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Abstract

Perfect data privacy seems to be in fundamental opposition to the economical and scientific opportunities

associated with extensive data exchange. Defying this intuition, this paper develops a framework that allows the

disclosure of collective properties of datasets without compromising the privacy of individual data samples. We

present an algorithm to build an optimal disclosure strategy/mapping, and discuss it fundamental limits on finite

and asymptotically large datasets. Furthermore, we present explicit expressions to the asymptotic performance of

this scheme in some scenarios, and study cases where our approach attains maximal efficiency. We finally discuss

suboptimal schemes to provide sample privacy guarantees to large datasets with a reduced computational cost.

Index Terms

Data disclosure, inference attacks, data privacy, latent features, perfect privacy

I. INTRODUCTION

A. Context

The fundamental tension between the benefits of information exchange and the need of data privacy is at the

heart of the digital society. On the one hand, the massive amount of available data is currently enabling important

scientific and economic opportunities; for example, experimental data can nowadays be shared effortlessly between

researchers to allow parallel analyses, and consumer preferences can be extracted from online activity to aid the

design of new products and services. On the other hand, recent cases of misuse of user data (e.g. the well-known

cases of Facebook and Cambridge Analytica [1]) are raising major concerns about data privacy, which has become

a preeminent topic with overarching social, legal, and business consequences. As a matter of fact, important efforts

have been taken to guarantee user privacy, including the General Data Protection Regulation (GDPR) adopted by

the European Union at an estimated cost of e 200 billion [2], and the recent adoption of differential privacy [3]

standards by major tech companies including Apple and Google. A key open problem is how to satisfy sufficient

privacy requirements while still enabling the benefits of extensive data sharing.

There have been important efforts to address this problem from academic and industrial sectors, which are mainly

focused on developing privacy-preserving data processing techniques. Privacy-preserving data disclosure is based on

the intuition that the content of a dataset can be divided in two qualitatively different parts: non-sensitive statistical

regularities that exist across the data, and private information that refers to the contents of specific entries/users.
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This distinction suggests that – at least in principle – one could extract and share global properties of data, while

keeping information about specific samples confidential.

The highest privacy standard that a data disclosure strategy can guarantee, called perfect privacy, corresponds

to when nothing can be learned about an individual that could not have been learned without the disclosed data

anyway [4]. While studied in [5], [6], perfect privacy is often disregarded for being too restrictive, corresponding

to a extreme choice within the trade-off that exists between privacy and utility [7], [8]. The most popular approach

that takes advantage of this trade-off is differential privacy [9], which is equipped with free parameters that can be

flexibly tuned in order to adapt to the requirements of diverse scenarios. However, while these degrees of freedom

provide significant flexibility, determining the range of values that can guarantee that the system is “secure enough”

is usually not straightforward [10].

There is an urgent need of procedures that can enable effective data exchange while ensuring rigorous privacy

guarantees. Within this context, the goal of this work is to revisit perfect privacy and present algorithms to build

perfectly-private data disclosure procedures.

B. Scenario and related work

Let us consider a user who has a private dataset, denoted by Xn , (X1, . . . , Xn), which is correlated with a

latent variable of interest, denoted by W , that the user would like to share with an analyst. Note that in this scenario

the user has no direct access to W , but can only attempt to infer its contents via the information provided by Xn.

For instance, Xn can be measurements of a patient’s vital signals while W is a particular health indicator, e.g.,

the risk of heart attack. Although it would be desirable for the patient to share the whole dataset with a remote

assessment unit to provide early alerts in case of an emergency, she may not want to disclose the data samples

themselves as this could reveal unintended personal information.

We follow the framework for privacy against inference attacks [11], [12], which proposes to disclose a variable

Y that is obtained through a mapping from the data set. This work focuses on mappings that satisfy perfect sample

privacy; that is, mappings, whose output (Y ) do not provide any useful information that could foster statistical

inference on the value of any particular sample, i.e. on Xi for all i = 1, . . . , n. Mathematically, this is equivalent to

consider only those mappings whereby Y and Xi are statistically independent for all i = 1, . . . , n, while W−Xn−Y

form a Markov chain. To assess the quality of Y as an estimator of W , we consider the mutual information between

the two, I(Y ;W ). This quantity is an adequate proxy – with better algebraic properties – for the estimation error

rate (also known as 0-1 loss) [13], [14], which is a central performance metric for classification and many other

machine learning tasks [15].

It is important to note that the above conditions are not equivalent to imposing statistical independence between

the disclosed variable Y and the whole dataset Xn. In fact, if Xn and Y are independent then the data-processing

inequality leads to I(Y ;W ) ≤ I(Xn;Y ) = 0, implying that under this condition the analyst cannot receive any

information about W . At this point, it is useful to recall a counterintuitive and largely underexploited feature

of multivariate statistics: variables that are pairwise independent can still be globally interdependent [16]. Said

differently, while I(Y ;Xn) = 0 implies I(Y ;Xi) = 0 for i = 1, . . . , n, the converse does not hold. For example,
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it is direct to verify that if X1 and X2 are two independent fair coins, then Y = X1 ⊕ X2 (i.e., their exclusive

OR) is independent of each of them, while I(X1, X2;Y ) > 0 [17]. Therefore, in this case, Y reveals a collective

property (whether the entries of (X1, X2) are equal or not), while saying nothing about the specific value of X1

or X2.

Differential privacy is driven by similar desiderata, but the corresponding set of techniques and guarantees

are quite different. A disclosure mapping Y is said to be ε-differential private if logP{Y |Xn = xn} ≤ ε +

logP{Y |Xn = x̂n} for any pair of datasets xn and x̂n that differ in only one entry, so that the value of a particular

sample is not supposed to affect too much the value of Y and vice-versa. Hence, while perfect sample privacy

guarantees strict independency between the disclosed data and each sample, differential privacy only limits their

conditional dependency1. Unfortunately, it has been shown that in some cases this latter restriction fails to provide

privacy guarantees, as some ε-private disclosure mechanisms can still allow the leakage of an unbounded amount

of information – independently of how small ε might be [12, Theorem 4].

Another related problem to the one considered here is the privacy funnel, in which the goal is to reveal the

data set X within a given accuracy under some utility measure, while keeping the latent variable W as private as

possible [18]. Also, various metrics for quantifying the quality of the disclosure strategy has been studied in [6],

[8], [19], [20].

C. Contributions

In this paper we study a data disclosure technique that guarantees perfect sample privacy, which we call

“synergistic information disclosure” as it reveals information about the whole dataset (i.e., about Xn), but not about

any of its constituting elements (i.e., Xi’s). Building up on [21], we derive necessary and sufficient conditions that

determine when information about a latent feature can be synergistically disclosed, and present a simple but tight

upper bound on how much information can be disclosed. Moreover, we provide a practical procedure for building an

optimal synergistic disclosure mapping, which is based on linear programming (LP) methods, as stated in Theorem

1. We illustrate this method on a simple scenario where the data set X consists of two binary samples, for which

we provide a closed-form expression for the performance of the optimal synergistic disclosure mapping.

When considering large datasets, we obtain the asymptotic performance limit of optimal synergistic disclosure

when the dataset is composed of noisy measurements of a phenomenon of interest in Theorems 2 and 3. As a

by-product of this analysis, we observe a link between the full data observation and output perturbation models

in [22]. Moreover, when considering self-disclosure, we show that in most cases the ratio of information that one

can synergistically disclose about the dataset to the information content of the dataset tends asymptotically to one,

provided in Theorem 4. We also show, in Theorem 5, that, when applied to datasets of continuous samples, the

disclosure capacity diverges. Finally, we present two suboptimal schemes of low computational complexity to build

disclosure mappings that still guarantee perfect sample privacy, which are well suited to large datasets composed

of independent samples.

1A direct calculation shows that differential privacy imposes a restriction on the conditional mutual information, i.e. I(Y ;Xi|Xn
−i) ≤ ε for

all i = 1, . . . , n, where Xn
−i stands for the whole dataset excluding Xi.
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The rest of the paper is structured as follows. Section II introduces the notion of perfect sample privacy, and

develops the conditions and bounds that characterize the private disclosure capacity. Subsequently, Section III proves

that the optimal mapping can be found through an LP, and develops the case where the data set consists of two

binary samples. Then, Section IV studies the asymptotic performance for datasets of noisy observations of a latent

feature, and Section V considers the limits of synergistic self-disclosure. Section V-B studies the case of datasets

with continuous variables. Finally, Section VI conveys our final remarks.

D. Notation

Random variables (r.v.’s) are denoted by capital letters and their realizations by lowercase letters. For two r.v.’s X

and Y , X ⊥⊥ Y indicates that they are statistically independent. Matrices and vectors are denoted by bold capital and

bold lowercase letters, respectively. For a matrix Am×k, the null space, rank, and nullity are denoted by Null(A),

rank(A), and nul(A), respectively, with rank(A) + nul(A) = k. For integers m and n such that m ≤ n, we define

the discrete interval [m : n] , {m,m+ 1, . . . , n}, and for [1 : n], we use the shorthand notation [n]. For an integer

n ≥ 1, 1n denotes an n-dimensional all-one column vector. For a finite alphabet X , the probability simplex P(X )

is the standard (|X | − 1)-simplex given by

P(X ) =

{
v ∈ R|X |

∣∣∣∣1T|X | · v = 1, vi ≥ 0, ∀i ∈ [|X |]
}
.

To each probability mass function (pmf) on X , denoted by pX(·) (or written simply as pX ), corresponds a probability

vector pX ∈ P(X ), whose i-th element is pX(xi) (i ∈ [|X |]). Likewise, for a pair of discrete r.v.’s (X,Y ) with

joint pmf pX,Y , the probability vector pX|y corresponds to the conditional pmf pX|Y (·|y),∀y ∈ Y , and PX|Y is

an |X | × |Y| matrix with columns pX|y,∀y ∈ Y .

II. DEFINITION AND BASIC PROPERTIES

A. Perfect sample privacy and synergistic disclosure

Consider a case where a user has access to a dataset, denoted by Xn, which is dependent on a latent variable of

interest W that the user wishes to share with an analyst. The constituting elements of the dataset, i.e., Xi’s (which

are in general random variables), are informally referred to as “data samples”. From a communication theoretic

perspective, Xn can be considered to be a set of (possibly noisy) observations of W . The variables W,Xn are

assumed to be distributed according to a given joint distribution pW,Xn .

Our goal is to process the dataset Xn in a way that the result is maximally informative about W , while keeping

the content of each Xi ∀i ∈ [n] confidential. Without loss of generality, we consider data disclosure strategies that

take the form of a stochastic mapping, which can be captured by a conditional pmf pY |Xn . By this construction,

W −Xn − Y form a Markov chain. Throughout the paper, unless stated otherwise, we focus on the case where

|W|, |Xi| <∞, ∀i ∈ [n].

