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Abstract—In a decentralized Internet of Things (IoT) network,
a fusion center receives information from multiple sensors to
infer a public hypothesis of interest. To prevent the fusion
center from abusing the sensor information, each sensor sanitizes
its local observation using a local privacy mapping, which
is designed to achieve both inference privacy of a private
hypothesis and data privacy of the sensor raw observations.
Various inference and data privacy metrics have been proposed
in the literature. We introduce the concept of privacy implication
(with vanishing budget) to study the relationships between these
privacy metrics. We propose an optimization framework in which
both local differential privacy (data privacy) and information
privacy (inference privacy) metrics are incorporated. In the
parametric case where sensor observations’ distributions are
known a priori, we propose a two-stage local privacy mapping at
each sensor, and show that such an architecture is able to achieve
information privacy and local differential privacy to within the
predefined budgets. For the nonparametric case where sensor
distributions are unknown, we adopt an empirical optimization
approach. Simulation and experiment results demonstrate that
our proposed approaches allow the fusion center to accurately
infer the public hypothesis while protecting both inference and
data privacy.

Index Terms—Inference privacy, data privacy, information pri-
vacy, local differential privacy, decentralized detection, Internet
of Things

I. INTRODUCTION

With the proliferation of Internet of Things (IoT) devices
like smart phones and home voice recognition assistants,
protecting the privacy of users has attracted considerable
attention in recent years [1]-[4]. Data collected by IoT devices
to provide services that lead to better healthcare, more efficient
air conditioning, and safer cities [5], [6], may be used for more
nefarious purposes like tracking an individual without her
explicit consent. An individual’s privacy has been enshrined
as a fundamental right through the laws of many countries
[7]-[9], and privacy protection mechanisms are increasingly
being adopted by IoT product makers. For example, Apple Inc.
have recently started to implement local differential privacy
mechanisms into their iCloud product [10].

We consider an IoT network (see Fig. 1) consisting of
multiple sensors, each making a private observation, which is
first distorted through a privacy mapping before being sent
to a fusion center. The information received from all the
sensors is used by the fusion center to perform inference on

This research is supported by the Singapore Ministry of Education Aca-
demic Research Fund Tier 1 grant 2017-T1-001-059 (RG20/17).

The authors are with the Department of Electrical and Elec-
tronic Engineering, Nanyang Technological University, Singapore, e-mails:
MSUNO002 @e.ntu.edu.sg, wptay @ntu.edu.sg

Fusion center

Fig. 1: An IoT network with public hypothesis H and private
hypothesis G. Each sensor ¢ observes a private observation X,
which is first sanitized to Z; before being sent to the fusion
center.

a public hypothesis of interest. Privacy for this IoT network
can be categorized into two classes: data privacy and inference
privacy. Data privacy refers to the protection of each sensor’s
raw private observation from the fusion center, i.e., upon
receiving information from all the sensors, it is difficult for
the fusion center to infer the original sensor observations.
Protecting data privacy alone is not sufficient to prevent
privacy leakage. A data privacy mechanism obfuscates the raw
data while still allowing statistical information to be extracted
from the data. Given multiple information sources, each with
its local data privacy mechanism, it is possible to perform a
correlation attack [11] leading to de-anonymization and other
types of privacy leakage as shown in the examples in [12].

Inference privacy refers to preventing the fusion center from
making certain statistical inferences it has not been authorized
to perform. We call a hypothesis a public hypothesis if its
inference or detection is to be achieved by the fusion center.
We call a hypothesis a private hypothesis, if its true state is not
authorized to be inferred by the fusion center. For example in
using on-body wearables for fall detection, the fusion center
is authorized to perform fall detection, but not authorized to
detect if a person is exercising or performing another activity.
Prevention of statistical inference of the latter activities is
inference privacy, while preventing the fusion center from
reconstructing the raw sensor data up to a certain fidelity is
data privacy. It can be seen from this example that distortion of
the raw sensor data to achieve data privacy does not necessarily
remove all statistical information required to infer if the person
is performing a private activity, unless the sensor data is so



heavily distorted that even fall detection becomes difficult. On
the other hand, inference privacy also does not guarantee data
privacy as inference privacy mechanisms target to protect only
specific statistical inferences. For example, blurring certain
parts of an image may prevent inference of certain objects
in the image, but does not necessarily distort the whole image
significantly.

The main focus of this paper is to derive insights into
the relationships between various data and inference privacy
metrics, and to design a privacy-preserving decentralized de-
tection architecture for IoT networks where the level of data
and inference privacy can be chosen. We aim to achieve a
good tradeoff between data privacy, inference privacy and the
detection accuracy of of the public hypothesis at the fusion
center.

A. Related Work

Various works have focused on protecting data privacy while
providing utility. In a privacy-preserving consensus network,
each node share obfuscated information with each other. The
papers [13]-[20] proposed methods that allow the nodes to
obtain the correct information collaboratively without sharing
their private observations. These works consider data privacy
preserving methods for a fully distributed network where there
is no fusion center. This is different from the IoT model
that we study in this paper and is out of our current scope.
Moreover, the issue of inference privacy has also not been
addressed.

In cloud services and applications, data privacy can be
achieved using homomorphic encryption [21], [22], which
allows a cloud server to compute on encrypted data without
decryption. The encrypted result is then made available to
the requester, who is able to decrypt it. By comparison,
in decentralized detection, the fusion center needs to play
the roles of both the cloud server and requester, making it
impossible to apply homomorphic encryption techniques here.
Other data privacy works propose to corrupt each sensor’s
local observation so that the fusion center cannot infer it
[23]-[25]. In [26], the authors analyzed the tradeoff between
local differential privacy budget and the utility of statistical
estimators used at the fusion center. The paper [27] analyzed
the tradeoff between utility and data privacy, and compared the
performance of different data privacy metrics, including local
differential privacy, identifiability, and mutual information. It
is unclear how effective such data privacy metrics are at
protecting inference privacy in a decentralized network. We
address this issue in this paper by studying the relationships
between data and inference privacy metrics.

The paper [28] analyzed the relationship between privacy
leakage and correlation between the private hypothesis and
sensor observations. The authors’ aim was to recover a public
hypothesis correlated with both the private hypothesis and sen-
sor observation. Data privacy was not considered. The authors
of [29] proposed three inference privacy metrics to measure
the exposure of the private hypothesis: information privacy,
differential privacy (as applied to the private hypothesis instead
of the sensor data and which we call inference differential pri-
vacy in this paper to avoid confusion), and average information

leakage. They showed that information privacy is the strongest
among the three, while inference differential privacy does not
guarantee information privacy. Methods using the information
privacy metric, both nonparametric [3], [4], [30]-[33] and
parametric [29], have been proposed in the literature. Average
information leakage is used by [34] and [35] to restrict the
leakage of sensitive information. The references [36], [37]
consider the tradeoff between prediction accuracy of sensitive
information or parameters and data utility. These works do
not consider the simultaneous protection of both inference and
data privacy.

