous dataset. Our dataset has
the same number of files for each file-type (i.e. image, video, binary, audio,
text and PDF) to avoid biases, since the randomness of compressed files is
input-dependant (see Section 5). Note that we selected the most representative
file-type according to the state-of-the-art [54, 17, 19].

Next, since the aim of the paper is to classify high entropy files, we generate a
set of compressed and encrypted bit streams of fixed size which covers all powers
of 2, starting from 1KB and up to 64KB. To cover the variability of real-life
scenarios, we use a set of prevalent encryption and compression methods, which
are summarised in Table 3. The dataset creation step is described in Algorithm
1. Both arrays Sizes and Methods used in Algorithm 1 line 1 correspond to

4http://cocodataset.org/home
5https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/
6https://arxiv.org/
7https://www.gutenberg.org/
8http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

11

http://cocodataset.org/home
https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/
https://arxiv.org/
https://www.gutenberg.org/
http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

Algorithm 1 Database Creation

1: function Generate Dataset(DataSet D, Array Sizes, Array Methods).
The possible bit stream sizes and the compression and encryption methods

2:

3: while (DatasetHasFiles) do
4: fi = SelectTheNextFile (D); . Next raw file in dataset
5: V = CreateFileVariants (fi, Array Methods); . Creates a set of files

for each fi
6: S = SplitFiles (V , Array Sizes); . Each file in V is split into

different sizes
7: end while
8: end function

Table 5: Threshold values for each selected feature. Values correspond to the
values obtained considering all training sets of our experiments.

KB Chi-square abs. val. χ% NIST SP 800-22

64 255.37± 22.82 x > 99 ‖ x < 1 0 fails

32 255.08± 22.68 x > 99 ‖ x < 1 0 fails

16 254.96± 22.76 x > 99 ‖ x < 1 0 fails

8 255.09± 22.54 x > 99 ‖ x < 1 0 fails

4 255.04± 22.60 x > 99 ‖ x < 1 0 fails

2 254.98± 22.57 x > 99 ‖ x < 1 0 fails

1 255.02± 22.57 x > 99 ‖ x < 1 0 fails

the different payload sizes (from 1KB to 64KB) and to the contents of Table
3, respectively. After applying Algorithm 1 to the data extracted from the
benchmarks described in Table 4, the result is a collection of datasets (one
for each file size), where each contains approximately 1GB of compressed and
encrypted files. To further guarantee equally distributed amount of files and
unbiased experiments, we randomly select a subset with the same number of
encrypted and compressed files to perform our experiments. Therefore, our
datasets consist of exactly 50% encrypted and 50% compressed files.

Next, we use an inverse 10-fold experiment on each dataset and repeat the
experiments 1000 times. More concretely, a 10% of data is randomly selected
(5% of compressed and 5% of encrypted files) and the threshold levels are trained
using the encrypted data, while the 5% of compressed data is discarded. Hence,
the remaining data (90%) is used for testing and validation. The possible out-
comes of our classification are summarised in Table 6. Therefore, the accuracy
of our method will be computed as the sum of TP + TN . In addition to our
benchmark, we compute the accuracy of our method using another state-of-the-
art dataset [17].

After computing the training dataset, we observed that our method could
be applied to any file size, due to the stability of the training threshold levels.

12

Figure 4: Accuracy detection according to the different file sizes and the pa-
rameters of our system.

Table 6: Possible outcomes of our method according to the input file-type.

Input Output Result

Encrypted File PASS true positive (TP)

Encrypted File FAIL false negative (FN)

Compressed File PASS false positive (FP)

Compressed File FAIL true negative (TN)

As supporting evidence, we compute the average of threshold values of our ex-
periments (see Table 5). One can observe that the average deviation is very low
and that the values are very similar for each file size. Therefore, the similarity
of the threshold levels obtained from the training tests indicate the stability of
the encrypted files’ features. The latter means that our threshold values can be
applied, regardless of the file-type and file sizes. In addition, we only need to
train the method once at the beginning; thus, enabling efficient and adaptable
classification.

13

(a) % of accuracy for encrypted de-
tection in 64KB files.

