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JCS-Net: Joint Classification and Super-Resolution
Network for Small-scale Pedestrian Detection in

Surveillance Images
Yanwei Pang, Senior Member, IEEE, Jiale Cao, Jian Wang, and Jungong Han

Abstract—While Convolutional Neural Network (CNN)-based
pedestrian detection methods have proven to be successful
in various applications, detecting small-scale pedestrian from
surveillance images is still challenging.The major reason is
that the small-scale pedestrians lack much detailed information
compared to the large-scale pedestrians. To solve this problem,
we propose to utilize the relationship between the large-scale
pedestrians and the corresponding small-scale pedestrians to
help recover the detailed information of the small-scale pedes-
trians, thus improving the performance of detecting small-scale
pedestrians. Specifically, a unified network (called JCS-Net) is
proposed for small-scale pedestrian detection, which integrates
the classification task and the super-resolution task in a unified
framework. As a result, the super-resolution and classification are
fully engaged and the super-resolution sub-network can recover
some useful detailed information for the subsequent classification.
Based on HOG+LUV and JCS-Net, multi-layer channel features
(MCF) are constructed to train the detector. Experimental results
on the Caltech pedestrian dataset and the KITTI benchmark
demonstrate the effectiveness of the proposed method. To further
enhance the detection, multi-scale MCF based on JCS-Net for
pedestrian detection is also proposed, which achieves the state-
of-the-art performance.

Index Terms—Pedestrian Detection, Small-Scale, Large-Scale,
Classification, Super-Resolution, MCF.

I. INTRODUCTION

Pedestrian detection based on Convolutional Neural net-
work (i.e., CNN) has achieved great success [54], [49], [8],
[48] in various applications, including traffic monitoring [1],
crowd event analysis [2], suspicious behavior detection [3]
and human (re-) identification [4]. Because the distances of
pedestrians from the camera are very different, the scales of
pedestrians can arbitrarily be varied and thus the appearances
of pedestrians differ across different scales. To carry out
pedestrian detection in image, tremendous efforts have been
paid, which can be divided into two main streams depending
on whether the scale variation is addressed: (1) scale-agnostic
methods [11], [53], [28] and (2) scale-aware methods [36],
[10], [59].
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In scale-agnostic methods, the pedestrians of different scales
are seen as the same category. In the training process, pedestri-
ans of all the different scales are rescaled to a fixed size (e.g.,
128 × 64) to train one detector. To detect the pedestrians of
different scales in the test image, the image pyramid technique
is used to rescale the image at multiple sizes. After that,
the trained detector respectively scans the images of different
sizes. In fact, the pedestrians of different scales are dissimilar
in appearance patterns [36], which has been ignored by scale-
agnostic methods. For example, the large-scale pedestrians
have the rich texture while the small-scale pedestrians are often
blurry.

To solve the above problem existed in scale-agnostic meth-
ods, scale-aware methods have been proposed for pedestrian
detection. They treat pedestrians across scales as the different
sub-categories, based on which multiple scale-specific detec-
tors are respectively trained. For example, Yang et al. [59]
proposed the Scale-Dependent Pooling (SDP) to handle the
scale variation problem for object detection. According to
the heights of pedestrians, SDP trains multiple ROI pooling
models based on different convolutional layers. Specifically, if
the height of a pedestrian is small, the ROI pooling will be
from the feature maps of early convolutional layer. To solve
the inconsistency between the scales of objects and the sizes of
filter receptive fields, Cai et al. [10] proposed multi-scale CNN
(called MSCNN). It extracts the object proposals from multiple
different layers, where each layer focuses on the certain scales
of pedestrians. Despite their success, the key idea of these
methods above is to train multiple scale-specific detectors, and
the relationship between the pedestrians of different scales is
not fully utilized. Moreover, small-scale pedestrian detection
still does not perform well.

In this paper, we propose to utilize the relationship between
the pedestrians of different scales to help improve the per-
formance of small-scale pedestrian detection. Firstly, a super-
resolution sub-network is trained, given the paired pedestrians
(i.e., the large-scale pedestrians and their corresponding small-
scale pedestrians). Secondly, a classification sub-network (i.e.,
VGG16 [50]) is fine-tuned on the large-scale pedestrians.
Thirdly, the two sub-networks are integrated into one uni-
fied network by Joint the Classification loss and the Super-
resolution loss, which is called JCS-Net. Based on HOG+LUV
[19] and JCS-Net, multi-layer channel features (MCF) [12]
are constructed for small-scale pedestrian detection. To fur-
ther improve the detection performance, multi-scale MCF is
proposed. The contributions and characteristics of this paper
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are summarized as follows:
(1) JCS-Net is proposed for small-scale pedestrian detection.

By jointly optimizing classification and super-resolution, JCS-
Net makes full use of the relationship between the large-
scale pedestrians and the small-scale pedestrians to help small-
scale pedestrian detection. Based on HOG+LUV and JCS-Net,
multi-layer channel features (MCF) are constructed to train the
detector for small-scale pedestrian detection.

(2) To solve the scale-variable problem, multi-scale MCF
is proposed. Specifically, the detector for the small-scale
pedestrians is trained based on HOG+LUV and JCS-Net,
and the detector for the large-scale pedestrians is trained
based on HOG+LUV and fine-tuned VGG16. The detection
results of different detectors are further combined together.
Compared to other scale-aware methods, multi-scale MCF
not only treats the pedestrians of different scales as the
different sub-categories, but also uses the relationship between
the pedestrians of different scales for small-scale pedestrian
detection.

