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SEAL: Sealed-Bid Auction Without Auctioneers
Samiran Bag, Feng Hao, Siamak F. Shahandashti, and Indranil G. Ray

Abstract—We propose the first auctioneer-free sealed-bid auc-
tion protocol with a linear computation and communication
complexity O(c), c being the bit length of the bid price. Our
protocol, called Self-Enforcing Auction Lot (SEAL), operates
in a decentralized setting, where bidders jointly compute the
maximum bid while preserving the privacy of losing bids. In
our protocol, we do not require any secret channels between
participants. All operations are publicly verifiable; everyone
including third-party observers is able to verify the integrity of
the auction outcome. Upon learning the highest bid, the winner
comes forward with a proof to prove that she is the real winner.
Based on the proof, everyone is able to check if there is only one
winner or there is a tie. While our main protocol works with
the first-price sealed-bid, it can be easily extended to support
the second-price sealed-bid (also known as the Vickrey auction),
revealing only the winner and the second highest bid, while
keeping the highest bid and all other bids secret. To the best of
our knowledge, this work establishes to date the best computation
and communication complexity for sealed-bid auction schemes
without involving any auctioneer.

I. INTRODUCTION

Auction is a method of allocating scarce resources based on
competition. Goods or services are sold by offering them to
bidding, and the winner is the bidder who has the highest bid.
From the allocation of bandwidth spectrum to the sales of
antiques, painting and rare collectibles, auction has become
a prevailing practice in our society. It is also commonly
used by governments, e.g., long-term securities are sold in
weekly auctions conducted by the U.S. Treasury to finance
the borrowing needs of the government [1].

In general, there are two types of auctions: open cry and
sealed bid. In an open-cry auction, the price may be ascending
from a reserve price until there is only one bidder left, or
descending from a high price until the first bidder comes
forward willing to pay at that price. The former is often known
as “English auction” while the later “Dutch auction”. In a
sealed-bid auction, each bidder hands over a sealed envelope
containing their secret bid to an auctioneer. The auctioneer
opens all envelopes and declares the highest bidder as the
winner, while keeping losing bids secret. In the first-price
sealed-bid, the winner pays for the highest bid, but in the
second-price sealed-bid, the winner only needs to pay the
second highest bid. The second-price sealed-bid is also called
the Vickrey auction (named after William Vickrey).

There has been extensive research in auction theory to show
the inherent relations between various auction schemes [1].
In particular, the Dutch auction is shown to be strategically

S. Bag, F. Hao and I.G. Ray are with the Department of Computer
Science, University of Warwick, United Kingdom. E-mails: {samiran.bag,
feng.hao, indranil.ghosh-ray}@warwick.ac.uk. S.F. Shahandashti is with the
Department of Computer Science, University of York, United Kingdom.
Email: siamak.shahandashti@york.ac.uk. This work is supported by the ERC
starting grant, No. 306994, and Royal Society grant, ICA/R1/180226.

equivalent to the first-price sealed-bid auction based on game
theory. The English auction is equivalent to the Vickrey
auction under the assumption that bidders evaluate the value of
the item in private. The Vickrey auction is extremely important
in auction theory, as it is strategy-proof. In other words, when
the evaluated values are all private, the best strategy for bidders
is to bid their true evaluation. William Vickrey first developed
the theory for this auction scheme and received a Nobel
prize in 1996. The scheme is thereafter named after him in
recognition of his ground-breaking contributions.

Unfortunately, the Vickrey auction is rarely used in prac-
tice [2]. This is largely due to two reasons, both of which
are related to the distrust on the auctioneer. First, a dishonest
auctioneer might surreptitiously substitute the second highest
price to one slightly below the top price to increase the
revenue. Second, a dishonest auctioneer might disclose the
losing bids to other parties, since the true evaluation of the
auction item is considered a commercial secret.

Since the early work in this field by Franklin and Reiter
in 1996 [3], many sealed-bid e-auction schemes have been
proposed [2], [4]–[10]. However, the past schemes generally
assume the role of an auctioneer (as in traditional sealed-bid
auctions). To mitigate the trust problem about the auctioneer,
researchers propose to apply threshold cryptography or multi-
party computation (MPC) techniques [10], [11] to distribute
the trust from a single auctioneer to two or several. However,
one can never rule out the possibility that the auctioneers may
collude all together to compromise the privacy of the bids [7].