(b) % of accuracy for compressed de-
tection in 64KB files.

(c) % of accuracy for compressed de-
tection in 32KB files.

(d) % of accuracy for compressed de-
tection in 16KB files.

(e) % of accuracy for compressed de-
tection in 8KB files.

(f) % of accuracy for compressed de-
tection in 4KB files.

(g) % of accuracy for compressed de-
tection in 2KB files.

(h) % of accuracy for compressed de-
tection in 1KB files.

Figure 5: Detail of the accuracy according to input file-type in compressed and
encrypted files. Lines represent the median whilst points represent the average
value.

5 Discussion

The average accuracy outcomes for each file size according to γ are depicted
in Figure 4. In terms of accuracy, the best outcomes are obtained by large file
sizes (i.e. 64KB and 32KB). In general, we observe that with a high γ, we

14

obtain better results because the trade-off between detected compressed files
(true positives) and missed encrypted files (false negatives) increases. This is
mainly due to the stability of encrypted files’ features. Therefore, the use of γ
enhances the dynamism and adaptability of the system. We can also observe
that our method achieves better accuracy than the state-of-the-art (see Figure
4, 1KB-Others), since the accuracy achieved by the authors in [17] was 66.9%
and ours is 70.61%, using the same benchmark dataset proposed by them.

For the sake of clarity, Table 7 provides the detailed outcomes (as described
in Table 6) for the most restrictive and the most relaxed case in each file size
(i.e. for γ = 0.1 and γ = 2, respectively). We can observe that the values for
encrypted files (i.e. TP and FN) are very stable, which means that, as expected,
file’s randomness properties are similar regardless of the file sizes, according to
the tested values (i.e. a study of the randomness properties of files smaller
than 1KB is left to future work). In the case of compressed files (i.e. FP and
TN) their behaviour is rather variable in the case of small files. Nevertheless,
compressed files’ outcomes become more stable the higher the file size (i.e. the
difference between outcomes for big files is lower than for small files). Moreover,
such difference is also reduced when using γ = 0.1 and γ = 2 for high file sizes,
which means that we can apply more relaxed policies in such cases. In general,
the total amount of correctly classified files (i.e. accuracy) is higher when we
apply γ = 2, since the degrowth rate of the TN value is lower than the growth
rate of the TP value.

Next, after thoroughly analysing the results, we discovered that the random-
ness tests applied to compressed files exhibited different behaviours according
to the input file-type. More precisely, there is a strong relationship between
the randomness of the input file-type and the randomness of the compressed
file generated. To document such behaviour, we classify the outcomes of all
data streams according to input file-types for all the compressed (see Fig 5)
algorithms tested (see Table 3). First, Fig. 5a, shows the accuracy detection of
64KB encrypted data streams, whose behaviour is similar to other file sizes and
therefore we omit the results. It is apparent that when we analyse encrypted
data streams we cannot distinguish the input file-type which is a result that
complies with the theory. On the contrary, one can observe that compressed
binary and compressed text files, as well as compressed video files are more
easily classified by our method (achieving 100% accuracy with binary and text
in 64KB file streams) than the rest. This implies that their randomness is much
lower than other files, such as PDF or MP3 (i.e. MP3 is already a compressed
file, as well as JPG files). This behaviour applies to all file sizes except for files
lower than 4KB, where compressed text files become more indistinguishable,
but we still find notable differences between each file-type. Such findings are
relevant, especially from a security perspective, because discovering the content
of compressed data streams enables the proper management when detecting
exchange of unexpected/suspicious files (e.g. executables). Again, the result
complies with the theory since the output of compression algorithms like Huff-
man or members of the Lempel-Ziv family highly depends on the statistical
properties of the input stream.

15

Table 7: Excerpt of the outcomes (percentages) for the worst (most restrictive)
and best (most relaxed) strategies.