Different metrics have been proposed to measure privacy
leakage. The reference [27] studied the relationship between
various data privacy metrics under a distortion utility but
did not consider any inference privacy metrics, whereas [29]
compared only inference privacy metrics. However, the works
mentioned above only compare metrics for inference or data
privacy separately. To protect both inference and data privacy,
we need to analyze the interplay of the privacy metrics.
Inference privacy and data privacy generally do not imply
each other. In [25], maximum leakage is used as the privacy
metric to limit inference privacy leakage and the authors
conclude that this leads to data privacy leakage. On the other
hand, data privacy constraints do not prevent the fusion center
from making statistical inference. This is because data privacy
metrics do not distinguish between the public and private
hypotheses. If the data privacy budget is chosen in such a
way that the private hypothesis is difficult to infer, it also
means that the utility of inferring the public hypothesis will
be severely impacted. A more technical discussion of the
relationship between inference and data privacy metrics is
provided in Section III.

Several works have considered both inference and data
privacy constraints. The paper [38] proposed an iterative
optimization method to protect against average information
leakage (inference privacy) and mutual information privacy
(data privacy). However, it is unclear if these are the best
inference and data privacy metrics for a decentralized IoT
network. For a decentralized sensor network, [39] proposed
the use of local differential privacy to achieve both data and
inference privacy (which they call inherent and latent privacy,
respectively). However, the proposed approach is computation-
ally expensive as it involves a brutal force search. Furthermore,
local differential privacy also does not distinguish between the
public and private hypotheses of interest. It is thus a “blunt”
privacy protection approach. In [33], the author proposed a
two-stage approach, with one stage implementing an inference
privacy mechanism, and the other stage a local differential
privacy mechanism. In this paper, we adopt a similar two-
stage approach. In addition, we study the relationship between
possible data and inference privacy metrics, which was not
done in [33].

B. Our Contributions

In this paper, we develop a joint inference and data privacy-
preserving framework for a decentralized IoT network [40]-
[47]. Our main contributions are as follows.



1) To the best of our knowledge, the interplay between
inference privacy and data privacy and the relationship
between different privacy metrics have not been ad-
equately investigated. In this paper, we introduce the
concept of privacy implication with vanishing budget,
and show how one privacy metric is related to another
in this framework. We argue that in a practical IoT
network, both information privacy and local differential
privacy metrics should be incorporated in each sensor’s
privacy mapping to provide suitable inference and data
privacy guarantees, respectively. We then propose an
optimization framework with joint information privacy
and local differential privacy constraints.

2) We propose a local privacy mapping for each sensor
that consists of two local privacy mappings concatenated
together. One local privacy mapping implements an in-
formation privacy mechanism while the other implements
a local differential privacy mechanism. We propose two
different architectures depending on the order of concate-
nation. We show that both information privacy and local
differential privacy are preserved in post-processing, and
local differential privacy is immune to pre-processing,
which imply that our proposed architectures achieve the
given privacy budgets.

Simulations demonstrate that our proposed architectures
can protect both information privacy and local differential
privacy, while maximizing the detection accuracy of the public
hypothesis. To test our proposed joint information privacy and
local differential privacy framework, we perform experiments
using empirical datasets. However, in these cases, the sensor
observations’ distributions are unknown a priori. Therefore,
we adopt an empirical risk optimization framework modified
from [30] to now include both information privacy and local
differential privacy constraints. Experiments demonstrate that
our proposed approach can achieve a good utility-privacy
tradeoff.

This paper is an extension of our conference paper [32],
which utilized a nonparametric approach to learn sensor de-
cision rules with both local differential privacy and informa-
tion privacy constraints. In this paper, we rigorously prove
the relationships between different privacy metrics under the
concept of privacy implication, and propose architectures to
achieve both information privacy and local differential privacy
in the parametric case. Additional simulations that provide
insights into the performance of different architectures as well
as experiments on real data sets are also included in this
journal version.

The rest of this paper is organized as follows. In Section II,
we present our system model. In Section III, we introduce the
concept of privacy implication and non-guarantee, review the
definition of various privacy metrics, and show the relation-
ships between them. We propose a parametric approach with
local differential privacy and information privacy constraints
in Section IV, while a non-parametric approach is discussed
in Section V. Simulation results are shown in Section VI, and
we conclude in Section VIL

Notations: We use capital letters like X to denote random
variables or vectors, lowercase letters like 2 for deterministic

scalars, and boldface lowercase letters like x for deterministic
vectors. The vector O has all zero entries, and 1 has all ones.
We use I'¢ to denote the complement of the set I'. We assume
that all random variables are defined on the same underlying
probability measure space with probability measure P. We
use px(-) to denote the probability mass function of X, and
px|y (-] -) to denote the conditional probability mass function
of X given Y. We use I(- ; -) to denote mutual information.
We use log to denote natural logarithm, and ¢; | 0 to mean that
the sequence €1, €2, . . . decreases to 0. We say that two vectors
x and x’ are neighbors if they differ in only one of their vector
components [23]-[25], and we denote this by x ~ x’.

II. SYSTEM MODEL

We consider s sensors making observations generated by a
public hypothesis H and a private hypothesis GG, as shown
in Fig. 1. Each sensor ¢t € {1,2,...,s}, makes a noisy
observation X; = z; € X. Each sensor ¢ then summarizes
its observation X; = x; using a local decision rule or privacy
mapping p; : X +— Z and transmits Z; = 2z € Z to
a fusion center with probability p;(z¢|z¢) = pz,x, (2¢|®e).
Both X and Z are assumed to be discrete alphabets. Let
X = (Xy)j—; € X® denote the observations of all sensors,
and Z = (Zy);_, € Z° denote the transmitted information
from all sensors.

The fusion center infers the public hypothesis H from Z.
However, it can also use Z to infer GG, even though it has
not been authorized to do so. At the same time, it may also
try to recover X from Z. In this paper, for simplicity, we
consider the case where H € {0,1} is a binary hypothesis
(our work is easily extended to the multiple hypothesis case),
and G = (G1,...,G,) € G = {0,1}7 is a random vector
where each component is binary, i.e., G is a 29-ary hypothesis.
Our goal is to design privacy mappings at sensors in order to
make it difficult for the fusion center to both infer G (inference
privacy) and to recover X (data privacy), while allowing it to
infer H with reasonable accuracy. In this paper, we do not
make any assumptions regarding the conditional independence
of sensor observations, which is common in many of the works
in decentralized detection [40]-[47].

In the example of fall detection, whether a fall happens is
the public hypothesis H. Each binary G*, i = 1,...,q, in the
private hypothesis G can correspond to detecting if the person
is performing different activities like running, climbing stairs,
squatting, and so on.

The utility of the network is the probability of inferring H
correctly by the fusion center. Inference privacy is measured
by the “difficulty” of inferring G. One of our objectives is to
determine which inference privacy metric is most suitable for
the IoT network in Fig. 1. Furthermore, since some sensors’
observations may be uncorrelated with G, the raw observations
from these sensors are transmitted to the fusion center to
maximize the utility. There is then leakage of data privacy
for these sensors. Therefore, we also require that the local
privacy mappings at each sensor incorporate a data privacy
mechanism.



