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Abstract—A problem deeply investigated by multimedia foren-
sics researchers is the one of detecting which device has been
used to capture a video. This enables to trace down the owner
of a video sequence, which proves extremely helpful to solve
copyright infringement cases as well as to fight distribution
of illicit material (e.g., underage clips, terroristic threats, etc.).
Currently, the most promising methods to tackle this task exploit
unique noise traces left by camera sensors on acquired images.
However, given the recent advancements in motion stabiliza-
tion of video content, robustness of sensor pattern noise-based
techniques are strongly hindered. Indeed, video stabilization
introduces geometric transformations between video frames,
thus making camera fingerprint estimation problematic with
classical approaches. In this paper, we deal with the challenging
problem of attributing stabilized videos to their recording device.
Specifically, we propose: (i) a strategy to extract the characteristic
fingerprint of a device, starting from either a set of images or
stabilized video sequences; (ii) a strategy to match a stabilized
video sequence with a given fingerprint in order to solve the
device attribution problem. The proposed methodology is tested
on videos coming from a set of different smartphones, taken from
the modern publicly available Vision Dataset. The conducted
experiments also provide an interesting insight on the effect of
modern smartphones video stabilization algorithms on specific
video frames.

I. INTRODUCTION

HE vast majority of traffic flowing over the Internet is

composed of visual data, especially videos. More and
more often, videos are used to support news, not only by infor-
mation professionals, but also by end users of social networks.
Besides their explicit message, such videos carry a wealth
of implicit information which can be exploited for forensic
tasks [1], first of all source attribution. Linking a given video
to its acquisition device may provide precious evidence both
during investigations and before a court of law. For example,
it can allow to expose copyright violations, or point to the
authors of hideous crimes, such as acts of terrorism or pedo-
pornography. The key assumption for source identification is

S. Mandelli, P. Bestagini and S. Tubaro are with the Dipartimento di
Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano
20133, Italy (e-mail: name.surname @polimi.it).

L. Verdoliva is with the Dipartimento di Ingegneria Elettrica e delle
Tecnologie dell’Informazione, University of Naples Federico II, 80125 Naples,
Italy (e-mail: verdoliv@unina.it).

This material is based on research sponsored by DARPA and Air Force
Research Laboratory (AFRL) under agreement number FA8750-16-2-0173.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA and Air Force Research Laboratory
(AFRL) or the U.S. Government.

that acquisition devices leave distinctive traces in the acquired
content. Therefore, these traces can be exploited to retrieve
information on the origin of the video at various levels of
granularity, that is, brand, model, or individual device [2]. This
latter information, of course, is the most valuable and sought
for.

To date, the most powerful methods for device identification
rely on the camera photo-response non uniformity (PRNU)
pattern. The PRNU pattern is due to inhomogeneities in
silicon wafers and imperfections of the sensor manufacturing,
which cause a non-uniform sensitivity to light of the sensor
photo-diodes. As a results, a deterministic multiplicative noise
component can be observed in all images or videos acquired
by the same camera. Each device is characterized by its
unique PRNU pattern, which can be therefore regarded as a
sort of camera fingerprint. Due to its properties, the PRNU
pattern allows reliable device identification [3], even in the
presence of JPEG compression [4]. Moreover, it can be used
for other forensic tasks, such as image forgery detection [4],
[5]. The PRNU-based approach normally relies on some prior
information, typically a large number of images known to
come from the camera of interest, however, blind methods
have been also proposed with competitive performance [6],
[7]. Use of compressed PRNU patterns has been also proposed
[8], [9] to allow real-time applications.

PRNU-based methods have been readily extended to video
to accomplish a variety of forensic tasks, e.g., source identifi-
cation [10], detection of duplicate or spliced videos [11], [12]
authentication of smartphones [13]. This extension, however,
is not easy, and several peculiar issues need to be addressed to
obtain a satisfactory performance. In fact, PRNU estimation
is much harder for videos than for images, since videos are
almost always compressed with relatively low quality, and
often subjected to video stabilization.

Gaining robustness against compression is a primary goal
of current research, since videos are most often uploaded
on YouTube [14] or shared through other social networks
[15], [16]. In [10] blockiness artifacts caused by compression
are corrected before evaluating decision statistics. In [17] a
confidence weighting scheme is proposed to identify high-
frequency areas of the scene, which are discarded to ensure
a more reliable PRNU estimation. In [18] video frames are
reordered and weighed according to their reliability given that
I-frames are more reliable than P-frames for estimation. Also,
videos delivered on a wireless network suffer from blocking
and blurring due to packet losses, and suitable algorithms need
to be developed to handle this situation [19].



Another major problem is video stabilization, by which
individual frames can undergo geometrical transformations
(e.g., translation, scale, rotation, etc.) after acquisition to com-
pensate for involuntary user’s movements [20]. This causes
misalignment of individual pixels across frames, preventing
a reliable estimation of the PRNU fingerprint. In addition,
even when it is correctly estimated, it may not correlate with
the noise residuals extracted from a given stabilized frame.
Since modern smartphone cameras adopt video stabilization,
and most of the videos uploaded on the internet come from
smartphones, PRNU-based methods may be of little use [21]
without suitable corrections.

The first paper addressing this problem [22] dates back to
2011, but it only compensates for translations. In [23] it is
more realistically assumed that stabilization is performed using
a combination of translation and rotation, which are estimated
and compensated before evaluating correlation using only I-
frames. It is also proposed to perform video camera attribution
using a set of images from the same camera and it has been
shown that the fingerprint computed from a set of images
correlate with the fingerprint extracted from a non-stabilized
video of the same camera. This idea is further developed in
[24] where an hybrid sensor pattern noise analysis is carried
out to handle the problem of video stabilization. Specifically,
the reference PRNU is estimated using only still images, while
for the test video some scale and translation transformations
are performed to register frames to the image reference.

In this paper, we face the problem of camera attribu-
tion from stabilized video sequences exploiting PRNU-based
traces. Specifically, we propose two different approaches to
extract the camera fingerprint, using either images or stabilized
videos obtained from the same device. We then propose a
methodology to test a video sequence (even if stabilized)
against a fingerprint for camera attribution. A simplified ver-
sion of this methodology is also proposed for situations in
which computational complexity is a constraint, and many
video frames are available. The proposed camera attribution
strategy is tested on the publicly available Vision dataset [21],
consisting of almost 400 stabilized and non-stabilized video
sequences obtained from modern portable devices.