File size γ TP FN FP TN Accuracy (TP+TN)

1 (Others)
0.1 26.72 23.28 13.16 36.84 63.56

2 46.70 3.29 26.09 23.90 70.60

1
0.1 26.73 23.27 14.31 35.69 62.42

2 46.69 3.31 28.01 21.99 68.68

2
0.1 26.58 23.42 10.41 39.59 66.17

2 46.68 3.32 21.18 28.82 75.50

4
0.1 26.74 23.26 7.13 42.87 69.61

2 46.77 3.23 15.1 34.90 81.67

8
0.1 26.68 23.32 4.84 45.16 71.84

2 46.69 3.31 10.49 39.51 86.20

16
0.1 26.74 23.26 3.11 46.89 73.63

2 46.86 3.14 7.01 42.99 89.85

32
0.1 26.85 23.15 1.81 48.19 75.04

2 46.66 3.34 3.89 46.11 92.77

64
0.1 27.01 22.90 0.98 49.02 76.03

2 46.82 3.18 2.09 47.91 94.72

In summary, the results show that we can distinguish compressed from en-
crypted bit streams accurately in an efficient way, and in the former case we may
even determine the content of compressed files with certainty. The accuracy of
the proposed methodology is highly dependent on the size of the investigated
packets, decreasing as the packet size decreases. Moreover, our threshold-based
method achieves higher accuracy (see Figure 1) with more efficiency than the
state-of-the-art [17] (k-NN and convolutional Neural networks), since they have
a complexity of at least O(n2) whilst our method has linear cost O(n). More-
over, in most cases we need only to compare one feature (and not n) to classify
a bit stream (e.g. if the chi-square test fails, the file is discarded and there is no
need to compute the rest of tests). In addition, results are reproducible since the
variability of threshold values is almost negligible, so that a universal threshold
can be considered regardless of data, avoiding costly training procedures (such
in the case of Neural networks) and other data-dependent methods.

6 Conclusions

Distinguishing high entropy sources (e.g. encrypted) from compressed streams
is a challenge that has been the focus of the research community. Most solutions
in the literature achieve high accuracy only when they are able to access all the

16

exchanged packets and extract patterns from the intercepted traffic, but are
inefficient when trying to distinguish between high entropy data [37, 11, 38, 39,
31, 52, 6]. Recently, Hahn et al. [17] introduced a method based on machine
learning that manages to distinguish between encrypted and compressed data
using random packets and not their complete sequence.

In this article, we introduced a novel threshold-based methodology that uses
efficient randomness tests to classify data streams into either compressed or
encrypted by investigating each intercepted packet individually. Our approach
was evaluated using a statistically sound benchmark we developed, achieving
an accuracy between 68.68% (worst case scenario) and 94.72% (and 70.61%
using the reference dataset of [17]). The accuracy rate depends on the packet
size. We also determined that the randomness of compressed files has a strong
dependence on the input file-type and we analysed their behaviour. We were
able to conclude that (compressed) binary, text and video files can be easily
detected by our system. Moreover, our method is more efficient than other
competing state-of-the-art works and enables real-time traffic classification.

In the future, we plan to: (i) refine this method to further increase its
accuracy; especially for low packet sizes, and (ii) enable more accurate content
classification of compressed files, to improve pro-active security and specific file-
type detection. Evaluation will also be carried in real-time environment, such
as those of the authors’ institutions.

.1 Randomness Tests

As this work focuses on the randomness analysis of data streams to determine
whether they are encrypted, we will now briefly describe widely used randomness
evaluation methods in the literature.
Entropy. According to Information Theory [44], the entropy measures the
unpredictability of data, given an information source. Therefore, the higher the
entropy, the higher the randomness of data.
Chi-square test. This is one of the prevalent tests used to compute the ran-
domness of a data stream. The test computes how much two given data samples
differ from each other. It is used to test whether a set of data follows a specific
distribution with a degree of confidence. Usually, the chi-square outcomes are
represented as an absolute value and a confidence percentage χ%, which esti-
mates the frequency that a truly random sequence exceeds this value by chance.
There are three main possibilities [8]:

1. 1% > χ% or χ% > 99%, the stream is not random.

2. 1% < χ% < 5% or 95% < χ% < 99%, the stream is “suspected” to be
random.

