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Evaluating Adversarial Evasion Attacks in the
Context of Wireless Communications

Bryse Flowers, R. Michael Buehrer, and William C. Headley

Abstract—Recent advancements in radio frequency machine
learning (RFML) have demonstrated the use of raw in-phase
and quadrature (IQ) samples for multiple spectrum sensing
tasks. Yet, deep learning techniques have been shown, in other
applications, to be vulnerable to adversarial machine learning
(ML) techniques, which seek to craft small perturbations that
are added to the input to cause a misclassification. The current
work differentiates the threats that adversarial ML poses to
RFML systems based on where the attack is executed from:
direct access to classifier input, synchronously transmitted over
the air (OTA), or asynchronously transmitted from a separate
device. Additionally, the current work develops a methodology
for evaluating adversarial success in the context of wireless
communications, where the primary metric of interest is bit
error rate and not human perception, as is the case in image
recognition. The methodology is demonstrated using the well
known Fast Gradient Sign Method to evaluate the vulnerabilities
of raw IQ based Automatic Modulation Classification and con-
cludes RFML is vulnerable to adversarial examples, even in OTA
attacks. However, RFML domain specific receiver effects, which
would be encountered in an OTA attack, can present significant
impairments to adversarial evasion.

Index Terms—cognitive radio security, machine learning, mod-
ulation classification

I. INTRODUCTION

The advent of deep learning has changed the face of
many fields of research in recent years, including the wire-
less communications domain. In particular, Radio Frequency
Machine Learning (RFML), a research thrust championed by
DARPA that seeks to develop RF systems that learn from
raw data rather than hand-engineered features, has garnered
the interest of many researchers. One subset of RFML deals
with utilizing raw in-phase and quadrature (IQ) samples for
spectrum sensing. Spectrum sensing can be used in Dynamic
Spectrum Access (DSA) systems to determine the presence
of primary and secondary users in order to adapt transmission
parameters to the environment [1] and has obvious applications
to signals intelligence. Prior approaches to spectrum sensing
were likelihood or feature based [2]–[7] while more recent
approaches leverage the advances in deep neural networks
(DNN) to operate directly on raw IQ samples [8]–[13].

While the popularity of RFML has increased, the study
of the vulnerabilities of these systems to adversarial machine
learning [14] has lagged behind. Adversarial machine learning
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consists of learning to apply small perturbations to input
examples that cause a misclassification. The increased activity
in deep learning research in wireless is sure to draw the
attention of attackers in this domain but is just beginning
to be researched [15], [16]. Adversarial machine learning
could be used, in the context of RFML, to disrupt DSA
systems through primary user emulation [17], evade mobile
transmitter tracking [18], or avoid demodulation by confusing
an Automatic Modulation Classification (AMC) system [2].

While research thrusts towards adversarial machine learning
evasion attacks and defenses can build off of the large body
of literature present in the Computer Vision (CV) domain,
RFML has additional adversarial goals and capabilities beyond
those typically considered in CV. Adversarial goals must be
split between attacks that have direct access to the classifier
input, those that originate from the transmitter and therefore
propagate synchronously with the underlying transmission
through a stochastic channel, and those that originate asyn-
chronously from a separate transmitter and are only combined
at the receiver or eavesdropper. Additionally, in the context
of wireless communications, attacks must be characterized
against the primary metric of interest, bit error rate (BER).
An adversary may seek to evade an eavesdropping classifier
but that is of limited benefit if it also corrupts the transmission
to a cooperative receiver.

The current work consolidates the additional adversarial
goals and capabilities present in RFML and proposes a new
threat model. Using the well known Fast Gradient Sign
Method (FGSM) [19], results are presented from multiple
example attacks against raw-IQ based AMC in order to
draw general conclusions about the current vulnerabilities of
RFML systems to adversarial machine learning attacks that
have direct access to the AMC input as well as attacks that
occur over the air (OTA). The current work is organized as
follows: Section II surveys the related work in this area,
Section III presents a consolidated threat model for RFML
systems, Section IV describes the methodology for executing
and evaluating the adversarial evasion attacks in the context
of wireless communications, Section V and VI analyze the
attack’s effectiveness with direct access to the classifier input
and in an OTA environment respectively, and conclusions are
presented in Section VII.

II. RELATED WORK

Threats to machine learning have a wide span in the litera-
ture. Causative attacks exert influence over the training process
to inject vulnerabilities into the trained classifier [21], [22].
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Fig. 1. Threat Model for RFML signal classification systems presented in the style of [20]. The current work presents results for untargeted misclassification
in both a direct access and self protect scenario with full knowledge of the target network architecture and learned parameters. The related work by Sadeghi
and Larsson [15] presented an analysis of two untargeted misclassification attacks against AMC without a channel model applied to the perturbations. One
attack assumed perfect knowledge of the target network and the other only assumed knowledge of the entire training dataset.

Exploratory attacks [14] seek to learn information about the
classifier. The current work is primarily concerned with eva-
sion attacks [23]–[25] which seek to cause a misclassification
at inference time. Specifically, this work uses the well known
FGSM attack, first proposed in [19] for a CV application,
as the algorithm for crafting adversarial perturbations due to
its low computational complexity; however, the methodology
for evaluating the attack effectiveness will hold for all current
evasion attacks.

Prior security threats to cognitive signal classifiers have
been researched [26], [27], yet, the state of the art signal
classification systems use deep learning techniques [8]–[13]
whose vulnerabilities have not been studied extensively in
the context of RF. In [16] and [28], the authors consider
adversarial machine learning for intelligently jamming a deep
learning enabled transmitter, at transmission time and sensing
time, to prevent a transmission. Their work considers learning
OTA by observing an acknowledgement from a receiver as
a binary feedback. While their work is primarily concerned
with preventing transmission, the current work is primarily
concerned with enabling transmission while avoiding eaves-
droppers and is thus fundamentally different.