In terms of our novel contributions, we would like to
highlight the following aspects:

« We propose a solution based on modeling video stabiliza-
tion by means of similarity transformations, thus com-
pensating for scale, rotation and translation operations
motivated by [20].

« We propose the first method for camera attribution only
using stabilized videos, tested in a completely uncon-
trolled scenario of videos stabilized by proprietary soft-
ware (i.e., camera firmwares).

« We propose a strategy based on a global optimization
technique, rather than using a brute force approach for
stabilization parameters’ estimation as in [23], [24]. This
makes the proposed method more suitable for realistic
applications.

o We discuss the interesting scenario of performing camera
attribution when the first frame acquired by the camera is
not available (e.g., the video has been trimmed in time).

As a matter of fact, the first frame is often non-stabilized,
thus making camera attribution simpler but making the
scenario less realistic.

The rest of the paper is structured as follows. Section II re-
ports some background on video stabilization and PRNU, and
introduces the problem formulation. Section III contains the
details of the two approaches proposed to estimate a reference
fingerprint from the available images and/or videos. Section IV
explains the proposed algorithm for testing a video query
against the previously obtained camera fingerprints. Section V
reports a detailed overview of the performed experimental
campaign. Finally, Section VI concludes the paper.

II. BACKGROUND AND PROBLEM STATEMENT

In this section we introduce some background concepts
useful to understand the rest of the paper. First, we overview
recently proposed methods for video stabilization. Then,
we introduce the concept of photo response non-uniformity
(PRNU) and its use for camera attribution, highlighting the
problems that arise when dealing with videos. Finally, we
report details about the formulation of the video camera
attribution problem faced in this paper.

A. Video motion stabilization

Because of the indiscriminate sharing of video content
on social media platforms, the amount of video sequences
posted on the web is increasing every day. Since a significant
percentage of these videos is captured by amateur users, which
are usually not equipped by professional stabilization tools
(e.g., tripods, steady-cam, etc.), the recorded sequences may
highly suffer from camera-shake, principally due to the hand-
held recording but also to other movements induced by the
user, walking or even running during capture.

As a consequence, plenty of strategies to perform the
stabilization of a video (directly on the recording camera
or off-line) have been proposed [25], [26], [27], [28], [29],
[20]. These methods allow to improve the quality of the
recorded videos, making each sequence appearing as if it
were recorded from a stable camera moving along a smooth
path. In particular, these systems are able to detect and correct
high frequency jitter artifacts, low frequency artifacts, rolling
shutter wobbles, foreground motion, poor lighting, and scene
cuts [20].

Among the most recently proposed approaches, the authors
of [20] propose to perform video stabilization by fitting the
original 2D camera path with linear motion models, charac-
terized by a different amount of degrees of freedom (DOF).
Whenever these models are considered to be valid for the
considered frame-pair motion, the original path is transformed
according to the model and a smooth camera path is generated.
Frames are then warped on this new path by applying a set of
pixel-wise transformations.

To be precise, the authors show that it is possible to increase
the complexity of the algorithm by considering motion models
with more DOF. The easiest motion model describes only
translations, hence 2 DOF. Specifically, the motion of each



frame can be represented as function of that of the previous
one by means of the matrix T, defined as

1 0 c,
T2—<o X Cy>, (M

where c; and c, are the magnitude of translation of the
camera along the horizontal and vertical axes, respectively.
Alternatively, the similarity model including 4 DOF to detect
also rotation and uniform scaling between frames can be used.
The matrix describing the motion relationship between frames

is
s-cosf —s-sinf ¢,
Ty = P . ,
s-sinf  s-cosf ¢,
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being s and 6 the scaling factor and rotation angle, re-
spectively. More complex homographic models can be also
considered if perspective distortions have to be recovered.
However, not every model can efficiently represent the motion
between two frames, and the application of an incorrect
motion model introduces distortions in the stabilized video.
As an example, whenever the model is invalid, translation
and similarity inject additional shaking in the estimated path,
whereas the homographic models result in perspective warping
errors. Moreover, the higher the complexity of the used model,
the higher the probability of wrongly estimating it, potentially
leading to temporal instability of the generated path [26], [30].

In the light of this, stabilization methods usually perform a
first step to delete the shake due to similarity and lower DOF
motions, without taking into account higher DOF motions.
Then, any residual motion can be potentially corrected ex-
ploiting the homographic models [20]. This two-step approach
comes in handy whenever computational complexity is an
issue. Indeed, if stabilization is performed on mobile devices,
even just one step can be used.

A consequence of motion stabilization on a video sequence
is that two pixels sharing the same geometrical coordinates on
two different frames may have been acquired with different
portions of the camera sensor due to the introduced geometri-
cal transformations. As shall be clear in the next section, this
is a problem for PRNU-based video camera attribution.

B. Photo response non-uniformity

The PRNU is a noise fingerprint characteristic of any image
and video acquisition device. Specifically, PRNU is introduced
in all acquired images and video frames as a multiplicative
zero-mean noise pattern [3], [4].

In the basic procedure proposed in the literature [4], PRNU
is estimated from a set of /N images I,, coming from the same
device as

N
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where W,, is the noise residual extracted from I,,, and _a]l
operations are performed pixel-wise. Precisely, W,, = I,, -1,
being I,, a denoised version of I,, computed as suggested in

[4].