III. RELATIONSHIPS BETWEEN PRIVACY METRICS

In this section, we consider different privacy metrics pro-
posed in the literature and study their relationships to provide
insights into the best inference and data privacy metrics for
a decentralized IoT network. A privacy budget ¢ > 0 is
associated with each type of privacy metric, with a smaller
e corresponding to a more stringent privacy guarantee. We
consider the following inference and data privacy metrics.
Note that we use the joint distribution pg x,z in Definitions 1
and 2 although Definition 1 (inference privacy) depends only
on pg,z while Definition 2 (data privacy) depends only on
px,z. This is done to make it easier to present Definition 3,
which allows us to relate inference and data privacy metrics.

Definition 1 (Inference privacy metrics). Let € > 0. We say
that pa,x,z satisfies each of the following types of inference
privacy if the corresponding conditions hold.
o c-inference differential privacy [29]: for all g, g € G
such that g ~ g, and z € Z°,

pzic(zlg) e
pzic(zlg’) ~
o e-average information leakage [29]: 1(G;Z) < e.
e e-information privacy [29]: for all g € G and z € Z?,
o€ < pG|Z(g|Z) < et
pc(8)
Note that we use the term “inference differential privacy”
in Definition 1 to avoid confusion with “differential privacy”,
which is usually associated with protecting the privacy of the

data X. In Definition 1, the differential privacy refers to that
for the private hypothesis G.

Definition 2 (Data privacy metrics). Let € > 0. We say that
Da,x,z satisfies each of the following types of data privacy if
the corresponding conditions hold.

e ¢-local differential privacy [26]: for each sensor t €
{1,2,...,s8}, and all x,2' € X, and z € Z,

nle) _ .
pe(zz")
e e-mutual information privacy [27]: I(X;Z) < e.
o e-identifiability [27]: for all x,x' € X'* such that x ~ X/,
and z € Z°,

pX|Z(X/|Z) < e

pX\Z(X |z)
To relate one privacy metric to another, we introduce the

concept of privacy implication with vanishing budget in the
following definition.

Definition 3 (Privacy implication with vanishing budget). We
say that Type A privacy implies Type B privacy, if for all
sequences of probability distributions (pl, x.z)iz1 such that
an’Z satisfies €;-Type A privacy with € |0, then an’Z
satisfies €;-Type B privacy with €, | 0.

In nontechnical terms, Definition 3 says that arbitrarily
strong Type A privacy implies arbitrarily strong Type B pri-
vacy. Therefore, to achieve a desired level of Type B privacy,

it suffices to ensure that Type A privacy with sufficiently small
budget is satisfied. Conversely, we say Type A privacy does
not guarantee Type B privacy if the condition in Definition 3
does not hold, i.e., there exists a sequence of probability
distributions (pl; x »)i>1, such that py; y  satisfies e;-Type A
privacy with ¢; | 0, and €,-Type B privacy with inf;>; ¢} > 0.

The following theorem elucidates the relationships between
different privacy metrics, which are summarized in Fig. 2.
Some of these relationships are results proven in [29], and are
reproduced here for completeness.

Theorem 1. Consider the decentralized loT network in Fig. 1
with s > 1 sensors and G = (G1,...,Gy). Let € > 0. Then,
the following holds for pg x, z.

(i) [29, Theorem 3] e-information privacy implies 2e-

inference differential privacy for all s > 1.

(ii) [29, Theorem 3] e-information privacy implies @-
average information leakage for all s > 1.

(iii) e-inference differential privacy implies qe-information
privacy. If ¢ — oo, then inference differential privacy
does not guarantee information privacy.

(iv) e-inference differential privacy implies lo'zé—average in-
formation leakage. If ¢ — oo, then inference differential
privacy does not guarantee average information leakage.

(v) Average information leakage does not guarantee infor-
mation privacy and inference differential privacy.

(vi) e-local differential privacy implies 2se-information pri-
vacy.

(vii) Information privacy does not guarantee local differential
privacy.

(viii) Information privacy does not guarantee mutual informa-
tion privacy.

(ix) Mutual information privacy does not guarantee informa-
tion privacy.

(x) e-mutual information privacy implies e-average informa-
tion leakage.

(xi) e-local differential privacy implies l(ng
tion privacy.

(xii) Mutual information privacy does not guarantee local
differential privacy.

(xiii) e-local differential privacy yields (e + dx )-identifiability,
where §x = maxlogpx (x)/px(x') with the maximum
taken over all neighboring x,x' € X*. Therefore, ¢-
local differential privacy implies e-identifiability if X is
restricted to have uniform distribution on X°. Otherwise,
local differential privacy does not guarantee identifiabil-
ity.

e-identifiability yields (e + 0x)-local differential privacy.
Therefore, e-identifiability implies e-local differential pri-
vacy if X is restricted to have uniform distribution on
X?®. Otherwise, identifiability does not guarantee local
differential privacy.

-mutual informa-

(xiv)

Proof: See Appendix A. [ ]
From Theorem 1, we see that information privacy implies
the other types of inference privacy metrics in Definition 1.
Although for a fixed number of components ¢ of the private
hypothesis G = (G, ..., G,), inference differential privacy
also implies other types of inference privacy metrics including
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Fig. 2: Relationships between different privacy metrics for an IoT network with fixed number of private hypothesis components
q and number of sensors s. An arrow — means “implies” while —< means “does not guarantee”.

information privacy, it does not guarantee information privacy
when g — oo.

For data privacy, Theorem 1 shows that local differential
privacy implies mutual information privacy. As the identifia-
bility metric is essentially the same as local differential privacy
up to a fixed constant, we consider only the local differential
privacy metric in this paper.

Although local differential privacy implies information pri-
vacy for a fixed number s of sensors, this is no longer true
if s is not fixed or known in advance. Furthermore, even if
s is known a priori, Theorem 1 suggests that to achieve e-
information privacy based solely on preserving local differen-
tial privacy, the order of magnitude of the local differential
privacy budget has to be not more than €¢/s. Note that since
the definition of local differential privacy does not distinguish
between the public hypothesis H or the private hypothe-
sis G, this implies that py x z also satisfies e-information
privacy. If s is large, [30, Theorem 1(i)] then implies that
the Type I and II errors (the probability of rejecting a true
null hypothesis and the probability of rejecting a false null
hypothesis, respectively) for detecting the public hypothesis
H also become large, which is therefore undesirable. Hence,
we propose to design the sensors’ privacy mappings using both
information privacy and local differential privacy constraints,
where the local differential privacy budget can be chosen to be
sufficiently large to achieve a reasonable utility for H while
maintaining strong information privacy for G.

Therefore, in summary, we propose to use information
privacy as the metric for inference privacy to protect the
private hypothesis G, and local differential privacy as the

metric for data privacy of X. In the subsequent sections, we
propose frameworks for designing the local privacy mappings
for sensors in a decentralized IoT network under both the
parametric and nonparametric cases. These privacy mappings
are designed to achieve both information privacy and local
differential privacy at the fusion center.

