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Abstract

In this paper, the problem of providing privacy to users requesting data over a network from a distributed storage system

(DSS) is considered. The DSS, which is considered as the multi-terminal destination of the network from the user’s perspective,

is encoded by a maximum rank distance (MRD) code to store the data on these multiple servers. A private information retrieval

(PIR) scheme ensures that a user can request a file without revealing any information on which file is being requested to any

of the servers. In this paper, a novel PIR scheme is proposed, allowing the user to recover a file from a storage system with

low communication cost, while allowing some servers in the system to collude in the quest of revealing the identity of the

requested file. The network is modeled as a random linear network, i.e., all nodes of the network forward random (unknown)

linear combinations of incoming packets. Both error-free and erroneous random linear networks are considered.

I. INTRODUCTION

Privacy is a major concern for Internet or network users. Whenever a user downloads a file from a server, they reveal their

interest in the requested file. Private information retrieval (PIR) allows a user to hide the identity of their requested file from

the servers. PIR was first introduced in [1], where the data is assumed to be replicated on multiple servers and the user is able

to retrieve the file she wants privately. It was also proved that if the data is stored on a single server, then the only way to

achieve PIR in the information theoretic sense, i.e., privacy with no restrictions on the computational power of the server, is

to download all the files.

A large body of literature on PIR appeared after its introduction, mostly focusing on minimizing the communication cost.

PIR schemes with subpolynomial communication cost were constructed for multiple servers in [2]–[4] and later for two servers

in [5], calculating the communication cost as the sum of the upload and the download cost.
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Later on, much work was done to construct PIR schemes aiming to reduce the download cost, assuming the upload cost

to be negligible with respect to the download cost. This assumption is based on the fact that the size of the uploaded query

vectors depends only on the number of files in the system, while the size of the downloaded response vectors depends on

the size of the files. More precisely, for a single sub-query, the query vector to a node consists of m symbols in Fq , where

m is the number of files and Fq is the q-element finite field, while the response vector from one node is 1 symbol in Fwq ,

where w is the length of the file. In distributed storage systems (DSSs), and in the information-theoretic reformulation of this

problem [6], the size of the files is assumed to be arbitrarily large, thus making the number of the files negligible with respect

to the size of the files, i.e., w is much larger than m. Therefore, the download cost dominates the total communication cost.

These assumptions reflect practical scenarios such as storing and retrieving videos.

In more recent work on PIR, there is growing interest in studying PIR for coded data. In [7], it was shown that when the

data is coded on an exponentially large number of servers, only one extra downloaded bit is needed to achieve privacy. The

same low download complexity with a linear number of servers was achieved in [8]. Furthermore, a method to transform any

linear replication-based PIR scheme into a scheme for coded data while minimizing the storage overhead was proposed in [9].

In addition to various constructions, the fundamental limits on the download cost of PIR schemes have been characterized for

replicated data in [10] and for coded data in [11].

The servers can be either considered to not communicate with each other and are therefore only aware of the query they

received from the user, referred to as a non-colluding system, or, it can be assumed that any set of maximum t servers are

communicating in an effort to figure out the requested file’s identity, referred to as a colluding system. We refer to the latter

as t-PIR, meaning that any subset of up to t servers is allowed to collude. The capacity for t-PIR has been established in [10].

For coded t-PIR the capacity is still unknown, but a first scheme for t-PIR on coded servers employing a maximum distance

separable (MDS) code was described in [12]. In [13], this scheme was extended to a wider set of parameters and an algebraic

framework was established, also resulting in a conjecture for the coded t-PIR capacity, which was disproved for a two-file

(m = 2) system in [14]. Asymptotically (m → ∞), the conjectured capacity [13] matches the capacity of symmetric PIR

[15]–[18], where the user can exclusively decode only the requested file. The work in [13] was later extended to non-MDS

codes in [19], and arbitrary linear codes were also considered in [20]. Symmetric PIR schemes over storage systems with

Byzantine and colluding servers are discussed [21]. In [22], the capacity of PIR schemes over a replicated storage systems

with Byzantine and colluding servers was found. Noisy PIR over a storage system where the messages are replicated on

multiple servers was discussed in [23].

In the present work, we construct a PIR scheme for a network with colluding nodes, where the data is encoded using a

maximum rank distance (MRD) code [24]. The user sends the queries over a network of nodes to the destination nodes, which

constitute a DSS, and the DSS servers send their responses over the random network to the user, such that the identity of the

requested file remains secret.

We model the network as in random linear network coding (RLNC), a concept that was introduced after the seminal

observation [25] that forwarding linear combinations of the incoming packets at each node (called network coding) instead

of just forwarding packets (called routing), increases the throughput. In RLNC [26], the structure of the network is unknown



3

to the sink(s) and receiver(s) and might even change from time to time. Each node of the network forwards a random linear

combination of its incoming packets and the goal of a certain receiver is to recover some or all of the transmitted packets.

When the packets are modeled as vectors over a finite field and we see the set of transmitted packets as a linear subspace,

then, in the error-free case, the received packets form a subspace of the transmitted packets. Also, one injected erroneous

packet might propagate widely in the network and destroy all of the received packets, but the received subspace still has a

large intersection with the transmitted one. This observation by Kötter and Kschischang [26] motivated the use of subspace

codes for error-correction in RLNC. Lifted MRD codes are special subspace codes that were proposed for RLNC in [24] and

are efficiently decodable [27]–[29]. In this paper, we use MRD codes as the query and storage codes and lift the code before

transmitting the query/response over the network to be able to guarantee PIR while coping with errors.

Contributions: The main contributions of this paper are as follows:

• To the best of the authors’ knowledge, PIR schemes over a random linear network with data encoded using MRD codes

is considered for the first time in this paper. We take this step towards a more practical model, compared to the earlier

literature that assumes direct links between the user and the storage system when retrieving a file.