The work presented in [15] is the closest analogy to the
current work. The authors present a study of a similar neural
network architecture [8] using the RML2016.10A dataset [29].
The authors present results from attacks on this DNN using
modifications of FGSM [19] and Universal Adversarial Per-
turbations (UAP) [23]. Using their adaptation of UAP, they are
able to show black-box1 results which are time shift invariant,
which is a limitation of FGSM. Additionally, the authors use
the energy ratios of the perturbation and modulated signal as
an attack constraint, a metric that the current work uses as
well. However, the authors consider perturbations which are
below the noise floor but implicitly assume they are able to

1Black-box refers to attacks with full access to the training dataset but no
knowledge of the DNN architecture of learned parameter matrices.

compromise the eavesdropper’s signal processing chain by not
considering the effect of the channel on the perturbation signal.
Therefore, [15] only considers attacks that have direct-access
to the classifier and aren’t transmitted OTA. The current work
expands upon the study of white-box2 direct-access attacks
against RFML systems by exploring the vulnerabilities versus
neural network input size. Additionally, the current work
considers white-box self-protect attacks, which are launched
OTA, where receiver effects can negatively impact adversarial
success and must also be evaluated against the effect the
perturbation has on the underlying signal transmission by
characterizing the BER.

III. THREAT MODEL FOR RFML

A rich taxonomy already exists for describing threat mod-
els for adversarial machine learning in the context of CV;
however, threat models which only consider CV applications
lack adversarial goals and capabilities that are unique to
RFML. Therefore, the current work extends the threat model
initially proposed in [20] for RFML in Figure 1. This section
first describes the system model considered for AMC and
then expands on the unique categories of adversarial goals
and capabilities that must be considered when discussing
adversarial threats to RFML systems.

A. Automatic Modulation Classification System Model

The current work considers the task of blind signal clas-
sification where an eavesdropper attempts to detect a signal
in the spectrum, isolate it in time and frequency, and per-
form modulation classification. This task assumes that the
signal is a wireless communication between a transmitter
and a cooperative receiver where the eavesdropper is not
synchronized and has very limited a priori information about

2White-box refers to attacks with perfect knowledge of the learned param-
eter matrices of the DNN.
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the communication. Ultimately, the eavesdropper could then
use the output for DSA, signals intelligence, and/or as a
preliminary step to demodulating the signal and extracting the
actual information transmitted.

The study of adversarial examples in this model could be
framed from the perspective of either the eavesdropper or the
transmitter. First, this study can be considered a vulnerability
analysis of RFML systems and the information gained can then
be used to produce a more robust eavesdropper that is hardened
against deception by adversarial machine learning. Addition-
ally, this study could be considered a feasibility analysis
for methodology to protect transmissions from eavesdroppers.
Evading an eavesdropper can limit tracking of the transmitter
or automatic demodulation of its transmission. The current
work does not take a side in the application of this technology
and presents a case for both sides; however, the term adversary
is used to describe the transmitter that seeks to evade an
eavesdropper for the remainder of the current work.

B. Adversarial Goals

Three main goals are traditionally considered for adversar-
ial machine learning [20]: confidence reduction, untargeted
misclassification, and targeted misclassification. Confidence
reduction is the easiest goal an adversary can have. It simply
refers to introducing uncertainty into the classifier’s decision
even if it ultimately determines the class of signal correctly.
An adversary whose goal is simply to be classified as any other
signal type than its true class, can be described as untargeted
misclassification. Targeted misclassification is typically the
most difficult goal of adversarial machine learning. It occurs
when an adversary desires a classifier to output a specific target
class instead of simply any class that is not the true class. Due
to the hierarchical nature of human engineered modulations,
the difficulty of targeted misclassification for AMC depends
heavily on the signal formats of the true and target class.
Targeted misclassification are sometimes split between attacks
that start with a real input [19], [25] versus those that start
with noise [30]. The threat model presented in Figure 1 only
considers the former because the current work assumes that
an adversary’s primary goal is to transmit information and not
simply degrade classifier performance.

Further, the current work categorizes adversarial goals based
on where the attack is launched from.

1) Direct Access: Traditional adversarial machine learning,
such as those generally considered in CV or the attack consid-
ered in [15], fall into the direct access category. This category
of attack is performed “at the eavesdropper” as part of their
signal processing chain. Therefore, the propagation channel
and receiver effects for the example is known at the time of
crafting the perturbation, the perturbation is not subjected to
any receiver effects, and the perturbation will have no effect
on the intended receiver because it is not sent OTA. Attacks
at this level are very useful for characterizing the worst case
vulnerabilities of a classifier but they are less realistic in the
context of RFML because it assumes that the signal processing
chain has been compromised.

2) Self Protect: When the adversarial perturbation is added
at the transmitter and propagates along with the transmitted
signal to the eavesdropper, this can be categorized as self
protect. By adding the perturbation at the transmitter, the
perturbation can still be completely synchronous with the
signal transmission; however, the perturbation will now be
subjected to all of the receiver effects traditionally considered
in RFML and will also impact the intended receiver. While
many of the algorithms that are successful for the direct
access category of attacks will be applicable to self protect,
the evaluation of adversarial success must take into account
receiver effects. Therefore, attacks that seek to create minimal
perturbations, such as the modified FGSM method presented in
[15], will no longer work because adversarial success can not
be guaranteed due to the signal being subjected to a stochastic
process.

3) Cover: RFML allows for a third category of adversarial
goals, in which the adversarial perturbation originates from a
separate emitter from the transmitter and is only combined at
the eavesdropping device. Low cost transmitters can be size,
weight, and power (SWaP) constrained. Therefore, it may be
beneficial to have a single unit provide cover for multiple
SWaP constrained nodes. However, because these attacks
cannot rely on synchronization between the transmission and
perturbation, the perturbations must be time shift invariant [15]
making this category of attack more difficult. The current work
does not present a study of this category of adversarial goal
and leaves that to future work.

C. Adversarial Capabilities
Traditional adversarial machine learning capabilities, such

as those described in [20], generally help with determining
“what you want a classifier to see” by providing informa-
tion about the target DNN that can subsequently be used
to optimize the input. In the most extreme case, attacks
may have perfect knowledge of the learned parameters of
the model. These attacks are referred to as white-box. In
a slightly more realistic case, the attacker may have access
to the network architecture and training dataset, but not the
learned parameters. The attacker must then create adversarial
examples that generalize over all possible models created from
the dataset and architecture. In a very limited case, the attacker
may only have access to what is deemed an oracle, an entity
that will label a limited number of X,Y pairs for the attacker
through an API [31] or an observable wireless transmission
[16], [28]. This allows the attacker to perform limited probes
against the target network in order to build up an attack.