IV. PARAMETRIC CASE: CONCATENATED PRIVACY
MAPPINGS

In this section, we consider the parametric case where
px,H,G is known a priori. We first study decentralized detec-
tion that preserves only data privacy using the local differential
privacy metric. Then we include information privacy as an
additional constraint to achieve inference privacy, and propose
a local privacy mapping consisting of two concatenated pri-
vacy mappings that implement information privacy and local
differential privacy mechanisms separately.

A. Data Privacy using Local Differential Privacy

We first consider the case where local differential privacy
is adopted as the privacy metric for the IoT network in Fig. 1.
Let Q denote the set of pz|x such that

pzix(z | %) Hpt zt | ), (1a)
Z pe(2e | @) (1b)
Z1EZ

pe(ze |a) >0, Vo, € X, €2, t=1,...,s. (l¢)



Let vy (Z) denote the decision rule used by the fusion center
to infer the public hypothesis H from the received sensor
information Z. Our goal is to

min P (y

YH,Pz|x €Q H(Z) 7& H)

2
pzlr) <erP NzeZx,x' e X, t=1,2,...,s, @
pe(z]2’)
where e, p > 0 is the local differential privacy budget.

We use the block nonlinear Gauss-Siedel method [48] to
optimize (2): to minimize a continuous differentiable function
f(x) over x € X} X Xy X ... x X, at each iteration k > 1
and for each index ¢ = 1,..., s in sequential order, we find

S.t.

8% = argmin f(zbF, .. TR gy 2 TLEEL g
yeXi

s,kfl)'

The initial estimates (2%°)3
randomly.

To apply the block nonlinear Gauss-Siedel method to (2),
we iteratively optimize over the random variables. For fixed
p,t=1,2,...,5, (2) is a convex optimization over vy [49],
which can be solved with standard approaches. Then for each
t =1,...,s, we fix vy and p’ where i # t and optimize
for p;. This procedure is then repeated until a convergence
criterion is met.

_, at iteration k = 0 are chosen

Theorem 2. Suppose |Z| = 2. Consider optimizing (2) over
pe with v and p',i # t fixed. The optimal solution is

1 _ 1+€e£gpalfft( ,Jf)zft(2,$),
pt( ‘x) {1+€€LD7l‘fft( 773) <ft(27x)a (3)
2 — 1+EeLEILDDDfot( aaj) th(ny),
pt( ‘x) {1+56LD7lfft( 733) <ft(27x)a
where
ft(Z,LU)
= > [P xux0) —pxux1),
ZeW(z) it
xe{x:x=x}
with U(z) ={z:vp(z) =1,z = z}.

Proof: Let I = {z : v (z) = 1}. We have

P(yu(Z) # H)
= pu(1)+ D (P21 (2|0)pu (0) — pziu (2| )pu (1))
zel

=pu(1)+ Y pzix(2x) (px,1(x,0) = px u(x, 1))
zcl',x

=pu(l)+ Z

zeZxeX

D+ () (fi(L2) = fi(2,2) + Y fi(2,2).

reX reX
“)

pe(2]2) fi (2, x)

We rewrite (2) as the following linear programming problem:

ml/n Zpt 1‘37 ft(l l‘) ft(27m))

reX
st p(zlw) — el py(z|2") <0 5

pe(z|z) > O,Zpt(z\x) =1,z€ Z,z,2 € X.
z

Without loss of generality, assume a = p;(1|1) > p(1|2) >

. > pe(1]]X]) = b satisfy the constraints of (5). From (4),
to minimize P (yy(Z) # H), we have p,(1|z) = a for x €
Xy ={z: fi(2,2) > fe(1,2)} and p;(1]z) = b for x € X5 =
{z: fi(2,2) < fi(1,z)}. Thus, we can simplify (5) to

mln Z (fe(1,z) — fr(2,2))

a,b reX]

+ Z b(fi(1,2) — fi(2,2))
TEXo

st.a—e LPh >0
a—etPh <0
(1—a)—e “*2(1-0)>0
(I1—a)—etP(1-0)<0
a>0,b>0.

It can be shown that the solution to the above linear program
is

ecLp 1
T 14ewn’ " T4 en’
which proves the theorem. [ ]

Theorem 2 provides a closed form solution for the local
differential privacy mapping at each sensor ¢ when the sensor
is constrained to be binary. This is typically the case when the
sensor is low-cost and has limited computational resources.
The result in Theorem 2 thus allows efficient implementation
in practice.

B. Joint Inference and Data Privacy

Fig. 3: Each sensor ¢’s privacy mapping p; (z¢|z¢) = pi (y¢|z¢)-
p?(2¢|y:) consists of two privacy mappings concatenated to-
gether.



From Theorem 1, as information privacy is one of the
strongest inference privacy metrics, we adopt the information
privacy metric when designing our privacy mechanism. To
achieve joint inference and data privacy, we consider

min_ P ((Z) £ H).
YH Pz x €Q
e < pZ\G(Z\g) < e,
pz(z) (PO)
VZ S st Vg = {g1’g27"' agq} S ga
pt(z|x) P Ny e Z, xa’ € X, t=1,2,.
pe(2 \l‘)

where €; > 0 and €7, p are the information privacy budget and
local differential privacy budget, respectively.

Since (P0) is a NP-complete problem [50], we seek to find
suboptimal solutions rather than solving (P0) directly. Similar
to the work in [33], we break the privacy mapping pz x in
(PO) into two concatenated stages as shown in Fig. 3, where
sensor observations X € A&’° are first mapped to Y € )°,
which is then mapped to Z € Z°, i.e., the mappings py|x
and pz|y satisfy

pY\X(Y|X Hpt (Ye|ze), pZIY zly) = Hpt (ztlye),
t=1
(6a)
and forallt=1,...,s, (6b)
pi(yile) 20, Y pi(yilawe) =1, Yy € Vo € X, (60)
Yt
pi(zely) 20, Y pi(aly) =1, Yz € Z,yp €Y. (6d)

The local privacy mapping for each sensor ¢ is given by

> i (2ly)pt (yla). (7

yey

pe(z | ) =

We propose the following two architectures:

1) Information-Local differential privacy (ILL): the map-
ping from X € &X® to Y € )* preserves information
privacy, while the mapping from Y € Y*® to Z € Z*
preserves local differential privacy.

2) Local differential-Information Privacy (LIP): the mapping
from X € X° to Y € Y° preserves local differential
privacy, while the mapping from ¥ € Y* to Z € Z*¢
preserves information privacy.

In the following Propositions 1 and 2, we show that this
two-stage approach achieves joint inference and data privacy.
But first, we discuss how to optimize for the privacy mappings
in practice.