• Two PIR schemes are given, one assuming an error-free channel, and another assuming a network with errors , where the

errors are considered in the uplink channel, as well as the downlink. To the best of the authors’ knowledge uplink errors

were not considered in any preceding work on PIR.

• The achieved PIR rate for an error-free network achieves the asymptotic PIR capacity when the field size is sufficiently

large. For the network with errors, the scheme achieves the conjectured asymptotic PIR capacity given in [30].

II. PRELIMINARIES

A. Notation

The following table provides an overview of the nomenclature used in this paper.

Let q be a power of a prime and let Fq denote the finite field of order q and Fqs its extension field of order qs. We use

Fs×nq to denote the set of all s× n matrices over Fq and Fnqs = F1×n
qs for the set of all row vectors of length n over Fqs .

Rows and columns of s× n-matrices are indexed by 1, . . . , s and 1, . . . , n, respectively. Denote the set of integers [a, b] =

{i : a ≤ i ≤ b}. By rkq(A) and rkqs(A), we denote the rank of a matrix A over Fq , respectively Fqs .

The following proposition will be useful in this work:

Proposition 1. (Probability of full rank, [31]) Let A ∈ Fκ×κq be a square matrix with elements chosen uniformly at random

from Fq . Then

P = P(rkq(A) = κ) ≥
(

1− 1

q

)κ
.

B. Rank-Metric Codes and Gabidulin Codes

By utilizing the vector space isomorphism Fqs ∼= Fsq , there is a bijective map from vectors a ∈ Fnqs to matrices A, Φ(a) ∈

Fs×nq . The rank distance between a and b ∈ Fnqs is the rank of the difference of the two matrix representations:

dR(a, b) , rkq(a− b) = rkq(A−B).
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NOMENCLATURE
m Number of files
l Number of servers
n Number of sub-servers in an [n, k, d]Rq MRD code
k Dimension of the codeword in an [n, k, d]Rq MRD

code
d Minimum distance of an [n, k, d]Rq code
t Number of colluding nodes

ρ = n
l Columns stored on a server

β Number of subdivisions / stripes
X Set of files stored in the system
Xf File requested by the user
RPIR PIR rate
Yj Data stored on server j

Qf,(i) Query matrix sent in round i to retrieve file Xf

Q
f,(i)
j,rec Query matrix received by server j in round i to

retrieve file Xf

R
f,(i)
j,rec Received response matrix from server j in round

i
sk File size
ε Number of errors introduced in the network
τ Number of erasures in the network
µ mβ/s

An [n, k, d]Rq code C over Fqs is a linear rank-metric code, i.e., it is a linear subspace of Fnqs of dimension k and minimum rank

distance d. For linear codes with n ≤ s, the Singleton-type upper bound [32], [33] implies that d ≤ n−k+1. If d = n−k+1,

the code is called a maximum rank distance (MRD) code.

Gabidulin codes [33] are a special class of rank-metric codes. A linear Gabidulin code G(n, k) over Fqs of length n ≤ s

and dimension k is defined by evaluating degree-restricted linearized polynomials:

G(n, k) = {(f(α0), f(α1), . . . , f(αn−1)) :

f(z) = f0z
q0 + f1z

q1 + · · ·+ fk−1z
qk−1},

where α0, α1, . . . , αn−1 ∈ Fnqs have to be linearly independent over Fq . Gabidulin codes are MRD codes, i.e., d = n− k+ 1,

cf. [33], [34].

C. System Model

Assume a network with multiple servers, where the stored data X ∈ Fm×kqs is formed by m files X1, . . . , Xm ∈ Fs×kq ,

where each file Xi is subdivided into β stripes, where each stripe is assumed to be on a separate row, such that

X = Φ−1




X1

X2

...

Xm



∈ Fmβ×kqs ,
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where Φ−1 denotes the one-to-one mapping from s× k matrices in Fq to vectors in Fkqs (i.e., the inverse mapping of Φ). Each

row of the data X ∈ Fmβ×kqs , i.e., each stripe, is encoded with a G(n, k) code over Fqs such that we obtain mβ Gabidulin

codewords, forming the rows of a matrix Y ∈ Fmβ×nqs .

Assume that the data is stored on l servers where n is divisible by l. We divide the matrix Y into l blocks of ρ , n/l

columns and store each such block on a separate server. By Yj ∈ Fmβ×ρqs , we denote the jth block of Y , stored on server j.

The servers are assumed to be honest-but-curious, and at most t of them may collude, i.e., share the queries that they receive

with each other. Fig. 1 illustrates the system model.

Note that according to the setup of this problem, each server is storing ρ columns of Y , which means the privacy constraint

should take into account that each server acts as ρ colluding servers. For simplicity, we view the system as a system of n

sub-servers with up to ρt collusions. Technically, the collusion in this setting is not full ρt collusion as not any ρt sub-servers

can collude. The problem of constructing PIR schemes with certain collusion patterns is considered in [35].

Throughout this paper, we will use superscripts to denote the file index, and subscripts to denote the server index.

D. PIR Scheme and PIR Rate

We assume that the data is stored on l servers as described earlier. PIR allows the user to retrieve a file Xf ∈ Fs×kq ,

f ∈ {1, . . . ,m}, from the database without revealing the identity f of the file to any of the servers. A linear PIR scheme is a

scheme over Fq , consisting of the following stages:

• Query stage: When the user wants to retrieve a file Xf , she sends a query matrix Qf ∈ Fn×mβq to the servers. We divide

the query matrix into l blocks of ρ rows each, where block j is denoted by Qfj ∈ Fρ×mβq , and is sent to server j.

• Response stage: Upon receiving the query, server j responds to the user by projecting its stored data onto the query

matrix. The response matrix, Rfj , is the lifted diagonal matrix consisting of the diagonal elements of the product of the

matrices Qfj and Yj , defined formally in section III.