Our first step is to provide a suitable definition of data privacy. Although the condition Y ⊥⊥ Xn is sufficient for

guaranteeing perfect privacy of the data samples, it is too constrictive. In fact, from the data processing inequality,
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if Y ⊥⊥ Xn then Y ⊥⊥W , implying that such a requirement makes Y useless for the task of informing about W . In

the following, we introduce the notion of perfect sample privacy, which imposes a set of more flexible constraints.

Definition 1. Consider a stochastic mapping which is applied on a dataset Xn and produces an output Y . This

mapping guarantees perfect sample privacy if and only if Y ⊥⊥ Xi ∀i ∈ [n]. Furthermore, the set of all such

mappings is denoted by

A =

{
pY |Xn

∣∣∣∣ Y ⊥⊥ Xi,∀i ∈ [n]

}
. (1)

Therefore, a variable Y generated by processing Xn via a mapping pY |Xn ∈ A cannot foster statistical inference

attacks over any of the samples of the dataset. Interestingly, mappings that satisfy perfect sample privacy can still

carry useful information about latent variables. Our key principle is synergistic disclosure: that is possible for Y

to carry information about a latent feature W while revealing no information about any of the individual data

samples. The next definition formalizes this notion by characterizing the latent variables that are feasible of being

synergistically disclosed.

Definition 2. For a given latent variable W and dataset Xn, W is said to be feasible of synergistic disclosure if

there exists a random variable Y that satisfies the following conditions:

1. W −Xn − Y form a Markov chain,

2. pY |Xn ∈ A,

3. Y 6⊥⊥W .

Moreover, the synergistic disclosure capacity is defined as

Is(W,X
n) , sup

pY |Xn∈A:

W−Xn−Y

I(W ;Y ). (2)

Finally, the synergistic disclosure efficiency is defined as η(W,Xn) , Is(W,X
n)/H(W ).

The term ”synergistic” comes from the fact that a synergistic disclosure mapping reveals collective properties of

the whole dataset that do not compromise its ”parts” (i.e. the samples themselves). In the sequel, Is is employed

as a shorthand notation for Is(W,X
n) when the dataset and latent feature are clear.

Let the support of Xn be defined as

X̂ ,

{
xn ∈

n∏
i=1

Xi
∣∣∣∣pXn(xn) > 0

}
.

From this definition, pXn always lies in the interior of P(X̂ ). Also, it is evident that |X̂ | ≤ Πn
i=1|Xi|.

Define matrix P as

P ,


PX1|Xn

...

PXn|Xn


G×|X̂ |

, (3)
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where G ,
∑n
i=1 |Xi|. Note that P is a binary matrix, as Xi’s are deterministic functions of Xn. For example, if

|Xi| = 2,∀i ∈ [n] and X̂ is the set of all binary n-sequences, i.e., X̂ = {0, 1}n, then P is a 2n × 2n matrix that

can be built recursively according to

Pk+1 =

 1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1

Pk Pk

 ,
with P = Pn and P1 =

[
10
01

]
.

Remark 1. (Graphical representation) Let V = {vi}Gi=1 be a set whose elements are in a one-to-one correspondence

with the realizations of the data samples as follows. The first |X1| elements correspond to X1, the next |X2| elements

correspond to X2, and so on. It can be verified that to the joint distribution pXn , corresponds an n-uniform n-partite

hypergraph Hn = (V,E), in which, any hyperedge, i.e., any element of E, corresponds to an element of X̂ , i.e.,

the support of Xn. Furthermore, the incidence matrix of Hn is matrix P given in (3).

The importance of P is clarified in the following Lemma.

Lemma 1. We have Xi ⊥⊥ Y, ∀i ∈ [n], if and only if (pXn − pXn|y) ∈ Null(P),∀y ∈ Y .

Proof. Let X , Y and Z be discrete r.v.’s that form a Markov chain as X − Y − Z. Having X ⊥⊥ Z is equivalent

to pX(·) = pX|Z(·|z), i.e., pX = pX|z, ∀z ∈ Z . Furthermore, due to the Markov chain assumption, we have

pX|z = PX|Y pY |z, ∀z ∈ Z , and in particular, pX = PX|Y pY . Therefore, having pX = pX|z , ∀z ∈ Z results in

PX|Y
(
pY − pY |z

)
= 0, ∀z ∈ Z,

or equivalently,
(
pY − pY |z

)
∈ Null(PX|Y ), ∀z ∈ Z .

The proof is complete by noting that i) Xi − Xn − Y form a Markov chain for each index i ∈ [n], and ii)

Null(P) = ∩ni=1Null(PXi|Xn).

B. Fundamental properties of synergistic disclosure

The following Proposition characterizes the class of features that are feasible of synergistic disclosure from a

given dataset.

Proposition 1. For a given pair (W,Xn), W is feasible of synergistic disclosure if and only if Null(P) 6⊂

Null(PW |Xn).

Proof. For the first direction, we proceed as follows. If Is > 0, we have W 6⊥⊥ Y in W −Xn−Y . Therefore, there

exist y1, y2 ∈ Y , where y1 6= y2, such that pW |y1 6= pW |y2 , and hence, pXn|y1 6= pXn|y2 . Since Xi ⊥⊥ Y, ∀i ∈ [n],

Lemma 1 implies that (pXn − pXn|y1), (pXn − pXn|y2) ∈ Null(P). Moreover, Null(P) 6⊂ Null(PW |Xn), since

otherwise PW |Xn(pXn − pXn|y1) = PW |Xn(pXn − pXn|y2) = 0, which implies pW |y1 = pW |y2 leading to a

contradiction.
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The second direction is proved as follows. If Null(P) 6⊂ Null(PW |Xn), there exists a non-zero vector v ∈

Null(P), such that v 6∈ Null(PW |Xn). Let Y , {y1, y2}, Y ∼ Bern( 1
2 ), and for sufficiently small ε > 0, let

pXn|yi , pXn + (−1)iεv, i ∈ [2]. This construction is possible as pXn lies in the interior of P(X̂ ), and 1T|X̂ | ·v =

1TG ·Pv = 0, which follows from 1T|X̂ | = 1TG ·P, and v ∈ Null(P). Accordingly, since pXn−pXn|yi ∈ Null(P), i ∈

[2], from Lemma 1, we have Xi ⊥⊥ Y, ∀i ∈ [n]. Also, in the construction of the pair (Xn, Y ), pXn is preserved, as

specified in pW,Xn . Therefore, we have W−Xn−Y . Finally, since v 6∈ Null(PW |Xn), from pW |y = PW |XnpXn|y ,

we get pW |y1 6= pW |y2 , or equivalently, Is > 0.

The characterization presented in Proposition 1 can be understood intuitively as follows. Changing pXn along

the vectors in Null(P) corresponds to conditional pmfs pXn|Y whose corresponding pY |Xn guarantee perfect

sample privacy, while changing pXn along the vectors in Null(PW |Xn) corresponds to the conditional pmfs pXn|Y

that result in W ⊥⊥ Y . Therefore, the condition Null(P) 6⊂ Null(PW |Xn) asks for the existence of conditional

probabilities that guarantee perfect sample privacy while introducing statistical dependencies with W .

Proposition 2. The following upper bound holds for Is:

Is ≤ min
j∈[n]

I(W ;Xn
−j |Xj), (4)

where Xn
−j , {X1, . . . , Xn}\Xj .

Proof. Let j ∈ [n] be an arbitrary index. Then,

I(W ;Y ) = I(W ;Xn)− I(W ;Xn|Y ) (5)

= I(W ;Xn
−j |Xj) + I(W ;Xj)− I(W ;Xj |Y )− I(W ;Xn

−j |Xj , Y )

= I(W ;Xn
−j |Xj) + I(W ;Xj)− I(W,Y ;Xj)− I(W ;Xn

−j |Xj , Y ) (6)

= I(W ;Xn
−j |Xj)− I(Y ;Xj |W )− I(W ;Xn

−j |Xj , Y )

≤ I(W ;Xn
−j |Xj), (7)

where (5) follows from the Markov chain W −Xn − Y , and (6) from the independence of Xj and Y . Since j is

chosen arbitrarily, (7) holds for all j ∈ [n], resulting in (4).

Remark 2. From Proposition 2 and noting that I(W ;Xn
−j |Xj) = I(W ;Xn) − I(W ;Xj), one can find that in

general

I(W ;Xn)− Is ≥ max
j∈[n]

I(W ;Xj), (8)

which shows that amount of information that one needs to restrain from sharing for guaranteeing perfect sample

privacy is at least equal to the amount of information carried by the most strongly correlated sample.

The following example shows that the upper bound in Proposition 2 is tight.

Example 1. Let X1 and X2 be two independent r.v.’s, with X1 and X2 being uniformly distributed over [M ] and

[kM ], respectively, for some positive integers k,M . Set W , X1 + X2 mod M . It can be readily verified that
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W ⊥⊥ Xi, i ∈ [2], and hence, the upper bound in Proposition 2 reduces to Is ≤ H(W ), since H(W |X1, X2) = 0.

Setting Y , X1 +X2 mod M attains this bound, and we also have W − (X1, X2)− Y form a Markov chain2.

III. THE OPTIMAL SYNERGISTIC DISCLOSURE MAPPING

This section presents a practical method for computing the optimal latent feature disclosure strategy/mapping

under perfect sample privacy. In what follows, we assume that nul(P) 6= 0, since otherwise we have from Proposition

1 that Is = 0, making the result trivial.

A. General solution

Before stating the main result of this section in Theorem 1, some essential preliminaries are needed as follows.

Consider the singular value decomposition (SVD) of P, which gives P = UΣVT with the matrix of right

eigenvectors being

V =
[
v1 v2 . . . v|X̂ |

]
|X̂ |×|X̂ |

. (9)

By assuming (without loss of generality) that the singular values are arranged in a descending order, only the first

rank(P) singular values are non-zero. Therefore, it is direct to check that the null space of P is given by

Null(P) = Span{vrank(P)+1,vrank(P)+2, . . . ,v|X̂ |}. (10)

Let A ,
[
v1 v2 . . . vrank(P)

]T
which, due to the orthogonality of the columns of V, has the useful property

Null(P) = Null(A). From Lemma 1, having Xi ⊥⊥ Y, ∀i ∈ [n] is equivalent to

A(pXn − pXn|y) = 0, ∀y ∈ Y. (11)

Let S be defined as

S ,

{
t ∈ R|X̂ |

∣∣∣∣At = ApXn , t ≥ 0

}
, (12)

which is a convex polytope in P(X̂ ), since it can be written as the intersection of a finite number of half-spaces

in P(X̂ ).

In the Markov chain W −Xn−Y with pY |Xn ∈ A, one can see from (11) that pXn|y ∈ S, ∀y ∈ Y . On the other

hand, for any pXn,Y for which pXn|y ∈ S, ∀y ∈ Y , it is guaranteed that if one uses the corresponding mapping

pY |Xn to build a Markov chain W −Xn − Y , then the condition Xi ⊥⊥ Y,∀i ∈ [n] holds. The above arguments

prove the following equivalence:

W −Xn − Y, pY |Xn ∈ A ⇐⇒ pXn|y ∈ S, ∀y ∈ Y. (13)

Proposition 3. The supremum in (2) is attained, and hence, it is a maximum. Furthermore, it is sufficient to have

|Y| ≤ nul(P) + 1.