The PRNU K can be exploited as a camera signature for
solving the image-camera attribution problem, i.e., given a test
image I, inferring whether it has been captured by the camera
or not. For instance, one way to solve the problem is based
on measuring Peak-to-Correlation-Energy (PCE) [10]. More
precisely, the PCE defines a measure of the cross-correlation
between 2D data arrays. In order to compute it over two matri-
ces Wy and W, of size m x n, we first have to cross-correlate
them, defining [R],, = corr([Wil; ;, [Wa]i—y,j—v). Then,
by examining the R surface it is possible to detect the presence
of a pronounced peak. Thus, the PCE(W1, W) is defined
as
[R?Ju, v,

1 ;
mn—|Np| N 1%2»:./\/ [R2}u,v
s p

PCE(W,, W,) = (4)

where (u,,v,) are the peak coordinates and N, is a small
neighborhood of the peak [10]. In other words, the PCE mea-
sures how much two matrices are correlated, independently of
possible shift misalignments between them. Indeed, (u,,v,)
can be seen as an estimate of the mutual shift between W
and W,

Dealing with the image-camera attribution problem, we can
compute the PCE between the noise residual W extracted
from the test image and the camera PRNU pixel-wise scaled
by I, denoted as PCE(W,K - I). If this value is higher
than a confidence threshold, I is attributed to that camera
[3], [4]. Indeed, the PCE is a very good metrics for solving
the problem, as it is robust by nature to shifts. This is very
important whenever an image has been cropped with respect
to the reference PRNU [31]. By means of PCE, the peak of
correlation can be searched over all the pixel positions, hence
possible errors due to shifts between PRNU and the extracted
noise are avoided.

Extending PRNU-based methods to video sequences is not
straightforward, and presents multiple challenges [10], [23]. In
fact, video signals are typically less reliable than image ones
due to their lower resolution, as well as stronger compression.
Therefore, PRNU traces in video sequences tend to be very
subtle. As a matter of fact, the authors of [10], [18] propose
to consider each video frame as a picture and follow the
standard PRNU-based pipeline for image attribution. Their
results confirm that video attribution is challenging, and not
all video frames can be considered as equally informative.
Indeed, depending on the used coding strategy, intra-coded
frames typically contain more reliable PRNU information.

Interesting alternative approaches have been proposed by
[23], [24]. The authors suggest to estimate each camera
reference PRNU from images, and use it to attribute video
queries. However, to solve the camera attribution problem for
a video query they cannot directly make use of the PRNU
reported in (3), as the video resolution is typically lower than
the resolution of the images taken by the same camera [10]. As
a matter of fact, in order to adapt the sensor size to the video
recording area, some operations are performed. Therefore, they
propose a strategy that searches for a correct scale and crop
transformation to match image PRNU and video resolutions.

Though, if video stabilization is used, additional transfor-
mations are carried out as well, as reported in Section II-A.



Fig. 1: (a) In absence of stabilization, the pixel coordinates
(green circle) do not modify on frames; (b) In presence of
stabilization, recording sensor area can be slightly shifted,
scaled and rotated, hence the pixel coordinates (green circle)
can change with respect to the original ones (shown in dashed
line).

In the light of these consideration, we propose to exploit
a 4-parameter linear model to describe the image-to-video
space conversion, modeling both the operation that shrinks
the recording area and the stabilization counteracting global
frame shake [26], [29].

The considered linear model consists in a 2D similarity
transformation & [30], described by the matrix T as

T:<s-c080 —s-sinf cx>.

s-sinf  s-cosf ¢y

®)

The transformation of image to video domain can be modeled
as Iy = J(Z), being Z the image space and Z; the space
related to video frames. In particular, the vector ¢ = (¢z, ¢y)
describes the translation along the x and y axes, whereas s
and 6 regard scale and rotation, respectively.

Concerning non-stabilized videos, the relationship ex-
pressed by (5) can be further simplified by noticing that no
kind of rotation is reasonably included in video acquisition
process. As a matter of fact, there would be no reason to rotate
the sensor area whenever a non-stabilized video is recorded.
Moreover, as reported in [24], all video frames recorded by
a unique non-stabilized device are affected by equal scaling
and shift factors, being these parameters probably fixed by the
device firmware specifications.

On the contrary, whenever video stabilization is used, each
frame Iy in the sequence experiences its own scale sy,
translation cy and rotation 6, which are introduced to drop
the shaky-hand effect typical of amateur recorded videos.
Therefore, all these transformations (i.e., scale, rotation and
shift) should be taken into account when dealing with PRNU-
related problems.

For the sake of clarity, Fig. 1 reports three adjacent frames
of a video. The area inside the white window points out the
final scene depicted on the recorded video by the device. In the
former row, the depicted scene in absence of stabilization: se-
lecting a pixel inside the recording area, its coordinates main-
tain fixed during capture. Whenever stabilization is present

Query
Stabilized Video
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Stabilized Videos \ Video o
or Fingerprint ———— Telslti;}:g Yes/No
Stbilzed Videos . Estimation

Fig. 2: Pipeline of the proposed method: Initially, the device
signature is estimated, using images and videos captured by
the camera, or videos only. Then, each video query is tested
and eventually attributed or not to the camera.

(latter row), in order to generate a stable camera path, each
pixel can actually vary its coordinates during the recording.

C. Problem formulation

In this paper, we focus on the problem of video source
attribution exploiting PRNU-based traces in the challenging
scenario of in-camera stabilized video sequences.

In order to solve this problem, we split it into two separate
steps: (i) given some multimedia content acquired with a
device, estimate its PRNU-based fingerprint. (ii) given this
fingerprint and a video query, detect whether the video comes
from the camera under analysis.

Concerning the first step, the primary goal is finding a good
estimation of the camera fingerprint in the video resolution
domain. To this purpose, it is reasonable to consider three
main strategies, depending on the data owned by the analyst:
(i) exploiting only images shot by the camera to estimate K,
then transform it into video domain, given that the conversion
parameters reported in (5) are known; (ii) exploiting both
images and videos shot by the camera, without knowing the
conversion parameters; (iii) exploiting only videos recorded
by the camera. To the best of our knowledge, the first case is
not realistic as the warping image-to-video parameters are not
apriori known neither reported in the literature. Therefore, we
focus on the other two scenarios.

Once the video fingerprint has been estimated, we need to
compare it to video queries. Therefore, we propose a solution
(and a simplified version of it) to accomplish this task.

Specifically, Fig. 2 depicts the pipeline of the proposed
method. In the following, we present the proposed strategies
for fingerprint estimation and video source attribution, dis-
cussing on the main intuitions behind the approaches.

III. REFERENCE VIDEO FINGERPRINT ESTIMATION

In this section we explain how to estimate the reference
video fingerprint to characterize a video camcorder. This is
the camera signature which a video should be compared with
to solve attribution problems. Specifically, we consider two
different working scenario. In the first one, the analyst can
use some images as well as videos coming from the same
device. In the second one, the analyst has only a set of videos
to be used to characterize the camera. In the following we
report all the details for both scenarios.