(3) Experiments on the Caltech pedestrian dataset [20], [21]
and the KITTI benchmark [24] show the effectiveness of our
proposed method. On the Caltech pedestrian dataset, in par-
ticular, our method achieves the state-of-the-art performance
(i.e., 8.81% miss rate).

The rest of the paper is organized as follows. Firstly, we
review pedestrian detection and the related super-resolution in
Sec. II. Then, our proposed method is presented in Sec. III.
After that, the experimental results are reported in Sec. IV.
Finally, we conclude this paper in Sec. V.

II. RELATED WORKS

In this section, we begin with a review of pedestrian
detection, which is followed by a brief introduction about the
related super-resolution.

A. Pedestrian detection

Pedestrian detection can mainly be divided into two
paradigms: the handcrafted features based methods and the
CNN based methods. Cascade AdaBoost detector based on
Haar features is one of the most classical handcrafted features
based methods [56]. Thanks to the cascade structure [45],
it achieves the real-time detection speed with no loss of
detection performance. Dollár et al. [19] proposed Integral
Channel Features (ICF) for pedestrian detection. It generates
the local sum features from multiple registered image channels
(i.e., HOG [16] and LUV) along with the integral image
trick. Following ICF [19], many methods based on channel
features (e.g., ACF [18], InformedHaar [61], LDCF [42],
Checkerboards [62], and NNNF [13]) have been proposed.
By using fast feature pyramids and aggregate channel features,
ACF [18] dramatically accelerates the detection speed. LDCF
[62] and Checkerboards [62] convolve original image channels
(i.e., HOG+LUV) with PCA-like filters and handcrafted filters
to generate new image channels, respectively. InformedHaar
[61] and NNNF [13] incorporate the statistical characteristics
of pedestrians into the design of pedestrian features.

After the success of CNN on image classification [33], the
CNN has been applied to many other visual tasks [6], [35],
[39], [31], [44], where object detection is probably the most
successful example [26], [43], [47], [51]. The most famous ob-
ject recognition method is R-CNN [26], which carries out three
steps - it firstly extracts region proposals by selective search
[55], then computes the CNN features of these proposals,
and finally classifies these proposals by class-specific linear
SVMs. Faster R-CNN [47] integrates the above three steps of
R-CNN into a unified and end-to-end network. Based on the
famous CNN models [33], [50], many CNN based methods
for pedestrian detection have been also proposed. Hosang et
al. [28] made extensive experiments for deep pedestrian detec-
tion, where the handcrafted features based methods generate
candidate proposals while CNN is employed to classify these
proposals. By combing some local handcrafted features and
the CNN features, Cai et al. [11] proposed the CompACT
boosting algorithm for pedestrian detection that reaches a good
trade-off of accuracy and computational complexity. Based on
the CNN features, CCF [58] and RPN+BF [60] both used
the decision forest model to learn the pedestrian detector.
MCF [12] integrated the handcrafted image channels (i.e.,
HOG+LUV) and each layer of CNN into multi-layer image
channels. Mao et al. [41] exploited semantic features to help
pedestrian detection. Zhang et al. [63] proposed an attention
mechanism for occluded pedestrian detection. Because these
methods treat the pedestrians of different scales as the same
category and do not consider the scale-variable problem of
pedestrians, these methods are called scale-agnostic methods.

In fact, the scale-variable problem is one of the most
important problems in pedestrian detection. On the one hand,
the pedestrians of different scales have very different charac-
teristics. For example, the large-scale pedestrians have very
rich texture, while the small-scale pedestrians are very blurry.
On the other hand, there exists the inconsistency between the
receptive fields of the last CNN layer and the scales of pedes-
trians [10]. To solve the scale-variable problem, scale-aware
methods have been proposed. Li et al. [36] proposed to use
two sub-networks to respectively capture the characteristics
of the large-scale and the small-scale pedestrians. To reduce
computation cost, the two sub-networks share the first few
convolutional layers. Yang et al. [59] trained multiple ROI
pooling models from the outputs of different convolutional
layers for pedestrians of different scales. Recently, Cai et al.
[10] proposed multi-scale proposal network to generate the
candidate proposals from multiple output layers. To further
improve the detection performance, a detection sub-network
is added after the multi-scale proposal network.

Compared to scale-agnostic methods, scale-aware methods
generally perform better, especially on small-scale pedestrian
detection. Even though scale-aware methods have been suc-
cessful, we argue that there is still room for further im-
provement: (1) As most scale-aware methods only treat the
pedestrians of different scales as the different sub-categories,
the relationship between the pedestrians of different scales is
ignored; (2) Because the small-scale pedestrians lose much
useful information, detecting small-scale pedestrians is much
harder than detecting large-scale pedestrians in image. In this
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Fig. 1. The proposed JCS-Net for small-scale pedestrian detection by joint classification and super-resolution. Specifically, it consists of two sub-networks:
a sub-network of super-resolution and a sub-network of classification. The classification sub-network is firstly initialized by the large-scale network which
is trained on the large-scale pedestrians and then jointly trained with the super-resolution sub-network on the small-scale pedestrians. The blue arrows mean
some undisplayed convolutional layers or pooling layers.