Adversarial machine learning applied to RFML has a dif-
ferent class of capabilities an attacker can possess that can
be thought of as “the ability to make a classifier see a
specific example”. RF propagation can be directed through
the use of smart antennas. Therefore, if a transmitter knew
the location of the receiver, it could direct its energy only at
the receiver, thus minimizing the signal-to-noise ratio (SNR) at
the eavesdropper. Similarly, a jammer could direct energy only
at the eavesdropper, maximizing the impact of perturbations
on classification accuracy while minimizing the impact to the
receiver.
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Fig. 2. BPSK adversarial example with a 10 dB (Es/Ej ) perturbation, created
with the FGSM [19] algorithm, applied.

Signal processing chains can present an impediment to
adversarial success. Traditionally, RF front ends are built
to reject out of band interference and therefore adversarial
perturbations consisting of high frequencies could be filtered
out. Power amplifiers can exhibit non-linear characteristics
which would distort the perturbation. Further, the precision
of the analog to digital converter could limit the attack to stair
stepped ranges.

D. Threat Model Assumed in the Current Work

In the current work we assume direct access to the learned
parameters of the target DNN and set the goal as untargeted
misclassification. The current work considers perturbations
that are specific to the underlying transmitted signal and
characterizes their effectiveness in the presence of receiver
effects such as noise, sample time offsets, and frequency
offsets. Therefore, both direct access attacks as well as self
protect are considered. The current work does not assume
knowledge of either the eavesdropper or receiver locations and
therefore does not consider directional antennas and instead
shows results across varying SNR ranges. Further, the current
work assumes that the receiver is fixed and thus does not
introduce any modifications to the receive chain.

IV. METHODOLOGY

Most raw-IQ based signal classifiers seek to take in a
signal snapshot, x, and output the most probable class
y. Traditionally, x would represent a single channel of
complex samples, with little pre-processing performed, and
could therefore be represented as a two-dimensional matrix
[IQ, number of samples]. Specifically, RFML systems, which
generally use DNNs, learn a mapping from the data by solving

argmin
θ
L(f(θ,x),y)), (1)

where x and y represent the training inputs and target labels
respectively and f represents the chosen network architecture.
A loss function (L), such as categorical cross entropy, is
generally used in conjunction with an optimizer, such as
stochastic gradient descent or Adam [32], to train the DNN
and thus learn the network parameters θ. While training the

model, the dataset is fixed (assuming no data augmentation)
and is assumed to be sampled from the same distribution that
will be seen during operation of the RFML system.

Untargeted adversarial machine learning is simply the in-
verse of this process. By seeking to maximize the same loss
function, an adversary can decrease the accuracy of a system.
Therefore, the adversary is also solving an optimization prob-
lem that can be defined by the following.

argmax
x∗

L(f(θ,x∗),y)) (2)

In this case, the parameters, θ, of the classifier are fixed
but the input, x∗, can be manipulated. Many approaches
exist to solve this problem. In particular, FGSM [19] creates
untargeted adversarial examples using

x∗ = x+ ε× sign(∇xL(f(θ,x),y)), (3)

where y represents the true input label and ∇x represents
the gradient of the loss function with respect to the original
input, x. This methodology creates adversarial examples con-
strained by a distance, ε, in the feature space in a single step.
x∗ is referred to as an adversarial example. One adversarial
example used in the current work is presented in Figure 2,
where the source modulation is BPSK and a perturbation has
been applied to achieve untargeted evasion for a direct access
attack.

In the context of wireless communications, the absolute
value of the signal is generally less important than the relative
power of the signal with respect to some other signal such as
noise. Therefore, similar to [15], the current work reformulates
the perturbation constraint, ε, from a distance bounding in
the feature space to a bounding of power ratios. Additionally,
the signal can be directly evaluated on the primary metric of
interest, BER, as opposed to the use of human perception, or
a proxy for it such as ε, in CV. Further,

A. Adapting FGSM

The average energy per symbol (Es) of a transmission can
be computed using

E[Es] =
sps
N

N∑
i=0

|si|2, (4)

where sps represents samples per symbol, N is the total
number of samples, and si represents a particular sample in
time. Without loss of generality, the current work assumes the
average energy per symbol of the modulated signal, Es, is 1.
Therefore, the power ratio of the underlying transmission to
the jamming/perturbation signal3 (Ej) can be derived as

Es
Ej

=
1

Ej

= 10−Ej (dB)/10
(5)

3Because the perturbation is an electronic signal deliberately crafted to
impair the successful operation of the eavesdropper, the current work uses
jamming signal and perturbation signal interchangeably.
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Since the input of sign(∇x) in (3) is complex, the output
is also complex, and is therefore a vector whose values are
(±1,±1j). Therefore, the magnitude of each sample of the
jamming signal can be computed as

| sign(∇x)| = | sign(z)|
=

√
(±1)2 + (±1)2

=
√

2

(6)

Thus the energy per symbol of sign(∇x) can be computed
by plugging (6) into (4) resulting in

Esign(∇x) =
sps
N

N∑
i=0

| sign(∇x)|2

= 2× sps

(7)

Because sps is fixed throughout transmission, a closed form
scaling factor, ε, can be derived to achieve the desired energy
ratio (Es/Ej) by using

ε =

√√√√ Es

Ej

Esign(∇x)

=

√
10

−Ej
10

2× sps

(8)

Plugging ε into (3) allows the creation of adversarial ex-
amples constrained by Es/Ej and can be succinctly defined
as

x∗ = x+

√
10

−Ej
10

2× sps
× sign(∇xL(f(θ,x),y)) (9)

Constraining the power ratio in this way can be useful
for evaluating system design trade-offs. Any given transmitter
has a fixed power budget and the current work considers an
adversarial machine learning technique which is not aware
of the underlying signal; therefore, power which is used
for the jamming signal subsequently cannot be used for the
underlying transmission. Future adversarial machine learning
techniques could take into account the bit error rate in their
methodology which would allow for this energy to accomplish
both purposes, but, this exploration is left to future work.