We next define the PIR rate which is the ratio of the number of downloaded symbols from the network if no privacy is

required and the total number of downloaded symbols with privacy assumption, i.e., the number of downloaded information

Server 1 Server l

· · ·

· · ·

· · ·

User

Intermediate
Nodes

Y1 Yl

Fig. 1: Network Model: The user is connected to the servers via intermediate nodes. When data is sent from the user to the
servers, or from server to user, the packets go through a random network using the intermediate nodes. The intermediate nodes
compute random linear combinations of the received packets and send them forward. The intermediate network nodes are
considered to be non-colluding and to simply relay data. We also assume the typical RLNC model in which all packets of one
“shot” arrive at the same time, and therefore no memory or data handling is needed.
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symbols and the total number of the downloaded symbols. The number of information symbols is the size of the file, i.e., sk,

and we assume the user downloads δ symbols from each server.

Definition 1 (PIR rate). The PIR rate RPIR is

RPIR =
sk

lδ
.

E. The Star Product

The star product scheme for constructing a PIR scheme on a storage system that is encoded with a Generalized Reed–Solomon

(GRS) code was first introduced in [13]. In that work, the star product between two codewords is the element-by-element product

between the symbols of two codewords. The reason for choosing the star product as such is that the star product between two

GRS codes results in another GRS code. In this work, however, we define the star product differently, as the storage system

is encoded using a Gabidulin code, namely, such that the star product between two Gabidulin codes is also a Gabidulin code.

Let α1, . . . , αn ∈ Fqs be linearly independent over Fq which implies n ≤ s. Let the storage code C be a G(n, k) Gabidulin

code, i.e.:

C = {(f(α0), f(α1), . . . , f(αn−1)) :

f(z) = f0z
q0 + f1z

q1 + · · ·+ fk−1z
qk−1}.

Now, let the query code D be a G(n, t) Gabidulin code, where

D = {(g(α0), g(α1), . . . , g(αn−1)) :

g(z) = g0z
q0 + g1z

q1 + · · ·+ gt−1z
qt−1}.

The star product of C and D is then defined by:

C ?D = {(h(α0), h(α1), . . . , h(αn−1)) :

h(z) = f(g(z)),

f(z) = f0z
q0 + f1z

q1 + · · ·+ fk−1z
qk−1

,

g(z) = g0z
q0 + g1z

q1 + · · ·+ gt−1z
qt−1},

which is a G(n, k + t− 1) Gabidulin code.

Example 1. Consider a storage system over F25 with primitive element α and primitive polynomial z5 + z2 + 1. Let C be a

G(5, 3) Gabidulin code defined by:

C = {(f(1), f(α), f(α2), f(α3), f(α4)) :

f(z) = f0z + f1z
2 + f2z

4},
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GC?D =

z1 1 α α2 α3 α4

z2 1 α2 α4 α3 + α α3 + α2 + 1
z4 1 α4 α3 + α2 + 1 α3 + α2 + α α4 + α3 + α+ 1
z8 1 α3 + α2 + 1 α4 + α3 + α+ 1 α4 + α3 + α2 + α α

.
Fig. 2: Generator matrix of the code C ?D in Example 1.

and D be a G(5, 2) Gabidulin code defined by:

D = {(g(1), g(α), g(α2), g(α3), g(α4)) :

g(z) = g0z + g1z
2}.

Now the code C ?D is a G(5, 4) Gabidulin code defined by:

C ?D =
{

(h(1), h(α), h(α2), h(α3), h(α4)) :

h(z) = f(g(z))

= f0(g0)z + (f0(g1) + f1(g0))z2+

(f1(g1) + f2(g0))z4 + f2(g1)z8
}
.

A generator matrix of the code C ? D is given in Figure 2. Clearly, this definition of the star product works for any linear

rank-metric code.

F. Random Linear Network Coding

In this paper, data is transmitted over a random linear network, i.e., each node computes linear combinations of the received

packets and forwards the linear combination, see [26] for more details. Additionally, erroneous packets can be inserted on any

edge of the network. The random network channel is therefore modeled by

R = AQ+Ne,

where the rows of Q ∈ Fn×mβqs denote the packets that should be transmitted, A ∈ Fn×nqN denotes the channel matrix,

Ne ∈ Fn×mβqN the overall error matrix and the rows of R ∈ Fn×1qs denote the packets at the receiver side. We assume, for

simplicity, that the field size, qN , of the entries of the network matrices is equal to qs. This assumption is easy to generalize

as long as the characteristics match, i.e., char(FqN ) = char(Fqs).

Remark 1. Throughout this paper, the results will not depend on the topology of the network. This is in line with the assumption

of random linear network coding, see e.g. the seminal papers [24], [26]. Thus, our results hold for any network and the network

structure does not have to be known, neither to the user nor to the servers. Even more, the structure is allowed to change

during different uses of the network.
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III. PIR OVER AN ERROR-FREE NETWORK

Query: In the following, we assume that s divides m. We assume the user wants to retrieve the file Xf , f ∈ {1, . . . ,m},

while hiding the identity f from the storage system as defined in Section II-C. For this purpose, the files will be subdivided

into β = n − k − ρt + 1 stripes, and a file will be retrieved in k rounds of queries. For query i, the user will generate tρ

random vectors of length mβ, denoted by u(i)1 , . . . , u
(i)
tρ ∈ Fmβq , such that

U (i) =




u
(i)
1

...

u
(i)
tρ




>

, (1)

where U (i) ∈ Fmβ×tρq . These vectors are then mapped onto tρ vectors of size µ = mβ/s in Fqs . The vectors are chosen

uniformly at random so that the queries received by any tρ servers reveal no information about the index of the requested file.

≡

Encoding

u(i)
1,1 ... u(i)

1,tρ
...