paper, we propose to use the large-scale pedestrian detection
to aid small-scale pedestrian detection. Though the proposed
JCS-Net is related to some following methods [46], [27], [5],
[37], it is different from these methods in various aspects.
Compared to [46], our proposed JCS-Net aims to recover
some detailed information of small-scale pedestrians to help
small-scale pedestrian detection. Though TDSR [27] indeed
considers the super-resolution for object detection, the way
of using super-resolution by TDSR is different from that by
our JCS-Net. TDSR firstly trains the detection sub-network
and then trains the super-resolution sub-network by freezing
the network parameters of detection sub-network. We argue
that the training process of freezing detection sub-network in
TDSR is not optimal, because these two sub-networks are not
fully engaged. In addition, the super-resolution in TDSR works
on the whole image with no distinction of foreground and
background. However, in practice, the area of background is
usually much larger than that of foreground (pedestrian), hence
we argue that the important foreground (pedestrian) cannot
be reconstructed very well. Compared to TDSR, our JCS-Net
only focuses on the important foreground (pedestrian) recon-
struction. In [5], SOD-MTGAN uses two separate networks
(generator network and discriminator network) to respectively
generate the fine-scale image and recognize the specific object
category. Compared to SOD-MTGAN, our proposed JCS-Net
uses a single network for the fine-scale image generation and
object classification. As a result, our proposed method is more
efficient and less complicated in the training process. In [37],
PGAN uses an extra sub-network to narrow down the ROI
feature difference between the small-scale objects and the
large-scale objects. Compared to PGAN, our proposed JCS-
Net aims to narrow down the image difference between the
small-scale objects and the large-scale objects. Namely, PGAN
focuses on the feature domain, while our proposed JCS-Net
focuses on the image domain. More importantly, the results
show that our JCS-Net is superior to PGAN.

B. Image super-resolution

Image super-resolution aims to recover the high-resolution
image from the low-resolution image. Recently, CNN based
methods have achieved the great success on image super-
resolution. Dong et al. [22] are the first to propose an end-to-

end and fully convolutional neural network for image super-
resolution. After that, many variants have been proposed [32],
[64], [30], [52]. For example, Kim et al. [32] proposed a
deep super-resolution network with the residual-learning and
gradient clipping. Zhang et al. [64] proposed a residual dense
network to utilize the hierarchical features for image super-
resolution. Hui et al. [30] proposed a distillation block to
gradually extract the abundant features to reconstruct the high-
resolution image. In this paper, we use the image super-
resolution technique to recover more detailed information of
the small-scale pedestrians with the aid of the corresponding
large-scale pedestrians.

III. OUR PROPOSED METHOD

In this section, we start by presenting our proposed JCS-
Net for small-scale pedestrian detection, and then show
how to construct multi-layer channel features (MCF) from
HOG+LUV and JCS-Net, and finally propose the multi-scale
MCF.

A. JCS-Net

In this subsection, we propose to integrate the super-
resolution sub-network and the classification sub-network to-
gether for small-scale pedestrian detection. Generally, the
large-scale pedestrians have more abundant detailed informa-
tion. Thus, the super-resolution sub-network aims to recover
the detailed information of small-scale pedestrians from their
large-scale counterparts. Moreover, by engaging the super-
resolution and the classification, the reconstructed small-scale
pedestrians are much more suitable for small-scale pedestrian
detection.

First of all, we give an overall review of the proposed
network for small-scale pedestrian detection in Fig. 1. The
top row shows the network for large-scale pedestrian detection,
and the bottom row shows the proposed network for the small-
scale pedestrian detection by joint classification and super-
resolution. For simplification, the proposed network for small-
scale pedestrian detection is called JCS-Net. JCS-Net consists
of two sub-networks: one sub-network of super-resolution and
another sub-network of classification. The specific process
of training JCS-Net is explained as follows: (1) Firstly, the
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network (e.g., VGG16 [50]) for the large-scale pedestrians is
fine-tuned on the large-scale pedestrians and negatives. (2)
Secondly, the sub-network of the super-resolution in JCS-
Net is pre-trained following the existing technique of image
super-resolution [22], [32]. The small-scale pedestrians are
generated by firstly downsampling the large-scale pedestrians
and secondly upscaling them. (3) Thirdly, the sub-network of
the classification in JCS-Net is initialized by the weights of
network for large-scale pedestrian detection. (4) Finally, JCS-
Net for small-scale pedestrian detection is trained by joining
the sub-network of classification and the sub-network of super-
resolution together. The loss of JCS-Net is the joint loss of the
two sub-networks.

Assuming that yi refers to the large-scale pedestrian, xi

refers to the corresponding small-scale pedestrian, and F (xi)
refers to the reconstructed pedestrian by the sub-network of
super-resolution. Then, the loss of the super-resolution sub-
network is expressed by mean squared error as follows:

Lsimilarity =
1

n

n∑
i=1

||yi − F (xi)||2, (1)

where n is the number of the training positive samples. And
the loss of the classification sub-network is expressed as

Lcls =
1

N

N∑
i=1

− log pc(xi), (2)

where c is the ground-truth label of the sample xi, and pc(xi)
is the output of the softmax layer which means the probability
that the sample xi belongs to class c (i.e., pedestrian or non-
pedestrian). The loss of JCS-Net that joins super-resolution
and classification can be finally expressed as

LJCS = Lcls + λLsimilarity, (3)

where λ is used to balance the two terms which is set to be
0.1 by cross-validation.

Most multi-scale methods only treat the pedestrians of
different scales as the different sub-categories. Thus, these
methods do not make full use of the relationship between the
pedestrians of different scales. Compared to these methods, our
proposed JCS-Net uses the relationship between the large-scale
pedestrians and the small-scale pedestrians to help improve
small-scale pedestrian detection.