2In this example, instead of writing Y , W , we used Y , X1 +X2 mod M to emphasize on the fact that the privacy mapping does not

have access to W in general.
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Proof. The proof is provided in Appendix B. Later, in Corollary 1.1, it is shown that it is necessary to have

|Y| ≥
⌈
|X̂ |

rank(P)

⌉
.

Theorem 1. The maximizer in (2), i.e., the optimal mapping p∗Y |Xn , can be obtained as the solution to a standard

LP.

Proof. We can express (2) as

Is = H(W )− min
pY |Xn∈A:

W−Xn−Y

H(W |Y ) (14)

= H(W )− min
pY (·),pXn|y∈S, ∀y∈Y:∑
y pY (y)pXn|y=pXn

∑
y

pY (y)H
(
PW |XnpXn|y

)
, (15)

where, since the minimization is over pXn|y rather than pY |Xn , the constraint
∑
y pY (y)pXn|y = pXn has been

added to preserve the distribution pXn specified in pW,Xn .

Lemma 2. When minimizing H(W |Y ) over pXn|y ∈ S in (15), it is sufficient to consider only the extreme points

of S.

Proof. Let p be an arbitrary point in S. Note that the set S is an bounded d-dimensional convex subset of R|X̂ |,

where d ≤ (|X̂ | − 1). Therefore, any point in S can be written as a convex combination of at most |X̂ | extreme

points of S. Hence, p can be written as p =
∑|X̂ |
i=1 αipi, where αi ≥ 0 (∀i ∈ [|X̂ |]), with

∑|X̂ |
i=1 αi = 1, and

pi (∀i ∈ [|X̂ |]) are the extreme points of S with pi 6= pj (i 6= j). Due to the concavity of the entropy, one has that

H(PW |Xnp) ≥
|X̂ |∑
i=1

αiH(PW |Xnpi). (16)

Therefore, from (16), it is sufficient to consider only the extreme points of S in the minimization.

Using Lemma 2, the optimization in (15) can be solved in two steps: a first step in which the extreme points

of set S are identified, followed by a second step where proper weights over these extreme points are obtained to

minimize the objective function.

For the first step, we first note that the extreme points of S are the corresponding basic feasible solutions (c.f.

[23], [24]) of the polytope in standard form{
t ∈ R|X̂ |

∣∣∣∣At = b , t ≥ 0

}
,

with b = ApXn . A standard procedure to find the extreme points of S is as follows [23, Sec. 2.3]. Pick a

set B ⊂ [|X̂ |] of indices that correspond to rank(P) linearly independent columns of matrix A. Let AB be a

rank(P)× rank(P) matrix whose columns are the columns of A indexed by the indices in B. Also, for any x ∈ S,

let x̃ =
[
xTB xTN

]T
, where xB and xN are rank(P)-dimensional and nul(P)-dimensional vectors whose elements

are the elements of x indexed by the indices in B and [|X |]\B, respectively. For any basic feasible solution x∗,

there exists a set B ⊂ [|X |] of indices that correspond to a set of linearly independent columns of A, such that the

corresponding vector of x∗, i.e. x̃∗ =
[
x∗B

T x∗N
T
]T

, satisfies the following

x∗N = 0, x∗B = A−1B b, x∗B ≥ 0.
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On the other hand, for any set B ⊂ [|X |] of indices that correspond to a set of linearly independent columns of A,

if A−1B b ≥ 0, then

A−1B b

0N

 is the corresponding vector of a basic feasible solution. Hence, the extreme points

of S are obtained as mentioned above, and their number is upper bounded by
( |X̂ |
rank(P)

)
. The general procedure of

finding the extreme points of S is shown as a pseudocode in Algorithm III-A.

Algorithm 1 Finding the extreme points of S
1: function FINDEXTREMEPOINTS(pXn )

2: P = BuildMatrix(pXn)

3: U,Σ, [v1, . . . ,v|X̂ |]
T = SVD(P)

4: A = [v1, . . . ,vrank(Σ)]
T

5: b = ApXn

6: K = 0

7: B1, . . . ,BJ = Subsets of [|X̂ |] with cardinality rank(Σ)

8: for j = 1, . . . , J do

9: if A−1Bj b ≥ 0 then

10: K = K + 1

11: pK = [A−1Bj b,0N ]T

12: end if

13: end for

14: return p1, . . . ,pK

15: end function

For the second step, assume that the extreme points of S, found in the first step, are denoted by p1,p2, . . . ,pK .

Then, computing (15) is equivalent to solving

H(W )−min
u≥0

[
H(PW |Xnp1) . . . H(PW |XnpK)

]
· u

s.t.
[
p1 p2 . . . pK

]
u = pXn , (17)

where u is a K-dimensional weight vector, and it can be verified that the constraint 1TK · u = 1 is satisfied if the

constraint in (17) is met. The problem in (17) is a standard LP.

Corollary 1.1. In the evaluation of (2), it is necessary to have |Y| ≥
⌈
|X̂ |

rank(P)

⌉
.

Proof. From the procedure of finding the extreme points of S, it is observed that these points have at most rank(P)

non-zero elements. Therefore, in order to write the |X̂ |-dimensional probability vector pXn as a convex combination

of the extreme points of S, at least
⌈
|X̂ |

rank(P)

⌉
points are needed, which results in |Y| ≥

⌈
|X̂ |

rank(P)

⌉
.
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Corollary 1.2. For a given dataset Xn, we can write

min
pY |Xn∈A

H(Xn|Y ) ≤ log(rank(P)) (18)

≤ log

(
min

{ n∑
i=1

|Xi| − n+ 1, |X̂ |
})

. (19)

Proof. In (18), we have used the fact that i) it is sufficient to consider those pXn|y that belong to the set of extreme

points of S, ii) these extreme points have at most rank(P) non-zero elements, and iii) entropy is maximized by

the uniform distribution. The upper bound in (19) follows from the fact that the rows of P are linearly dependent,

since we have 1T|Xi| ·PXi|Xn = 1T|X̂ |, ∀i ∈ [n], which means that there are at most
∑n
i=1 |Xi| − (n − 1) linearly

independent rows in P.

Following the proof of Theorem 1, Algorithm III-A provides a summary of how to compute the optimal disclosure

mapping, using as inputs pW,Xn . Its procedure is illustrated in example 2. Although it serves it purpose, the

performance of Algorithm III-A scales poorly with the dataset size n. Suboptimal procedures to build perfectly-

private mappings are discussed in Section V-C.

Algorithm 2 Building the optimal disclosure mapping p∗Y |Xn
1: function FINDOPTIMALMAPPING(PW |Xn ,pXn )

2: p1, . . . ,pK = FindExtremePoints(pXn)

3: for k = 1, . . . ,K do

4: ck = H(PW |Xnpk)

5: end for

6: Find u∗ = Argmin
∑K
k=1 ukck s.t. [p1, . . . ,pK ]u = pXn and u ≥ 0

7: L = 0

8: for k = 1, . . . ,K do

9: if uk > 0 then

10: L = L+ 1

11: p(Y = L) = uk

12: pXn|Y=L = pk

13: end if

14: end for

15: pY = [p(Y = 1), . . . , p(Y = L)]

16: PXn|Y = [pXn|Y=1, . . . ,pXn|Y=L]

17: PY |Xn = diag(pY ) ·PT
Xn|Y · diag(pXn)−1

18: return PY |Xn

19: end function
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Example 2. Let W ∼ Bern( 1
2 ) be the random variable that the user wishes to share with an analyst, and assume

that the user has data samples denoted by X1 and X2, which are, respectively, the observations of W through a

binary symmetric channel with crossover probability α, i.e., BSC(α), and a binary erasure channel with erasure

probability e, i.e., BEC(e). Figure 1 provides an illustrative representation of this setting. Set α = 2
3 , and e = 1

2 ,

which results in pX2 = 1
12

[
1 3 2 2 3 1

]T
, and

PW |X2 =

1 2
3 0 1 1

3 0

0 1
3 1 0 2

3 1

 . (20)

Matrix P in (3) is given by

P =



1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1


,

and by obtaining an SVD of P, we obtain matrix A3 as

A =
1

104


4082 4082 4082 4082 4082 4082

4082 4082 4082 −4082 −4082 −4082
−4677 5270 −593 −4677 5270 −593
−3385 −2385 5743 −3385 −2358 5743

 .
There are at most 15 ways of choosing 4 linearly independent columns of A. From xB = A−1B ApX2 , and the

condition xB ≥ 0, we obtain the extreme points of S as

p1 =



1
4

0

1
4

0

1
2

0


,p2 =



0

1
2

0

1
4

0

1
4


,p3 =



1
4

1
4

0

0

1
4

1
4


,p4 =



0

1
4

1
4

1
4

1
4

0


.

Finally, the LP is given by

min
u≥0

[
H(PW |X2p1) . . . H(PW |X2p4)

]
· u = 0.9866 bits

s.t.
[
p1 p2 p3 p4

]
u = pX2 , (21)

where u∗ =
[
1
3

1
3 0 1

3

]T
. Therefore, the maximum information that can be shared with an analyst about W ,

while preserving the privacy of the observations, is Is = 0.0134 bits, which is achieved by the following synergistic

disclosure strategy

P∗Y |X2 =


1 0 1

2 0 2
3 0

0 2
3 0 1

2 0 1

0 1
3

1
2

1
2

1
3 0

 . (22)

3Note that A is not unique.
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X1 W

X2

1− α

α
α

1− α

1− e

e

e

1− e

Fig. 1: Example 2, where X1 and X2 are observations of W through a BSC(α) and a BEC(e), respectively.

B. Two binary samples

To illustrate the above results, in what follows, we consider the case where two binary (noisy) observations

X1, X2 of an underlying phenomenon W are available. As before, the goal is to maximally inform an analyst about

W , while preserving the privacy of both observations.

Consider the tuple (W,X1, X2) distributed according to a given joint distribution pW,X1,X2
= pX1,X2

pW |X1,X2
. In

this setting, no condition is imposed on the conditional pW |X1,X2
. Without loss of generality, pX1,X2

is parametrized

as

pX2 =
[
α− r r (β − α) + r (1− β)− r

]T
, (23)

where α, β ∈ (0, 1) are degrees of freedom that determine the marginals , i.e., X1 ∼ Bern(α) and X2 ∼ Bern(β),

while r ∈ [0, R] with R , min{α, 1 − β} determines the interdependency between X1 and X2. In particular,

X1 ⊥⊥ X2, if and only if r = α(1− β).

If r ∈ (0, R)4, we have X̂ = {(0, 0), (0, 1), (1, 0), (1, 1)}, and correspondingly one finds that

P =


1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

 .