. . .
...

u(i)
mβ,1 ... u(i)

mβ,tρ







u(i)
1 u(i)

tρ· · ·

U (i) = ∈ Fmβ×tρ
q

u(i)′
1,1 ... u(i)′

1,tρ
...

. . .
...

u(i)′
µ,1 ... u(i)′

µ,tρ







u(i)′
1 u(i)′

tρ· · ·

U (i)′ = ∈ Fµ×tρ
qs

d (i)′
1,1 ... d (i)′

1,n
...

. . .
...

d (i)′
µ,1 ... d (i)′

µ,n







d (i)′
1

d (i)′
µ

...D(i)′ = ∈ Fµ×n
qs

d (i)
1,1 ... d (i)

1,n
...

. . .
...

d (i)
mβ,1 ... d (i)

mβ,n







d (i)
1

d (i)
mβ

...D(i) = ∈ Fmβ×n
q

Fig. 3: Encoding random vectors into the query. tρ random vectors of length mβ are generated, then mapped onto vectors of
size mβ/s. Those vectors are then encoded into codewords of a G(n, tρ) Gabidulin code. In turn, those codewords are then
mapped onto mβ codewords to form matrix D(i).

The user then generates the matrix D(i)′ ∈ Fµ×nqs by encoding the µ rows of U (i)′ to µ codewords of the G(n, tρ) Gabidulin

code D. Those codewords are then mapped onto mβ codewords of D to form the matrix D(i) ∈ Fmβ×nq , as shown in Fig. 3.

Afterwards, the user forms the deterministic matrix Ef,(i) ∈ Fn×mβq (see (2)), which is used to retrieve the file Xf . In one

query round, the user can retrieve β stripes of the requested file, as discussed in [30]. Therefore, the matrix Ef,(i) is chosen

such that this matrix adds a 1 to the randomly generated matrix D(i) in β positions of the required file Xf . Let ef be the

matrix of size β ×mβ, such that

ef =

(
0β(f−1) Iβ×β 0β(m−f)

)
.

W.l.o.g., the user can choose the matrix Ef,(i) such that

Ef,(i) =




0i−1×mβ

ef

0n−β−i+1×mβ



, (2)

and hides it using the random matrix D(i) by adding

D
f,(i)
Q = D(i)> + Ef,(i) ∈ Fn×mβq , (3)
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where D(i)> is the transpose of matrix D(i). The user then divides Df,(i)
Q into l blocks, where each block, Df,(i)

Qj
, j = 1, . . . , l,

consists of ρ = n/l rows of Df,(i)
Q . Afterwards, she lifts every matrix, Df,(i)

Qj
, (i.e., appends an identity matrix) to obtain the

query matrices

Q
f,(i)
j =

(
Iρ×ρ D

f,(i)
Qj

)
∈ Fρ×(ρ+mβ)q (4)

for j = 1, . . . , l.

Query transmission: The user sends Qf,(i)j to server j, j = 1, . . . , l. The network is random (cf. Section II-F) and we

assume that server j receives

Q
f,(i)
j,rec =

(
A

(i)
j A

(i)
j D

f,(i)
Qj

)
∈ Fρ×(ρ+mβ)qs ,

where A(i)
j ∈ Fρ×ρqs is the random channel transfer matrix in the network from the user to server j in round i, and Df,(i)

Qj
is

block j of the matrix Df,(i)
Q , i.e., the ρ rows of Df,(i)

Q sent to server j.

Server response: The server projects its data on the query matrix received, and returns to the user the following matrix

R
f,(i)
j =

(
Iρ×ρ A

(i)
j Yj ? (A

(i)
j D

f,(i)
Qj

)

)
∈ Fρ×(2ρ+mβ)qs ,

where Yj is block j of Y , as defined in Section II-C.

The user then receives the response

R
f,(i)
j,rec =

(
A

(i)′
j A

(i)′
j A

(i)
j A

(i)′
j (Yj ? (A

(i)
j D

f,(i)
Qj

)

)

∈ Fρ×(2ρ+mβ)qs

from server j, after being transmitted through the network where A(i)′
j ∈ Fρ×ρqs denotes the ρ × ρ random channel transfer

matrix from server j to the user in round i.

Information retrieval: From the responses of the different servers, the user can then form the matrix Rf,(i)rec ∈ Fn×(2n+mβ)qs .

Rf,(i)rec =

(
A(i)′ A(i)′A(i) A(i)′(Y ? (A(i)D

f,(i)
Q ))

)

∈ Fn×(2n+mβ)qs

where

A(i): =




A
(i)
1 0 · · · 0

0
. . .

. . .
...

...
. . . A

(i)
l−1 0

0 · · · 0 A
(i)
l



∈ Fn×nqs

and

A(i)′: =




A
(i)′
1 0 · · · 0

0
. . .

. . .
...

...
. . . A

(i)′
l−1 0

0 · · · 0 A
(i)′
l



∈ Fn×nqs
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Remark 2. Note that [26] deals with single sources only. For multiple sources, in the standard network coding problem, it

is not easy to design subspace codes that can be ”distributed” to the different sources and combined to one codeword at

the receiver side. For example in [36], the problem was solved only for the special case of three sources. In our scenario,

however, the servers that respond to the queries do not encode an arbitrary matrix. They transmit the matrix Rf,(i)j . Once the

user obtains all matrices Rf,(i)j,rec these matrices can be combined into the matrix Rf,(i)rec .

Remark 3. If the overall channel transfer matrices A(i) and A(i)′ have full rank, then, the user receives A(i)′(Y ? D
f,(i)
Q ) =

A(i)′Y ? A(i)D(i) +A(i)′Y ? A(i)Ef,(i), which is a codeword from a G(n, k+ tρ− 1) code with β errors in known locations,

which can be treated as erasures. Since the G(n, k + tρ− 1) code has minimum rank distance n− k − tρ+ 2, it can correct

any β = n− k− tρ+ 1 (rank) erasures and the reconstruction of Y ?Ef,(i), i.e., β stripes of file Xf , can be done exactly as

in a usual Gabidulin decoding problem.