B. MCF by JCS-Net for small-scale pedestrian detection

First of all, a review of multi-layer channel features (i.e.,
MCF) [12] is given. It integrates HOG+LUV (i.e., L1) and
each layer of CNN (i.e., C1 to C5) into a unified framework.
Fig. 2 gives the illustration of the original MCF: (1) Firstly,
multi-layer image channels (i.e., L1 to L6) are constructed; (2)
Secondly, the candidate features (i.e., F1 to F6) are extracted
from each layer, respectively. (3) Finally, multi-stage cascade
AdaBoost (i.e., S1 to S6) is learned from the candidate
features of the corresponding layer. The original MCF based
on HOG+LUV and the fine-tuned VGG16 are used for large-
scale pedestrian detection in this paper.

For small-scale pedestrian detection, MCF is constructed by
HOG+LUV and JCS-Net. Fig. 3 gives the illustration about

C1 C2 C3 C4 C5

Handcrafted Channels

Feature Extraction

Multi-stage Cascade ... +

... ... ... ...
F1 F2 F3 F6

S1
+ + ... ++ + ...

++ + ...+ +

S2 S3 S6

Multi-layer Channels

(HOG+LUV) (VGG)

+...

...

CNN

L2L1
L3

L4
L5

L6

Fig. 2. Multi-layer Channel Features (MCF) based on HOG+LUV and each
layer of CNN (i.e., VGG16). HOG+LUV and each layer of VGG16 (i.e.,
C1-C5) are used. It is used for large-scale pedestrian detection.

C1 C6 I2 C8 C9 C10 C11 C12

Handcrafted Channels

Super-resolution

Feature Extraction

Multi-stage Cascade ... +

... ... ... ... ...
F1 F2 F3 F4 F5

S1
+ + ... ++ + ...

++ + ...+ + ...+ +

S2 S3 S4 S5
+

I1
Multi-layer Channels

JCS-Net

(HOG+LUV)
Classification (VGG)

... C7

...
F6

...+ +

S6
+

L1
L3

L4
L5

L6

L2

Fig. 3. Multi-layer Channel Features (MCF) based on HOG+LUV and JCS-
Net. HOG+LUV and each layer of the classification sub-network in JCS-Net
(i.e., C8-C12) are used. “I1” refers to the original small-scale pedestrian,
and “I2” refers to the reconstructed pedestrian by the super-resolution sub-
network. It is used for small-scale pedestrian detection.

how to construct MCF based on HOG+LUV and the trained
JCS-Net. In JCS-Net, the super-resolution sub-network adopts
the similar residual structure of VDSR [32]. It contains 7
convolutional layers. The first layer (C1) has 64 filters with
the size of 3× 3× 3, the middle five layers (C2-C6) have 64
filters with the size of 3×3×64, and the last layer (C7) has 3
filters with the size of 3×3×3. Because it learns the residual
between the large-scale pedestrian and corresponding small-
scale pedestrian, the reconstructed small-scale pedestrian (I2)
is the addition of the original small-scale pedestrian (I1) and
the output of the super-resolution sub-network (C7). Note
that some other networks (e.g., [22]) can be also used for
super-resolution. The classification sub-network in JCS-Net is
based on the original structure of VGG16 [50]. JCS-Net is
trained based on the joint loss of two sub-networks. Finally,
the traditional HOG+LUV and each layer of classification sub-
network (i.e., C8-C12) in the trained JCS-Net are used to
construct multi-layer image channels (i.e., L1 to L6). Multi-
stage cascade AdaBoost (i.e., S1 to S6) is learned based on
multi-layer image channels. Note that the channels in the sub-
network of the super-resolution are not used for constructing
the multi-layer image channels.

At the test stage, the image channels in L1 (i.e., HOG+LUV)
are firstly computed given the input image. Detection windows
are generated by sliding the input image. For the detection
windows accepted by S1, they are then put into the sub-
network of super-resolution. The image channels in the sub-
network of classification are computed based on the output of
the super-resolution sub-network. The rest of the process is
the same as the original MCF [12].
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Fig. 4. The illustration of multi-scale MCF. It consists of multiple detectors.
MCF-V means that MCF is constructed by HOG+LUV and the fine-tuned
VGG16, which is used for large-scale pedestrian detection. MCF-J means that
MCF is constructed by HOG+LUV and JCS-Net, which is used for small-scale
pedestrian detection.

C. Multi-scale MCF

Usually, the scales of pedestrians are arbitrarily variable. For
example, the reasonable height of pedestrians in the Caltech
pedestrian dataset [20], [21] ranges from 50 pixels tall to
480 pixels tall, and the moderate height of pedestrians in
the KITTI benchmark [24] ranges from 25 pixels tall to
374 pixels tall. Scale-agnostic methods treat the pedestrians
of different scales as the same category and use the image
pyramid technique to detect the pedestrians of different scales.
To achieve much better detection performance, scale-aware
methods were proposed recently [36], [59], [10].

In this subsection, the multi-scale MCF is proposed based
on JCS-Net in Fig. 4. It consists of multiple detectors which
are trained on different subsets. The pedestrians of different
scales are split into several different subsets (e.g., subset 1,
subset 2, ..., subset N) according to the height of pedestri-
ans. To enlarge the number of samples in each subset, the
different subsets can overlap. For each subset, MCF is used to
train a multi-stage cascade AdaBoost. If MCF is constructed
by HOG+LUV and JCS-Net, it is called MCF-J. If MCF
is constructed by HOG+LUV and fine-tuned VGG16, it is
called MCF-V. Generally speaking, MCF-J is used for small-
scale pedestrian detection and MCF-V is used for large-scale
pedestrian detection. In Fig. 4, the two detectors (D1 and D2)
on the first two subsets (subset 1 and subset 2) are trained
based on MCF-J, and the remaining detectors (D3-DN) on the
remaining subsets are trained based on MCF-V. At the test
stage, multiple detectors detect the input image, respectively.
The scores of the same detection window are added together
before NMS.