In this paper, we propose to address the trust issue about the
auctioneer by removing the need for any auctioneer completely
from an auction system. We consider a totally decentralized
setting with public verifiability. In this setting, the auction is
run by the bidders themselves without involving any auction-
eer, and all operations are publicly verifiable without any secret
channels. Clearly, generic MPC techniques [12] that require
pairwise secret channels are unsuitable for our purpose. Our
setting is similar to the “bidder-resolved auction” proposed by
Brandt [2], [7], [13], [14]), but Brandt’s schemes also involve a
seller, who actively takes part in the protocol and is trusted not
to collude with bidders. Furthermore, Brandt’s schemes incur
an exponential system complexity O(2c) for computation and
bandwidth usage, c being the bit length of the bid price. No
sealed-bid auction scheme in the past has achieved the linear
system complexity O(c) in a decentralized setting.

Our contributions in this paper are summarized below.
• We propose the first decentralized sealed-bid auction

protocol with a linear computation and communication
complexity O(c), c being the bit length of the bid price.
Our protocol is publicly verifiable without involving
any auctioneer or requiring any secret channels between
bidders.



• We present security proofs to prove the correctness, and
privacy aspects of the protocol, as well as performing
analysis on the system complexity.

• We show how our first-prize sealed-bid auction scheme
can be extended to support second-prize sealed-bid auc-
tions (Vickrey auction) while maintaining the linear sys-
tem complexity.

II. PRELIMINARIES

A. Communication model

Sealed-bid auction can be considered a special instance of
a secure multiparty computation (MPC) problem, in which
participants jointly compute the highest bid without revealing
losing bids. In a typical MPC setting, the communication
model assumes that there exist pairwise secret and authenti-
cated channels between participants, in addition to an authenti-
cated public channel [8], [10], [15]. In the real-world example
of applying MPC to the Danish sugar beets auction, three
appointed auctioneers set up pairs of public and private key,
which were used to establish secure point-to-point channels
between the auctioneers [9]. The existence of secret channels
is not considered a problem in [9], since by design all farmers
are required to trust auctioneers – more specifically, trusting
that at least 2 out of the 3 auctioneers are honest.

In a decentralized setting without any auctioneer, we con-
sider it desirable to remove any secret channels, so all oper-
ations are publicly verifiable. This is especially important for
third-party observers (e.g., the seller) who are not involved
in the protocol, but still want to verify the integrity of the
auction process. Therefore, in our model, we only assume an
authenticated public channel available to all participants. Such
a channel can be realized using physical means or a public
bulletin board, as described in [6], [16], [17].

B. A Modified Anonymous Veto Protocol

A basic building block in our auction protocol is a primitive
that securely computes the logical-OR of binary inputs without
revealing each individual bit. We choose to modify Hao-
Zieliński’s Anonymous Veto network (AV-net) protocol [18]
for our purpose. This protocol is chosen for its optimal effi-
ciency in terms of the number of rounds, the computation and
the communication bandwidth. However, we need to modify
the original scheme to make it applicable to our system.

The modified AV-net protocol works as follows. Assume a
group of n voters who wish to find out if there is one voter
who would like to veto a motion. In other words, they wish
to securely compute the logical-OR function of a number of
input bits, each bit coming from a separate entity. Let G be a
group of p elements in which the Decisional Diffie-Hellman
problem is assumed to be intractable. Let g be a random
generator of G. All computations in G are modular operations
with respect to a prime modulus q, but we omit the mod q
notation for simplicity. Each voter Vi holds a secret bit
vi ∈ {0, 1}, and they compute the logical-OR

∨n
i=1 vi in

two rounds. For any two integers a and b, where a < b, we
denote by [a, b], the set: {a, a+ 1, . . . , b}.

Round I: Each voter Vi : i ∈ [1, n] chooses two random
elements (xi, ri) ∈ Z2

p and computes Xi = gxi , Ri = gri .
Vi posts (Xi, Ri) on the public bulletin board, together with
non-interactive zero-knowledge (NIZK) proofs [19], [20]
to prove the knowledge of xi and ri, respectively, using
Schnorr’s signature [18].

Round II: Each voter Vi : i ∈ [1, n] computes
Yi =

∏i−1
j=1Xj/

∏n
j=i+1Xj . Vi also computes an encrypted

ballot bi and posts it on the bulletin board together with a
NIZK proof to show bi is well-formed.

bi =

{
Y xii if vi = 0
Rxii if vi = 1

The NIZK proof in the second round is to prove the following
statement: (bi = Y xii ) ∨ (bi = Rxii ). Note that the first term is
equivalent to proving {Xi, Yi, bi = Y xii } is a DDH tuple and
the second term equivalent to proving {Xi, Ri, bi = Rxii } is a
DDH tuple. Thus, the NIZK proof on the well-formedness of
bi is a disjunctive proof of two sub-statements. More details
on the zero-knowledge proofs can be found in the Appendix.