A. Reference video fingerprint from images and videos

The first video fingerprint estimation scenario we consider is
that of an analyst who has a set of images and videos recorded
with the same camera. In this setup, we propose a pipeline
composed by three main steps:

« Estimate the device image PRNU K from the available
set of pictures applying (3).

« Estimate the image-to-video transformation parameters s,
6, and ¢ = (cy,cy) used in (5) by solving an iterative
maximization problem.

« Estimate the device video fingerprint Ky,, by warping K
with the estimated parameters s, 6, and c.

In other words, we propose to use as video fingerprint a
transformed image PRNU downsampled to the scale of video
frames resolution. This choice is driven by the following
observations:

« Images are often acquired at higher resolution and with
better coding quality than videos, thus typically contain-
ing more reliable device fingerprint information.

o Downsampling image PRNU to the video frames scale
requires much less computational power than upsampling
video frames to the scale of the image PRNU (e.g.,
smaller matrices to fit into memory, PCE correlation is
computed on less samples, etc.).

e It has been shown in [9] that PRNU downscaling of
a factor up to 2 does not hinder significantly camera
attribution performance, which is good news considering
that image resolution is not often twice that of a video.

In order to estimate the parameters s, 6, and c of the
selected device, we search for the geometric transformation
that maximizes the PCE correlation between the transformed
version of K and frames residuals W, extracted from frames
I, belonging to a set F of selected frames. To be precise,
we select reasonable search ranges S, 7, C for scale, rotation
angle and shift, respectively. Then, we estimate s, 8¢, cy for
each frame by solving the maximization problem

argmax PCE(Wy, Iy -J,,0,c,(K)). (6)
SES,0€T ceC

Sf,@f,Cf =

This maximization problem is solved using iterative methods.
In particular, we use a particle swarm optimization technique
[32].

If frames come from a non-stabilized video sequence, sy,
6+ and cy are expected to be coherent for all frames. Indeed,
cameras typically do not use different portions of the sensor
from frame to frame. Moreover, 6 is expected to be zero, as
typically non-stabilized videos are not acquired rotating the
sensor. This is confirmed by [23], [24], in which the authors
only seek for scale and translations, but not rotation. Therefore,
any tuple sy, 0y = 0 and c¢ can be used as s, 0, and c estimate.

If frames come from stabilized video sequences, sf, Of
and cy can vary from frame to frame, as each frame is
independently warped depending on the content to stabilize.
However, if the considered video does not contain strongly
textured areas (flat scene are always suggested for PRNU
extraction [4]) and it is not characterized by excessive device
shaking (typically true for videos to be pleasant at visual
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Fig. 3: Image PRNU conversion to the video domain. Blue

area is the whole sensor size, used for image PRNU, whereas
white area represents the video fingerprint K, .

inspection), we can assume that s¢, 8¢ and cy only slightly
change from frame to frame, oscillating around the true values
s, 0 and c. Furthermore, it is reasonable to assume that the
rotation contribution is likely to be very small, and it is almost
zero for at least a small set of frames. Indeed, the captured
scene should not look rotated to video viewers.

Therefore, in order to select a unique parameter set for the
image-to-video PRNU conversion, we propose to fix § = 0,
and average the estimated s; and c; parameters over the
frames with strong PCE. Notice that frames for which rotation
parameters is not really zero can be filtered out from our
estimate as they will be characterized by low PCE value.

Formally, we compute

pf _PCE(Wf7 If gSfefo(K))' (7)

Then, we estimate scale and translation parameters as

wa Cyr
o f; f; f; 7l ®
being Fi the set of frames for which py > 60 (i.e., a PCE
threshold suggested in [33], [23]) and | Fq| its cardinality.
In order to pass from image to video domain, we apply
the similarity transformation J¢(-) to the image PRNU, thus
obtaining the video fingerprint

K, = J.(K). ©9)

For the sake of clarity, Fig. 3 depicts the operations done for
converting the image PRNU to the video domain. A scale
transformation with parameter s is performed on K to shrink
the space to a reduced area, then scene is cropped to match
video resolution, according to the estimated shift c.

Note that Ky, can be exploited as device signature for test-
ing the camera attribution problem over a generic video query.
Indeed, the resolution of the fingerprint should approximately
match the resolution of the query sequence. Moreover, since
Kj, is the result of aligned noise contributions coming from
high resolution images, it reasonably contains a very reliable
camera model information.

B. Reference video fingerprint from videos only

The second video fingerprint estimation scenario we con-
sider is that of an analyst who only has a set of videos
recorded with the same camera. Indeed, information about
images captured by the device under analysis is not always
available. For this reason, we focus on how to estimate the



device fingerprint directly from video content, even in the
challenging scenario of motion stabilization. In this setup, we
propose a pipeline composed by the following steps:

o We search for the frame whose residual W correlates
well in terms of PCE with the largest number of other
frames’ residuals.

« We estimate a candidate video fingerprint Ky starting
from the selected W .

« We update the video fingerprint Ky, by iteratively ag-
gregating information from other frames whose noise
residuals correlate well with the fingerprint in terms of
PCE.

Despite this pipeline seems trivial, the procedure of noise
aggregation is not straightforward at all. Indeed, due to
motion stabilization, frames are shifted, rotated and scaled
one another. Hence, if we randomly pick a set of frames
and estimate the fingerprint following PRNU estimation as
reported in (3), noise residuals left by the camera sensor risk
to be averaged while misaligned, eventually contributing with
very few content of the original fingerprint.

To avoid averaging misaligned contributions, noise residuals
should be in principle coherently warped one on the other
by following a procedure similar to the one proposed in
Section III-A. However, sensor noise traces are extremely
subtle in video signals due to the typically used aggressive
lossy coding schemes. To top it all off, scene content often
leaks into frame noise residuals due to the used suboptimal
denoising algorithms. These two factors make the estimation
of transformation parameters that map a frame noise residual
on another one an almost preposterous task.