In the ILL architecture, we find mappings py|x(y[x) =
[[—1 i (yel2e) and pzyy (zly) = [T;_, p7(2|ye) satisfying

(Z) # H)

min  P(yg
YHPY |XPZ|Y

pY|G(Y\g)
py(y)
p%(z‘y) < ELD/2V z / _

-~ Ze VzeZ yy € Y,t=1,2,...,s,

pi(2]Y)

Py|x,Ppz|y satisty (6).

e < <e“,Vge G,y )’

(PT)

To solve the problem (P1), we first consider the information
privacy subproblem:

min P(yg(Y) # H), (8a)
YHPY|X
et <PEVI8) e cgyey, @b
py (y)
py|x satisfy (6). (8¢)

From [30, Theorem 2], to meet the constraint (8b), it suffices
to ensure that

min

R ~a) > 0, 9
ot o ¢(Py|x:7G) 9

where
Rg(py|x,7a) = %(P(yg(y) —g
+P(7G(Y):0|G:g))’
and 0 = (1 — CG(l _ 6—51/2))/2 with

|G =0)
(10)

cg = nﬁg {]P’ (Y € argmin/lg(y) | G = 0) ,

g yeys
P (Y cargmax/lg(y) | G = g) },

yeys
pyic(y|g)
pyic(y 10)’

= ZPY\X(Y‘X)pX|G(X|g)

= H Z pt (yelz)px, o (2elg)-

t=1z,eX

ly(y) =

pY\G(Y|g)

By using the constraint (9), we reduce the 2|G| x |V|*® con-

straints in (8b) to a single (but weaker) constraint, which is

easier to optimize in practice. A block nonlinear Gauss-Siedel
method variant of (8) similar to that used for solving (2) can
then be used to find the privacy mapping py|x as follows.

(i) For a fixed privacy mapping py|x, we first find the
optimal fusion center decision rule vg.

(ii) For each sensor ¢ = 1,...,s in sequential order, we
optimize for sensor ¢’s information privacy mapping
pi (y¢|z¢), with vz and the privacy mappings of all other
SEensors p{t = 1, pj fixed. Let the set of sensor t’s
information privacy mapping be ®. The optimization is
done by solving the following linear program:

mln Z 1/¢LH

Ped
s.t. Z Vg InmR e(0- p\t,"}/G) >0, Vg € G\{0},
PP
S vs=1, 1,20, Ve
peD

where Ly (¢) is P (v (Y) # H) when the privacy map-
ping py|x = ¢ - pit. Note that from [51, Section II.B],
the decision rule v = argmin, Rg(¢ - p{ (> 7Y) is given
by

16(y) = {0, otherwise.



The above two steps are iterated until a convergence criterion
(e.g., when the L; norm of the difference in the mapping py|x
between two successive iterations is less than a small constant)
is met.
In the second stage, we consider the local differential
privacy subproblem:
min P (yu(Z) # H),

YHPzZ|Y
A,
AC)
pzy satisfy (6).
If |Z| = 2, the solution follows from Theorem 2. If | Z] > 2,
we can use a standard linear program solver [52] for (11) (see
the discussion leading to (5) on how to formulate this linear
program).
Similarly, for the LIP architecture, we consider the follow-
ing optimization problem:

P(vu(2) # H),

<err2 Ve Z yy ey,t=12,...,s (1D

min
YHPY|XPZ|y
pi (ylz)
pi(yla’)
o€l < pz|c(2lg)

= pz(z)
Dy|x,Pz|y satisty (6).

<erP Vye), x,2' e X,t=1,2,...,s,
(P2)

<e' VgegG,ze Z®,

Solving (P2) can be done in a similar fashion as (P1).

We next show that the concatenation of information privacy
mapping with local differential privacy mapping achieves
joint information and local privacy in both the ILL and LIP
architectures.

Proposition 1. Let e¢;,er.p > 0. Suppose that pg x y satis-
fies er-information privacy and pgy,z satisfies €, p/2-local
differential privacy. Then, the following holds.

(a) For any randomized mapping pz|y, pa,x,z satisfies €;-
information privacy.

(b) For any randomized mapping py|x, PG, x,z Satisfies €1, p-
local differential privacy.
Proof:

(a) For any z € Z° and g € G, we have

pzic(zlg) Xy pzy (2ly)pyic(ylg)
pz(z) X, pzv(ely)py(y)

Since e—¢r < Pxlc(le)
- rv(y)

emer < PZISEE) L e
(b) Consider any sensor t. For any y,y’ € Y and z € Z, we
have e—c2p/2 < % < etp/2, Therefore, for any
t
z,x’ € X, we then have

< e for all y € Y?*, we obtain

pe(zle) 2, Pi(zly)pi(y]2)
pe(zla) 2, pE(zly)pt (yla’)
-2y v /2p2 (z]y )pt (y|z)
=, e 2pR(2ly )pt (yla)

€
= LD,

for a fixed y' € ).

The proposition is now proved. [ ]

Proposition 1 shows that joint information privacy for G
and local differential privacy for X are preserved in the ILL
architecture. In the LIP architecture, it is clear that information
privacy for G is preserved since this is an explicit constraint in
(P2). Local differential privacy preservation follows from [53,
Proposition 2.1], which is reproduced below for completeness.

Proposition 2. Let €;,p > 0. Suppose that pg xy satisfies
erp-local differential privacy. Then for any randomized map-
ping pz|y, Pa,x,z satisfies € p-local differential privacy.

Proof: For any sensor t, z € Z, x,2’ € X, we have
pe(zlz) 2, pi(zly)pt (ylo)
pe(la’) 32, pE(zly)py (y]a)

pli(y\z)
t

€
_eLD7

since

ol lyle) < efLP . The proposition is now proved. [ ]
V. NONPARAMETRIC CASE: EMPIRICAL RISK
OPTIMIZATION

In many IoT applications, knowing the joint distribution of
(H,G) and the sensor observations is impractical due to dif-
ficulties in accurately modeling this distribution. To overcome
this, we can adopt a nonparametric approach similar to the
NPO framework in [30] to convert (PO) into an empirical risk
optimization approach. NPO in [30] finds a privacy mapping
that satisfies an information privacy constraint. To adapt to
(PO), we can simply add the additional linear constraints
corresponding to local differential privacy to that framework.
For the full details, we refer the reader to [30] and the
supplementary material in the final part of this paper. For
convenience, we call this approach the Empirical information
and local differential PrIvaCy (EPIC) optimization.

VI. NUMERICAL RESULTS

In this section, we carry out simulations and experiments
on real datasets to verify the performance of the proposed
optimization framework using joint information privacy and
local differential privacy constraints.

A. Parametric Case Study

We first consider the performance of ILL and LIP in
Section IV. In our simulations, we consider binary public
hypothesis H and private hypothesis G. To evaluate the
performance, we compute the Bayes probability errors for
detecting H and G since these are the minimum detection
errors any detector can achieve so that our results are oblivious
to the choice of learning method adopted by the fusion center.
The Bayes error of detecting H reflects the utility of our
method, while the Bayes error of detecting G reflects the
inference privacy of the private hypothesis GG. Data privacy
of the sensor t’s observation X, is quantified by the mutual
information I(Xy; 7).

Consider a network of 6 sensors and a fusion center.
Suppose that X = {1,2,...,16} and Z = {1,2}. We set the
correlation coefficient between the public hypothesis H and
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Fig. 4: Joint distribution px, g ¢ of sensor observation, pub-
lic hypothesis H and private hypothesis G. The correlation
coefficient between H and G is 0.2.
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Fig. 5: Bayes error for detecting H and G under LIP and ILL
for fixed privacy threshold ratio  and varying local differential
privacy budget ez, p.

private hypothesis G to be 0.2. We assume that each sensor
has identical joint distribution as shown in Fig. 4.