After the second round, everyone can compute B =
∏n
i=1 bi

after fetching the ballots bi : i ∈ [1, n] from the bulletin board.
It is easy to see that if every input is 0, B = 1; otherwise, if
at least one input is 1, B 6= 1 with overwhelming probability
(i.e., B is a random element in G). Hence, the logical-OR of
all input bits has been securely computed by all participants
without revealing the value of each individual bit. The key
element in this protocol is the fact that

∏
i Y

xi
i = 1, i.e., the

random factors xi are all canceled out. For a proof of this fact,
the reader is referred to [18].

Our modified veto protocol differs from Hao-Zieliński’s AV-
net protocol [18] in that we use two random variables, xi and
ri, while AV-net only uses one. This requires more computa-
tion from each participant, but the (asymptotic) computation
and communication complexity remains the same as AV-net.
In AV-net, the ‘1’ vote (or the ‘veto’ vote) is encoded by
raising a pre-defined generator to the power of a random
variable, while in the modified veto protocol, the ‘1’ vote
is encoded by raising a random generator to the power of
a pre-defined exponent (namely, xi). This modification allows
us to effectively integrate the veto protocol into the e-auction
scheme as some zero-knowledge proofs will require proving
the equality of the exponents. This should become clear after
we explain the details of the a-auction scheme in the next
section. In the rest of the paper, we will simply refer to the
modified anonymous veto protocol as the “veto protocol”.

C. Intuition Behind the Scheme

First, we explain the high-level intuition of the protocol.
Assume there are n bidders denoted as Vi, i ∈ [1, n]. The
binary representation of each bid contains c bits.1 For any
bid price pi, i ∈ [1, n], let pi1||pi2|| . . . ||pic be the binary
representation of pi, with || denoting concatenation.

1The bid may fall in a sub-range of [0, 2c−1]. We do not consider this detail
since we are mainly concerned with the system complexity of the protocol.
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The protocol has two phases. In the first phase, every bidder
Vi commits their bid pi on a public bulletin board. In the
second phase, all bidders jointly compute the maximum bid
bit-by-bit, starting from the most significant bit.

As an example, we start from the most significant bit
position on the left, as shown in Figure 1. We denote this
starting position as j = 1. We use the modified anonymous
veto protocol as a basic building block to compute the logical
OR of the input bits without revealing individual bits. Now
every bidder Vi uses a bit dij (j = 1) as the input to this veto
protocol, with a NIZK proof to prove that dij = pij without
revealing the committed bit. All bidders are able to compute
the logical OR of all dij bits for the first bit position (j = 1).

Tj = d1j ∨ d2j ∨ . . . ∨ dnj (1)

At each iteration for j = 1, 2, . . ., when the logical OR
result Tj is 1, we call this bit position a deciding position;
otherwise, we call it a non-deciding position. We use

←−
j to

denote the deciding position that immediately precedes the
jth bit position (

←−
j will always return a valid bit position in

the context of our protocol after the first deciding position is
past).

The first deciding position is called a junction (see Figure 1).
This is where Tj = 1 (j = 1, 2, . . .) for the first time. After
this junction, bidders still use the veto protocol to compute
the logical OR of the input bits, but the rule for specifying
the input bit is different. Instead of using a bit that must be
the same as the committed bit, each bidder uses the bit dij =

pij ∧ di←−j , where
←−
j denotes the previous deciding position

before j. In addition, each bidder provides a zero-knowledge
proof to prove the following statement.

(
dij = pij AND d

i
←−
j

= 1
)

OR
(
dij = 0 AND d

i
←−
j

= 0
)
(2)

The zero-knowledge proof statement in Equation 2 is the
key to our auction protocol. Essentially, it enforces the fol-
lowing behavior: at each deciding bit position, if the bidder
Vi’s committed bit in the corresponding position is 0, it means
Vi has lost, hence in all subsequent bit positions, Vi is enforced
to use 0 as the input to the veto protocol. However, the bidders
do not need to reveal whether they have already lost or they
are still in the race. Losing bidders simply follow through the
rest auction procedure so no information about their bids will
be revealed. The guarantee of the privacy for the losing bids
provides an incentive for losing bidders to follow through the
rest of the process. In practice, bidders often pay a deposit and
get it refunded after showing that they have honestly followed
the auction rules. This gives another incentive for all bidders
to complete the whole auction protocol. At the end of the
auction, every bidder, as well as any observer, can compute
the maximum bid, but without learning losing bids. In the next
section, we will explain details of building a secure sealed-bid
auction scheme based on this intuition.