A direct calculation shows that Null(P) is spanned by the single vector n =
[
1 −1 −1 1

]T
. As the null space

of P is one-dimensional, one can check that S has only two extreme points given by a1 = pX2 − (R − r)n and

a2 = pX2 + rn (see Figure 2). Note that the original distribution can be recovered as a convex combination of

these two extreme points, i.e.,

pX2 =
r

R
a1 +

R− r
R

a2. (24)

4For the uninteresting cases where r ∈ {0, R}, we have |X̂ | < 4 and nul(P) = 0. Consequently, from Proposition 1, we get Is = 0.
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Fig. 2: Diagram of private information disclosure for two tuples (W1, X1, X2) and (W2, X1, X2), where (X1, X2)

are binary and distributed according to pX as given in (23), and pW1|X 6= pW1|X . While their private disclosure

capacities, i.e., Iis, i = 1, 2, are different, their optimal synergistic disclosure strategies are the same, as regardless

of the tuples, we have pX = r
Ra1 + R−r

R a2.

Therefore, using (15), Is can be computed as

Is = H(W )− r

R
H(PW |X2a1)− R− r

R
H(PW |X2a2)

= H(pW )− r

R
H
(
pW − (R− r)PW |X2n

)
− R− r

R
H
(
pW + rPW |X2n

)
. (25)

From the last expression, it is direct to verify that, Is > 0 if and only if n 6∈ Null(PW |X2). Finally, the optimal

mapping P∗Y |X2 is derived as follows. Considering (24), let Y , {y1, y2}, and fix pY (y1) = r
R and pX2|yi =

ai, i = 1, 2. Using these, a direct calculation results in the following optimal mapping

P∗Y |X2 =

 r(α−R)
R(α−r) 1 r(β−α+R)

R(β−α+r)
r(1−β−R)
R(1−β−r)

α(R−r)
R(α−r) 0 (β−α)(R−r)

R(β−α+r)
(1−β)(R−r)
R(1−β−r)

 . (26)

It is important to note that, although the disclosure capacity in (25) depends on the choice of PW |X2 , the optimal

synergistic disclosure strategy in (26) is only a functional of pX2 (or equivalently, α, β, r), and does not depend

on PW |X2 . This observation is a special case of the following proposition.

Proposition 4. For the tuple (W,Xn), in which |X̂ | =
∑n
i=1 |Xi| − n + 2, the optimal synergistic disclosure

strategy, i.e., P∗Y |Xn , does not depend on pW |Xn .

Proof. This follows from the fact that in this setting nul(P) = 1, and as a result, S has only two extreme points5.

Therefore, the mere condition of preserving pXn suffices to define the probability masses of these two extreme

points. Hence, the LP is solved by its constraint, not being affected by the choice of W .

5In this case, the optimal mapping conveys at most one bit about W , since we have |Y| = 2.
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This result implies that the same strategy/mapping can provide an optimal service in addressing any possible

query over the data, as given by a specific pW |Xn . In other words, optimal processing of the data can be done in

the absence of any knowledge about the query. However, this does not hold in general.

IV. ASYMPTOTIC PERFORMANCE ON LARGE DATASETS

In this section we analyse datasets that are composed by noisy measurements X1, . . . , Xn of a variable of interest

W , and focus on their asymptotic properties. For the sake of tractability, we focus in the case where the noise

that affects each measurement is conditionally independent and identically distributed given W . In the sequel,

Section IV-A introduces tools that are later used in our analysis, which is outlined in Section IV-B.

A. Preliminaries

For a pair of random variables (X,W ) ∈ X ×W , with finite alphabets, following [25], we define6

CX(W ) , min
U :X−U−W,
H(U |W )=0

H(U). (27)

Since H(U |W ) = 0 implies that U is a deterministic function of W , (27) means that among all the functions of W

that make X and W conditionally independent, we want to find the one with the lowest entropy. It can be verified

that

I(X;W ) ≤ CX(W ) ≤ H(W ),

where the first inequality is due to the data processing inequality applied on the Markov chain X − U −W , i.e.,

I(U ;W ) ≥ I(X;W ), and the second inequality is a direct result of the fact that U = W satisfies the constraints

in (27).

Let TX :W → P(X ) be a mapping from W to the probability simplex on X defined by w → pX|W (·|w). It is

shown in [25, Theorem 3] that the minimizer in (27) is U∗ = TX (W ); furthermore, it is proved in [25, Lemma 5]

that CX(W ) = H(W ) if and only if there do not exist w1, w2 ∈ W such that pX|W (·|w1) = pX|W (·|w2). In the

sequel, for a given pmf pW,X , we denote U∗ by W̃ , and hence, we have H(W̃ ) = CX(W ). Moreover, W −W̃ −X

and W̃ −W −X are Markov chains. Figure 3 provides an example of W̃ for a given pW,X .

To conclude this subsection, we present the notion of typical sequences. Assume that un is an n-sequence whose

elements are drawn from an arbitrary set denoted by U . The type of un is defined as

π(u|un) ,
|{i|ui = u}|

n
, ∀u ∈ U . (28)

Then, for a fixed pmf qU (·) on U , and ε ∈ (0, 1), define the ε-typical set as7

T nε (qU (·)) ,
{
un
∣∣∣∣ |π(u|un)− qU (u)| ≤ εqU (u),∀u ∈ U

}
. (29)

6In [25], the authors name CX(W ) private information about X carried by W .
7Here, we pick the notion T nε (qU (·)) over T nε (U) as in [26], to emphasize on the generating distribution. This is useful in the sequel when

considering conditional pmfs as the underlying generator.
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Fig. 3: The right figure provides a graphical representation of W̃ for a given joint pmf pW,X shown on the left

figure. The probabilities on theses figures correspond to the transition from right to left. Note that we have W̃ as

a deterministic function of W in the Markov chain X − W̃ −W .

B. Asymptotic analysis

Let W be a variable of interest that is distributed according to pW (|W| < ∞), and consider a dataset

Xn where Xi’s are i.i.d. conditioned on W according to pX|W (|X | < ∞). In other words, pXn|W (xn|w) =∏n
i=1 pX|W (xi|w), ∀xn ∈ Xn,∀w ∈ W, ∀n ≥ 1. In the sequel we use X (without subscript or superscript) to

denote a generic sample that follows pX|W . This model corresponds to dataset of noisy observations (Xi’s) of an

underlying phenomenon (W ), where the observational noise is i.i.d.

Prior to investigating the privacy-preserving data disclosure, we characterise the total information contained in

the observations about the underlying phenomenon that can be disclosed when there are no privacy constraints.

Theorem 2. We have

lim
n→∞

I(W ;Xn) = CX(W ), (30)

where CX(W ) is defined in (27).

Proof. From the definition of W̃ , it can be verified that W − W̃ −Xn, and W̃ −W −Xn, where Xi’s are also

i.i.d. conditioned on W̃ . For the converse, we have

I(W ;Xn) = I(W̃ ;Xn)

≤ H(W̃ )

= CX(W ). (31)

The achievability is as follows. We have pX|W̃ (·|i) 6= pX|W̃ (·|j),∀i, j ∈ W̃ (i 6= j), which follows from the

definition of W̃ . As a result, for a fixed i, j ∈ W̃ (i 6= j), there exists xi,j ∈ X , such that pX|W̃ (xi,j |i) >

pX|W̃ (xi,j |j). Let Bi,j ,
{
x ∈ X

∣∣pX|W̃ (x|i) > pX|W̃ (x|j)
}

, ∀i, j ∈ W̃ (i 6= j). Define

εi,j , min
x∈Bi,j

pX|W̃ (x|i)− pX|W̃ (x|j)
pX|W̃ (x|i) + pX|W̃ (x|j)

∀i, j ∈ W̃ with i 6= j. (32)
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Hence, we have εi,j > 0. Also, let ε , mini,j∈W̃
i 6=j

εi,j , which is positive, since it is the minimum over a finite set of

positive elements. It can be verified that from this choice of ε, the ε-typical sets corresponding to the pmfs pX|W̃ (·|i)

(∀i ∈ W̃) are disjoint, i.e., T nε
(
pX|W̃ (·|i)

)
∩T nε

(
pX|W̃ (·|j)

)
= ∅,∀i, j ∈ W̃, i 6= j. Let Ln : Xn → W̃ ∪{e} be

defined as

Ln(xn) ,

 i if xn ∈ T nε
(
pX|W̃ (·|i)

)
, for some i ∈ W̃

e o.w.
. (33)

Let p(n)e = Pr{W̃ 6= Ln} denote the error probability in the Markov chain W −Xn − Ln. We can write

lim
n→∞

p(n)e = lim
n→∞

∑
i∈W̃

pW̃ (i)Pr{Ln 6= i|W̃ = i}

= lim
n→∞

∑
i∈W̃

pW̃ (i)Pr
{
Xn 6∈ T nε

(
pX|W̃ (·|i)

)∣∣∣∣W̃ = i

}
= 0,

where the last step follows from the law of large numbers (LLN), since conditioned on {W̃ = i}, Xi’s are i.i.d.

according to pX|W̃ (·|i). Therefore, from the data processing and Fano’s inequality

I(W̃ ;Xn) ≥ I(W̃ ;Ln) (34)

= H(W̃ )−H(W̃ |Ln) (35)

≥ H(W̃ )−H(p(n)e )− p(n)e log |W̃|, (36)

which results in limn→∞ I(W̃ ;Xn) ≥ H(W̃ ) = CX(W ).

Remark 3. The proof of achievability relies on the notion of robust typicality [26], which is used to distinguish

between different conditional pmfs of the form pX|W̃ (·|i). It is important to note that the notion of weak typicality

does not suffice for this purpose. In other words, assume that the ε-typical set for a given pmf qU (·) is defined as

Anε (qU (·)) ,
{
un
∣∣∣∣ | − 1

n
log qUn(un)−H(U)| ≤ ε

}
, (37)

where qUn(un) =
∏n
i=1 qU (ui),∀un ∈ Un. Let us focus in the case that X and W are binary and the transition from

W to X follows a BSC(α) for α ∈ (0, 12 ). In this case W̃ = W , and from Theorem 2, W can be inferred precisely

from an infinite number of i.i.d. observations Xi’s. However, it can be verified that nothing can be inferred about W

if one uses (37) instead of (29) in the proof of achievability, since Anε
(
pX|W (·|w1)

)
= Anε

(
pX|W (·|w2)

)
,∀ε > 0.

The key difference is that While using (29) enables us to distinguish between different conditional pmfs of the form

pX|W̃ (·|i), using (37) aims at doing the same task only through their corresponding conditional entropies, i.e.,

H(X|W̃ = i).

Remark 4. Equation (30) can be used instead of (27) as the definition of CX(W ). In other words, for a pair

(W,X) ∼ pW,X one can define

CX(W ) , lim
n→∞

I(W ;Xn),

where pXn|W (xn|w) =
∏n
i=1 pX|W (xi|w); afterwards, (27) follows.
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In what follows, the asymptotic behaviour of the synergistic disclosure capacity Is(W ;Xn) is investigated as the

number of data samples grows. To this end, we make use of the following definition.