IV. EXPERIMENTS

In this section, experiments on the Caltech pedestrian
dataset [20], [21] and the KITTI benchmark [24] are shown
to demonstrate the effectiveness of the proposed method and
compare with some state-of-the-art methods.

The Caltech pedestrian dataset [20], [21] consists of 6
training sets and 5 test sets. The original training images and

the test images are generated by every 30th frame. Thus, there
are 4250 training images and 4024 test images. To enlarge the
training data, we sample one image from every 3rd frame on
the training set. The enlarged training data is called the Caltech
10x training set [62]. Thus, there are 42782 training images
on the Caltech 10x set. The KITTI benchmark [24] is a very
challenging computer vision benchmark, which consists of
several different vision tasks, such as stereo, visual odometry,
and object detection. Pedestrian detection is one sub-task in
object detection, which consists of 7481 training images and
7518 test images.

The network of VGG16 [50] is used for pedestrian detection
in this paper. Some original network parameters should be
changed as follows: the input size of 227 × 227 is replaced
by that of 128 × 64 and then the filter size in the first fully-
connected layer is set as 4 × 2. The weights of VGG16 pre-
trained on the ImageNet [17] is used for weight initialization.
It is then fined-trained on the pedestrian dataset.

JCS-Net consists of two sub-networks: the super-resolution
sub-network and the classification sub-network. The pedes-
trians over 50 pixels tall are used as the ground-truth of
the super-resolution sub-network, and the interpolated ver-
sions of them are the input (i.e., “I1” of Fig. 3). Based on
these pedestrians and their interpolated versions, the super-
resolution sub-network is trained firstly. The classification sub-
network (VGG16) is also fine-tuned on the pedestrians over 50
pixels tall. After that, the two sub-networks are jointly trained
by Eq. (3). Finally, the trained JCS-Net is used to construct
MCF-J for small-scale pedestrian detection.

For large-scale pedestrian detection, VGG16 is fine-tuned on
the pedestrians over 50 pixels tall and MCF-V is constructed
by HOG+LUV and each layer of the fine-tuned VGG16.
For small-scale pedestrian detection, MCF-J is constructed by
HOG+LUV and each layer of the classification sub-network
in JCS-Net. Feature extraction in the first layer is based on the
NNNF [13], and feature extraction in the CNN layers is single
pixel of each channel. Soft Cascade AdaBoost [9] is used for
learning the detector and the rejected threshold of each weak
classifier.

A. Experiments on the Caltech pedestrian dataset

In this subsection, some experiments on the Caltech pedes-
trian dataset are conducted to show the effectiveness of the
proposed method. Miss rates log-averaged over the range of
FPPI=[10−2,100] are used for evaluating detection perfor-
mance, where FPPI means false positives per image.

To demonstrate the effectiveness of JCS-Net and train multi-
scale MCF, the original pedestrians in the training data are
split into three different subsets, which are called “train-all”,
“train-small”, and “train-large”, respectively. “train-all” subset
contains all the pedestrians, “train-small” subset contains the
pedestrians under 100 pixels tall and the interpolated pedestri-
ans over 100 pixels tall, and “train-large” subset contains the
pedestrians over 80 pixels tall.

1) Effectiveness of JCS-Net for small-scale pedestrian
detection: To show the effectiveness of JCS-Net for small-
scale pedestrian detection, MCF-J and MCF-V are both trained
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(a) (b) (c)

Fig. 5. The reconstructed pedestrians by super-resolution sub-network of JCS-Net are compared to the interpolated pedestrians. The left of each sub-figure
is the interpolated pedestrian, and the right is the reconstructed pedestrian.

TABLE I
MISS RATES (MR) OF MCF-V AND MCF-J ARE SHOWN ON CALTECH

TEST SET. MCF-V IS LEARNED BASED ON HOG+LUV AND THE
FINE-TUNED VGG16. MCF-J IS LEARNED BASED ON HOG+LUV AND

THE PROPOSED JCS-NET.

method training set reasonable small

MCF-V “train-small” 13.20% 14.28%
MCF-J “train-small” 11.07% 11.72%
∆MR - 2.13% 2.56%

ablation experiments:

MCF-C “train-small” 12.23% 13.02%
MCF-S “train-small” 12.65% 13.50%

based on “train-small” subset. The training processes of MCF-
V and MCF-J are similar. The positives come from “train-
small” subset. The negatives are generated by the bootstrap
technique with five rounds of the original NNNF [13], where
the number of decision trees in each round is 32, 128, 512,
2048, and 4096, respectively. Based on the positives and
negatives, multi-stage cascade AdaBoost is learned, which
consists of 4096 depth-4 decision trees.

Table I compares Miss Rates (MR) of MCF-V and MCF-J
on the Caltech test set. The two subsets of the Caltech test
set (i.e., reasonable and small) are used for evaluation. The
reasonable test set means that the pedestrians are over 50 pixels
tall under no or partial occlusion, and the small test set means
that the pedestrians are under 100 pixels tall and over 50 pixels
tall. Namely, the small test set belongs to the reasonable test
set. On the reasonable test set, MR of MCF-V is 13.20% and
that of MCF-J is 11.07%. Thus, MCF-J outperforms MCF-V
by 2.13%. On the small test set, MCF-J outperforms MCF-V
by 2.56%. This means that the proposed JCS-Net is useful for
small-scale pedestrian detection.