Example 2. Let m denote the number of files. The data, X ∈ Fm×2qs , is encoded using a G(3, 2) Gabidulin code C over F23 ,

where

C = {(f(1), f(α), f(α2)) : f(z) = f0z + f1z
2}.

Hence, its corresponding generator matrix is

GC =




1 α α2

1 α2 α2 + α


 ∈ F2×3

qs .

We consider a network with l = 3 servers, where every column Yj of

Y = XGC ∈ Fm×3qs

is stored on a server.

The goal is to construct a PIR scheme where the user wants file Xf from X , while keeping the identity f of the file hidden

from the servers, and the servers do not collude, i.e., t = 1. The number of subdivisions in this case is β = n−k− tρ+1 = 1.

Assume the user wants file X1. To this end, we use a G(3,1) code as the query code,

D = {(f(1), f(α), f(α2)) : f(z) = f0z}

whose generator matrix is

GD =

(
1 α α2

)
∈ F1×3

qs .

Two rounds are needed to retrieve the full file X1, hence, let matrix e1 =

(
1 0 · · · 0

)
. Then, E1,(1) is the 3 × m

matrix E1,(1) =




e1

0n−1×m


 , and E1,(2) =




01×m

e1

0n−2×m




which the user uses to decode the file X1, as defined in (2).

The matrix E1,(i) is added to the random matrix D(i), which is chosen uniformly at random from the code D, as shown in (3).
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The query matrix is then lifted,

Q
1,(i)
j =

(
1 D

1,(i)
Qj

)
,

where D1,(i)
Qj

is the jth row of D1,(i)
Q , generated in round i, for i = 1, 2.

In round i, the user sends row j of matrix Qf,(i) to server j. Assume that server j receives

Q
f,(i)
j,rec =

(
a
(i)
j a

(i)
j D

1,(i)
Qj

)
,

where a(i)j ∈ F23 is a scalar introduced by the network in round i.

There are two cases a server can encounter:

• a(i)j = 0: In this case, server j receives the all-zero vector and sends nothing back to the user.

• a(i)j 6= 0: In this case, server j will calculate the star product of its contents Yj with the received query matrix, Qf,(i)j,rec,

and lifts the obtained matrix to form its response

R
1,(i)
j =

(
1 a

(i)
j a

(i)
j D

1,(i)
Qj

)
,

which is sent to the user. The user receives

R
1,(i)
j,rec =

(
aj

(i)′ aj
(i)′a(i)j aj

(i)′a(i)j D
1,(i)
Qj

)

from server j, j = 1, 2, 3, and forms the overall matrix

R1,(i) =
(
A(i)′ A(i)′A(i) A(i)′(Y ? A(i)D

1,(i)
Q1

)

)

where A(i) and A(i)′ are the 3 × 3 diagonal matrices with diagonal elements (a
(i)
1 , a

(i)
2 , a

(i)
3 ) and (a

(i)′
1 , a

(i)′
2 , a

(i)′
3 ),

respectively, as defined in Section II-D.

The user may now face two different scenarios:

– All coefficients aj(i)′ 6= 0 for all j ∈ {1, 2, 3}. In this case, the user can decode the matrix

(
Y ? D

1,(i)
Q1

)
=

(
Y ? D(i)> + Y ? E1,(i)

)
.

The matrix Y ?D(i)> is a codeword from a G(3, 2) code C ?D, since Y is a codeword from a G(3, 2) code and D(i)

is from a G(3, 1) code. Therefore, the user can decode one rank erasure in C ? D. In our setting, the matrix E1,(i)
j

is the deterministic matrix introduced by the user in order to decode the desired file. The positions of the errors are

known, so they can be viewed as erasures, thus allowing the user to decode Y ? E1,(i).

– On the other hand, if at least one of the coefficients aj(i)′= 0, then A(i)′(Y ? D(i)>) becomes a codeword in a

G(2, 2) Gabidulin code that is not able to correct any errors or erasures. Thus, the user will not be able to decode

the desired file. This case is equivalent to the case where aj(i) = 0. For instance, assuming a′2
(i)

= 0, the user
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obtains R1,(i) =
(
A(i)′ A(i)′A(i) A(i)′(Y ? A(i)D

1,(i)
Q1

)

)
such that the second row is the all-zero vector, and one

can observe that the user cannot decode the file from this response matrix.

In this example, the PIR rate is 1
3 with error probability 1− (1− 1

8 )12 = 1−
(
7
8

)12 ≈ 0.798582762. Nevertheless, the error

probability approaches 0 when q is sufficiently large (cf. Prop. 1).

In the following example, we assume that the servers store 2 columns of the data Y , and allow 2 servers to collude. Moreover,

it is shown that if erasures occur in the network, partial recovery of the user’s requested file is still possible.

Example 3. Assume that the data X ∈ Fm×3qs is encoded using a G(8, 3) Gabidulin code C, with generator matrix GC over

F28 . The data is then stored on l = 4 servers, such that each server stores ρ = 2 columns of Y = XGC . Let Yj be the block

of Y stored on server j.

Assume also that any t = 2 servers can collude. Since every server is storing two columns of the data, as discussed in II-C,

this can be seen as a case of 4-collusion. The goal is to construct a PIR scheme with 4-collusion that allows a user to

retrieve a file Xf from the servers, without revealing the file identity to any of the servers. The files are subdivided into

β = n− k − tρ+ 1 = 2 stripes, and k = 3 rounds of queries are sent. In round i, the query code

D = {d = (g(α0), g(α1)) : g(z) = g0z + g1z
2} ∈ Fµ×828

is used to encode tρ = 4 random vectors u(i)′1 , u
(i)′
2 , u

(i)′
3 , u

(i)′
4 ∈ F2m

2 and form the random matrix D(i) ∈ Fmβ×n2 .