3. 5% < χ% < 10% or 90% < χ% < 95%, the stream is likely not to be
random.

Auto-correlation test. This test computes inner correlations that can reveal
a cyclic pattern or periodic behaviours. The randomness of the data is checked

17

by calculating auto-correlation for the values of the data stream at different time
lags [15]. Auto-correlation values close to zero show a highly random pattern,
while high variations from zero show non-random behaviour.
Average test. This simple test computes the summation of the values of the
bytes. For a random data stream, the value should be close to 127.5.
Kolmogorov-Smirnov test. This test is an alternative to the chi-square test
and quantifies the maximum absolute difference between two empirical cumula-
tive distribution functions as a measure of disagreement [29].
Anderson-Darlong test. This test is similar to Kolmogorov-Smirnov test,
however its reliability is higher, especially for small data streams, as reported
in [40].
Monte Carlo value for π test. This method computes an approximation to
the number π using the bit values of the data stream [28]. The closer to π, the
more random is the data stream.
Monobit test. This test tries to estimate the balance of ones and zeros in a
bit stream. Practically, given a sequence of n bits, we test whether:

erfc(
|#zeroes−#ones|

n
√

2
) < 0.01

Poker test. This test splits the bit stream in segments of 4 bits. Each segment,
when converted to an integer belongs to [0, 15]. If we denote as f(i) the number
of occurences of each number i then we evaluate:

X =
16

5000

15∑
i=0

f(i)2 − 5000

The test is passed if 2.16 < X < 46.17.
Runs test. This test evaluates how often we see the same consecutive bits (a
run), e.g. all ones in a raw, in a bit stream. To this end, this test we count the
length of each possible run up to length 6 and check whether it conforms to a
specific pattern.
Long runs test. In this test we try to determine whether there are runs of
length more than 25.
Diehard tests. The Diehard tests are a collection of statistical and mathemat-
ical tests for measuring the quality of a random number generator [32].
TestU01 tests. Similarly to Diehard, the TestU01 suite is a collection of
random number generator methods as well as a collection of tests to measure
their quality [23].
FIPS-2-140 test. The National Institute of Standards and Technology (NIST)
proposed a set of four empirical tests to analyse the randomness of binary data
streams [1]. In our experiments, we use the FIPS-2-140 cryptographic module
test with minimum block size (i.e. 20,000 bits) and, hence, tests are applied
independently to each data block. The set consists of the monobit, the poker,
the runs, and the long runs tests presented above.
SP 800-22 test suite. NIST later extended the FIPS-2-140 test suite for
random and pseudorandom number generators with more tests in SP 800-22
[18].

18

Acknowledgments

This work was supported by the European Commission under the Horizon
2020 Programme (H2020), as part of the project YAKSHA (Grant Agreement
no. 780498) and is cofinanced by the European Union and Greek national
funds through the Operational Program Competitiveness, Entrepreneurship and
Innovation, under the call RESEARCH - CREATE - INNOVATE (project
code:T1EDK-01958).

References

[1] NIST SP 800-22, 2014.

[2] Riyad Alshammari, Peter I. Lichodzijewski, Malcolm Heywood, and A. Nur
Zincir-Heywood. Classifying ssh encrypted traffic with minimum packet
header features using genetic programming. In Proceedings of the 11th
Annual Conference Companion on Genetic and Evolutionary Computation
Conference: Late Breaking Papers, GECCO ’09, pages 2539–2546, New
York, NY, USA, 2009. ACM.

[3] Riyad Alshammari and A Nur Zincir-Heywood. Can encrypted traffic
be identified without port numbers, ip addresses and payload inspection?
Computer networks, 55(6):1326–1350, 2011.

[4] D. J. Arndt and A. N. Zincir-Heywood. A comparison of three machine
learning techniques for encrypted network traffic analysis. In 2011 IEEE
Symposium on Computational Intelligence for Security and Defense Appli-
cations (CISDA), pages 107–114, April 2011.