In order to avoid mistakenly estimating warping parameters
still being able to estimate a reliable video fingerprint, we
make the assumption that a set of video frames affected by
(almost) the same stabilization transformation exists within the
available reference videos. This assumption reasonably holds
for sequences characterized by low (if any) textured content
that does not need to be too much stabilized (i.e., typical
sequences used for PRNU estimation). Under this assumption,
we propose an iterative noise residual aggregation method
composed by the following steps:

a) Loop over all the frames in the set F of available ones.
For every frame Iy, f € F, solve the standard camera attribu-
tion problem for the other frames with respect to noise residual
W ;. Specifically, compute PCE(W,I;- W), VI, f € F, | #
f.

b) Analyze the relative PCE values in search for frames
whose residuals match. A match is considered if two con-
straints on PCE are satisfied.

The first constraint is on PCE magnitude. We consider a
match only for strictly positive PCE values to avoid strongly
uncorrelated frames.

As second constraint, we check the relative shift between
frames (i.e., the position of PCE maximum value). As a matter
of fact, the effect of video stabilization is to scale, rotate
and translate the frames one another, but without introducing
visible artifacts on the recorded sequence. For this reason, it
is reasonable to assume that a stabilization algorithm does not

translate too much one frame with respect to the temporally
adjacent ones.

In principle, if the frames were not stabilized, the relative
shift estimated through PCE should be of (0,0) pixels, since
both frames residuals should be aligned in terms of sensor
noise. Conversely, in stabilized videos, the relative alignment
can be different from (0,0). However, under the hypothesis
of small translations introduced by stabilization, if the relative
alignment is too far from (0,0) we can attribute it mainly to
PCE correlating textured content or additional noise contribu-
tions, rather than noise patterns related to the original camera
fingerprint.

Therefore, in order to avoid false matching results that do
not actually correspond to noise residuals’ alignment, we only
consider matching residuals if the relative shift is of (A, A)
pixels (A = {5,10,20,30} in our experiments with Full-HD
sequences).

¢) Select as reference frame I, the video frame Iy that
matches with the largest number of frames according to the
matching definition provided in step (b). The first video finger-
print candidate is the residual of frame I,., namely Ky = W,..
Include I,. to the set of frames exploited for the fingerprint
estimation, defined as Fy .

d) Correlate the remaining frames with the estimated fin-
gerprint, computing PCE(W, I - Kvy).

e) Add frames that honor the constraints reported in (b) to
the set Fv of frames useful to estimate the fingerprint, after
compensating for the relative shift misalignment with respect
to the estimated fingerprint.

f) Update the estimated fingerprint K+ by averaging all the
noise residuals Wy, f € Fy.

Iterate steps (d), (e), (f) until no more frame residuals matching
with K+ are left. Eventually, the estimated camera fingerprint
for testing the video queries is Ky .

Notice that, the big difference between Kj, (estimated
following the procedure reported in Section III-A) and Ky
(estimated following the reported in Section III-B) is that the
former is an aggregation of image noise residuals, whereas
the latter is an aggregation of video noise residuals. For this
reason, Kj,, can be considered a higher quality estimate of
the device video fingerprint compared to K.

IV. TESTING THE VIDEO QUERY

Once we estimate the reference fingerprint for each camera,
namely either Kj, or Ky, we can proceed in solving the
camera attribution problem for every video query.

Given a generic camera fingerprint K and a video to be
attributed, we propose to test each frame of the sequence
following a similar procedure to the standard PCE-based
method. Specifically, since video stabilization introduces dif-
ferent geometric transformations from frame to frame, we
estimate the warping configuration which maximizes the PCE
between each transformed frame and the fingerprint K. In
this way, even if the fingerprint has been already registered
into video domain, we can compensate for the additional
stabilization deviations introduced on every frame of the video

query.



Therefore, exploiting a particle swarming optimizer (PSO)
[32], we estimate the scaling, the rotation angle and the relative
shift for every frame in the sequence such that the PCE is
maximized, i.e.,

Py = max

PE90Wa<.9cI 'K,
$€S,0€T ,ceC CE(Ts0c(W ), Tsoe(If) - K)

(10)
where f is the frame index belonging to the set F of
considered query frames, with cardinality F'.

Then, in order to attribute or not the query video to the
camera, we simply select the highest Py over all tested frames
as

P,

= max Prs.
q fer f

(1)

If P, overcomes a certain threshold, the query is attributed to
the camera, otherwise it is considered coming from a different
device.

This approach empirically proves to be quite accurate, and
we shall show with our experimental campaign that even
a reduced number of frames is enough for performing a
correct video query matching. However, this methodology is
time consuming, as the estimation of the warping parameters
through particle swarming optimization requires a fairly high
amount of operations.

In order to overcome this obstacle, we propose one possible
way out, which can be very efficient whenever there is a
consistent amount F' of query frames. As a matter of fact, it is
likely that not all frames in the set underwent strong rotation
or scale transformations due to stabilization. As reported in
[20], it is common to exploit reduced motion model including
translation only to stabilize some video frames, at the benefit
of faster estimation and greater stability. Hence, we can limit
our search to the estimation of the relative shift between the
query frames and the fingerprint, still likely finding some
frames with high PCE. To test the whole video, we select
again the best PCE obtained over the set as

P, = r;lea}( PCE(Wy,I; - K). (12)
In doing so, we automatically discard from the test all query
frames that actually underwent rotation or scaling, as they will
provide low PCE. To attribute the query video to the device
under analysis, we threshold P,.

Concerning both proposed methods, robustness strongly
depend on the length of the query video. Intuitively, the larger
the frame-set, the higher the probability to find one correlating
frame over the whole video query. We shall show in the
next section how these strategies represent viable solutions for
solving the camera attribution problem in presence of video
stabilization.

V. RESULTS

In this section we report the results of the conducted
experimental analysis. First, we describe the used dataset, then
we define the adopted evaluation metrics, and finally we report
the numerical results achieved by the proposed method. In
doing so, we also discuss other state-of-the-art methods for
camera attribution using stabilized video sequences.

A. Dataset

In order to test our method in a fair setup, we make use
of a dataset of almost 400 videos coming from 24 different
devices. This dataset has been built starting from the recently
released Vision Dataset, which includes images and videos
from a wide variety of mobile devices from 11 major brands
[21].

In particular, for building the image PRNU K of each
device, we select all the available images shot by the device
depicting scenes of flat surfaces, as smooth images are always
suggested for PRNU estimation [4].