Definition 3. For a given pmf pW,X , and W̃ as defined in Section IV-A, define

C1(α) , max
pY |W̃ :

X−W̃−Y
I(X;Y )≤α

I(W̃ ;Y ) (38)

C2(α) , max
pY |W̃ ,X :

I(X;Y )≤α

I(W̃ ;Y ), (39)

where α ∈ [0, I(X; W̃ )].

The above definitions capture the utility-privacy trade-off in a hypothetical scenario, in which the curator discloses

information about W̃ while preserving the privacy of X . To this end, in the case of C1(·), the curator has access

only to W̃ , which is similar to the output perturbation model in [22]. In the case of C2(·), the curator has the extra

advantage of observing X , which is similar to the full data observation model in [22].

Theorem 3. The synergistic disclosure capacity, i.e., Is(W,Xn), converges as n grows. Moreover, we have that

lim
n→∞

Is(W,X
n) = C1(0), (40)

where C1(·) is defined in (38).

Proof. At first, it is not clear that Is(W,Xn) converges with n; on the one hand, having more data samples helps

conveying some information about W , while on the other hand, it adds to the constraints of perfect sample privacy.

In fact, Is can have a non-monotonous dependency on n, as shown in the example provided in Table I.

TABLE I: Non-monotonic Is for W ∼Bernoulli(1/3) and samples generated via a BSC with crossover probability

0.1.

n 2 3 4

Is 8.34× 10−3 4.88× 10−2 4.47× 10−2

In spite of this, one can see that as n grows, a better estimate of W̃ becomes available at the input of the privacy

mapping, i.e, Ln as defined in (33). Hence, as n increases, one can expect that Is gets closer to

J(W,Xn) , max
pY |W̃ ,Xn :

Y⊥⊥Xi ∀i∈[n]

I(W̃ ;Y ), (41)

which is formally stated in the following Lemma8.

Lemma 3. We have

lim
n→∞

J(W,Xn)− Is(W,Xn) = 0. (42)

8Note that from W − W̃ − Y and W̃ −W − Y , we have I(W ;Y ) = I(W̃ ;Y ).
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Proof. The proof is provided in Appendix B.

At this stage, the convergence of Is can be proved as follows. It can be verified that J is a non-increasing function

of n, since by increasing n, the number of privacy constraints increases, while in contrast to the case of Is, it does

not improve the knowledge of the curator about W̃ , which is already available at the input of the privacy mapping.

Hence, being a bounded function, it converges. This settles the convergence of Is to limn→∞ J .

In order to obtain the limit, we proceed as follows. Consider the Markov chain X −W −Xn − Y , in which9

Y ⊥⊥ Xi, ∀i ∈ [n]. The following Lemma states that requiring perfect sample privacy over a large available dataset

guarantees almost perfect sample privacy for those data samples that are not available at the input of the privacy

mapping.

Lemma 4. In the Markov chain X −W −Xn − Y , where Y ⊥⊥ Xi,∀i ∈ [n], we have

lim
n→∞

I(X;Y ) = 0. (43)

Proof. The proof is provided in Appendix C.

The last stage needed in the proof is provided in the following Lemma.

Lemma 5. C1(α) is continuous in α.

Proof. The proof is provided in Appendix D.

From Lemma 4, we can write I(X;Y ) = θn, in which, limn→∞ θn = 0. Therefore, from the definition of C1(·),

we have

Is(W,X
n) ≤ C1(θn). (44)

It is also evident that J(W,Xn) ≥ C1(0), since the maximizer in C1(0) can be regarded as a suboptimal mapping

in J . Therefore, we can write

C1(0)−
(
J(W,Xn)− Is(W,Xn)

)
≤ Is(W,Xn) ≤ C1(θn). (45)

Finally, from Lemma 5 and 3, we have

lim
n→∞

Is(W,X
n) = C1(0). (46)

This completes the proof.

Remark 5. The quantity J(W,Xn), defined in (41), serves as a bridge between the full data observation and

output perturbation models. In other words,

C2(0) = J(W,X1) ≥ J(W,X2) ≥ . . . ≥ J(W,X∞) = C1(0), (47)

where J(W,X∞) , limn→∞ J(W,Xn).

9As mentioned earlier, X is a generic random variable generated in the sense that (X,X1, X2, . . . , Xn) are i.i.d. conditioned on W according

to pX|W .
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Proposition 5. We have

(CX(W )− log |X |)+ ≤ C1(0) ≤ C2(0) ≤ H(W̃ |X) ≤ H(W |X), (48)

where (x)+ , max{0, x}.

Proof. The fact that C1(0) ≤ C2(0) is immediate. For the last two inequalities, we proceed as follows. In X−W̃−Y

with X ⊥⊥ Y , we have

I(W̃ ;Y ) = I(W̃ ,X;Y )− I(X;Y |W̃ )

= I(W̃ ;Y |X)− I(X;Y |W̃ )

= H(W̃ |X)−H(W̃ |Y,X)− I(X;Y |W̃ ) (49)

≤ H(W̃ |X)

≤ H(W |X), (50)

where (50) follows from having I(W ;X) = I(W̃ ;X), and H(W̃ ) ≤ H(W ).

For the first inequality, we note that as in the proof of Lemma 1, having Y ⊥⊥ X in the Markov chain X−W̃−Y is

equivalent to having pW̃ |y ∈ Null(PX|W̃ ), ∀y ∈ Y . As a result, the evaluation of C1(0) reduces to the minimization

of H(W̃ |Y ) over {pW̃ |y ∈ Null(PX|W̃ )} such that the marginal pmf of W̃ is preserved. Similarly to the proof

of Corollary 1.2, we have the upper bound of log
(

rank(PX|W̃ )
)

on the minimum value of H(W̃ |Y ), such that

X ⊥⊥ Y , which in turn is upper bounded by log |X |. By noting that H(W̃ ) = CX(W ), the proof of the first

inequality is complete.

Corollary 3.1. If W and X can be written as W = (W ′, V ) and X = (X ′, V ), in which W ′ and X ′ are

conditionally independent given V , then we have Is(W,Xn) = 0,∀n ≥ 1.

Proof. It can be readily verified that in this case, we have W̃ = V , and hence, H(W̃ |X) = 0. From Proposition

5, and Remark 5, we have Is(W,Xn) ≤ J(W,Xn) ≤ C2(0) = 0,∀n ≥ 1.

V. SYNERGISTIC SELF-DISCLOSURE

In some cases there is no clear latent variable of interest, and the goal of the dataset owner is just to disclose

as much of the dataset as possible while keeping the privacy constrains. This section studies this case for large

datasets.

A. Definitions and fundamental properties

Definition 4. The synergistic self-disclosure capacity is defined as

Îs(X
n) , sup

pY |Xn∈A
I(Xn;Y ). (51)

Similarly, the synergistic self-disclosure efficiency is defined by η̂(Xn) = Îs(X
n)/H(Xn).
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One interesting property of Îs(X
n) is that Îs(X

n) ≥ Is(W,X
n) for any latent feature W , being this a direct

consequence of the data processing inequality applied to W −Xn− Y . We now provide a simple upper bound for

the synergistic self-disclosure efficiency.

Lemma 6. The following upper bound holds:

η̂(Xn) ≤ 1−
maxj∈[n]H(Xj)

H(Xn)

Proof. This follows directly from Proposition 2, by setting W = Xn.

The previous lemma shows that η̂(Xn) < 1 for any finite dataset, i.e., finite n. Hence, one might wonder if there

are cases in which η̂ → 1 as n grows. Our next result shows that, remarkably, this happens whenever the entropy

rate of the process, denoted by H(X ), exists and is non-zero.

Theorem 4. Consider a stochastic process {Xi}i≥1, with |Xi| ≤ M < ∞, ∀i ≥ 1. If the entropy rate of this

process exists, then

lim
n→∞

Îs(X
n)

n
= H(X ), (52)

where H(X ) denotes the entropy rate of the stochastic process {Xi}i≥1. Furthermore, if H(X ) 6= 0, we have

lim
n→∞

η̂(Xn) = 1. (53)

Proof. From Corollary 1.2, we have

min
pY |Xn∈A

H(Xn|Y ) ≤ log(nM), (54)

which results in
H(Xn)

n
− log(nM)

n
≤ Îs(X

n)

n
≤ H(Xn)

n
. (55)

Taking the limit n→∞ proves (52). Hence, when H(X ) 6= 0, we can write

lim
n→∞

η̂(Xn) = lim
n→∞

Îs(X
n)

n
H(Xn)
n

=
H(X )

H(X )
= 1. (56)

Theorem 4 signifies the fact that the constraints of perfect sample privacy, i.e., Y ⊥⊥ Xi, ∀i ∈ [n], result in no

asymptotic loss of the disclosure.

Corollary 4.1. Assume that instead of the perfect sample privacy constraint, i.e., Y ⊥⊥ Xi, ∀i ∈ [n], a more

restrictive constraint is used, such as Y ⊥⊥ (Xi, Xi+1), ∀i ∈ [n−1], and in general, Y ⊥⊥ (Xi, . . . , Xi+k−1), ∀i ∈

[n− k + 1] for a fixed (i.e., not scaling with n) positive integer k. The results of Theorem 4 still hold under these

conditions.

Proof. Having Y ⊥⊥ (Xi, . . . , Xi+k−1), ∀i ∈ [n−k+1], the number of rows of matrix P is at most Mk(n−k+1),

which is an upper bound on its rank. Since in the evaluation of self-disclosure capacity, the extreme points of S

have at most Mk(n − k + 1) non-zero elements, and log(Mk(n−k+1))
n → 0 as n → ∞, the proof of Theorem 4

remains unaltered.
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The next example illustrates how the efficiency of synergistic disclosure can converge to 1 as n grows even with

a more stringent privacy constraint compared to perfect sample privacy.

Example 3. Let Xn be a dataset of i.i.d. r.v.’s that are uniformly distributed over [M ] for some positive integer M .

For a fixed k ∈ [n], let Ln−k+1 be a sequence of r.v.’s which are generated according to Li , Q+Xi+Xi+1+. . .+

Xi+k−1(mod M), ∀i ∈ [n− k+ 1], where Q is an auxiliary r.v. which is uniform on [M ], and independent of the

dataset Xn. One can see that L1, . . . , Ln−k+1 are also i.i.d. and uniform on [M ]. Let Y , Ln−k+1. One can verify

that the conditional pmf of Y conditioned on (Xi, . . . , Xi+k−1) is not affected by any realization of the tuple for all

i ∈ [n−k+1], which guarantees the strengthened privacy constraint that Y ⊥⊥ (Xi, . . . , Xi+k−1), ∀i ∈ [n−k+1].