B. Simulation Environment

The high level overview of the simulation environment used
in the current work is shown in Figure 3 and each major
block is described below. Full evaluation in the context of
wireless communications requires the interfacing of both a
DSP and ML framework. The current work uses GNU Radio
and PyTorch respectively; however, the methodology is not
dependent upon use of those frameworks in any way.

1) Modulation: The initial modulated signal is generated by
a simple flow graph in GNU Radio. Unless otherwise stated,
the parameters for transmission can be summarized as follows.
The symbol constellations used are BPSK, QPSK, 8PSK, and
QAM16. The root raised cosine filter interpolates to 8 samples
per symbol using a filter span of 8 symbols and a roll-off factor
of 0.35. 1000 examples per modulation scheme are created
using a random bit stream.

2) Adversarial ML: In order to craft the jamming signal
using adversarial machine learning techniques it is necessary
to first slice the signal into discrete examples matching the
DNN input size. Before feeding these examples into the DNN,
dithering is employed to add small amounts of noise to the
examples. The FGSM algorithm is then used to create the
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perturbations which are concatenated back together to form
the jamming signal. For each Es/Ej studied, the jamming
signal is scaled linearly using (8) and added to the modulated
signal. Unless otherwise stated, Es/Ej is swept from 0 to 20
dB with a step size of 4 dB.

3) Channel Model: The current work considers a simple
channel model with Additive White Gaussian Noise (AWGN)
and center frequency offsets. The received signal can be
characterized as follows:

Srx(t) = e−j2πfotStx(t) +N (0, σ2) (10)

Where fo is the normalized frequency offset and σ2 is
given by the desired Es/N0. The channel model is again
implemented using a GNU Radio flow graph.

4) Demodulation: Demodulating the received signal con-
sists of match filtering, down-sampling to one sample per
symbol, and decoding the symbols back into a bit stream
to verify the data received matches the data transmitted. The
demodulation is also implemented as a GNU Radio flow graph
and assumes both symbol and frame synchronization.

5) Automatic Modulation Classification Evaluation: Top-1
accuracy is the metric used for classifier evaluation in [8], [9],
and [33] and is the metric we use for evaluation in the current
work. For untargeted adversarial machine learning, adversarial
success is defined as a lower Top-1 accuracy as opposed to a
higher accuracy.

C. Automatic Modulation Classification Target Network

1) Network Architecture: The current work uses the DNN
architecture first introduced in [8] for raw-IQ modulation
classification. This architecture consists of two convolutional
layers followed by two fully connected layers. This network
takes the IQ samples as a [1, 2, N ] tensor which corresponds
to 1 channel, IQ, and N input samples. The current work
uses extended filter sizes as done in [9] and [33], using filters
with 7 taps and padded with 3 zeros on either side. The first
convolutional layer has 256 channels, or kernels, and filters I
and Q separately. The first layer does not use a bias term as
this led to vanishing gradients during our training. The second
layer consists of 80 channels and filters the I and Q samples
together using a two-dimensional real convolution. This layer
includes a bias term. The feature maps are then flattened and
fed into two fully connected layers, the first consisting of 256
neurons and the second consisting of the number of output
classes. All layers use ReLU as the activation function (except
for the output layer). As a pre-processing step, the average
power of each input is normalized to 1.

2) Dataset A: The majority of this work uses the open
source RML2016.10A dataset introduced in [29]. This syn-
thetic dataset consists of 11 modulation types: BPSK, QPSK,
8PSK, CPFSK, GFSK, PAM4, QAM16, QAM64, AM-SSB,
AM-DSB, and WBFM. These signals are created inside of
GNU Radio and passed through a dynamic channel model to
create sample signals at SNRs ranging from -20dB to 18dB.

Using an open source dataset allows for quick comparison
of results to those seen in literature; however, this dataset only
provides one input size, 128 complex samples. Furthermore,

Fig. 4. Dataset B test accuracy vs SNR for three different neural network
input sizes. As expected, increasing the input size results in increasing test
accuracy over the entire SNR range studied.

this dataset contains limited center frequency offsets. There-
fore, it was necessary to create an additional dataset to perform
all of the evaluations contained in the current work.

3) Dataset B: This additional dataset was also created
using synthetic data from GNU Radio. Three datasets were
created with varying input size (128, 256, and 512). These
synthetic datasets consists of 5 modulation schemes: BPSK,
QPSK, 8PSK, QAM16, and QAM64. Keeping with the
RML2016.10A Dataset, the samples per symbol of the root
raised cosine filter were fixed at 8. The one sided filter span
in symbols is varied uniformly from 7 to 10 with a step size
of 1. The roll-off factor of the root raised cosine was varied
uniformly from 0.34 to 0.36 with a step size of 0.01. For the
channel model, the modulated signal was subjected to AWGN
and given a center frequency offset as described by (10) to
simulate errors in the receiver’s signal detection stage [33] .
The power of the AWGN is calculated using Es/No and varied
uniformly from 0 dB to 20 dB with a step size of 2. The center
frequency offset, which was normalized to the sample rate, is
swept uniformly from −1% to 1% with a step size of 0.2%.

4) Training Results: The network is implemented in Py-
Torch and trained using an NVIDIA 1080 GPU with the
Adam [32] optimizer. The batch size used is 1024 when the
network is trained with Dataset A and 512 when trained with
Dataset B due to the increased example sizes. Models trained
on Dataset A use dropout for regularization, as was initially
proposed in [8]; however, models trained on Dataset B use
Batch Normalization as this increased training stability for the
larger example sizes. For all models, the learning rate is set
to 0.001 and early stopping is employed with a patience of 5.