Concerning the video dataset, we select all videos with
resolution equal to Full-HD (1920 x 1080). For each device,
we consider both static and motion scenes (corresponding to
the tags still, panrot, move in [21]). Moreover, we also include
videos with almost-flat content and with a significant texture
contribution (i.e., labeled as flat, indoor, outdoor in [21]).
In doing so, we end up with 165 non-stabilized sequences
from 10 devices, and 232 stabilized video sequences from 14
devices. For each sequence, with an average temporal duration
of one minute, we only make use of I-frames, as they contain
more reliable sensor noise information with respect to inter-
predicted frames [18], [23].

When we refer to any specific device, we make use of the
same naming convention introduced in [21].

B. Evaluation Metrics

In order to assess the accuracy in solving camera attribution
problem, we resort to receiver operating characteristic (ROC)
curves. Specifically, for each camera, we consider all the
videos recorded with that camera as positive samples, whereas
the set of negatives includes an equal number of sequences not
taken with that camera, randomly selected from the dataset.
Each curve depicts the resulting relationship between true
positive rate (TPR) and false positive rate (FPR), averaged
over the set of available cameras. To numerically evaluate the
quality of the attribution, we use these parameters:

o AUC, defined as the area under the (ROC) curve, the
higher the better.
e TPRa@g.01, defined as the TPR calculated ad a fixed FPR
of 1%.
The goal is reaching a high value of AUC (ideally 1) and the
highest possible value for TPRag.o1 as well.

C. Preliminary study on stabilization disadvantages

In order to confirm the difficulty of dealing with stabilized
video sequences, we perform a preliminary test by facing
camera attribution problem using standard procedures devised
for non-stabilized videos.

Similarly to approaches proposed in [10], [21], we com-
pute the fingerprint of each video by simply aggregating
noise residuals extracted from I-frames. The reference camera
fingerprint is estimated selecting a static and low-textured
sequence for each device, precisely the first video tagged as
flat-still in the dataset. For testing a generic query, we compute
the PCE between the camera fingerprint and the query one. We



1 —
- - T
0.8} =
4
& .
H N
0.4
1
0.2 4 1
—— Non-stabilized
- - Stabilized
0 L L L L
0 0.2 0.4 0.6 0.8 1
FPR

Fig. 4: ROC curves obtained using the standard PRNU-
based video source attribution method [10] considering
non-stabilized and stabilized sequences. Video stabilization
strongly hinders the state-of-the-art performances.

apply the same pipeline to both non-stabilized and stabilized
video sequences.

Results are depicted in Fig. 4. The difference between
stabilized and non-stabilized videos ROC curves is evident.
For the non-stabilized pool the pipeline achieves AUC = 1,
which means perfect device attribution. For the stabilized
set this pipeline achieves much lower performances with
AUC = 0.77. This confirms that video stabilization makes
PRNU-based video camera attribution a more challenging task
as shown in [23], [24].

D. Considerations about the first video frame

The authors of [20] show that, generally, the first frame
of a video does not undergo any stabilization, as there is no
motion to be corrected. Indeed, it is possible that the first
frame is taken as reference for stabilizing the next frames.
On one hand, this is good news whenever the first video
frame is available to the analyst. On the other hand, we must
realistically assume that the video sequence under analysis
might have been temporally trimmed, thus making the first
acquired video frame unavailable.

In order to test the effect of using or not the first frame
for camera attribution with stabilized videos, we perform the
following experiment. We estimate the reference fingerprint
K, for each device. Then, we proceed with the testing phase,
following both strategies reported in Section IV, considering
a single frame for each query video (i.e., F' = 1). The test has
been performed in two scenarios: i) selecting the first frame
(i.e., f = 1); ii) selecting a random I-frame different from the
first one (i..e, f # 1).

ROC curves for the complete test strategy that registers
query frames on the fingerprint are reported in Fig. 5. ROC
curves for the quick test strategy that only searches for
translations are reported in Fig. 6. In both situations, results
obtained considering the first frame are well above the ones
computed with a random frame. This confirms that stabiliza-
tion algorithms used by devices within Vision dataset may skip
stabilization on the first frame.
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Fig. 5: ROC curve related to a single-frame video, exploiting
the complete test strategy.
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Fig. 6: ROC curve related to a single-frame video, exploiting
the quick test strategy.

In order to avoid biasing the results and making wrong
conclusions about the proposed algorithm, we never include
the first frame in our experiments, neither for the estimation
of the video camera fingerprint nor for the testing phase. In
doing so, we assume working in the far more general scenario
in which videos available at the analyst can be short portions
of longer sequences.

E. Reference video fingerprint from images and videos

To estimate the video fingerprint Ky,,, we need to estimate
some scaling and translation parameters for each device as
explained in Section III-A. To estimate the image to video
domain transformation, we apply the proposed Kj,, estimation
algorithm to 10 randomly selected I-frames coming from
reasonably flat and almost static scenes from each stabilized
device in the dataset. In particular, we select as reasonable
search range for the scaling factor S = [0.3,0.85], whereas
the shift is searched all over the video resolution.

Table I reports the estimated average scale (i.e., s) and
translation (i.e., ¢, and c,) parameters for each stabilized
device, following the same nomenclature used in [21]. These
parameters are used to obtain a Kj,, estimate for each device,
starting from the PRNU K computed from images.



TABLE I: Average scaling and shift parameters for image-to-video domain conversion. Device naming convention is the same

as in [21]. Only stabilized devices have been used.

DEVICE ‘ D02 ‘ DO05 ‘ D06 ‘ D10 ‘ D12 ‘ D14 ‘ D15 ‘ D18 DI9 ‘ D20 ‘ D25 ‘ D29 ‘ D32 ‘ D34
s 0.75 | 0.687 | 0.707 | 0.75 | 0.379 | 0.688 | 0.706 | 0.688 | 0.706 | 0.815 | 0.517 | 0.687 | 0.517 | 0.687
Cx 270 158 201 279 33 167 190 166 190 97 239 161 242 161
cy 374 304 328 384 205 308 323 308 324 248 361 302 356 302
FE. Reference video fingerprint from videos only 0-3 Als ]
In order to estimate the camera fingerprint Ky from stabi- 0 o 22;8 /,///’
lized videos only, we follow the iterative noise aggregation A =30 |
method proposed in Section III-B. In particular, for each \2 P
stabilized device, we select an almost static video with little 0.1 , e §
image content (precisely, the first video flagged as flat-still /
in the dataset), considering different values for the parameter 0 ‘ ‘ ‘ ‘ ‘
A driving the shift search range. To evaluate whether the 0 10 20 30 40 50 60
aggregation method is correctly working independently from f

the query test algorithm, we start from the following idea.
We expect Ky estimate to become better and better as long
as we aggregate correctly more frames. Conversely, Ky esti-
mate should worsen if we aggregate frames without correctly
compensating for motion stabilization effects.