Afterwards, the 3×2m deterministic matrix Ef,(i), chosen as explained in Section II-D, is added to the random matrix D(i)

to form D
f,(i)
Q = D(i)> + Ef,(i).

The query matrix to server j is then

Qfj =

(
I2×2 D

f,(i)
Qj

)
,

where Df,(i)
Qj

is the jth block, consisting of 2 rows of Df,(i)
Q .

For instance, assume that the user wants file X1. Then in the first round,

E1,(1) =




e1

06×2m


 .

The user sends Q1,(i)
j , i.e., block j of the query matrix Q1,(i), consisting of j rows, to server j. Server j receives the matrix

Q
1,(i)
j,rec =

(
A

(i)
j A

(i)
j D

1,(i)
Qj

)
,

where A(i)
j ∈ F2×2

qs is the 2× 2 matrix introduced by the network in round i. Then, the server sends back the matrix

R
1,(i)
j =

(
I2×2 A

(i)
j Yi ? (A

(i)
j D

1,(i)
Qj

)

)
,

and the user receives the matrix

R
1,(i)
j,rec =

(
A

(i)′
j A

(i)′
j A

(i)
j A

(i)′
j (Yj ? (A

(i)
j D

1,(i)
Qj

)

)
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where A(i)′
j is the 2× 2 matrix introduced by the network from server j to the user. Then the user can construct the matrix

Rrec =

(
A(i)′ A(i)′A(i) A(i)′(Y ? (A(i)D

1,(i)
Q ))

)
,

where A(i)′ =




A
(i)′
1 0 0 0

0 A
(i)′
2 0 0

0 0 A
(i)′
3 0

0 0 0 A
(i)′
4




and A(i) =




A
(i)
1 0 0 0

0 A
(i)
2 0 0

0 0 A
(i)
3 0

0 0 0 A
(i)
4




, as defined in Section II-D.

We see that C ? D is a G(8, 6) Gabidulin code, which can correct up to 2 erasures. The matrix Ef,(i) adds 2 errors with

known locations to the code, i.e., erasures. Thus, the user is able to decode the file Xf if both matrices A(i)′
j and A(i)

j have full

rank in all rounds with a PIR rate RPIR =
rkqs (A

(i)′Y ?A(i)Ef,(i))
n = 1

4 . Following Proposition 1, this happens with probability
(

(1− 1
qs )16

)3
= (1− 1

qs )19.

On the other hand, assume that the matrices A(i) and A(i)′ have a rank deficiency, such that rkqs(A
(i)′(Y ?A(i)D

f,(i)
Q )) = 7.

The user can then still decode 1 stripe of the required file if the erasures from the network occur on the links where the errors

from the matrix Ef,(i) are added, i.e., the rank deficiency occurs in the matrix A(i)′(Y ? A(i)Ef,(i)).

Let P1 denote the probability of this event.1

P1 = P
(

rkqs
(
A(i)′(Y ? A(i)D

f,(i)
Q )

)
= 7

and rkqs
(
A(i)′(Y ? A(i)Ef,(i))

)
= 1
)

=

(
2

1

)((
1− 1

qs

)7(
1

qs

))2

+ 2

[(
2

1

)((
1− 1

qs

)7(
1

qs

))(
1− 1

qs

)8
]

≈ 0.015.

Then, the user is able to decode 1 stripe, with PIR rate RPIR = 1
8 , with error probability 1−P1. Thus, the the average realized

download rate is

P2 ·
2

8
+ P1 ·

1

8
≈ 0.24

where P2 is the probability that both A(i) and A(i)′ have full rank in round i, i.e., P2 =
(

1− 1
qs

)16
≈ 0.94.

According to Prop. 1, the probability of matrices A(i) and A(i)′ are simultaneously full rank in all query rounds i = 1, . . . , k

is
(

1− 1
qs

)2n+k
. Together with the results of the previous examples, we can conclude the following theorems. Since the

scheme from one round is the same for all other rounds, we will drop the superscript (i) in the following.

Theorem 1. In the above setting, the user can decode the file Xf from the k responses from rounds i = 1, . . . , k, Rfrec, with

PIR rate

RPIR =

(
1− k + tρ− 1

n

)
,

1This is the sum of two terms: The first is the probability that both A(i) and A(i)′ have an erasure in the same place and in one of the two places where
Ef,(i) is nonzero, and the second is the probability that one of the matrices has an erasure in a position where Ef,(i) is nonzero and the other is full rank.
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with error probability 1−
(

1− 1
qs

)2n+k
.

Proof. Decodability. Assume that rkqs(A) = rkqs(A
′) = n, i.e., A and A′ are full rank, which happens in all k rounds with

probability
(

1− 1
qs

)2n+k
, as given in Prop. 1. The responses Rfrec could then be reduced to

Y ? D + Y ? Ef ,

where Y ?Df
Q is a codeword from G(n, k + tρ− 1) Gabidulin code, and rkqs(Y ? Ef ) = n− k − tρ+ 1. Therefore, the user

can decode Y ?Ef , which gives one part from each stripe in each round (this follows from the way the matrix Ef is chosen).

Moreover, the choice of Ef ensures that the user retrieves at most one part of any stripe from a single sub-server, i.e., the user

does not retrieve redundant information about a certain stripe. Hence, after k query rounds, the user will have k independent

equations for each stripe, and therefore, can recover the full file Xf .

Privacy. Since the random matrix D is a G(n, tρ) Gabidulin code, from which the codewords are chosen uniformly at

random, the query received by any tρ servers is random, and the server cannot know where a 1 was added.