Finally, one can check that

lim
n→∞

η(Xn) ≥ lim
n→∞

I(Xn;Y )

H(Xn)

= lim
n→∞

I(Xn;Y |Q)− I(Xn;Q|Y )

H(Xn)
(57)

≥ lim
n→∞

H(Y |Q)− logM

H(Xn)
(58)

≥ lim
n→∞

H(Y |Q,Xk−1
1 )− logM

H(Xn)
(59)

= lim
n→∞

H(Xn
k )− logM

H(Xn)
(60)

= lim
n→∞

(n− k + 1)M − logM

nM

= 1, (61)

where (57) follows from having Q ⊥⊥ Xn; (58) follows from the fact that Y is a deterministic function of the tuple

(Q,Xn), and I(Xn;Q|Y ) ≤ H(Q) = logM ; (58) is from the fact that conditioning does not increase entropy,

and also we set X0
1 , ∅; (60) is due to the fact that conditioned on (Q,Xk−1

1 ), Y and Xn
k have a one-to-one

correspondence. Finally, in (61), we assume that k satisfies the constraint limn→∞
k
n = 0.

B. Self-disclosure of continuous variables

Here we study the self-disclosure properties of small datasets composed of two continuous variables X1, X2.

Theorem 5. Let X1, X2 be two independent and continuous random variables with X1,X2 ⊂ R. We have

sup
Y |X1,X2:

Y⊥⊥X1, Y⊥⊥X2

I(X1, X2;Y ) =∞ (62)

Proof. Let K be an arbitrary positive integer. Partition X1 into K disjoint intervals Ii, (i ∈ [K]) with equal

probabilities, i.e., Pr{X1 ∈ Ii} = 1
K ,∀i ∈ [K]. Similarly, partition X2 into K disjoint intervals Ji, (i ∈ [K]) with

equal probabilities. Let Ŷ be a deterministic function of (X1, X2) defined as

Ŷ = (i+ j)(mod K) + 1, if (x1, x2) ∈ Ii × Jj , ∀i, j ∈ [K]. (63)
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It is easy to verify that Ŷ is uniformly distributed over [K]. Also, the distribution of Ŷ is the same after observing

any realization of X1 (or X2); hence, we have Ŷ ⊥⊥ X1, Ŷ ⊥⊥ X2. By definition,

sup
Y |X1,X2:

Y⊥⊥X1, Y⊥⊥X2

I(X1, X2;Y ) ≥ I(X1, X2; Ŷ ) = logK, (64)

where we have used the fact that H(Ŷ |X1, X2) = 0, since Ŷ is a deterministic function of (X1, X2). Letting

K →∞ completes the proof.

C. Heuristic approaches

In the method proposed in Section III, the complexity of the computations required for building the optimal

synergistic mapping grows exponentially with the size of the dataset. The main bottleneck of Algorithm III-A is the

exhaustive search over groups of columns of A that is needed to find all the extreme points of S. A straightforward

solution to this issue is to only explore a fixed number of groups of columns, to be chosen randomly. Although this

approach generates a mapping that satisfies perfect sample privacy, numerical evaluations show that it performance

tends to zero if the chosen number of evaluated groups of columns is bounded. Therefore, more ingenious heuristic

methods for building suboptimal mappings are needed.

It is worth to note that the search of extreme points of S can become computationally expensive due to two

reasons: either the dataset has a large number of samples, or their alphabet is big. In the sequel, Section V-C1

presents a procedure that addresses the first issue, while Section V-C2 takes care of the second. Please note that,

although both procedures are presented for scenarios where the datases are composed of independent samples, it is

straightforward to generalize them to datasets composed of groups of samples that are independent of other groups,

and can be jointly processed.

1) Partial processing method: Let us assume that Xn is composed by independent samples. Let us generate

mappings of the form pYpar,j |Xj ,Xj+1
for j ∈ [n− 1] according to

pYpar,j |Xj ,Xj+1
= arg max

pY |Xj,Xj+1
:

Y⊥⊥Xj ,Y⊥⊥Xj+1

I(Xj , Xj+1;Y ), (65)

Note that the complexity of building Y n−1par = (Ypar,1, . . . , Ypar,n−1) scales linearly with the size of the dataset. The

next lemma shows that Y n−1par guarantees perfect sample privacy for Xn.

Lemma 7. With the above construction, Xk ⊥⊥ Y n−1par for all k ∈ [n]. Moreover, the performance of this strategy is

I(Y n−1par ;Xn) =

n−1∑
j=1

I(Ypar,j ;Xj |Xj+1). (66)

Proof. See Appendix E.

Example 4. Consider the case where Xn are i.i.d. samples. Then, the asymptotic disclosure efficiency for this

mapping, denoted by ηpar, is found to be monotonically increasing with limit given by

lim
n→∞

η̂par(X
n) = lim

n→∞

(n− 1)I(Ypar,1;X1|X2)

nH(X1)
=
I(Ypar,1;X1|X2)

H(X1)
.
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The performance of this disclosure mapping for the case of i.i.d. Bernoulli samples is illustrated in Figures 4 and

Figure 5. The asymptotic efficiency is maximal only for the case of P{X1 = 1} = 1/2.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

Dataset distribution P{Xk = 1}

D
is

cl
os

ur
e

(I
s)

Optimal mapping
Partial-processing method

Pre-processing method

Fig. 4: Performance of two heuristic approaches versus the optimal scheme, for the case of n = 4 i.i.d. Bernoulli

data samples with parameter Pr{Xk = 1} represented on the x-axis.
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Fig. 5: Disclosure efficiency for heuristic approaches v/s optimal efficiency – given by Theorem 4 – for

asymptotically large datasets of binary i.i.d. samples.

This approach can be further generalized as follows: for a given k ∈ [n−1], build mappings pYpar(k),j |Xj ,...,Xj+k−1

for j ∈ [n− k + 1] given by

pYpar(k),j |Xj ,...,Xj+k−1
= arg max

pY |Xj,...,Xj+k−1
:

Y⊥⊥Xi,i=j,...,j+k−1

I(Xj , . . . , Xj+k−1;Y ).

Note that (65) correspond to the case of k = 2. Following a proof entirely analogous to the one of Lemma 7,

one can show that Y n−k+1
par(k) = (Ypar(k),1, . . . , Ypar(k),n−k+1) satisfies perfect sample privacy for all k ∈ [n − 1].

Interestingly, schemes with large values of k attain high disclosure efficiency, at the cost of incurring in more

expensive computations for calculating the corresponding mappings. Therefore, k can be tuned in order to balance

efficiency and computational complexity.
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2) Pre-processing of independent datasets: Another approach for building sub-optimal disclosure mappings is

to perform a pre-processing stage over the dataset, in order to make it reach a distribution for which the optimal

disclosure strategy is already known. Furthermore, this pre-processing must be carried out in a way that does not

violate the privacy constraints.

Assume that Xn is a dataset of independent variables with the same alphabet, i.e., Xi ∈ X (= [|X |]),∀i ∈ [n]. If

all Xi’s are uniformly distributed, then the optimal solution is Y = Ln−1, in which Li = Xi +Xi+1( mod |X |);

however, if the marginal distributions, i.e., those of Xi’s, are not uniform, then the aforementioned disclosure

mapping does not satisfy perfect sample privacy anymore, and the optimal solution is obtained via the procedure

explained in Section III. One sub-optimal solution here is to first pass each Xi through a uniformizer, i.e., a pre-

processing mapping, denoted by pSi|Xi , such that Si is uniform over X . Then, the optimal synergistic disclosure

mapping for i.i.d. uniformly distributed data samples can be applied to the new dataset Sn. In this context, we

denote the output by Ypre. Finally, the fact that Xi − Si − Ypre form a Markov chain in conjunction with Ypre ⊥⊥ Si
proves Ypre ⊥⊥ Xi. This procedure is illustrated in the next example.

Example 5. Assume that Xi’s are i.i.d Bern(q) with q ∈ (0, 1/2]. Following the previous discussion, the uniformizer,

i.e., pSj |Xj , is a Z channel with crossover probability β = (0.5− q)/(1− q), as shown in Figure V-C2. With this

construction, we have a new dataset composed of i.i.d. Bern( 1
2 ) samples Si. Finally, we set Ypre = [S1⊕S2, S2⊕

S3, . . . , Sn−1 ⊕ Sn]T . The performance of this strategy is obtained as follows.

I(Ypre;X
n) =

n−1∑
k=1

I(Sk ⊕ Sk+1;Xk, Xk+1)

=

n−1∑
k=1

H(Sk ⊕ Sk+1)−H(Sk ⊕ Sk+1|Xk, Xk+1)

=

n−1∑
k=1

(
1−

∑
(xk,xk+1)∈{0,1}2

H(Sk ⊕ Sk+1|Xk = xk, Xk+1 = xk+1)

)
= (n− 1)

[
1− 2q(1− q)hb(β)− (1− q)2hb

(
2β(1− β)

)]
, (67)

where hb(p) , −p log p− (1− p) log(1− p) denotes the binary entropy function, and the last step follows from the

fact that H(Sk ⊕ Sk+1|Xk = 0, Xk+1 = 1) = H(Sk ⊕ Sk+1|Xk = 1, Xk+1 = 0) = hb(β), H(Sk ⊕ Sk+1|Xk =

0, Xk+1 = 0) = h
(
2β(1 − β)

)
, and H(Sk ⊕ Sk+1|Xk = 1, Xk+1 = 1) = 0. Finally, the disclosure efficiency of

this method, η̂pre(X
n), grows monotonically with n, with the asymptotic disclosure efficiency being as

lim
n→∞

η̂pre(X
n) =

1

h(q)

[
1− 2q(1− q)h(β)− (1− q)2h

(
2β(1− β)

]
.

The performance of this algorithm is shown in Figure 4 and 5 for the case of n = 4.

When processing samples with small alphabets this approach is often less efficient than the one described in

Section V-C1. However, the main strength of this approach is that it can be applied to datasets composed by samples

with large alphabets, e..g. using the mapping outlined in Example 3.
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Fig. 6: Two-step process to generate a suboptimal disclosure mapping. Each sample is first pre-processed via a

Z-channel with β = (1/2− q)/(1− q); then, an optimal processing is performed over Sn.

VI. CONCLUSIONS

This work develops methods to enable synergistic data disclosure, which allow to make publicly available

collective properties of a dataset while keeping the values of each data sample perfectly confidential. The coexistence

of privacy and utility is attained by exploiting counter-intuitive properties of multivariate statistics, which allow a

variable to be correlated with a random vector while being independent to each of it components. An algorithm has

been presented to build an optimal synergistic disclosure mapping following standard LP techniques. Moreover, we

developed closed-form expressions for the synergistic disclosure capacity in a number of scenarios.

While perfect sample privacy could seem to be a restrictive ideal, our results show that in many scenarios there

exist disclosure mappings whose efficiency tends asymptotically to one. This means that the amount of data that

one needs to hide in order to guarantee perfect sample privacy becomes negligible for large datasets. This promising

result – which holds with remarkable generality – shows that perfect sample privacy can be extremely efficient

while providing strong privacy guarantees.