During training, 30% of the dataset was withheld as a test
set. The remaining 70% of the data is used in the training
sequence with 5% of the training set used as a validation set.
All data is split randomly with the exception that modulation
classes and SNR are kept balanced for all sets. Each of the
models is then evaluated at each SNR in the test set for overall
accuracy and the results are shown in Figure 4. As expected,
increasing the input size lead to increasing accuracy.
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Fig. 5. Overall classification accuracy of a model trained on Dataset A for
a direct access attack. This plot compares the classification accuracy when
FGSM in used to apply a specific adversarial perturbation to the accuracy
when “jammed” with a Gaussian noise signal at the same power ratio.

V. ANALYSIS OF DIRECT ACCESS ATTACKS

In order to first characterize the effectiveness of adversarial
machine learning on raw-IQ based AMC, a baseline study of
average classification accuracy against Es/Ej was performed
using the model trained on Dataset A. This attack was per-
formed with no noise added to the adversarial examples and
thus assumes direct access to the classifier input.

As can be seen in Figure 5, even at 30 dB, the FGSM
attack is more effective than simply adding Gaussian noise
(AWGN). At 10 dB, the FGSM attack is effective enough
to degrade the classifier below the performance of random
guessing. This represents an 8 dB improvement over the same
degradation using Gaussian noise.

For comparison to other results in CV literature, we can plug
Es/Ej = 10 dB into (8) which yields that an ε of ≈ 0.079 is
sufficient for accomplishing the goal of untargeted adversarial
machine learning for direct access attacks on this model. While
this clearly shows an improvement over Gaussian jamming,
this perturbation is larger than the original example shown
in [19] of 0.007 for performing an untargeted attack using a
source image of a panda. However, that result used ImageNet
as a source class and GoogLeNet [34] as the model where the
input dimensions of the image were at least 3 × 256 × 256
(� R196,608) while the input size considered here is 1× 2×
128 (R256). Therefore, while we know that the underlying
classification task is vastly different and exact perturbation
constraints cannot be directly compared, we next investigate
whether increased input dimensionality makes the model more
susceptible to adversarial examples.

A. Attack Effectiveness versus NN Input Size

Increasing the DNN input size has been empirically shown
to improve the performance of raw-IQ AMC in [33] as well
as the current work’s reproduction of similar results in Figure
4. While it is intuitive that viewing longer time windows of
a signal will allow for higher classification accuracy, it is
also intuitive that allowing more adversarial jamming energy
to enter the algorithm will have adverse effects. Therefore,
the current work presents an experiment used to verify this
intuition. Three copies of the same network, that differ only

Fig. 6. Overall classification accuracy (top) of models trained on Dataset B
in the presence of a direct access FGSM attack. The relative classification
accuracy ranking of the three different models for each Es/Ej (bottom).

in input size, are trained on Dataset B. The analysis from the
previous section is then repeated and shown in Figure 6.

As expected, at very high Es/Ej , where the adversarial
energy is low, the network with the largest input size is
the most accurate. However, it is quickly supplanted by the
second largest input size when Es/Ej drops below 55 dB
(ε ≈ 0.00044). Once Es/Ej drops below 15 dB, the classifi-
cation accuracy ranking inverts from the initial rankings, with
the smallest input size being the most accurate and the largest
input size being the least accurate. Therefore, when developing
a RFML system for use in adversarial environments, the
benefits of increasing input size must be balanced against the
cost of increasing the attack surface.

B. Analyzing Individual Adversarial Examples

While the earlier subsections presented macro-level results,
this subsection presents results at a micro-level by analyzing
the fine grained effect of the adversarial machine learning
method on individual examples rather than the average effect
across multiple examples. The current work considers a single
machine learning example from each of the source modula-
tions4. For each example, Es/Ej is swept from 40 to 0 dB
with a step size of a 1 dB. At each Es/Ej , the outputs of the
DNN before the softmax function (as was shown in [19]) are
captured.

One adversarial example for BPSK is shown in Figure 2. It
can be seen in the Q samples that, due to the sign operation
in (9), the perturbation applied to the signal has a box shape.
Therefore, the perturbation alone is easily identifiable; how-
ever, in the I samples, where the underlying modulated signal
also lies, it is less distinguishable. Notably, the differences
are most apparent around the symbol locations (note that this
signal has 8 samples per symbol), which could indicate that
the classifier has learned some notion of synchronization.

1) Difference in Logits: While the full output of the
DNN provides ample information, it is multi-dimensional
and therefore hard to visualize. One metric that is often
used is a confusion matrix, which captures the relationships
among classes. However, confusion matrices are generally

4While random individual examples are analyzed for simplicity, the con-
clusions drawn are further explored in Section VI.
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Fig. 7. Output of the model trained on Dataset A for a direct access FGSM
attack using a single BPSK adversarial example across varying Es/Ej (top)
and the corresponding difference in logits (bottom).

only presented as an average across multiple examples and
do not provide any notion of the confidence with which a
classifier made the prediction. Therefore, a confusion matrix
would not fully capture the variance of the DNN because
the outputs would not change unless the input examples were
moved across a decision boundary. Another metric that could
be used is to apply the softmax function to the output and
report the confidence associated with the source class. This
metric shows the variance of the classifier output but does not
provide any indication of the Top-1 accuracy score because
even a low confidence output could still be the highest and
therefore the predicted class.

The current work presents an additional metric, which we
term the “difference in logits” (∆logits), that simultaneously
captures the accuracy of the classifier as well as the variance
in outputs. “Logits” refers to the DNN output before the
softmax function has been applied. The maximum output of
all incorrect classes is subtracted from the source (true) class
output, which can be described by the following Equation.