In the light of this, we define p(f) as the normalized
cross correlation (NCC) between the fingerprint K, and the
fingerprint Kv (f), namely the estimated Ky fingerprint by
the aggregation of f frames. In order to compare these terms,
we estimate the similarity transformation which registers the
camera fingerprint Ky on Kj,, then we apply this transfor-
mation to the frame-variant Ky (f).

Actually, p(f) can be very helpful to evaluate the algorithm
performances in estimating the video fingerprint. For instance,
if p(f) has a monotonic increasing behavior, we are aligning
in a correct way the frames one another. Otherwise, we are
assembling frames by means of some correlating content
which has few in common with the original device fingerprint.
The choice of NCC as metrics instead of the PCE is motivated
by its higher computational efficiency. Moreover, being nor-
malized at 1, NCC allows a clearer comparison between the
performance of different devices.

We compute p(f) for each stabilized device in the dataset.
Specifically, results for devices D32 and D34 are reported in
Figs. 7 and 8 as representative of the overall trend on all
videos. For some video sequences (see Fig. 7) the bound on
A value does not impact on the algorithm. Indeed, p(f) is
always monotonically increasing. However, if videos contain
more textures (see Fig. 8), the proposed registration method
tends to register scene content rather than sensor noise traces if
A is too high. Indeed, p(f) does not increase. For this reason,
we limit our further analysis to A = {5,10}, as these values
enable reaching the best aggregation performances on average.

Finally, Fig. 9 shows the values achieved by p(f) at the
last aggregated frame, namely p(F’), obtained by fully running
the proposed Ky estimation method setting A = 10 for all
devices. Notice that p(F) values are almost always greater
than 0.1, which actually represents a good NCC measure

Fig. 7: Resulting cumulative NCC computed between Kj,, and
registered Kv (f) for device D34.
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Fig. 8: Resulting cumulative NCC computed between Kj,, and
registered Ky (f) for device D32.
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Fig. 9: Final value of the resulting cumulative NCC for all
stabilized devices in the dataset.

in standard attribution problems [3]. This confirms that the
estimated video fingerprint Ky, is informative of the camera
model.

G. Testing the video query

To check how accurately we can attribute a stabilized video
to the originating device, we present the ROC curves computed
over all the stabilized devices in the dataset.



TABLE II: AUC and TPRag.01 exploiting Ky, and Ky as reference fingerprint, testing F' = {5,10} random I-frames with

the complete strategy.

FINGERPRINT | Ky, F =5 | Ki,,F=10 | Ky,_.,F=5 | Ky,_.,F =10 ‘ Ky,_,,,.F=5 ‘ Kya_,0: F =10

AUC 0.96 0.97 0.9

TPRao.o1

0.87

0.91 0.71

TPR
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o2t | Ky, F =10
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Fig. 10: ROC curves obtained testing F' = {5,10} I-frames
with the complete strategy.

To be precise, for each video sequence, we randomly select
F' I-frames, and we test both complete and quick attribution
methods on both fingerprints Kj,, and Ky.

First, we report the results achieved using the complete
method reported in Section IV. In particular, we set the PSO
search range to S = [0.99,1.01] and 7 = [-0.15,0.15]
[rad], following an approach similar to [20]. Indeed, reference
fingerprints Kj,, and Ky are already in the video domain, thus
we only need to slightly warp frames for attribution purpose.

Fig. 10 depicts the results evaluated using both Ky, and
Ky as reference fingerprints, and testing F' = {5, 10} random
I-frames of the query videos. Notice that we only show
results for Kv,_,, (Kv computed with A = 10) as these
are highly comparable to the case A = 5. It is possible to
note that proposed method is quite accurate. As a matter of
fact, exploiting just 5 I-frames (i.e., ~ 5 seconds of video
content), we obtain AUC = 0.96 exploiting the fingerprint
K, . On the other hand, performances achieved by Ky, are
quite good as well, considering the fingerprint is computed
from video frames only. Nonetheless, the larger the amount of
investigated I-frames, the better the ROC curve. For instance,
regarding Kv,_,, results, with just 5 frames we can achieve
AUC = 0.89, whereas 10 frames return AUC = 0.92.

The overall results of the method are depicted in Table II,
which reports the achieved AUC and TPR@ag. g1 corresponding
to all the curves.

In addition, we show the results obtained with the alternative
fast attribution method proposed in Section IV, which is very
helpful whether the available computational power is limited
and there is a consistent number of query frames.

Fig. 11 depicts the results evaluated using both the reference
fingerprints. Specifically, we select F' = {5,20,50} query I-
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Fig. 11: ROC curves obtained testing F' = {5, 20,50} I-frames
with the quick strategy.

TABLE III: AUC and TPRag.01 exploiting Ky, and Ky as
reference fingerprint, testing 50 random I-frames following the
quick test strategy.

FINGERPRINT ‘ Ki, ‘ Kv,_. ‘ Kva_ .,
AUC 0.96 | 0.88 0.89
TPRao.01 089 | 0.74 0.75

frames for evaluating performances of the fingerprint Kj,,
whereas for the fingerprint Ky, we directly limit the plots to
the use of 50 I-frames, as a lower amount of frames reduces
the performance. Note that some sequences in the dataset do
not have 50 I-frames. In these situations we use as many I-
frames as possible. We can notice that, to obtain results as
accurate as with the complete testing procedure, F' = 50 I-
frames are needed rather than just 5. Anyway, it is possible
to notice that even exploiting K+ as reference we can solve
the attribution problem using the fast algorithm, as long as the
analyst has approximately one minute long video.

To be precise, Table III contains AUC and TPRag.o1
corresponding to the curves achieved testing 50 query I-frames
with both reference fingerprints Ky,, and Ky.