When compared with differential privacy, both approaches share the property of being robust to post-processing

(as any function of a perfect sample-private mapping keeps this property). An advantage of our approach is that,

while differential privacy is known to be less efficient in cases of correlated data [27] (although partial solutions

to this issue have been proposed [27]–[30]), our approach is well-suited to data with any underlying distribution.

However, a limitation of our approach is that it requires knowledge of the statistics of the dataset and latent feature,

which are unknown in many real scenarios. The estimation of unknown statistics can be approached by using

well-established methods of Bayesian inference [31] and machine learning [32]. It is, however, an important future

step is to study how estimation errors could impact the privacy guarantees.

APPENDIX A

Let Y be an arbitrary set. Let S be the set of probability vectors defined in (12). Let Q denote an index set of

rank(P) linearly independent columns of P. Hence, the columns corresponding to the index set Qc = [|X̂ |]\Q can
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be written as a linear combination of the columns indexed by Q. Let π : [nul(P)]→ Qc such that π(i) < π(j) for

i < j, ∀i, j ∈ [nul(P)]. Let r : S→ Rnul(P)+1 be a vector-valued mapping defined element-wise as

ri(p) = p(π(i)), ∀i ∈ [nul(P)]

rnul(P )+1(p) = H(PW |Xp), (68)

where p(π(i)) denotes the π(i)-th element of the probability vector p. Since S is a closed and bounded subset of

P(X̂ ), it is compact. Also, r is a continuous mapping from S to Rnul(P )+1. Therefore, from the support lemma

[26], for every Y ∼ F (y) defined on Y , there exists a random variable Y ′ ∼ p(y′) with |Y ′| ≤ nul(P) + 1 and a

collection of conditional probability vectors pX|y′ ∈ S indexed by y′ ∈ Y ′, such that∫
Y
ri(pX|y)dF (y) =

∑
y′∈Y′

ri(pX|y′)p(y
′), i ∈ [nul(P) + 1].

It can be verified that by knowing the marginals pXi ,∀i ∈ [n], and the nul(P) elements of pXn corresponding to

index set Qc, the remaining |X̂ | − nul(P) elements of pXn can be uniquely identified. Therefore, for an arbitrary

Y in W −Xn − Y , that satisfies Xi ⊥⊥ Y,∀i ∈ [n], the terms pX(·), and I(W ;Y ) are preserved if Y is replaced

with Y ′. So are the conditions of independence as pX|Y ′ ∈ S,∀y′ ∈ Y ′. Since we can simply construct the Markov

chain W −Xn − Y ′, there is no loss of optimality in considering |Y| ≤ nul(P) + 1.

The attainability of the supremum follows from the continuity of I(W ;Y ) and the compactness of S.

APPENDIX B

Let p∗
Y |W̃ ,Xn

denote the maximizer of (41), which induces p∗Y |Xn as

p∗Y |Xn(y|xn) =
∑
w̃

p(w̃|xn)p∗
Y |W̃ ,Xn

(y|w̃, xn), ∀y, xn.

It is evident that when Y is generated by applying p∗Y |Xn to Xn, it satisfies the perfect sample privacy constraints,

i.e., Y ⊥⊥ Xi,∀i ∈ [n]. Let q(w̃, xn, y) , p(w̃, xn)p∗Y |Xn(y|xn), and p∗(w̃, xn, y) , p(w̃, xn)p∗
Y |W̃ ,Xn

(y|w̃, xn).

We first show that

lim
n→∞

dTV (q, p∗) = lim
n→∞

‖q − p∗‖1 = 0, (69)
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where dTV denotes the total vatiation distance. The proof is as follows.

dTV (q, p∗) =
∑
w̃,xn,y

|q(w̃, xn, y)− p∗(w̃, xn, y)|

=
∑
w̃,xn,y

p(w̃, xn)|p∗(y|xn)− p∗(y|w̃, xn)|

=
∑
w̃

p(w̃)
∑
xn

p(xn|w̃)
∑
y

|p∗(y|xn)− p∗(y|w̃, xn)|

=
∑
w̃

p(w̃)
∑

xn∈T nε (pX|W̃ (·|w̃))

p(xn|w̃)
∑
y

|p∗(y|xn)− p∗(y|w̃, xn)|

+
∑
w̃

p(w̃)
∑

xn 6∈T nε (pX|W̃ (·|w̃))

p(xn|w̃)
∑
y

|p∗(y|xn)− p∗(y|w̃, xn)| (70)

=
∑
w̃

p(w̃)
∑

xn∈T nε (pX|W̃ (·|w̃))

p(xn|w̃)
∑
y

|p∗(y|xn)− p∗(y|w̃, xn)|

+ 2
∑
w̃

p(w̃)
∑

xn 6∈T nε (pX|W̃ (·|w̃))

p(xn|w̃) (71)

≤
∑
w̃

p(w̃)
∑

xn∈T nε (pX|W̃ (·|w̃))

p(xn|w̃)
∑
y

|p∗(y|xn)− p∗(y|w̃, xn)|

+ 2Pr{Xn 6∈ T nε (pX|W̃ (·|W̃ ))}

=
∑
w̃

p(w̃)
∑

xn∈T nε (pX|W̃ (·|w̃))

p(xn|w̃)
∑
y

∣∣∣∣ ∑
j∈W̃

pW̃ |Xn(j|xn)

(
p∗
Y |W̃ ,Xn

(y|j, xn)− p∗(y|w̃, xn)

)∣∣∣∣
+ 2Pr{Xn 6∈ T nε (pX|W̃ (·|W̃ ))} (72)

≤
∑
w̃

p(w̃)
∑

xn∈T nε (pX|W̃ (·|w̃))

p(xn|w̃)
∑
j 6=w̃

pW̃ |Xn(j|xn)
∑
y

|p∗
Y |W̃ ,Xn

(y|j, xn)− p∗(y|w̃, xn)|

+ 2Pr{Xn 6∈ T nε (pX|W̃ (·|W̃ ))} (73)

≤ 2
∑
w̃

p(w̃)
∑

xn∈T nε (pX|W̃ (·|w̃))

p(xn|w̃)
∑
j 6=w̃

pW̃ |Xn(j|xn) + 2Pr{Xn 6∈ T nε (pX|W̃ (·|W̃ ))} (74)

= 2
∑
w̃

p(w̃)
∑

xn∈T nε (pX|W̃ (·|w̃))

p(xn|w̃)

p(xn)

∑
j 6=w̃

pW̃ ,Xn(j, xn) + 2Pr{Xn 6∈ T nε (pX|W̃ (·|W̃ ))}

≤ 2
∑
w̃

p(w̃)
∑

xn∈T nε (pX|W̃ (·|w̃))

1

p(w̃)

∑
j 6=w̃

pW̃ ,Xn(j, xn) + 2Pr{Xn 6∈ T nε (pX|W̃ (·|W̃ ))} (75)

= 2
∑
w̃

∑
j 6=w̃

Pr{Xn ∈ T nε (pX|W̃ (·|w̃)), W̃ = j}+ 2Pr{Xn 6∈ T nε (pX|W̃ (·|W̃ ))} (76)

≤ 2
∑
w̃

∑
j 6=w̃

Pr{Xn 6∈ T nε (pX|W̃ (·|j)), W̃ = j}+ 2Pr{Xn 6∈ T nε (pX|W̃ (·|W̃ ))} (77)

≤ 2
∑
w̃

∑
j∈W̃

Pr{Xn 6∈ T nε (pX|W̃ (·|j)), W̃ = j}+ 2Pr{Xn 6∈ T nε (pX|W̃ (·|W̃ ))}

= 2(|W̃|+ 1)Pr{Xn 6∈ T nε (pX|W̃ (·|W̃ ))}, (78)
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where in (71), we use the fact that for two pmfs a(·), b(·),∑
y

|a(y)− b(y)| ≤ 2. (79)

(73) results from the triangle inequality, and the condition j 6= w̃ comes from the fact that in (72), the term

p∗
Y |W̃ ,Xn

(y|j, xn)− p∗(y|w̃, xn) is zero when j = w̃. (74) results from (79). (75) follows from

p(xn|w̃)

p(xn)
=

p(xn|w̃)∑
j pW̃ (j)pXn|W̃ (xn|j)

≤ 1

p(w̃)
.

(77) comes from the fact that ε is chosen in such a way that the typical sets, i.e., T nε (pX|W̃ (·|w̃)), ∀w̃, are disjoint.

Hence,

Pr{Xn ∈ T nε (pX|W̃ (·|w̃))} ≤ Pr{Xn 6∈ T nε (pX|W̃ (·|j))}, ∀j, w̃ ∈ W̃, j 6= w̃.

Since W̃ is a deterministic function of W , we have |W̃| ≤ |W|(<∞). Finally, by noting that as n goes to infinity,

(78) tends to zero, the proof of (69) is complete.

Assume that the mapping p∗Y |Xn is applied to Xn, which, as mentioned earlier, satisfies the perfect sample

privacy constraints. Hence, from the definition of Is, we have10

I(W̃ ;Y ) ≤ Is(W,Xn) ≤ J(W,Xn). (80)

The claim in (42) is proved by showing limn→∞ J(W,Xn)− I(W̃ ;Y ) = 0. To this end, we have

lim
n→∞

∑
w̃,y

|q(w̃, y)− p∗(w̃, y)| = lim
n→∞

∑
w̃,y

∣∣∣∣∑
xn

q(w̃, xn, y)− p∗(w̃, xn, y)

∣∣∣∣
≤ lim
n→∞

∑
w̃,xn,y

|q(w̃, xn, y)− p∗(w̃, xn, y)| (81)

= 0, (82)

where (81) follows from the triangle inequality, and (82) from (69). Hence, the total variation distance between

qW̃ ,Y and p∗
W̃ ,Y

vanishes11 with n. Finally, by noting the continuity of mutual information I(A;B) as a functional

of pA,B , we conclude that

lim
n→∞

J(W,Xn)− I(W̃ ;Y ) = 0,

which, in conjunction with (80), proves (42).

APPENDIX C

Let δ ∈ (0, ε] be an arbitrary real number. First, we show that in the Markov chain X −W −Xn − Y , we have

(1− δ)pX|Xn(x|xn) ≤
∑n
i=1 pXi|Xn(x|xn)

n
≤ (1 + δ)pX|Xn(x|xn),∀x ∈ X ,∀xn ∈ T nδ

(
pX|W (·|w)

)
,∀w. (83)

10From the fact that W − W̃ −Xn and W̃ −W −Xn form a Markov chain, we have I(W ;Y ) = I(W̃ ;Y ).
11Alternatively, (82) can be proved by considering a deterministic channel that outputs (W,Y ), when the tuple (W,Xn, Y ) is fed into it. By

considering input 1 distributed according to p∗W,Xn,Y and input 2 distributed according to qW,Xn,Y , we observe that the TV distance between

their corresponding outputs, i.e., dTV (p∗W,Y , qW,Y ), is not greater than dTV (p∗W,Xn,Y , qW,Xn,Y ), which follows from the data processing

inequality of f-divergences.
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This is proved by first noting that the type of a sequence, as defined in (28), can be alternatively written as

π(x|xn) =

∑n
i=1 pXi|Xn(x|xn)

n
, ∀x ∈ X ,∀xn ∈ Xn, (84)

since the conditional pmf serves as an indicator here. Therefore, from (29), we can write

(1− δ)pX|W (x|w) ≤
∑n
i=1 pXi|Xn(x|xn)

n
≤ (1 + δ)pX|W (x|w),∀x ∈ X ,∀xn ∈ T nδ

(
pX|W (·|w)

)
,∀w.