[5] Roni Bar Yanai, Michael Langberg, David Peleg, and Liam Roditty. Real-
time classification for encrypted traffic. In Paola Festa, editor, Experimen-
tal Algorithms, pages 373–385, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[6] Gregory Conti, Sergey Bratus, Anna Shubina, Benjamin Sangster, Roy
Ragsdale, Matthew Supan, Andrew Lichtenberg, and Robert Perez-
Alemany. Automated mapping of large binary objects using primitive frag-
ment type classification. digital investigation, 7:S3–S12, 2010.

[7] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde. Analyzing android
encrypted network traffic to identify user actions. IEEE Transactions on
Information Forensics and Security, 11(1):114–125, Jan 2016.

[8] RalphB D’Agostino. Goodness-of-fit-techniques. Routledge, 2017.

[9] Alberto Dainotti, Walter De Donato, and Antonio Pescapé. Tie: A
community-oriented traffic classification platform. In International Work-
shop on Traffic Monitoring and Analysis, pages 64–74. Springer, 2009.

19

[10] Peter Dorfinger, Georg Panholzer, and Wolfgang John. Entropy estimation
for real-time encrypted traffic identification (short paper). In International
Workshop on Traffic Monitoring and Analysis, pages 164–171. Springer,
2011.

[11] Peter Dorfinger, Georg Panholzer, Brian Trammell, and Teresa Pepe.
Entropy-based traffic filtering to support real-time skype detection. In
Proceedings of the 6th International Wireless Communications and Mobile
Computing Conference, pages 747–751. ACM, 2010.

[12] Holger Dreger, Anja Feldmann, Michael Mai, Vern Paxson, and Robin
Sommer. Dynamic application-layer protocol analysis for network intrusion
detection. In 15th USENIX security symposium, pages 257–272. USENIX
Association, 2006.

[13] James P Early, Carla E Brodley, and Catherine Rosenberg. Behavioral au-
thentication of server flows. In Computer Security Applications Conference,
2003. Proceedings. 19th Annual, pages 46–55. IEEE, 2003.

[14] Jeffrey Erman, Anirban Mahanti, Martin Arlitt, Ira Cohen, and Carey
Williamson. Offline/realtime traffic classification using semi-supervised
learning. Perform. Eval., 64(9-12):1194–1213, October 2007.

[15] Bhaskar Kumar Ghosh and Pranab Kumar Sen. Handbook of sequential
analysis. CRC Press, 1991.

[16] John Haggerty and Mark Taylor. Forsigs: Forensic signature analysis of
the hard drive for multimedia file fingerprints. In IFIP International In-
formation Security Conference, pages 1–12. Springer, 2007.

[17] Daniel Hahn, Noah Apthorpe, and Nick Feamster. Detecting compressed
cleartext traffic from consumer internet of things devices. arXiv preprint
arXiv:1805.02722, 2018.

[18] Alan Heckert, James Dray, and San Vo. Andrew rukhin, juan soto, james
nechvatal, miles smid, elaine barker, stefan leigh, mark levenson, mark
vangel, david banks. NIST Special Publication, 800:22, 2001.

[19] Amir R. Khakpour and Alex X. Liu. An information-theoretical ap-
proach to high-speed flow nature identification. IEEE/ACM Trans. Netw.,
21(4):1076–1089, August 2013.

[20] Jawad Khalife, Amjad Hajjar, and Jesus Diaz-Verdejo. A multilevel tax-
onomy and requirements for an optimal traffic-classification model. Netw.,
24(2):101–120, March 2014.

[21] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learn-
ing: A review of classification techniques. Emerging artificial intelligence
applications in computer engineering, 160:3–24, 2007.

20

http://arxiv.org/abs/1805.02722

[22] Y. Kumano, S. Ata, N. Nakamura, Y. Nakahira, and I. Oka. Towards real-
time processing for application identification of encrypted traffic. In 2014
International Conference on Computing, Networking and Communications
(ICNC), pages 136–140, Feb 2014.

[23] Pierre L’Ecuyer and Richard Simard. Testu01: Ac library for empirical
testing of random number generators. ACM Transactions on Mathematical
Software (TOMS), 33(4):22, 2007.