In Fig. 5, we let the information privacy budget be fixed
at e;7 = 0.01 and 0.18, and vary the local differential privacy
budget e, p. We see that if € is small, ILL is better at inferring
the public hypothesis [ while achieving a similar detection
error for the private hypothesis G when compared to LIP.
This is because ILL first sanitizes the sensor observations X
for information privacy before applying a local differential
privacy mapping, which allows it better control over saniti-
zation of statistical information needed to infer G but keeping
information for inferring H. On the other hand, if €; is large,
LIP infers H with better accuracy. We also compare with the

approach that uses only a local differential privacy constraint
(i.e., the information privacy constraint in (P0O) is removed),
which we call LDP in the left drawing in Fig. 5. Without
any constraint on €7, we see that LDP gives poor information
privacy protection for G.

0.5%
0.495
.. 0.49f
2
5]
% 0.4851
L N
U T TP %
—G LIP A,
0.4757|_a. [ ILL s
—-— G ILL
0.47 :

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

€1
Fig. 6: Bayes error for detecting H and G under LIP and ILL
for fixed local differential privacy budget e;,p and varying €;.

In Fig. 6, we fix e, p = 0.07, while varying e;. We see that
when €7 p is small, the Bayes error of detecting H is large
regardless of the value of e;. This aligns with our discussion
after Theorem 1 that we should not use local differential
privacy to achieve inference privacy for the private hypothesis
G as this approach also leads to a poor inference performance
for the public hypothesis H.

We next consider the case where sensor 1’s observations
are independent of GG with marginal conditional distribution
under H same as the joint distribution shown in Fig. 4. All
other sensors follow the distribution in Fig. 4. In Fig. 7, we fix
€7 = 0.15 and vary €;p to illustrate the mutual information
between different quantities. We also compare with the ap-
proach that uses only an information privacy constraint (i.e.,
the local differential privacy constraint in (P0O) is removed),
which we call InP. From Fig. 7(a), we observe that both ILL
and LIP yield sanitized information Z that have a high mutual
information with the public hypothesis H, and low mutual
information with the private hypothesis G. However, with LDP
the mutual information I(H;Z) and I(G; Z) are both much
higher compared to other methods, since it does not protect
the information privacy of G.

In Fig. 7(b), we compare the mutual informations [ (X1; Z7)
and I(X5, Z5) under different privacy architectures. We see
that 7(X7; Z1) under ILL and LIP are much lower than that
under InP. In particular, InP does not achieve good data privacy
for X since the information privacy constraint only removes
statistical information in X related to G, which in this case is
none as X is independent of G. This example illustrates the
need to include both inference and data privacy constraints in
our privacy mapping design. We also see that 1(X5; Z5) under
both ILL and LIP is lower than that under InP, but converges
to that of InP as e, p becomes bigger.
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Fig. 7: Mutual information with ¢; = 0.15 and varying erp
for ILL, LIP, InP and LDP.

B. Nonparametric Case Study: OPPORTUNITY Data Set and
Adult Data Set

We test the nonparametric EPIC framework in Section V
on the OPPORTUNITY Activity Recognition Data Set [54]
and the Adult Data Set [55] available at UCI Repository [56],
and compare its performance with RUCA [31], DCA [57] and
MDR [58]. In EPIC, we set the local decision space of each
sensor to be Z = {1,2}.

1) Data Preprocessing: In the OPPORTUNITY Activity
Recognition Data Set, measurements from motion sensors
including on-body sensors, sensors attached to objects, and
ambient sensors like switches, are recorded while a person
performs a series of typical daily activities. In this experiment,
our public hypothesis H is whether the person is standing or
walking, while the private hypothesis G is whether the person
is touch a drawer or dishwasher. We used data from the ‘S2-
Drill’ dataset, and sklearn [59] to select s = 15 sensors that are

the most correlated with our chosen labels. Since the sensor
reading is continuous, unsupervised discretization was applied
to quantize each continuous sensor reading to 10 levels. We
randomly sampled n = 80 instances of training data, and 3427
instances of testing data.

In the Adult Data Set, basic information of a certain popula-
tion such as age, work class, education, income, marriage sta-
tus was collected. In our experiment, we set the public hypoth-
esis to be whether a person’s income is greater than $50, 000 or
not. The private hypothesis is the 3-ary hypothesis that the per-
son is married (denoted as ‘Married-civ-spousedAZ, *Married-
spouse-absentdAZ and ‘Married-AFspousedAZ in the data
set), used to be married (denoted as ‘SeparatedﬁAZ, ‘Divorced’
and ‘WidowedaAZ in the data set) and Never married ('Never-
married’ in the data set). We select age, workclass, education-
num, race, sex as the features, which represents the sensor
observation X in our problem formulation. Although the data
is not collected from a sensor network, we can still apply our
method to this data set. We discretize continuous data to 5 bins
and perform one-hot encoding to categorical data. We select
n = 120 instances of training data where both the public and
private hypotheses are evenly distributed and 15, 050 instances
of testing data.

2) Comparison Benchmarks: As comparison benchmarks,
we compare our method to the following methods:

(i) NPO [30], which is a nonparametric method that consid-
ers only information privacy and no data privacy; and
(ii)) Empirical LDP (E-LDP), which is solving (18a) without
(18b), i.e., only local differential privacy is considered.
(iii) The centralized approaches RUCA [31], DCA [57] and
MDR [58], which require that all sensors send their
observations to a central data curator that then applies
an overall privacy mapping. Note that since the mapping
in RUCA, DCA and MDR are deterministic, they do not
provide any local differential privacy protection.
Sensors do not apply any privacy mapping and send their
raw observations to the fusion center, i.e., Z = X. In this
case, no local differential privacy protection is available,
while some information privacy maybe possible depend-
ing on the underlying distribution px|g. This serves as
a benchmark to show the intrinsic error probabilities
achievable.

(iv)

Similar to [30], to estimate the privacy budgets achieved by
each method, we compute

e = max Pez(9,2) | (12)
geg.z€2° | palg)pz(z)
. pi(z | )
= log ———~ 13
LD zEZ,z,m’glP?‘,}t{E{l,...,s} 08 pt(Z | (L'/) (13)

as estimates for the information privacy and local differential
privacy budgets respectively. Here, pa(a) is the empirical
probability of the event {A = a}. Note that a smaller é
implies stronger information privacy and a smaller €7, p implies
stronger local differential privacy. We see that €;,p = oo for
RUCA, MDR, and the case Z = X.