Moreover, since δ ≤ ε, the δ-typical sets T nδ
(
pX|W (·|w)

)
,∀w, are disjoint, which results in pW |Xn(j|xn) =

0,∀xn ∈ T nδ
(
pX|W (·|w)

)
,∀j 6= w,∀w. Hence,

pX|Xn(·|xn) =
∑
j

pX|W (·|j)pW |Xn(j|xn) = pX|W (·|w), ∀xn ∈ T nδ
(
pX|W (·|w)

)
,∀w.

Therefore, (83) is proved.

In what follows, we show that in the Markov chain X −W −Xn − Y with Y ⊥⊥ Xi,∀i ∈ [n], we have

lim
n→∞

dTV (pX,Y , pX · pY ) = 0. (85)

Let T , ∪wT nδ
(
pX|W (·|w)

)
. We have

pX,Y (x, y) =
∑

xn∈Xn
pX,Xn,Y (x, xn, y)

=
∑
xn∈T

pX,Xn,Y (x, xn, y) +
∑
xn 6∈T

pX,Xn,Y (x, xn, y)︸ ︷︷ ︸
γn(x,y)

(86)

=
∑
xn∈T

pX|Xn(x|xn)p(xn, y) + γn(x, y). (87)

From (83), we have

1

1 + δ

∑n
i=1 pXi|Xn(x|xn)

n
≤ pX|Xn(x|xn) ≤ 1

1− δ

∑n
i=1 pXi|Xn(x|xn)

n
, (88)

which is valid for ∀x ∈ X ,∀xn ∈ T nδ
(
pX|W (·|w)

)
,∀w. Therefore, from (87), and (88), we have∑n

i=1

∑
xn∈T pXi|Xn(x|xn)p(xn, y)

n(1 + δ)
≤ pX,Y (x, y)− γn(x, y) ≤

∑n
i=1

∑
xn∈T pXi|Xn(x|xn)p(xn, y)

n(1− δ)
. (89)

We can also write

pXi,Y (x, y) =
∑

xn∈Xn
pXi,Xn,Y (x, xn, y)

=
∑
xn∈T

pXi,Xn,Y (x, xn, y) +
∑
xn 6∈T

pXi,Xn,Y (x, xn, y)︸ ︷︷ ︸
ηn(x,y)

. (90)

Therefore, from (90), we can write (89) as∑n
i=1 (pXi,Y (x, y)− ηn(x, y))

n(1 + δ)
≤ pX,Y (x, y)− γn(x, y) ≤

∑n
i=1 (pXi,Y (x, y)− ηn(x, y))

n(1− δ)
,

which further simplifies to

pX(x)pY (y)− ηn(x, y)

1 + δ
≤ pX,Y (x, y)− γn(x, y) ≤ pX(x)pY (y)− ηn(x, y)

1− δ
, (91)
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since the distribution of (Xi, X
n, Y ) is index-invariant, and pXi(·) = pX(·),∀i ∈ [n]. By adding γn(x, y) −

pX(x)pY (Y ) to (91), we have

γn(x, y)− ηn(x, y)

1 + δ
− δ

1 + δ
pX(x)pY (y) ≤ pX,Y (x, y)− pX(x)pY (y) ≤ γn(x, y)− ηn(x, y)

1− δ
+

δ

1− δ
pX(x)pY (y).

(92)

From the definitions of γn, ηn, in (86) and (90), respectively, we have∑
x,y

γn(x, y) =
∑
x,y

ηn(x, y) = Pr{Xn 6∈ T}, (93)

which, from LLN, tends to zero with n. Hence, from (92), we can write

lim
n→∞

∑
x,y

∣∣∣∣pX,Y (x, y)− pX(x)pY (y)

∣∣∣∣ ≤ δ

1− δ
. (94)

Since δ ∈ (0, ε] was chosen arbitrarily, we must have

lim
n→∞

dTV (pX,Y , px · pY ) = lim
n→∞

∑
x,y

∣∣∣∣pX,Y (x, y)− pX(x)pY (y)

∣∣∣∣ = 0. (95)

This proves (85), which states that in the Markov chain X −W − Xn − Y , where Y ⊥⊥ Xi,∀i ∈ [n], the pair

(X,Y ) moves towards independence with n. Finally, the continuity of mutual information enables us to conclude

that

lim
n→∞

I(X;Y ) = 0. (96)

APPENDIX D

We divide the proof of the continuity of C1(·) into two parts: The continuity for α > 0, and the continuity at

α = 0. Note that only the latter is used in this paper, but the general claim is proved in this appendix.

The first part follows from the concavity of C1(·). Assume p1Y |W is the maximizer in C1(α1), and p2Y |W is that

in C1(α2). Note that the mutual information terms involved in C1(·) do not depend on the actual realizations of

the random variables, but their mass probabilities. Hence, we can assume that Y1 ∩ Y2 = ∅, where Yi denotes the

support of Y induced by the mapping piY |W , i ∈ [2]. Let Z be a binary random variable as a deterministic function

of Y that indicates whether it belongs to Y1 or Y2. Construct the mapping pY |W = λp1Y |W + (1 − λ)p2Y |W for

λ ∈ [0, 1]. Since the pmf of Z does not change by conditioning on W , we have Z ⊥⊥ W , and obviously, Z ⊥⊥ X ,

due to the Markov chain X −W − Y − Z. As a result, using the aforementioned mapping pY |W , we have

I(X;Y ) = I(X;Y,Z) = I(X;Y |Z) = λα1 + (1− λ)α2

I(W ;Y ) = I(W ;Y, Z) = I(W ;Y |Z) = λC1(α1) + (1− λ)C1(α2),

which proves the concavity of C1(·), and hence, its continuity over α > 0.

In order to show the continuity at zero, it is sufficient to consider a sequence of solutions of C1(αn), i.e., {pnY |W },

where αn tends to zero. From Pinsker inequality, we must have ‖pn(x, y)−p(x)pn(y)‖1 → 0, which happens if and

only if at least one of the following statements holds for any y ∈ Y: 1) pnW |Y (·|y)→ Null(PX|W ), 2) pnY (y)→ 0,

which in any case, forces C1(αn)→ C1(0).
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APPENDIX E

The joint distribution of Xn and Y n−1par can be written as

pXn,Y n−1
par

(xn, yn−1par ) =

n∏
i=1

pXi(xi)

n−1∏
j=1

pYpar,j |Xj ,Xj+1
(ypar,j |xj , xj+1). (97)

Therefore, the indepedency between a given Xk and Y n−1par , for any k ∈ [n], can be directly verified by noting that

I(Xk;Y n−1par ) = I(Xk;Ypar,k−1, Ypar,k)

= I(Xk;Ypar,k|Ypar,k−1)

= I(Ypar,k−1, Xk;Ypar,k)

= 0.

Above, the first equality uses the structrure of (97), and the rest of the derivation follows the fact that I(Xk;Ypar,k) =

I(Xk;Ypar,k−1) = 0, and that Ypar,k−1 −Xk − Ypar,k form a Markov chain, as shown below:

pYpar,k−1,Ypar,k|Xk(ypar,k−1, ypar,k|xk) =
∑

xk−1,xk+1

pYpar,k−1,Ypar,k,Xk−1,Xk+1|Xk(ypar,k−1, ypar,k, xk−1, xk+1|xk)

=
∑

xk−1,xk+1

pXk−1
(xk−1)pXk+1

(xk+1)

k∏
j=k−1

pYpar,j |Xj ,Xj+1
(ypar,j |xj , xj+1)

=
∑
xk−1

pXk−1
(xk−1)pYpar,k−1|Xk−1,Xk(ypar,k−1|xk−1, xk)

×
∑
xk+1

pXk+1
(xk+1)pYpar,k|Xk,Xk+1

(ypar,k|xk, xk+1)

= pYpar,k−1|Xk(ypar,k−1|xk)pYpar,k|Xk(ypar,k|xk). (98)

For the second part of the Lemma, it can be shown that

I(Xn;Y n−1par ) = I(Xn;Y n−1par )

=
n−1∑
j=1

I(Xn;Ypar,j |Y j−1par )

=

n−1∑
j=1

[
I(Xn;Yj,par)− I(Yj,par;Y

j−1
par )

]
(99)

=

n−1∑
j=1

I(Xj , Xj+1;Yj,par) (100)

=

n−1∑
j=1

I(Xj ;Ypar,j |Xj+1).
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Above, (99) uses the fact that Ypar,j −Xn − Y j−1par is a Markov chain, as can be seen from

pY j−1
par ,Ypar,j |Xn(yj−1par , ypar,j |xn) =

∑
ypar,j+1,...,ypar,n−1

n−1∏
i=1

pYpar,i|Xi,Xi+1
(ypar,i|xi, xi+1)

=

j∏
i=1

pYpar,i|Xi,Xi+1
(ypar,i|xi, xi+1) (101)

= pY j−1
par |Xn(yj−1par |xn)pYpar,j |Xn(ypar,j |xn).

Finally, (100) uses that

pY j−1
par ,Ypar,j |Xj (y

j−1
par , ypar,j |xj) =

∑
xi:i 6=j

pY j−1
par ,Ypar,j |Xn(yj−1par , ypar,j |xn)

∏
k∈[n]:k 6=j

pXk(xk)

=
∑

x1,...,xj−1

∑
xj+1

j∏
i=1

pYpar,i|Xi,Xi+1
(ypar,i|xi, xi+1)pXj+1

(xj+1)

j−1∏
k=1

pXk(xk) (102)

=
∑
xj+1

pYpar,j |Xj ,Xj+1
(ypar,j |xj , xj+1)pXj+1

(xj+1)

×
∑

x1,...,xj−1

j−1∏
i=1

pYpar,i|Xi,Xi+1
(ypar,i|xi, xi+1)

j−1∏
k=1

pXk(xk)

= pYpar,j |Xj (ypar,j |xj) · pY j−1
par |Xj (y

j−1
par |xj).

and hence Ypar,j−Xj−Y j−1par is also a Markov chain and, in turn, I(Ypar,j ;Y
j−1

par ) ≤ (Ypar,j ;Xj) = 0. Above, (102)

is attained using (101).
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