∆logits = ys −max(yi∀i 6= s) (11)

The difference in logits can be visualized as the shaded
region in the top of Figures 7 and 8. When ∆logits is positive,
the example is correctly classified and a negative ∆logits

therefore indicates untargeted adversarial success.
2) Classifier Output versus Es/Ej: The output of the

classifier for the BPSK example, across multiple Es/Ej is
shown in Figure 7. At an Es/Ej of 10 dB, the jamming
intensity present in Figure 2, untargeted misclassification is
achieved because the BPSK output is not the highest output
of the classifier; this result is also indicated by viewing that
∆logits is negative. However, even though misclassification is
achieved, the signal is still classified as a linearly modulated
signal, with the predicted modulation order increasing as
Es/Ej increased. Linearly modulated signals have symbols
which exist in the IQ plane (distinguished as solid lines in
Figure 7) versus a FSK or continuous signal (distinguished as
dashed lines) whose symbols exist in the frequency domain
or do not have discrete symbols at all, respectively. Therefore,
while the adversarial machine learning method was able to

Fig. 8. Output of the model trained on Dataset A for a direct access FGSM
attack using a single QAM16 adversarial example across varying Es/Ej (top)
and the corresponding difference in logits (bottom)

achieve untargeted misclassification by causing the classifier
to misinterpret the specific linearly modulated signal, the
classifier still captured the hierarchical family of the human-
engineered modulation. This reinforces the natural notion that
the difficulty of targeted adversarial machine learning varies
based on the specific source and target modulations used.

Figure 8 shows the output of the classifier for a single
QAM16 example. As was observed in Figure 7, at very low
Es/Ej , where the attack intensity is the highest, the example is
again classified as QAM (though untargeted misclassification
is narrowly achieved because the model believes it is QAM64).
Further, the QAM16 example required much lower energy
(Es/Ej < 30 dB) than the BPSK example (Es/Ej < 15 dB)
to achieve untargeted misclassification. Therefore, increasing
the perturbation energy does not always provide advantageous
effects from the evasion perspective, as can be observed from
the difference in logits of Figure 8, and the optimal attack
intensity varies between source modulations.

3) Mutation Testing with AWGN: Mutation testing was pro-
posed as a defense in [35] where the authors repeatedly applied
domain specific noise to a machine learning example and
calculated the input’s sensitivity, with respect to the classifier
output, in the presence of this noise. The authors of [35]
found that adversarial examples were more sensitive to noise
than examples contained in the initial training distribution and
therefore mutation testing could be used to detect adversarial
examples.

The current work presents a study of the effect of AWGN,
one of the most prevalent models of noise in RFML, on
individual adversarial examples. For each Es/Ej , AWGN is
introduced to the signal at varying Es/N0 (SNR). Es/N0 is
swept from 20 to 0 dB with a step size of 1 dB. For each of
the SNRs considered, 1000 trials are performed. While Es/Ej
and Es/N0 are the parameters swept in this experiment, the
jamming to noise ratio (Ej/N0) can be quickly inferred by

Ej
N0

=
Es/N0

Es/Ej

=
Es
N0

dB− Es
Ej

dB
(12)
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Fig. 9. The effect of noise on the output of the model trained on Dataset A
for a single BPSK adversarial example with an Es/Ej of 10 dB. The line
represents the mean of the difference in logits, at a specific Es/N0, while
the shaded region represents the 25th and 75th percentiles.

Again, results are presented in Figure 9 from the BPSK
example originally shown in Figure 2, where Es/Ej is 10 dB.
The mean of the difference in logits is shown with the 25th
and 75th percentiles shaded to show the variance in the output
of the classifier at each SNR. With even a small amount of
noise (Es/N0 of 17 dB) the 75th percentile of the difference
in logits becomes positive indicating that the example was
classified correctly in some iterations. Increasing the noise
power to roughly half that of the applied perturbation (Ej/N0

of 3 dB) results in the classification, on average, being correct.
This effect was not observed across all adversarial examples

tested. In Figure 10 it is shown that, while the increased
sensitivity of the classifier output is observed in the same
range of Ej/N0, it does not result in a correct classification.
Therefore, while [35] presented general conclusions that all
adversarial examples were sensitive to noise, these results
show that this effect is most pronounced when the adversarial
perturbation and noise have similar power. Additionally, these
effects were not observed at all in the individual 8PSK and
QAM16 examples studied.

This section has shown a baseline result that deep learning
based raw-IQ automatic modulation classification is vulnerable
to untargeted adversarial examples. Further, it was shown
that although increasing the neural network input size can
improve accuracy in non-adversarial scenarios, it can make
a classifier more susceptible to deception for a given Es/Ej .
This section also showed that noise can have a negative impact
on adversarial success. Therefore, attacks which can only
provide a stochastic input to the classifier (self protect) must
be evaluated differently than attacks that are able to provide
a deterministic input to the classifier (direct access) and thus
the following section presents a more detailed study of self
protect attacks using the same adversarial machine learning
method.

VI. ANALYSIS OF SELF PROTECT ATTACKS

All OTA attacks must consider the impact of receiver effects
on adversarial success; furthermore, self protect attacks must
balance the secondary goal of evading an adversary with the
primary goal of transmitting information across a wireless
channel. Neither of these effects have been considered in
prior work and therefore, while the previous section studied

Fig. 10. The effect of noise on the output of the model trained on Dataset A
for a single QPSK adversarial example with an Es/Ej of 10 dB. The line
represents the mean of the difference in logits, at a specific Es/N0, while
the shaded region represents the 25th and 75th percentiles.

adversarial success in near perfect conditions, this section
studies the impact to adversarial success when the examples
are evaluated in the presence of three specific receiver effects,
which would likely occur during an OTA attack: AWGN,
sample time offsets, and center frequency offsets.

A. Additive White Gaussian Noise

AWGN has been shown to negatively impact both BER
and classification accuracy. Additionally, as discussed in Sec-
tion V-B3, AWGN can have a negative effect on adversarial
success. This section further evaluates these negative effects
with a larger scale study. In some cases, such as in “rubbish
examples” [19] or “fooling images” [30], the primary goal of
adversarial machine learning may simply be to create an input
that is classified with high confidence as some target class
starting from a noise input. However, in general, fooling a
classifier is a secondary goal that must be balanced against
the primary objective. In CV, this primary objective is to
preserve human perception of the image. In the current work,
the primary objective of self protect attacks is to transmit
information to a friendly receiver using a known modulation
while the secondary objective is to avoid recognition of
that modulation scheme by an eavesdropper. Therefore, this
section presents results showing the compounding impacts of
adversarial machine learning and AWGN on BER as well as
the effect of AWGN on adversarial success rates.