Remark 4. It is easy to see that the error probability in the above theorem approaches 0 when the field size grows. Moreover,

the PIR rate matches the conjectured capacity [13].

The above theorem is restricted to the case where no erasures occur in the network. However, as was shown in Example 3,

the rank deficiency of A′(Y ?ADf
Q) might reduce the rank of A′(Y ?AEf ) that is received by the user as well. In such cases,

the user can still decode rkqs(A
′(Y ? AEf )) stripes from the requested file, Xf . For instance, as shown in Example 3, the

user can still be able to decode one stripe of the requested file, despite the rank deficiency of the matrix A′(Y ? ADf
Q).

In the following, we consider the rate given from a single query round i. Since the probabilistic rate is the same for all

query rounds, i = 1, · · · , k, we discuss what follows for a single round and drop the superscript (i). In the first stage of

querying, if no erasures occur, then the user can still retrieve β parts of the requested file Xf . On the other hand, assume that

rkqs(A
′(Y ? ADf

Q))− rkqs(A
′(Y ? AEf )) = k + tρ− 1, and rkqs(A

′(Y ? AEf )) = δ < β, the user can then retrieve δ parts

of the file. However, the user has to send a second stage of queries to retrieve (β − δ) new parts of the file Xf , which can

substitute the erased parts. To do that, the user will subdivide the stripes again into β sub-stripes, then use the same scheme

as in the first stage to retrieve a part of each sub-stripe. Here it is important to note that each sub-server should be asked at

most once about any stripe. This means that, in the second stage of querying, the matrix Ef should be chosen such that, to

retrieve stripe `, a 1 is never added to the columns `, . . . , `+ k − 1 of D, since these will give information already acquired

about stripe ` in other rounds, i.e., they give redundant information. Assume that no erasures occur in the second stage, then,

along with the responses from the first stage, the user now has k independent equations about all sub-stripes of the file Xf .

On the other hand, if erasures occur in stage 2, this process will be followed another time. This will be done recursively until

all the file Xf is recovered. We state this more formally in Theorem 2 below.
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Denote

P(rkqs(A
′(Y ? ADf

Q))− rkqs
(
A′(Y ? AEf )

)
= k + tρ− 1,

and rkqs
(
A′(Y ? AEf )

)
= δ) =: Pδ.

Theorem 2. The user can decode δ stripes of the file Xf from the responses Rfrec with a PIR rate

RPIR =
δ

n
, (5)

with error probability 1− Pδ .

Proof. Decodability. Since Y ?Df is a codeword in a G(n, k+ tρ+ 1) Gabidulin code, it is able to tolerate n− (k+ tρ− 1)

erasures. Therefore, the user can decode the codeword Y ?Df , whenever rkqs(A
′(Y ?ADf

Q))−rkqs(A
′(Y ?AEf )) = k+tρ−1.

Additionally, assume that rkqs(A
′(Y ? AEf )) = δ. Then the user is able to retrieve δ stripes of the requested file Xf . As the

probability of the joint event that rkqs(A
′(Y ?ADf

Q))− rkqs(A
′(Y ?AEf )) = k+ tρ− 1 and rkqs(A

′(Y ?AEf )) = δ is Pδ ,

the PIR rate is

RPIR =
δ

n
, (6)

with error probability 1− Pδ . The average realized download rate is

β∑

δ=1

Pδ · δ
n

.

Privacy. Privacy is achieved for the same reason as in Theorem 1.

IV. PIR ON A NETWORK WITH ERRORS

Errors in a random network happen, e.g., due to malicious nodes injecting erroneous packets or due to congestion. In this

section, we will consider such an erroneous network. The network is assumed to introduce up to ε errors and up to τ erasures

to the sent packets.

From [24], it is known that errors of rank ε can be corrected if 2ε ≤ τ + d− 1, where d is the minimum rank distance of

the code. For this purpose, each file is subdivided into β = n − k − ρt − 2ε − τ + 1 stripes. The matrix D(i) is constructed

in the same manner as in section II-D. As for the matrix Ef,(i), it is chosen as a codeword of a rank metric code Ef such

that the response C ? (D + Ef ) is again a Gabidulin code, which follows from the techniques used in [30]. Specifically, we

start with Ef being the n×mβ all-zero matrix. In round i, for all δ ≤ d iβk e, the vector ef,(i)δ is taken to be the vector with

all zeros and a single 1 at position β(f − 1) + δ, which is the vector requesting the stripe δ of the file Xf . The vector ef,(i)δ

is encoded using a G(n, 1) code Ef = {g(α0), · · · , g(αn−1) : g(z) = g0z
qiβ−δk+k+ρt−1} and added to row (f − 1)mβ + δ of

Ef,(i).2

2For more specific details on how the scheme is constructed, see [30].
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Remark 5. In the above scheme, the storage code C is a Gabidulin code of dimension k. Hence, we pick D to be a Gabidulin

code of dimension tρ, so that C ? D is a Gabidulin code of dimension tρ + k − 1 (see Section II-E). Thus, in round i,

C ? (D + Ef ) is a G(n, k + tρ+ β − 1) Gabidulin code, padded with parts retrieved from previous rounds 1, . . . , i− 1, with

degrees > n − 1, where degrees qtρ+k and higher of the evaluation polynomial consist of parts of the file requested by the

user. From C ? (D+Ef ), the user can interpolate to retrieve the higher powers, thus retrieving β parts of the file she requires.

We now assume that 2ε+ τ ≤ d− 1, where d is the minimum distance of the code C ? (D+ Ef ). Then rkqs(Ne) = ε errors

and τ erasures can be corrected. In this case, the underlying PIR scheme would be similar to the scheme in [30], with the

ability to correct ε errors and τ erasures. For the rest of this section, we assume that 2ε+ τ ≤ d− 1. In the current setting, the

query code is constructed assuming a certain number of errors and erasures introduced by the network, thus, in this section,

the probability of error is not taken into account.