3) Result and Discussion: From Tables I and II, we observe
that EPIC achieves the lowest information privacy and local



differential privacy budgets compared to all the other bench-
marks while maintaining utility similar to the other methods.
Compared to NPO, it has similar information privacy budget
but significantly lower local differential privacy budget since
NPO does not consider any data privacy constraints. It is
interesting that EPIC allows further sanitization of the sensor
information in order provide data privacy without significantly
deteriorating the detection performance of H. Compared to
E-LDP, it has similar local differential privacy budget, but
a significantly lower information privacy constraint. Due to
having both information privacy and local differential privacy
constraints, we see that EPIC has the highest error rate for
detecting H amongst all the methods, which is the price it
pays for having the least privacy leakage. However, the error
rates for H are still within 0.01 (1%) of the best error rate
amongst the other competing sanitization methods other than
Z=X.

TABLE I: Detection errors using the OPPORTUNITY Activity
Recognition Data Set.

Detection Method H G €r éELD
EPIC (r = 0.99,e,p = 1) | 10.91% | 43.65% | 0.46 | 0.81
NPO (r = 0.99) 10.53% | 43.17% | 0.47 | 2.22
ELDP (e,p = 1) 10.09% | 7.31% | 8.58 | 0.91
MDR 12.56% | 40.16% | 1.02
DCA 10.88% | 42.62% | 0.88
RUCA (p, = 1) 10.23% | 45.73% | 0.67
RUCA (p, = 100) 10.10% | 43.01% | 0.69 | °°
RUCA (p,, = 1000) 10.10% | 43.78% | 0.69
Z=X 10.05% | 557% | 9.14

TABLE II: Detection errors using the Adult Data Set.

Detection Method H G €r ELD
EPIC (r = 0.99,e,p = 1) | 37.69% | 62.25% | 0.79 | 0.93
NPO (r = 0.99) 37.67% | 62.14% | 0.82 | 2.36
ELDP (c,p = 1) 36.11% | 32.91% | 9.48 | 0.97

MDR 37.57% | 64.02% | 1.68

DCA 38.38% | 56.33% | 2.47

RUCA (o, = ) I1.24% | 65.25% | 1.61
RUCA (p, = 100) IT10% | 64.14% | 1.66 |

RUCA (p, = 1000) 70.67% | 65.86% | 1.61

7 =X 34.06% | 30.48% | 15.33

VII. CONCLUSION

We have introduced the concept of privacy implication and
non-guarantee to study the relationships between different in-
ference and data privacy metrics. We showed that information
privacy and local differential privacy are some of the strongest
inference privacy and data privacy metrics, respectively. We
considered the problem of preserving both information privacy
of a private hypothesis and data privacy of the sensor observa-
tions in a decentralized network consisting of multiple sensors
and a fusion center, whose task is to infer a public hypothesis
of interest. In the parametric case, we proposed two different
privacy mapping architectures, and showed that both achieve
information privacy and local differential privacy to within the
predefined budgets. In the nonparametric case, we proposed an
empirical privacy optimization approach to learn the privacy
mappings from a given training set. Simulations and tests on

real data suggest that our proposed approaches achieve a good
utility while protecting both inference and data privacy.

In this paper, we have considered only sensor observations
from a single time instance. An interesting future research
direction is to generalize our approach to sensor observations
over multiple time instances in a dynamic system model.

APPENDIX A
PROOF OF THEOREM 1
To show privacy non-guarantee, it suffices to provide an
example of a sequence of joint distributions not satisfying
Definition 3. We first present such an example that parts of
the proof of Theorem 1 utilize.

Example 1. If the random variables U € U and V' € V satisfy
the joint distribution as shown in Table III, then we have

. . pVU(Ovo)
lim 1(V;U) = 1 log - ooy (14
(x1—>InO (V, U) (x1—>InO {pwU(O’O) ngV(O)pU(O) ( )
o pv,u(i,j)
+ pv,u (i, J)log ————~
%é:o vultd) ng(Z)pU(J)}
— lim {alog + +(1-a)log —— | (15)
= lim aoga aOgl—a
:(]7
and
pVU<07O) : 1
— = |lim — = oo, 16)
a—0 py (O)pU (O) a—0 (
0]0
pviv(vlu) — pyvip(0[0) A7)

v pyio (0l') ~ pyio (O[1)

TABLE III: The joint distribution of V' and U, where « € [0, 1]
is a parameter.

v
pv.u 011 ] ... =1
0 a 0] 0 0
U 1 0 11—«
. U—1)(|V[—
: 0 ((ZIEE ()
=10

We now proceed with the proof of Theorem 1.
(i-ii) These claims follow from [29, Theorem 3].
(iii-iv) For a fixed ¢, since pg x,z satisfies e-inference
differential privacy, for any z € Z°,g € G, we have
pZ\G(Z|g1) < et
pZ\G(Z|g2)
for any g1, g2 € G. Therefore, we have

)

g _ Pc|z(8|2) Pzi6(2|g) ge
e < = <
rc(g) >g Pzic(2l8")pa(8’)
Thus pg x,z satisfies ge-information privacy.

Together with (ii), we obtain that pg x,z satisfies
qe/ log 2-average information leakage.

If ¢g — o0, [29, Theorem 4] gives an example
that shows inference differential privacy does not



)

(vi)

(vii-viii)

(ix)

guarantee average information leakage. Together
with (ii), it implies that inference differential privacy
does not guarantee information privacy.

Substitute G for U and Z for V in Example 1, then
we get from (15) and (16), that average information
leakage does not guarantee information privacy. From
(iii), we also obtain that average information leakage
does not guarantee inference differential privacy.
Since pg, x,7 satisfies e-local differential privacy, for
any Xg,x € A%, and z € Z°, we have

e *pz1x(2x0) < pzx(2]x) < e*pz x(2]x0).
Then for any g1,g2 € G,z € Z°, we have

pz|c(z|g1)

pz|c(z|g2)

Yxex: Pz1x (2X)px|c(x|g1)

> wexs Pzx (2[X)px|c(X]82)

Y xexs €Pz1x (2[%0)px |6 (X|g1)

Y wexs € 5Dz x (2]%0)px e (X|82)
— 6256

IN

b)
from which we obtain

6—286 < pG|Z(g|Z) o pZ\G(z|g)

T pe(g)  Ygrziclzlg)pe(g) T
any g €Gandz € Z.
Suppose for any x € X*, g € G, px|q(x|g) =
Then, px|c(x|g)/px(x) = 1, and

pzic(zlg) > . pzix(2[x)px|c(x[8)
= =1,
pz(2) Zx Pz x (zx)px(x)
for all privacy mappings pz x. Therefore, pg x z
satisfies O-information privacy but does not guaran-
tee local differential privacy and mutual information
privacy as pz|x can be chosen arbitrarily.
Substitute X for U and Z for V in Example 1. From
(15), there is a sequence of distributions (pg x 7)a>0
satisfying e,-mutual information privacy with €, —
0 as a — 0. Choose a gy € G, and let

2se

1
[x]e

« ifx=0

pxic(x/go) = (1—a)/(|X|* = 1), otherwise.