Using the model trained on Dataset A, a range of Es/N0

and Es/Ej are considered. For each Es/N0 considered, ten
thousand trials are executed to provide averaging of the
random variables present in the channel model for a given
random signal. The current work considers both the BER and
classification accuracy for BPSK in Figure 11 and 8PSK in
Figure 12.

Unsurprisingly, increasing the adversarial perturbation en-
ergy has positive effects on adversarial success rates (also
shown previously in Section V) and negative effects on BER.
In order to directly compare the trade space between the two
across a range of SNRs, BER versus classification accuracy is
plotted for each Es/Ej considered. At high SNR, extremely
low probabilities of bit error, such as those seen in BPSK
at Es/N0 = 20 dB, are hard to characterize empirically.
Therefore, in the BER versus classification accuracy plots,
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Fig. 11. Classification accuracy and bit error rates at varying Es/Ej and
Es/N0 for self protect untargeted adversarial attacks using FGSM on the
model trained with Dataset A and a source modulation class of BPSK.

all results with lower than 10−6 BER have been omitted for
clarity.

By looking at Figure 11, one can observe that classification
accuracy can be degraded to ≈ 0% with no noticeable effect
to BER for BPSK when using a white-box adversarial attack
with an Es/Ej of 4 dB. While this is a very strong result,
it only occurs at high SNRs (> 15 dB). A more reasonable
result to compare to would be the baseline result at 10 dB. In
order to achieve the same bit error rate as the baseline of no
attack (shown as a dashed line), an adversary must increase
their SNR, and therefore their transmission power, by ≈ 2 dB
when performing an adversarial attack at an Es/Ej of 8 dB.
A similar analysis can be performed for QPSK where a 4 dB
increase to SNR is required to maintain the same BER while
reducing classification accuracy to < 20%.

As stated in Section V-B, AWGN can have negative affects
on adversarial success. Therefore, while an eavesdropper with
a high SNR would be fooled nearly all of the time by a BPSK
transmission with an Es/Ej of 8 dB, an eavesdropper with an
Es/N0 of 10 dB would still classify this signal correctly 20%
of the time. If an adversary wished to attain 0% classification
more generally for BPSK using FGSM, then they would need
to transmit with an Es/Ej of 4 dB. This attack intensity would
require an SNR increase of ≈ 4 dB to maintain the same BER.
The increased accuracy, at lower SNRs, observed previously
in Figure 7 can also be observed in Figure 11 and therefore
generalizes across BPSK examples. This effect can also be
observed, to a lesser extent, in the results of 8PSK (Figure 12).
Additional experiments showed that the effect is not observed
for QPSK or QAM16. Note that Figure 10 previously showed
that the increased sensitivity to noise for that QPSK example
did not result in crossing the decision boundary. The effect of
increased accuracy cannot be concluded from QAM16 results
because the baseline results already show a slight accuracy
improvement at SNRs around 10 dB.

Evaluating attacker success in the case of higher order
modulations such as 8PSK and QAM16 is less clear. Attacks

Fig. 12. Classification accuracy and bit error rates at varying Es/Ej and
Es/N0 for self protect untargeted adversarial attacks using FGSM on the
model trained with Dataset A and a source modulation class of 8PSK.

with Es/Ej ≤ 8 dB already contain bit errors without any
added noise. Therefore, degrading classification accuracy of
8PSK below 20%, outside of the eavesdropper receiving the
signal at low SNR, would require forward error correction to
account for the errors in transmission. In the case of QAM16,
attacks using Es/Ej ≤ 4 dB would impact the receiver more
than the eavesdropper in many scenarios. Specifically, QAM16
has a BER of ≈ 16% and ≈ 25% when Es/Ej is 4 and 0 dB
respectively even when there is no additive noise. Additionally,
note that both of these attack intensities are outside of the
optimal range observed in Figure 8. Therefore, when evaluated
as a function of BER, the classification accuracy is actually
lower in the baseline case than under the presence of these
high intensity attacks.

In the case of QAM16, lower intensity attacks are effective
at high SNR; however, they become less effective as SNR
decreases, an anomalous effect previously discussed in Section
V-B. Therefore, untargeted adversarial machine learning with
QAM16 as the source modulation class may be most effective
in situations where the eavesdropper is thought to have a
high fidelity capture of the transmission, such as when the
eavesdropper and transmitter are located in close proximity.
When the eavesdropper would likely already have a weak view
of the signal, it may be more effective to use physical layer
security concepts, such as lower transmission power or beam
steering, to further degrade the eavesdropper’s signal capture.

These results conclude that adversarial machine learning is
effective across multiple modulations and SNRs to achieve
the goal of untargeted misclassification because, for a given
BER, classification can be greatly reduced in many scenarios.
However, avoiding signal classification may require sacrificing
spectral efficiency or increasing transmission power to main-
tain the same bit error rate. Additionally, AWGN was shown
to have a negative impact on adversarial success rates in 3
out of 4 source modulations tested and therefore adversarial
machine learning can be the most effective at high SNRs.



11

Fig. 13. Classification accuracy vs normalized center frequency offset at
varying Es/Ej for self protect untargeted adversarial attacks using FGSM.
The model used is trained on Dataset B with an input size of 128. This dataset
has training distribution of ±1% frequency offset that has been normalized
to the sample rate.

B. Frequency Offset

Signal classification systems typically do not know when
and where a transmission will occur. Therefore, they must
take in a wideband signal, detect the frequency bins of
the signals present, as well as the start and stop times of
transmission, and bring those signals down to baseband for
further classification. However, this process is not without
error. One effect shown in [33] was the consequences of
errors in center frequency estimation, resulting in frequency
offset signals. The authors of [33] found that raw-IQ based
AMC only generalized over the training distribution it was
provided and therefore if additional frequency offsets outside
of the training distribution were encountered, the classification
accuracy would suffer. Because these estimations are never
exact, adversarial examples transmitted over the air must also
generalize over these effects.

In order to evaluate the impact of center frequency offsets
to adversarial examples, it is necessary to use a model that
has been trained to generalize over these effects. Therefore,
this experiment uses Dataset B, which has a training distri-
bution consisting of ±1% frequency offsets, which have been
normalized to the sample rate. An input size of 128 is used
for closer comparison to other results using Dataset A, which
only has 128 as an input size. The frequency offsets are swept
between −2.5% and 2.5% with a step size of 0.1%. Es/N0

is evaluated at 10 and 20 dB. At each SNR, 100 trials are
performed to average out the effects of the stochastic process.
The results of this experiment are shown in Figure 13.