To further demonstrate the effectiveness of the proposed
JCS-Net, we conduct two additional ablation experiments in
Table I. (1) The first one is setting λ of Eq. (3) to zero during
the fine-tuning to turn off the term of the similarity loss. This
aims to show whether a higher capacity network leads to
a good performance. Based on it, MCF-C is learned. Thus,
MCF-C has a higher capacity compared to MCF-V and has

TABLE II
MISS RATES (MR) OF MS-V AND MS-J ARE SHOWN ON CALTECH TEST
SET. MS-V MEANS MULTI-SCALE MCF BASED ON FINE-TUNED VGG16.

MS-J MEANS MULTI-SCALE MCF BASED ON JCS-NET.

method detectors training set reasonable small

MCF-V “train-small”
MS-V MCF-V “train-large” 9.67% 10.48%

MCF-V “train-all”

MCF-J “train-small”
MS-J MCF-V “train-large” 8.81% 9.57%

MCF-V “train-all”

∆MR - - 0.86% 0.91%

the same capacity compared to MCF-J. In Table I, MCF-C
has the better performance than MCF-V and has the worse
performance than MCF-J. It means that the higher capacity is
not the main reason that MCF-J can improve the performance
of small-scale pedestrian detection; (2) The second one is
using the vanilla super-resolution for small-scale pedestrian
detection. Namely, the super-resolution sub-network and the
classification sub-network are independently trained. It aims
to demonstrate the importance of the joint training of the
super-resolution and classification. Based on it, MCF-S is
learned. MCF-J also outperforms MCF-S. Even though using
the vanilla super-resolution can also improve the detection
performance, it cannot create the best detection performance
improvement compared with the joint training of JCS-Net.

Fig. 5 gives some examples about the interpolated pedes-
trians and correspondingly reconstructed pedestrians by the
super-resolution sub-network on the Caltech test set. The left
of each sub-figure is the interpolated pedestrian, and the right
is the reconstructed pedestrian by the super-resolution sub-
network. It can be seen that the reconstructed pedestrians
are relatively clear and their contours are more obvious. For
example, the stairs in the right of Fig. 5(b) are much clearer.
Thus, JCS-Net can help improve the following classification
sub-network by providing more detailed information.

2) Multi-scale MCF: For multi-scale MCF-V (MS-V), the
three detectors on the three different training subsets (i.e.,
“train-all”, “train-small”, and “train-large”) are all trained by
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TABLE III
MULTI-SCALE MCFS (I.E., MS-V AND MS-J) ARE COMPARED TO

SINGLE-SCALE MCF ON CALTECH TEST SET (REASONABLE).

MCF MS-V MS-J
MR 10.40% 9.67% 8.81%

∆MR - 0.73% 1.59%
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94.73% (97.08%) VJ

68.46% (80.58%) HOG

63.26% (72.81%) LatSvm−V2

48.35% (61.77%) Roerei

44.22% (58.78%) ACF−Caltech

24.80% (38.31%) LDCF

20.86% (37.20%) TA−CNN

18.47% (33.20%) Checkerboards

11.89% (24.02%) DeepParts

11.75% (22.20%) CompACT−Deep

9.95% (22.35%) MS−CNN

8.81% (18.84%) MS−J

Fig. 6. ROC of some state-of-the-art methods on Caltech test set (rea-
sonable). Miss rates log-averaged over the range of FPPI=[10−2,100] and
FPPI=[10−4,100] are both shown in the legend.

MCF-V. For multi-scale MCF-J (MS-J), two detectors on the
“train-all” and “train-large” subsets are trained by MCF-V and
one detector on the “train-small” subset is trained by MCF-
J. The scores of the same detection windows predicted by
different detectors are added together before NMS. Table II
compares the Miss Rates (MR) of multi-scale MCF-V (MS-
V) and multi-scale MCF-J (MS-J) on the Caltech test set. On
the reasonable test set, MS-J outperforms MS-V by 0.86%.
On the small test set, MS-J outperforms MS-V by 0.91%. It
demonstrates that incorporating the relationship between large-
scale pedestrians and small-scale pedestrians into the network
design can improve pedestrian detection performance.

Multi-scale MCFs (i.e., MS-V and MS-J) are also compared
to single-scale MCF on the Caltech test set (reasonable) in
Table III. Single-scale MCF treats all the pedestrians as the
same category and uses them (i.e., “train-all”) to train one
detector. MS-V and MS-J both have the lower miss rates
than MCF. For example, MS-J outperforms MCF by 1.59%.
Moreover, MS-J has the best performance.