As far as the comparison between the complete and fast
methods is concerned, we can notice that the former method
is more accurate than the latter one as expected. As a matter
of fact, exploiting just 5 I-frames returns similar results to the
case in absence of rotation and scaling only for F' = 50.
For this reason, when few video frames are available, we
suggest to estimate the similarity transformation between the
camera signature and the frames. Indeed, accuracy benefits
at the expense of more computational time. On the contrary,



when plenty of frames are at hand, it can be a good choice
to limit the analysis to translation models, since the pair
AUC — TPRa@g.o1 reports highly acceptable and comparable
results with the first solution.

H. State-of-the-art Comparison

To the best of our knowledge, only few methods have been
proposed in the literature to deal with camera attribution from
stabilized videos.

One solution has been presented in [23]. The authors only
consider videos stabilized by means of a controlled algorithm
(i.e., FFMPEG deshaker), which only applies rotations and
translations. As the proposed method does not take scaling into
account and does not deal with videos directly stabilized on the
recording device, it is likely going to fail on the uncontrolled
dataset used in this paper.

A more recent solution has been proposed in [24]. The
authors propose to search for scaling and translations, but they
do not take rotation into account. Moreover, they only attribute
stabilized videos to cameras if a reference PRNU obtained
from still images is available (i.e., they do not compare videos
to videos). This makes their problem formulation more similar
to the one we described in Section III-A, rather than the
method proposed in Section III-B.

Additionally, both solutions proposed in [23], [24] make use
of the first frame of each video sequence, which we do not
consider as there is a high change it has not been stabilized,
thus making the problem less challenging.

In the light of these considerations, even the comparison
against [24] would not been completely fair. However, the
used metrics are the same (i.e., TPRag.o1 and AUC), and
concerning the dataset, we both consider videos from the
Vision dataset (8 devices in [24], 14 devices in this paper).
Therefore, a few conclusions can still be drawn. To compare
the methods in the same experimental set-up, we select from
Vision dataset all the available instances we can find for each
device model exploited in [24]. As a matter of fact, exploiting
the video fingerprint K, described in Section III-A over this
reduced dataset, we are able to achieve TPRgg.91 = 0.89
and AUC = 0.96 using the complete strategy over 5 query
frames, and TPR@gg.01 = 0.92 and AUC = 0.97 testing 50
query frames with the quick method. Conversely, results in
[24] show TPRa@g.o1 = 0.87 and AUC = 0.95, which are
below the ones achieved by us, even considering that we are
discarding the contribution from the first frame, and we also
cope with the video vs. video case.

1. Upper bound on video fingerprint estimation

In order to understand whether it is possible to extract
better fingerprint information from stabilized video frames, we
perform a final experiment involving an Oracle providing us
with data normally unavailable to the analyst.

Specifically, let us consider the scenario depicted in Sec-
tion III-B, in which the video fingerprint K+, is extracted
from video frames. However, we envision an Oracle telling
us how to align each frame noise residual with the others,
in order to obtain a much better video fingerprint estimate.

TPR
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Fig. 12: ROC curves obtained testing the complete strategy
on 5 I-frames, and testing the quick strategy on 50 I-frames,
using the Oracle-based fingerprint and Ky,.

To do this practically, we apply an analogous algorithm to
the one proposed in Section III-B, with the difference that
frame alignment step is performed by similarity transformation
against the reference Ki,, (i.e., a cleaner version of the device
fingerprint) rather than a reference video frame.

Of course, this is clearly an unrealistic situation (i.e., if
the analyst had Kj,,, he/she could use the algorithm proposed
in Section III-A). Nonetheless, this is a very powerful inves-
tigation tool for evaluating the accuracy of our results. We
can therefore compare results obtained with this Oracle-based
fingerprint, and with the proposed fingerprint K+, to see how
much they differ.

In terms of quality of the estimated fingerprint, the final
values of p(F') evaluated with the Oracle-based fingerprint
only report a slight increment (less than 0.1 on average) with
respect to those obtained in Fig. 9 using K. This confirms
that the proposed method is quite good and represents a viable
solution for extracting the device fingerprint in video domain.

In terms of device attribution, Fig. 12 reports ROC results
obtained with the use of the Oracle and results obtained
with Ky, using either the complete or quick test methods.
Notice that the performances do not significantly drop, on
the contrary, the proposed method is reasonably accurate
considering that it works in the realistic scenario where video
sequences can contain some textures, potentially undermining
the video fingerprint estimation.

VI. CONCLUSIONS

In this paper we propose a solution to the problem of video
source attribution when motion stabilized video sequences are
considered. We devise two different solutions for estimating
the camera reference fingerprint, and we also propose a tech-
nique (and a simplified version of it) to perform an attribution
test between a stabilized video and a fingerprint. The experi-
mental campaign is conducted on a publicly available dataset
composed by almost 400 videos coming from stabilized and
non-stabilized mobile devices. Notice that video stabilization
is performed directly onboard by proprietary software, and



we have no controls over it, thus making the experiments
completely realistic.

The achieved results highlight a series of interesting aspects.
Indeed, we confirm that using the standard PRNU-based
pipeline for video attribution leads to poor results. However,
with the proposed approach, it is possible to solve the problem
by iteratively compensating the effect of video stabilization,
even using videos only. As a matter of fact, the best results are
obtained if images are available for reference fingerprint esti-
mation. Using videos only, the achieved performance worsen
as expected, yet not being too far from the case in which an
Oracle tells us how to correctly compensate each frame.

Another interesting aspect is that modeling video stabiliza-
tion with similarity transformation proves to be quite effective.
As a matter of fact, proprietary video stabilization algorithm
used by the devices under analysis are not publicly disclosed.
However, we manage to attribute videos to devices even
lacking this knowledge.

Additionally, we highlight the effect of using the first
acquired video frame for camera attribution. As it is often not
stabilized, considering it within the experimental campaign can
produce misleading results and leads to wrong conclusions.
This is especially true if we consider a future scenario in which
mobile devices will start recording videos even before pressing
the rec button (i.e., as already proposed in the latest Android-
based Google devices). Indeed, in this situation, the concept of
first acquired frame becomes fuzzy, and possibly all available
frames can be motion compensated.
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