III. OUR MAIN PROTOCOL

A. Requirements

Our main protocol is called Self-Enforcing Auction Lot2.
We design the protocol to fulfill the following requirements.

1) Public verifiability. All operations in the auction process
are publicly verifiable. No secret channels are required
between participants. Only an authenticated public chan-
nel is available to all participants (which can be realized
by using a public bulletin board as in [8], [16], [17]).

2) Correctness. The protocol is guaranteed to output the
highest bid with proofs that everyone is able to verify.

3) Losing-bid privacy. While the protocol outputs the high-
est bid, the privacy of losing bids should be preserved,
as we formally define below.

In the generic definition of input privacy in MPC, each
participant is limited to learn nothing more than their own
input and the output of the function [12]. Based on this,
we define inclusive-privacy for sealed-bid auction, in which
participants perform a secure computation of a max function.
We call it “inclusive” as the function includes inputs pi from
all participants, i ∈ [1, n].

Definition 1 (Inclusive-privacy): In an auction protocol
that satisfies inclusive-privacy, each bidder Vi learns nothing
more than their own input and the output of the function
fmax(p1, . . . , pn).

We slightly modify the above definition by excluding the
bidder’s own input from the inputs of the function and intro-
duce exclusive-privacy as defined below. Here we consider a
more general case where a set of bidders may collude together.
Let C be a set of colluding bidders and H be the rest of the
bidders, i.e. C ∪ H = [1, n]. Let θ be the size of H and
hi ∈ H , i ∈ [1, θ]. At minimum, C contains only one bidder,
but in the general case, it may contain any number of bidders.

Definition 2 (Exclusive-privacy): In an auction protocol that
satisfies exclusive-privacy, C learns nothing more than their
own input and the output of the function fmax(ph1

, . . . , phθ ).

The generic definition of privacy (namely, inclusive-privacy)
is commonly used in the past MPC literature, whereas we
consider the latter definition of privacy, i.e. exclusive-privacy
in the publicly verifiable setting. Protocols that use general
MPC techniques have been shown to be able to satisfy the
strong notion of inclusive-privacy, but this relies on several
important assumptions [12]. First of all, the privacy of inputs
depends on pairwise secret channels between participants,
which however do not exist in our setting. Second, normally
the majority of the participants are assumed to be honest. In
our case, we consider the vast majority of participants (up
to n − 2) may be dishonest; in the extreme case, as long
as there is at least another honest bidder in H , the bidder’s
privacy should still be preserved (if all bidders except one are
dishonest, the privacy guarantee for the remaining bid would
not be meaningful since dishonest bidders can trivially find
out the bid by supplying zeros as their own inputs). In such a

2In the auction terminology, a “lot” is an item or set of items for sale.
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Fig. 1: Example of an execution of our protocol, starting with three bids: 10, 9, and 7, and calculating the maximum bid, i.e.,
10, in five steps.

setting, general MPC protocols cannot assure any privacy of
inputs at all.

Therefore, although exclusive-privacy is a slightly weaker
notion of privacy, our protocol guarantees a much stronger
assurance of privacy in practice than general MPC protocols
in a setting where no pairwise secret channels exist and a vast
majority of participants may be compromised. We should also
highlight that even with an ideal MPC protocol (say based on a
simulated trusted third party) that provides inclusive-privacy,
colluding bidders can always find out the maximum of the
inputs of the non-colluding set by supplying 0s as their inputs.
Hence, the difference between the two notions is subtle. As
we will explain in Section III-C, allowing a bidder to find out
the maximum of the other bids can prove crucially useful in
the context of an auction system, especially in constructing an
efficient Vickrey auction scheme and in detecting a tie. In the
following section, we will present a decentralized first-price
sealed-bid auction protocol that guarantees exclusive-privacy,
and in the meanwhile achieves a linear system complexity with
respect to the bit length of the bid.