3) Comparison with some state-of-the-art methods: Fi-
nally, we compare our proposed method (MS-J) with some
state-of-the-art methods. Fig. 6 shows the ROC curves of
these methods on the Caltech test set (reasonable). Miss
rates log-averaged over the range of FPPI=[10−2,100] and
FPPI=[10−4,100] are both shown in the legend. VJ [56],
HOG [16], LatSvm-V2 [23], Roerei [7], ACF-Caltech [18],
LDCF [42], and Checkerboards [62] are the traditional hand-
crafted features based methods. TA-CNN [54], DeepParts
[53], CompACT-Deep [11], MS-CNN [10], and our proposed
MS-J are the CNN based methods. MS-J achieves the best
detection performance (i.e., 8.81% MR). For examples, MRs
of CompACT-Deep [11] and MS-CNN [10] are 11.75%
and 9.95%, respectively. MS-J outperforms CompACT-Deep
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95.08% (97.25%) VJ

70.48% (81.81%) HOG

67.42% (76.66%) LatSvm−V2

52.06% (65.61%) Roerei

45.41% (60.79%) ACF−Caltech

26.28% (39.29%) LDCF

21.77% (37.68%) TA−CNN

20.02% (34.43%) Checkerboards

12.72% (25.05%) DeepParts

12.51% (23.26%) CompACT−Deep

10.50% (23.49%) MS−CNN

9.57% (20.00%) MS−J

Fig. 7. ROC of some state-of-the-art methods on Caltech test set (small).
Small set means the pedestrians over 50 pixels tall and under 100 pixels tall.

TABLE IV
AVERAGE PRECISION (AP) OF MCF-V AND MCF-J ARE SHOWN ON

KITTI VALIDATION SET. MCF-V IS LEARNED BASED ON HOG+LUV AND
THE FINE-TUNED VGG16. MCF-J IS LEARNED BASED ON HOG+LUV

AND THE PROPOSED JCS-NET.

method training set moderate small

MCF-V “train-small” 61.95% 47.21%
MCF-J “train-small” 65.12% 50.64%
∆AP - 3.17% 3.43%

[11] and MS-CNN [10] by 2.94% and 1.14%. Meanwhile,
The proposed method outperforms PGAN [37] by 0.67%. If
FPPI=[10−4,100] is used for evaluation, MS-J outperforms
CompACT-Deep [11] and MS-CNN [10] by 3.36% and 3.51%.
Because many state-of-the-art methods only provide the detec-
tion results of pedestrians over 50 pixels tall, Fig. 7 further
evaluates the detection performance of small-scale pedestrian
detection on the small test mentioned above instead of the
medium and far sets mentioned in [21]. It can be seen that
MS-J also achieves the state-of-the-art performance.

B. Experiments on the KITTI benchmark

In this subsection, some experiments on the KITTI bench-
mark are further conducted to show the effectiveness of the
proposed method. Instead of miss rate (MR) used on the
Caltech dataset, precision-recall (PR) is used for the evaluation
on the KITTI benchmark. Average precision (AP) is averaged
by summing in 10% recall steps.

To demonstrate the effectiveness of the proposed method,
the training data is split into two parts: the training set and
the validation set. Following [15], each part contains about
half of the training data. The pedestrians in the training set
are split into three subsets according to the height of pedes-
trians, including “train-small”, “train-medium”, and “train-
large”. Because the pedestrians over 50 pixels tall and 25
pixels tall are used for the evaluation on the Caltech and KITTI
datasets respectively, the partition of pedestrians on the KITTI
training set is different from that on the Caltech training set.
Specifically, “train-small” subset consists of the pedestrians
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TABLE V
AVERAGE PRECISION (AP) OF MS-V AND MS-J ARE SHOWN ON KITTI
VALIDATION SET. THREE SUBSETS WITH DIFFERENT DIFFICULTIES (I.E.,

EASY, MODERATE, AND HARD) ARE USED FOR EVALUATION. MS-V
MEANS MULTI-SCALE MCF BASED ON FINE-TUNED VGG16. MS-J

MEANS MULTI-SCALE MCF BASED ON JCS-NET.

method detectors training set Easy Moderate Hard

MCF-V “train-small”
MS-V MCF-V “train-medium” 77.65% 71.80% 61.96%

MCF-V “train-large”

MCF-J “train-small”
MS-J MCF-V “train-medium” 78.19% 72.47% 63.26%

MCF-V “train-large”

∆AP - - 0.54% 0.67% 1.30%
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Fig. 8. Multi-scale MCFs (i.e., MS-V and MS-J) are compared to single-scale
MCF on KITTI validation set.

under 100 pixels tall, “train-medium” subset contains the
pedestrians under 150 pixels tall and over 40 pixels tall, and
“train-large” subset means the pedestrians over 50 pixels tall.

1) Effectiveness of JCS-Net for small-scale pedestrian
detection: In the training processes of MCF-V and MCF-J,
the positives come from “train-small” subset, and the negatives
are generated by the bootstrap technique with five rounds
of the original NNNF [13]. Because the number of training
data is relatively limited compared to the Caltech 10x training
images, depth-2 decision tree instead of depth-4 decision tree
is used. The final detectors of MCF-V and MCF-J for small-
scale pedestrian detection both contain 4096 depth-2 decision
trees. The number of decision trees in each stage is the same
as that of Sec. IV-A.

Table IV compares Average Precisions (AP) of MCF-V
and MCF-J on the validation set. The moderate set on the
validation set is used for evaluation. AP of MCF-V is 61.95%
and that of MCF-J is 65.12%. MCF-J outperforms MCF-V by
3.17%. To show the improvement on small-scale pedestrian
detection, the small subset is further split from the moderate
set, which refers to the pedestrians under 100 pixels tall in the
moderate set. On the small subset, MCF-J outperforms MCF-V
by 3.43%. Thus, MCF-J has the better performance than MCF-
V, especially on small-scale pedestrian detection. The reason
is that MCF-J makes full use of the relationship between the
large-scale pedestrians and the small-scale pedestrians.