We discuss the results for a single round i, and drop the superscript (i). In the following, we distinguish two cases, namely

the case where no errors occur on the uplink, and some errors occur on the downlink, and the case where some errors occur

on the uplink as well. As opposed to the work done in [21]–[23], we consider PIR over a random linear network, where the

messages are coded over the servers, not replicated. Moreover, as opposed to all previous works on PIR, we consider uplink

errors in this work.

A. Downlink errors

Let us first assume that no errors are introduced on the uplink, but errors may be introduced on the downlink. In this case,

it follows from [24] that the code can correct ε errors and τ erasures as long as 2ε+ τ ≤ d− 1. Since D and Ef are chosen

such that C ? (D + Ef ) is a G(n, k + tρ + β − 1) Gabidulin code, the user can decode and retrieve the requested file when

2ε+ τ ≤ d− 1 = n− k− tρ− β, where d is defined as the minimum distance of the code C ? (D+ Ef ). This can be summed

up in the following theorem.

Theorem 3. Assume that the queries are sent through a network where no errors occur, and the responses are sent through

a network with errors. Moreover, assume that

2ε+ τ ≤ d− 1.

Then, the user can decode the errors and erasures introduced by the network, and consequently, can decode the requested file

with rate RPIR = β
n .

Proof. This follows directly from [24], where it was shown that if C is a Gabidulin code with minimum distance d, then the

errors introduced to the system will still allow for correct decodability when

2ε+ τ ≤ d− 1.

Since D and Ef were chosen such that (Y ? (D> + Ef )) is a codeword in a Gabidulin code with minimum distance

d ≥ 2ε+ τ + 1, thus the responses received by the user form a Gabidulin code that can correct up to (d− 1)/2 errors.
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B. Uplink errors

Assume that the queries are now sent through a network that introduces errors. In this case, the errors will be received by

the servers. Since the dimension of the matrix sent to the servers is small enough to protect the user’s privacy, the servers

will have no capability to correct any errors. Hence, the servers will project the received matrix, including the errors, on their

stored data and send it back to the user. We can see that an erasure that happens on the uplink would translate to an erasure

on the downlink, so we can account for the total number of erasures as τ .

Consider an error Zj of rank rZ introduced on the channel going to server j, j = 1, . . . , l, such that a transformation matrix

Bj is applied to Zj . Let Df
Qj

= D>j + Efj . Therefore, server j receives the query matrix with additional errors:

Qfj,rec =

(
Aj +BjZj AjD

f
Qj

+BjZj

)

=

(
Âj Q̂j

)
,

where Q̂j = AjD
f
Qj

+BjZj is the erroneous received query, and Âj = Aj +BjZj .

The server then projects the query matrix received on its stored data and then appends the matrix with an identity matrix.

The server then returns to the user a double-lifted matrix

Rfj =

(
Iρ×ρ Âj Yj ? Q̂j

)
,

where Yj is the corresponding jth block of Y .

The user receives the response

Rfj,rec =

(
A′j +Ne,j A′jÂj +Ne,j A′j(Yj ? Q̂j) +Ne,j

)

from server j transmitted through the network, where Ne,j represents the errors introduced on the downlink from server j to

the user in round i.

From the received responses from all the servers, the user forms the matrix

Rfrec =

(
A′ +Ne A′Â+Ne A′(Y ? Q̂) +Ne

)
,

where

A′ =




A′1 · · · 0

...
. . .

...

0 · · · A′l



, Â =




Â1 · · · 0

...
. . .

...

0 · · · Âl



,

and

Ne =




Ne,1 · · · 0

...
. . .

...

0 · · · Ne,l



.

From the query construction, it is known that Y ?ADf
Qj

is a codeword of a rank metric code G(n, k+ tρ+ β − 1), but the
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problem is that the received word, Y ? (ADf
Qj

+BZ), is not a codeword of a rank metric code. However, Y ? (Df
Qj

+BZ) can

be seen as the codeword, Y ?Df
Qj

, of the rank metric code C ? (D+ Ef ), in addition to the noise introduced on the downlink,

Ne, and some noise function F (BZ) of ADf
Qj

along with the errors BZ. Let rkqs(F (BZ)) ≤ εq , and let ε = εq + εr. We

note here that ε is an upper bound to the rank of the errors introduced, and τ is an upper bound to the number of erasures in

the system.

Now, if n− k − tρ− β ≥ τ + 2ε, the user will be able to decode the requested file Xf with a rate β
n .

In general, if errors occur on both links, we have the following theorem:

Theorem 4. Assume that the queries and responses are sent through a network where errors occur. Moreover, assume that

n ≥ τ + 2ε + k + tρ + β. The user can then decode the errors, and thus retrieve the requested file, Xf , with a rate

≥ n−k−tρ−2ε−τ+1
n = β

n .

Proof. The proof of this theorem follows similarly to the proof of Theorem 3. The inequality in the rate expression is due to

the fact that full tρ collusion is assumed while only certain tρ sub-servers can collude.

V. CONCLUSION

In this paper, we consider a distributed storage system such that the data is encoded using an MRD code and stored on

servers. The user and servers communicate over a random linear network. The user sends queries to the servers across the

random network, such that the queries give no information about the file requested by the user to any server. It is further

assumed that t nodes collude in an effort to figure out the index of the file requested by the user, and the network is assumed

to introduce erasures and errors into the queries and the responses. In this work, we have constructed a PIR scheme that

allows the user to retrieve a file from a DSS over such a network privately. The scheme achieves asymptotically high PIR

rates as q →∞. In this work, we consider the intermediate nodes in the network as dummy relays that only receive, combine

and forward packets without storing data. However, this can be generalized in future work, as the intermediate nodes can be

considered as other users that might collude or trade the information with third parties.
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