B. Protocol

Let G = 〈g〉 be the same group mentioned in Section II-B.
Our protocol has c iterations, c being the number of bits in
the binary representation of bid-prices. The bid price by Vi is
expressed in the binary form as: pi = pi1||pi2|| . . . ||pic, where
pij ∈ {0, 1}, with pi1 being the most significant bit and pic
the least significant bit.

a) Commit: In the Commit phase, bidders commit their
bids to the public bulletin board. Each bidder Vi computes c
commitments, each one for a bit of pij , for j ∈ [1, c]. In order
to do this, Vi selects random αij , βij ∈R Zp, j ∈ [1, c] and
computes c individual commitments for c distinct bits of pij
as χi = {εij : j ∈ [1, c]}, where :

εij = 〈gαijβijgpij , gαij , gβij 〉, j ∈ [1, c]

If the Decisional Diffie Hellman assumption holds true in
G, (gαij , gβij , gαijβij )

c
≈ (gαij , gβij , gαijβijg) [21], where

c
≈

denotes computational indistinguishability. Hence, the com-
mitment would not reveal the value of the committed bit pij ,
for all i ∈ [1, n], j ∈ [1, c]. Each bidder Vi posts a NIZK proof
of well formedness of each committed bit in the form of εij .
The NIZK proof shows pij is either 0 or 1 without revealing
which one. The construction of this one-of-two NIZK proof
can be found in [22] and it is also elaborated in the Appendix.

In the second phase, bidders jointly compute the maximum
bid without revealing other bids. This proceeds in two stages
as indicated in Figure 1.

b) Stage 1: Bidders start from the most significant
bit position j = 1, and move to the less significant bit
positions bit-by-bit until they reach a junction where the
logical-OR computation at that bit position is 1 for the first
time (see an example of the junction in Figure 1). In the jth
bit position, bidders apply the two-round anonymous veto
protocol described in Section II-B with private binary inputs
dij , for i ∈ [1, n], with a zero-knowledge proof to prove that
the input bit is the same as the committed one, i.e., dij = pij .

Round 1: Each bidder Vi, i ∈ [1, n] selects two private
keys xij , rij ∈ Zp, stores the private keys and publishes the
corresponding public keys Pubij = (Xij , Rij) = (gxij , grij )
on the bulletin board. The bidder Vi also publishes NIZK
proofs of knowledge of xij = loggXij and rij = logg Rij
(See the Appendix for the construction of this NIZK proof).

Round 2: Each bidder Vi, i ∈ [1, n] computes a cryptogram

bij =


Y
xij
ij = gxijyij if pij = 0 ( 0-cryptogram);

R
xij
ij = gxijrij if pij = 1 ( 1-cryptogram).

where Yij = gyij =
∏i−1
k=1 g

xkj/
∏n
k=i+1 g

xkj =

g
∑i−1
k=1 xkj−

∑n
k=i+1 xkj . Vi also computes a proof πij of

well-formedness of bij . Vi posts bij and πij on the bulletin
board.

Here, bij is an encrypted ciphertext of dij , and πij is
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the NIZK proof that serves to prove dij = pij without
revealing the committed bit. Effectively, πij is a proof of the
following logical statement.

(dij = 0 ∧ pij = 0) ∨ (dij = 1 ∧ pij = 1)

The public parameters are Xij = gxij , Yij = gyij , Rij = grij .
Let us assume εij = 〈cij , Aij , Bij〉. If dij = 0, (Xij , Yij , bij)
and (Aij , Bij , cij) are two DDH tuples. Also if dij = 1,
(Xij , Rij , bij) and (Aij , Bij , (cij/g)) are two DDH tuples as
well. So we have to prove a statement that is a logical-OR of
a pair logical-AND sub-statements such that each of the two
sub-statements is logical-AND of two DDH tuples. Thus, the
above statement is equivalent to the following statement (see
[23], [24] and the appendix for the construction of this type
of NIZK proof):

((bij = gxijyij ∧Xij = gxij ∧Yij = gyij )∧(cij = gαijβij ∧
Aij = gαij ∧ Bij = gβij )) ∨ ((bij = gxijrij ∧ Xij = gxij ∧
Rij = grij ) ∧ (cij = gαijβijg ∧Aij = gαij ∧Bij = gβij ))

After the two rounds, all the bidders verify that the NIZK
proofs are correct, and then compute the logical-OR of the
input bits dij for the jth position: Tj =

∨n
i=1 dij . This logical-

OR computation is realized by multiplying bij , i ∈ [1, n]
and comparing the result against 1 (see the veto protocol in
Section II-B). If Tj = 0, all bidders remain in Stage 1, and
move on to compute the logical-OR of the next bit position.
However, if Tj = 1, this means the junction is reached, and
all bidders move to Stage 2.

c) Stage 2: Stage 2 is almost the same as Stage 1,
except that dij is defined differently. Instead of using a
bit that must be the same as the committed one, every
bidder now uses dij = pij ∧ di←−j where d

i
←−
j

is the bit
that the bidder used in the previous deciding bit position.
For the completeness, we describe the full details of
Stage 2 below. Assume this stage starts from the jth position,
and iterates towards the lest significant bit position until j = c.