It can be observed that the baseline classifier has learned
to generalize over the effects of frequency offsets within its
training range of ±1%; however, the adversarial examples are
classified with ≈ 10% higher accuracy even at the lowest

Fig. 14. Classification accuracy vs time window offsets at varying Es/Ej

for self protect untargeted adversarial attacks using FGSM. The model used
is trained on Dataset A.

evaluated frequency offsets of ±0.1%. This effect is observed
at both 20 and 10 dB SNR. Therefore, even minute errors in
frequency offset estimation can have negative effects on adver-
sarial machine learning and must be considered by adversarial
generation methods.

C. Time Offset

An additional effect that could be encountered is sample
time offsets. In the context of communications, sample time
offsets can be thought of as a rectangular windowing func-
tion, used for creating discrete machine learning examples,
not aligning between the adversarial perturbation crafting
and signal classification. As previously mentioned, the signal
classification system must estimate the start and stop times
of a transmission; one way to estimate these times is to
use an energy detection algorithm where the power of a
frequency range is integrated over time and then thresholded
to provide a binary indication of whether a signal is present.
A low threshold could have a high false alarm rate and a
high threshold could induce a lag in the estimation of the
start time. Furthermore, signal classification systems could use
overlapping windows for subsequent classifications to increase
accuracy through the averaging of multiple classifications of
different “views” of a signal or use non-consecutive windows
due to real-time computation constraints. Therefore, this effect
is a near certainty.

This experiment uses the model trained on Dataset A and
again evaluates the effect at an Es/N0 of 10 and 20 dB.
At each SNR, 100 trials are performed. The time offset is
modeled as a shift in the starting index used when slicing the
signal for evaluating the signal classification performance and
non-overlapping/consecutive windows are still used. The time
offset was swept from 0 to 127 (because the input size is 128
and this effect is periodic in the input size); however, only the
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results from 0 to 10 are shown for simplicity. Time offsets
higher than 8 samples, the symbol period, did not present any
significant additional impairments beyond those seen at 8. The
results are shown in Figure 14.

As expected, the network is not heavily effected in the
baseline case. However, the adversarial examples can be
significantly impacted. In the case of an Es/Ej of 12dB,
simply shifting the time window to the right by four samples
can increase the classification accuracy by 20%. While some
adversarial perturbations have been shown to be agnostic to
these time shifts, such as the UAP [23] attack considered in
[15], all evaluations of adversarial machine learning in the
context of RFML, that seek to model OTA attacks, must
assume this effect exists and generalize over it.

VII. CONCLUSIONS AND FUTURE WORK

The current work has demonstrated the vulnerabilities of
RFML systems to adversarial examples by evaluating multiple
example attacks against a raw-IQ deep learning based modu-
lation classifier. First, it was shown that FGSM [19] crafted
perturbations were vastly more effective than perturbations that
were crafted using Gaussian noise at degrading the classifier
accuracy when the attack was launched with direct access
to the classifier input. Furthermore, the current work demon-
strated that these vulnerabilities were also present in FGSM
based OTA attacks by evaluating the attack effectiveness in
the presence of three RFML domain specific receiver effects:
AWGN, sample time offsets, and center frequency offsets.
When evaluating OTA attacks, evading an eavesdropper is
generally a secondary goal and must be balanced against
the primary goal of transmission, which is to communicate
information across a wireless channel. Therefore, the current
work showed that these attacks harmed the eavesdropper more
than the adversary by demonstrating that, for a given BER,
classification accuracy could be lowered for the majority of
the OTA attacks considered. Given these results, it is logical to
conclude that similar vulnerabilities exist in all RFML systems
when the adversary has white-box knowledge of the classifier.

Future RFML systems must consider these vulnerabilities
and develop defenses against them. The current work has
shown that, while increasing the number of samples used
per classification can increase accuracy in the presence of
AWGN, it can also make the model more susceptible to
adversarial examples. Therefore, future RFML systems could
consider shrinking the input size at the cost of accuracy in the
baseline case. Furthermore, the current work has reinforced
the viability of mutation testing [35] by showing that RFML
domain specific receiver effects typically has a negative impact
on adversarial examples. Consequently, using classifications
from multiple views of the signal, with different sample time
offsets and center frequency offsets, can aid in detecting
adversarial examples and even properly classifying them.
However, RFML systems are typically SWaP constrained and
therefore increasing the number of inferences per time step
could limit the bandwidth that can be sensed in real time.
Alternatively, defenses could be incorporated into the DNN
training phase, which is typically performed offline and thus

has more computational resources or no real-time processing
constraint. Ensemble adversarial training [36] has been shown
as an effective method for hardening DNN models in the
CV domain and the results presented in the current work on
BER penalties for adversarial examples can be used to guide
which examples to include during training. RFML does not
necessarily need to classify all adversarial examples properly,
but, it could seek to balance an adversary’s increasing success
in evading the eavesdropper versus their degrading ability to
communicate information.

Future OTA adversarial evasion attacks must consider their
ability to generalize over RFML domain specific receiver
effects as well as their their impact to the underlying transmis-
sion. The current work has demonstrated that all three receiver
effects considered can degrade the adversary’s ability to evade
classification. Furthermore, the current work has shown that,
while current adversarial methodology can be used for evading
classification, especially when using a lower order source
modulation such as BPSK, it may require sacrificing spectral
efficiency or increasing transmission power to maintain the
same bit error rate. Preliminary efforts in presenting additional
adversarial methodology may simply evaluate these effects, as
we have done in this current work. However, more advanced
efforts may directly incorporate these models of receiver
effects and wireless communications goals directly into their
adversarial methodology in order to create strong adversarial
examples that generalize over receiver effects and have limited
impact to the underlying transmission.

The current work concludes that adversarial machine learn-
ing is a credible and evolving threat to RFML systems that
must be considered in future research.
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