For other g € G, with g # go, we let px|(x|g) =

e for all x € X°. We also let G to be uniformly

distributed. Then, we have

pz|c(0lgo) = ZPZ\X(O|X)pX|G(X|gO)

= pz|x(0]0)px|c(0|go)
= a’

since pz|x(0]0) = 1 from Example 1. For g # go,
we also have

pz|c(0lg) = ZPZ\X(O|X)pX|G(X|g)

= 1/]x%,

(xiii-xiv)

(xii)

and
gl—-1
o+ 'Br
p2(0) =5
Therefore, we have
i pzc(0lgo)  «alg| —0
BT ps(0) g loer
a— bz o+ TXTe

which indicates that e; — 0o as a — 0. This proves
that mutual information privacy does not guarantee
information privacy.

Since I(G;Z|X) = 0, we have 0 < I(Z;G) =
I(X;2) - I(X;Z|G) < I(X;Z), and the claim
follows immediately.

If pc x,7 satisfies e-local differential privacy, then
% < €%, for any x1,x2 € X°. The proof
then proceeds similarly as that for (iv).

Substitute X for U and Z for V in Example 1. From
(15) and (17), we conclude that mutual information
privacy does not guarantee local differential privacy.
These claims follow since for any z € Z%, x ~ x' €
X%, we have

)

(xi)

pZ|X(Z\X)pX(X) _ px\z(x\z)
pzix(2X)px (X)) px|z(x|z)

The proof of the theorem is now complete.
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SUPPLEMENTARY MATERIAL

In this supplementary material, we explain how we modify
the NPO framework in [30] to include both information
privacy and local differential privacy metrics. We call this
approach EPIC in Section V of the main paper. This is a
simple extension of the NPO framework and is presented
here for completeness. We also include a simulation study to
compare the performance of EPIC with empirical optimization
frameworks without either the information privacy or local
differential privacy constraint.

A. Empirical Information Privacy and Local Differential Pri-
vacy Optimization

Following [30], let ¢ be a loss function, % be a reproducing
kernel Hilbert space with kernel k(-,-), kernel inner product
(-,+), and associated norm ||-||. We restrict the rule used by
the fusion center to infer H and G based on Z = z to be of
the form (w, ®(z)), where ®(z) = (-, z) is the feature map.
We seek to minimize the empirical ¢-risk of deciding H while
preserving information privacy.

We consider the following optimization problem:

i F(w, , 18
e o (w,pzx) (18a)
st min Rg(v,pz1x) > 0, Vg € G\{0}, (18b)
pe(2|z) < euo,
pe(2]’)
VzeZ,z,2' € X, t=1,...,s (18¢c)
where
1 — Ao
F(w,pzx) ﬁz (w, ®q(x"))) + §||w|| ;

Rg(v,pz1x) = % > Z <“ (I)Q )>)+3Hw||2,

g’'€{0,g} i€Sy 2

X) = Z Pz x (2|x)®(z),

zZEZS
A >0, 0> 0 is called the information privacy threshold,

g = -1, ifgt=0,
1, otherwise,
and
Sy ={ie{l,....n}:g" =¢g'}.

Note that F(-,-) is the empirical ¢-risk of detecting H while
Rg(-,-) is the empirical (normalized) ¢-risk of distinguishing
between G = 0 and G = g. For convenience, we call (18) the
Empirical information and local differential PrlvaCy (EPIC)
optimization.

For a detailed explanation of how the above optimization
framework is derived, we refer the reader to [30]. Briefly, we
seek to find pzx such that the empirical risk for detecting
G under any decision rule adopted by the fusion center is
above the information privacy threshold 6. The mapping pz| x
is also required to satisfy ey p-local differential privacy in the
constraint (18c).

From [30, Theorem 2], for each €rp, by choosing 6
appropriately, we can achieve er-information privacy for any
€7 > 0 under mild technical assumptions. However, this trades
off the detection error rate for H. Therefore, we adopt the same
two-step procedure in [30]:

(1) Determine the largest information privacy threshold 6*
achievable under additional constraints on pz|x to ensure
that the error rate of inferring H remains reasonable.
This is achieved through an iterative block Gauss-Seidel
method.

(ii) Set a r € (0, 1), which we call the information privacy
threshold ratio, set § = r6* in (18b) and use an iterative
block Gauss-Seidel method to solve (18).

For the details of this two-step procedure, we again refer the
reader to [30]. The only difference with the procedure in [30]
is that now we have the additional linear inequality constraints
(18c), which can be easily handled since each step in the
block Gauss-Seidel method remains as a convex optimization
problem.

B. Simulation Results

In this subsection, we consider the nonparametric case
where the underlying sensor distributions are unknown. We
perform simulations to provide insights into the performance
of our proposed EPIC approach in (18).

For simplicity, we use the count kernel in our simulations,
which can be computed with a time complexity of O(s|)|).
We choose the logistic loss function as the loss function ¢ in
our simulations.

Consider a network of 4 sensors and a fusion center. Each
sensor observation z! is generated according to Table IV,
where n! is uniformly distributed over {—2,—1,0,+1,+2}.
The sensor observation space is X = {—5,—4,...,5}, and the
local decision space is chosen to be Z = {1,2}. Conditioned

n (H,G), sensor observations are independent of each other.
We generate 40 i.i.d. training samples, and apply our proposed
approach on the training data to learn the privacy mapping

Pz\x-

TABLE 1V: Sensor observation for different realizations of
(H,G).

(h', g%) (0,0
Ty —3+n;

((UR))
—1+nj

(1,0)
1+ n;

(1,1)
3+ n;

Fig. 8 demonstrates how ey, p, the local differential privacy
budget, affects the inference privacy, data privacy and utility
of these methods. In the simulation, we fix the information
privacy threshold ratio » = 0.999 when setting § = r6* in
(18b), and the correlation coefficient between H and G is
0.2. We observe that when erp is small, the performance
of EPIC is close to the performance of E-LDP, where the
Bayes error rates of both hypotheses are close to 0.5. This is
in line with Theorem 1(vi): a small local differential privacy
budget implies information privacy for both hypotheses. With
the increase of €y, p, the performance of EPIC approaches the
performance of NPO, where the error rate of H is low, while
that for GG is high. However, with E-LDP, the error rate of G
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Fig. 8: Bayes error for detecting H and G, and mutual in-
formation between X; and Z; with different local differential
privacy budget er,p.

also decreases with increasing e¢rp, which leads to inference
privacy leakage. When analyzing the data privacy leakage,
we find that I(X;;Z;) stays high with NPO, whereas EPIC
achieves a reasonable I(X1; Z;) by choosing €1, p to be around

S.

0.51 [+« G with EPIC and E-LDP

—— H with E-LDP
-o- H with EPIC

Bayes error

0.1

0 0.2 0.4 0.6 0.8 1
Correlation coefficient between H, G

Fig. 9: Bayes error probability of detecting H and G with
varying correlation coefficient between H and G.

Fig. 9 shows how the correlation between H and G affects
their Bayes error detection rate. For EPIC, we set ezp = 5,
and for E-LDP, we find a local differential privacy budget
for each correlation coefficient tested that achieves the same
error rate for G as in EPIC. We observe that for the same
correlation coefficient, the error rate for H is higher in E-
LDP compared to that in EPIC. This demonstrates our claim
that local differential privacy should not be used to imply
information privacy, as it can severely impact the detection
error rate for H as well.
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