Round 1: Each bidder Vi, i ∈ [1, n] selects two private
keys xij , rij ∈ Zp, stores the private keys and publishes the
corresponding public keys Pubij = (Xij , Rij) = (gxij , grij )
on the bulletin board. The bidder Vi also publishes NIZK
proofs of knowledge of xij = loggXij and rij = logg Rij .

Round 2: each bidder Vi, i ∈ [1, n] chooses a bit
dij = pij ∧ di←−j and computes a cryptogram of dij .

bij =


Y
xij
ij = gxijyij if pij ∧ di←−j = 0; ( 0-cryptogram)

R
xij
ij = gxijrij if pij ∧ di←−j = 1. ( 1-cryptogram)

where Yij = gyij =
∏i−1
k=1 g

xkj/
∏n
k=i+1 g

xkj =

g
∑i−1
k=1 xkj−

∑n
k=i+1 xkj . Vi also computes a proof πij of well-

formedness of bij . Vi posts bij and πij on the bulletin board.
The NIZK proof πij is a proof of the following logical

statement:

(dij = 1 ∧ (pij ∧ di←−j ) = 1) ∨ (dij = 0 ∧ (pij ∧ di←−j ) = 0)

This is equivalent to proving the following logical statement.
(dij = 1∧pij = 1∧d

i
←−
j

= 1)∨(dij = 0∧pij = 0∧d
i
←−
j

= 1)∨
(dij = 0 ∧ d

i
←−
j

= 0).

Let us assume εij = 〈cij , Aij , Bij〉. We express the above
logical statement in terms of the ciphertexts.

(bij = gxijrij ∧ cij = gαijβij · g ∧ b
i
←−
j

= gxi
←−
j
r
i
←−
j )

∨ (bij = gxijyij ∧ cij = gαijβij ∧ b
i
←−
j

= gxi
←−
j
r
i
←−
j )

∨ (bij = gxijyij ∧ b
i
←−
j

= gxi
←−
j
y
i
←−
j )

(3)

The public parameters are Xij = gxij , Yij = gyij , Rij =
grij , Aij = gαij and Bij = gβij , X

i
←−
j

= gxi
←−
j , Y

i
←−
j

=

gyi
←−
j , R

i
←−
j

= gri
←−
j . Notice that if dij = 1, pij = 1 and d

i
←−
j

=

1, (Xij , Rij , bij), (Aij , Bij , cij/g) and (X
i
←−
j
, R

i
←−
j
, b
i
←−
j

) are
three DDH tuples. Also if dij = 0, pij = 0 and d

i
←−
j

= 1,
(Xij , Yij , bij), (Aij , Bij , cij) and (X

i
←−
j
, R

i
←−
j
, b
i
←−
j

) are three
DDH tuples as well. Lastly, if dij = 0 and d

i
←−
j

= 0,
(Xij , Yij , bij) and (X

i
←−
j
, Y
i
←−
j
, b
i
←−
j

) are two DDH tuples.
So we have to prove a statement that is a logical-OR of
three logical-AND sub-statements. In each of the three sub-
statements, we essentially prove the items form valid DDH
tuples such that each of the three sub-statements is a logical-
AND of two/three statements in the form of DDH tuples. The
construction of a NIZK proof for the above statement can be
found in [23], [24]. It is also described in the Appendix.

After the second round, all bidders, as well as anyone
else with a read access to the bulletin board, can check all
NIZK proofs, and compute Tj =

∨n
i=1 dij based on the veto

protocol described in Section II-B. The bidders follow the
same procedure to iterate through the rest of bit positions. The
logical-OR output from each of the c bit positions constitutes
the binary representation of the highest bid, i.e. the highest
bid is T1||T2|| · · · ||Tc in binary format. Once, the highest bid
is computed, the winning bidder Vw can come forward and
prove that she is indeed the real winner either by opening
her commitments {εwj : j ∈ [1, c]} or by revealing the
randomness xwκ = loggXwκ used in the last deciding bit
position allowing everyone else to decipher the cryptogram
submitted by her in the iteration corresponding to the last
deciding bit position. It is easy to see that only the winner(s)
would submit 1-cryptogram(s) in the iteration corresponding
to the last deciding bit position. Based on xwk, everyone is
able to verify if there is only one winner of if there is a tie.