[24] Suchul Lee, Hyunchul Kim, Dhiman Barman, Sungryoul Lee, Chong-kwon
Kim, Ted Kwon, and Yanghee Choi. Netramark: a network traffic classi-
fication benchmark. ACM SIGCOMM Computer Communication Review,
41(1):22–30, 2011.

[25] Binglong Li, Qingxian Wang, and Junyong Luo. Forensic analysis of doc-
ument fragment based on svm. In null, pages 236–239. IEEE, 2006.

[26] Marc Liberatore and Brian Neil Levine. Inferring the source of encrypted
http connections. In Proceedings of the 13th ACM conference on Computer
and communications security, pages 255–263. ACM, 2006.

[27] J. Lin. Divergence measures based on the shannon entropy. IEEE Trans-
actions on Information Theory, 37(1):145–151, Jan 1991.

[28] Andrew W Lo and A Craig MacKinlay. The size and power of the vari-
ance ratio test in finite samples: A monte carlo investigation. Journal of
econometrics, 40(2):203–238, 1989.

[29] Raul HC Lopes. Kolmogorov-smirnov test. In International encyclopedia
of statistical science, pages 718–720. Springer, 2011.

[30] Robert Lyda and James Hamrock. Using entropy analysis to find encrypted
and packed malware. IEEE Security & Privacy, 5(2), 2007.

[31] Paras Malhotra. Detection of encrypted streams for egress monitoring. Iowa
State University, 2007.

[32] George Marsaglia and Arif Zaman. Monkey tests for random number gen-
erators. Computers & mathematics with applications, 26(9):1–10, 1993.

[33] A. W. Moore and D. Zuev. Discriminators for use in flow-based classifica-
tion. Intel Research, 2005.

[34] Tadahiko Murata and Hisao Ishibuchi. Moga: multi-objective genetic al-
gorithms. In Evolutionary Computation, 1995., IEEE International Con-
ference on, volume 1, page 289. IEEE, 1995.

[35] Thuy TT Nguyen and Grenville Armitage. A survey of techniques for in-
ternet traffic classification using machine learning. IEEE Communications
Surveys & Tutorials, 10(4):56–76, 2008.

21

[36] Y. Okada, S. Ata, N. Nakamura, Y. Nakahira, and I. Oka. Application
identification from encrypted traffic based on characteristic changes by en-
cryption. In 2011 IEEE International Workshop Technical Committee on
Communications Quality and Reliability (CQR), pages 1–6, May 2011.

[37] Julien Olivain and Jean Goubault-Larrecq. Detecting subverted cryp-
tographic protocols by entropy checking. Laboratoire Spécification et
Vérification, ENS Cachan, France, Research Report LSV-06-13, 2006.

[38] Liam Paninski. Estimation of entropy and mutual information. Neural
computation, 15(6):1191–1253, 2003.

[39] Liam Paninski. Estimating entropy on m bins given fewer than m samples.
IEEE Transactions on Information Theory, 50(9):2200–2203, 2004.

[40] Nornadiah Mohd Razali, Yap Bee Wah, et al. Power comparisons of
shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests.
Journal of statistical modeling and analytics, 2(1):21–33, 2011.

[41] Vassil Roussev and Simson L Garfinkel. File fragment classification-the case
for specialized approaches. In Systematic Approaches to Digital Forensic
Engineering, 2009. SADFE’09. Fourth International IEEE Workshop on,
pages 3–14. IEEE, 2009.

[42] Salvatore Ruggieri. Efficient c4. 5 [classification algorithm]. IEEE transac-
tions on knowledge and data engineering, 14(2):438–444, 2002.

[43] Adi Shamir and Nicko van Someren. Playing ‘hide and seek’ with stored
keys. In Matthew Franklin, editor, Financial Cryptography, pages 118–124,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[44] Claude E Shannon. Communication theory of secrecy systems. Bell system
technical journal, 28(4):656–715, 1949.

[45] Salvatore J Stolfo, Ke Wang, and Wei-Jen Li. Fileprint analysis for malware
detection. ACM CCS WORM, 2005.