TABLE VI
AVERAGE PRECISION (AP) OF SOME STATE-OF-THE-ART METHODS ON

KITTI TEST SET. THREE DIFFERENT DIFFICULTIES (I.E., EASY,
MODERATE, AND HARD) ARE USED FOR EVALUATION. THE CNN

WHETHER USED FOR PROPOSAL EXTRACTION IS ALSO GIVEN.

method Proposal Extraction Easy Moderate Hard

ACF [18] without CNN 44.49% 39.81% 37.21%
Checkerboards [62] without CNN 67.65% 56.75% 51.12%
NNNF [14] without CNN 69.16% 58.01% 52.77%
DeepParts [53] without CNN 70.49% 58.67% 52.78%
CompACT-Deep [11] without CNN 70.69% 58.74% 52.71%
MCF [12] without CNN 70.87% 59.45% 54.28%
CFM [29] without CNN 74.21% 63.26% 56.44%

MS-J without CNN 75.94% 63.41% 59.03%

RPN+BF [60] with CNN 75.45% 61.29% 56.08%
SubCNN [57] with CNN 83.17% 71.34% 66.36%
MSCNN [10] with CNN 83.70% 73.62% 68.28%

MS-J with CNN 85.62% 74.99% 69.65%

2) Multi-scale MCF: Table IV demonstrates the effec-
tiveness of JCS-Net for small-scale pedestrian detection. To
achieve much better performance, multi-scale MCF is pro-
posed (i.e., MS-V and MS-J). In MS-V, the three detectors on
the three different subsets (i.e., “train-small”, “train-medium”,
and “train-large”) are all trained based on MCF-V. In MS-
J, the detector on the “train-small” subset is trained based
on MCF-J and two other detectors on the “train-medium”
and “train-large” subsets are trained based on MCF-V. The
scores of the same detection windows predicted by different
detectors are added together before NMS. Table V compares
the average precision (AP) of MS-V and MS-J on the three
different difficulties (i.e., “Easy”, “Moderate”, and “Hard”) of
the validation set. MS-J outperforms MS-V on all the three
different difficulties. For example, MS-J outperforms MS-V
by 1.30% on the hard set. MS-J joins super-resolution and
classification for small-scale pedestrian detection and treats
the large-scale pedestrians and the small-scale pedestrians
as the different sub-categories, while MS-V only treats the
pedestrians of different scales as the different sub-categories.
Thus, MS-J has the better detection performance than MS-V.

Fig. 8 further compares multi-scale MCFs (i.e, MS-V and
MS-J) with single-scale MCF on the validation set. Single-
scale MCF only trains one detector based on all the pedestrians
of the training set. No matter which difficulty is used (i.e.,
Easy, Moderate, or Hard), MS-V and MS-J both have the better
performance than single-scale MCF.

3) Comparison with some state-of-the-art methods: Fi-
nally, the proposed MS-J is compared with some state-of-the-
art methods on the KITTI test set in Table VI. (1) Firstly,
some methods which do not use the CNN to extract the
candidate proposals are compared. Among thse methods, ACF
[18], Checkerboards [62], and NNNF [13] use the traditional
handcrafted features to learn the pedestrian detector. DeepParts
[53], CompACT-Deep [11], MCF [12], CFM [29], and our
proposed MS-J use the handcrafted features to extract the
candidate proposals and use the CNN features to further
classify these proposals. Among these methods, MS-J achieves
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39.81% ACF

56.75% Checkerboards

58.01% NNNF

58.67 % DeepParts

58.74% CompACT−Deep

63.26% CFM

63.41% MS−J

61.29% RPN+BF
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73.62% MSCNN

74.99% MS−J−CNN

Fig. 9. PR curves of some state-of-the-art methods on the KITTI test set
(Moderate).

the best detection performance. On the moderate set, AP of
CompACT-Deep [11] is 58.74% and that of MCF [12] is
59.45%. MS-J outperforms CompACT-Deep [11] and MCF
[12] by 4.67% and 3.96%. (2) Secondly, some methods which
use the CNN to extract the candidate proposals (i.e., [60], [57],
[10]) are further compared. Instead of using NNNF, MS-J uses
FPN [38] to extract the candidate proposals. It can be seen that
the proposed method also outperforms the other methods. For
example, MS-J outperforms MSCNN and SubCNN by 1.37%
and 3.65% on the moderate subset. Fig. 9 further shows the
PR curves of these methods on the moderate subset. It can be
seen that MS-J outperforms the other methods.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a unified framework (called
JCS-Net) for small-scale pedestrian detection. It consists of
two sub-networks: one for super-resolution and another for
classification. The loss of JCS-Net is the joint loss of the super-
resolution sub-network and the classification sub-network. Due
to the incorporation of the relationship between the large-scale
pedestrians and the small-scale pedestrians, MCF based on
JCS-Net (MCF-J) provided better detection performance for
small-scale pedestrian detection. Experiments on two public
datasets (the Caltech [20], [21] and KITTI [24] datasets)
showed the effectiveness of the proposed JCS-Net. To have a
better performance for pedestrian detection, multi-scale MCF
based on JCS-Net (MS-J) was also proposed. It achieved a
state-of-the-art performance on the pedestrian datasets.

However, we have observed that the detection performance
drops when the pedestrian and its background are similar
in appearance. The reason might be that we only consider
the similarity between the reconstructed pedestrian and the
large-scale pedestrian, but ignore the dissimilarity between the
reconstructed background and the large-scale pedestrian. In
the future work, we will consider this dissimilarity to further
improve pedestrian detection.
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