C. Extension to Vickrey auction
Our main protocol is described for the first-price sealed-bid

auction. A straightforward way to extend it to support second-
price sealed-bid (i.e., Vickrey auction) works as follows. The
protocol is first run to identify the highest bid and the winner,
and then run the second time with the winner excluded to
compute the second-highest bid. The bidder who commits the
second-highest bid remains anonymous. The winner pays the
second-highest bid in the end. (Imagine an MPC protocol on
the max function that satisfies the generic inclusive privacy in
Definition 1, this would naturally be the method of extension
to support the second-price sealed-bid auction.) However, the
highest bid will be revealed, which is not strictly necessary,
and may cause some privacy concerns.

We describe a more efficient and privacy-preserving method
to support the Vickrey auction. In this method, the bit iterations
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will only need to be run once and the highest bid remains
secret. This method is only possible because it builds on the
exclusive privacy in Definition 2. As we will show in the
proof of Theorem 2, at each jth bit iteration, every bidder
Vk learns nothing more than

∨
i∈[1,n]\k dij . Therefore, at each

bit iteration, the bidder who remains a winner can learn if she
is the only winner in the race. Thus, if the bidder finds that
she has submitted the sole one bit in that bit iteration and thus
has become a confirmed winner, she declares herself as the
winner and steps aside to let other bidders continue. Those
losing bidders reset the output of that winning iteration to be
0 and make it a non deciding iteration. Losing bidders then
continue executing the rest of the steps as specified in the main
protocol. This would reveal the next highest bid, while hiding
the c− j least significant bits of the highest bid.

IV. ANALYSIS OF THE SEAL PROTOCOL

In this section, we present security proofs to prove the cor-
rectness and the privacy aspects of our protocol. We will focus
on the main protocol for the first-prize sealed bid. The same
proofs apply to the second-prize sealed bid straightforwardly.

A. Correctness

The following theorem proves that our scheme is correct
and it yields the highest bid price of the winner.

Theorem 1: The e-auction scheme discussed above is cor-
rect.

Proof: Let us assume the c bits output by the protocol are
last[1 → c]. We need to show that last[j] = pwj for all
j ∈ [1, c], where pw is the winning bid of the winning bidder
Vw. Let m be the last iteration of Stage 1. Hence, according to
the protocol

∨n
i=1 pim = 1 and for all j ∈ [1,m−1], last[j] =∨n

i=1 pij = 0. This essentially means that last[j] = pwj for
j ∈ [1,m].

Now, after iteration m the algorithm shifts from Stage 1 to
Stage 2. In Stage 2, all cryptograms generated by a bidder
Vi correspond to the logical-AND of the bit at the current
position (dij) and the value of the bit d

i
←−
j

submitted in the

most recent deciding iteration
←−
j such that last[

←−
j ] = 1 and

for all t ∈ [
←−
j + 1, j − 1], last[t] = 0. Thus, we need to

prove that in any iteration j in Stage 2 if
∨n
i=1 dij = 1, then

pwj = 1 and if
∨n
i=1 dij = 0, then pwj = 0. We prove it

by method of induction. Without loss of generality, we may
assume that last[t] = pwt,∀t ∈ [1, j−1]. So, we need to prove
that last[j] = pwj . Now, last[j] =

∨n
i=1 dij =

∨n
i=1 pij ∧

d
i
←−
j

= pwj ∧dw←−j ∨
(∨

i∈[1,n]\{w} pij ∧ di←−j
)

. But, according
to our assumption, d

w
←−
j

= 1. Thus, last[j] =
∨n
i=1 dij =∨n

i=1 pij∧di←−j = pwj∨
(∨

i∈[1,n]\{w} pij ∧ di←−j
)

. If pwj = 1,
last[j] = pwj trivially holds. We shall have to prove that
(pwj = 0) =⇒

(∨
i∈[1,n]\{w} pij ∧ di←−j

)
= 0. If the above

statement does not hold then there will be at least one bidder
Vη, η ∈ [1, n] \ {w}, such that pηj = d

η
←−
j

= p
η
←−
j

= 1. This
essentially means that pηt = last[t] = pwt for all t ∈ [1, j−1]
and pηj = 1, pwj = 0. This means that the bid price pη of Vη
is higher than that of Vw. This is a contradiction as according

to our assumption Vw is the highest bidder and hence pw ≥ pη .
So, we conclude that the scheme is correct and it yields the
maximum bid price, that is last[j] = pwj ,∀j ∈ [1, c]. �

B. Privacy of losing bids

In this section, we prove that our protocol satisfies the
exclusive privacy requirement in Definition 2. More specif-
ically, when the colluding set do not contain the winner,
they will learn nothing more than their own inputs and the
highest bid; in this case, the definitions of inclusive privacy
and exclusive privacy are equivalent. When the colluding set
contain the winner, they will learn no more than the highest
bid of the non-colluding set under the Decision Diffie-Hellman
(DDH) assumption [21]; they learn the highest bid of the non-
colluding set only in the worse case that the winner is decided
at the last bit iteration (Theorem 2).