[46] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Russell, Venkata N
Padmanabhan, and Lili Qiu. Statistical identification of encrypted web
browsing traffic. In null, page 19. IEEE, 2002.

[47] S Momina Tabish, M Zubair Shafiq, and Muddassar Farooq. Malware de-
tection using statistical analysis of byte-level file content. In Proceedings of
the ACM SIGKDD Workshop on CyberSecurity and Intelligence Informat-
ics, pages 23–31. ACM, 2009.

[48] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. Robust smartphone
app identification via encrypted network traffic analysis. IEEE Transac-
tions on Information Forensics and Security, 13(1):63–78, Jan 2018.

22

[49] Petr Velan, Milan Čermák, Pavel Čeleda, and Martin Drašar. A survey
of methods for encrypted traffic classification and analysis. International
Journal of Network Management, 25(5):355–374, 2015.

[50] Ke Wang and Salvatore J Stolfo. Anomalous payload-based network intru-
sion detection. In International Workshop on Recent Advances in Intrusion
Detection, pages 203–222. Springer, 2004.

[51] Ruoyu Wang, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. Steal this movie: Automatically bypassing DRM protection in stream-
ing media services. In Presented as part of the 22nd USENIX Security Sym-
posium (USENIX Security 13), pages 687–702, Washington, D.C., 2013.
USENIX.

[52] Y. Wang, Z. Zhang, L. Guo, and S. Li. Using entropy to classify traffic
more deeply. In 2011 IEEE Sixth International Conference on Networking,
Architecture, and Storage, pages 45–52, July 2011.

[53] Michael Weber, Matthew Schmid, Michael Schatz, and David Geyer. A
toolkit for detecting and analyzing malicious software. In Proceedings of
the 18th Annual Computer Security Applications Conference, ACSAC ’02,
pages 423–, Washington, DC, USA, 2002. IEEE Computer Society.

[54] Andrew M White, Srinivas Krishnan, Michael Bailey, Fabian Monrose, and
Phillip A Porras. Clear and present data: Opaque traffic and its security
implications for the future. In NDSS, 2013.

[55] Daniel Wood, Noah Apthorpe, and Nick Feamster. Cleartext data transmis-
sions in consumer iot medical devices. In Proceedings of the 2017 Workshop
on Internet of Things Security and Privacy, pages 7–12, New York, NY,
USA, 2017. ACM.

[56] Charles V Wright, Fabian Monrose, and Gerald M Masson. On inferring
application protocol behaviors in encrypted network traffic. Journal of
Machine Learning Research, 7(Dec):2745–2769, 2006.

[57] Feipeng Yan, Ming Xu, Tong Qiao, Ting Wu, Xue Yang, Ning Zheng,
and Kim-Kwang Raymond Choo. Identifying wechat red packets and fund
transfers via analyzing encrypted network traffic. In IEEE International
Conference On Trust, Security And Privacy In Computing And Communi-
cations, pages 1426–1432. IEEE, 2018.

[58] Ibrar Yaqoob, Ibrahim Abaker Targio Hashem, Arif Ahmed, SM Ahsan
Kazmi, and Choong Seon Hong. Internet of things forensics: Recent ad-
vances, taxonomy, requirements, and open challenges. Future Generation
Computer Systems, 92:265–275, 2019.

[59] Like Zhang and Gregory B White. An approach to detect executable con-
tent for anomaly based network intrusion detection. In Parallel and Dis-
tributed Processing Symposium, 2007. IPDPS 2007. IEEE International,
pages 1–8. IEEE, 2007.

23

[60] Qinghua Zhang, Douglas S Reeves, Peng Ning, and S Purushothaman Iyer.
Analyzing network traffic to detect self-decrypting exploit code. In Pro-
ceedings of the 2nd ACM symposium on Information, computer and com-
munications security, pages 4–12. ACM, 2007.

[61] Yin Zhang and Vern Paxson. Detecting backdoors. In USENIX Security
Symposium, 2000.

24

	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Basic assumptions and requirements
	3.2 Feature Selection

	4 Experiments
	5 Discussion
	6 Conclusions
	.1 Randomness Tests