Assumption 1 (DDH Assumption [21]): Given g, ga, gb and
a challenge Ω ∈ {gab, R}, where R $← G, it is computationally
hard to find whether Ω = gab or Ω = R.

Lemma 1: Let G be a group in which the DDH assumption
holds. Given g, ga, gb, gc and a challenge Ω ∈ {gab, gbc}, it is
computationally hard to find whether Ω = gab or Ω = gbc.

Proof: Let R be a random element in G. Based on the DDH
assumption, (g, ga, gb, gc, gab)

c
≈ (g, ga, gb, gc, R). Similarly,

(g, ga, gb, gc, gac)
c
≈ (g, ga, gb, gc, R). Since computational

indistinguishability is an equivalence relation, the same is
also a transitive relation. Thus, we have (g, ga, gb, gc, gab)

c
≈

(g, ga, gb, gc, gac). �
Lemma 2: Based on the DDH assumption, given g, Sx =
{gxi : i ∈ [1, n]}, Sy = {Yi : i ∈ [1, n]}, Yi = gyi =∏i−1
j=1 g

xj/
∏n
j=i+1 g

xj , i ∈ [1, n], w, t ∈ [1, n], w 6= t, R =
{Ri = gri : i ∈ [1, n] \ {w, t}}, grw , grt , φ ⊆ {xi :
i ∈ [1, n] \ {w, t}} and a challenge Ω ∈ {A,B}, it is
computationally hard to find if Ω = A or Ω = B, where:

A =(g, φ, gx1z1 , gx2z2 , . . . , gxw−1zw−1 , gxwrw , gxw+1zw+1 , . . . ,

gxtyt , . . . , gxnzn)

B =(g, φ, gx1z1 , gx2z2 , . . . , gxw−1zw−1 , gxwrw , gxw+1zw+1 , . . . ,

gxtrt , . . . , gxnzn),

where zi is either yi or ri for i ∈ [1, n] \ {w, t}, and φ is
chosen by the attacker.

Proof: We show that if there exists an adversary A′, against
the statement of Lemma 2, she can be used to construct
another adversary A against Assumption 1. A works as
follows:
A receives as input g, ga, gb, gc and a challenge
Ω ∈ {gab, gac}. Then she lets A′ select random
x1, x2, . . . , xw−1, xw+1, . . . , xt−1, xt+1, . . . , xn, r ∈R Zp.
Then she sets Xi = gxi for i ∈ [1, n] \ {w, t} and
Xw = gxw = gb, Xt = gxt = ga, that is she implicitly sets
xw = b and xt = a. She also computes

Yi =

i−1∏
j=1

Xj/

n∏
j=i+1

Xj ,∀i ∈ [1, n] \ {w, t}
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She sets ωi ∈R {Y xii , Rxii }, ∀i ∈ [1, n] \ {w, t}, and

ωw =(Xw)rw ,

ωt =

w−1∏
i=1

(Xt)
xi

t−1∏
i=w+1

(Xt)
xi/

n∏
i=t+1

(Xt)
xiΩ.

If Ω = gab, then

ωt =

w−1∏
i=1

(Xt)
xi ∗

t−1∏
i=w+1

(Xt)
xi/

n∏
i=t+1

(Xt)
xi ∗ gab

=

t−1∏
i=1

(Xt)
xi/

n∏
i=t+1

(Xt)
xi .

Let, ω = (g, φ, ω1, ω2, . . . , ωn). Hence, if Ω = gab,

ω =(g, φ, gx1z1 , gx2z2 , . . . , gxw−1zw−1 , gxwrw , gxw+1zw+1 , . . . ,

gxtyt , . . . , gxnzn)

=A,

where xw = b and xt = a. Alternatively, if Ω = gac, then

ωt =

w−1∏
i=1

(Xt)
xi ∗

t−1∏
i=w+1

(Xt)
xi/

n∏
i=t+1

(Xt)
xi ∗ gac

=(gxt)c+
∑w−1
i=1 xi+

∑t−1
i=w+1 xi−

∑n
i=t+1 xi

=gxtrt ,

where rt = c+
∑w−1
i=1 xi+

∑t−1
i=w+1 xi−

∑n
i=t+1 xi or grt =

gc ∗ g
∑w−1
i=1 xi+

∑t−1
i=w+1 xi−

∑n
i=t+1 xi . Thus, if Ω = gac,

ω =(g, φ, gx1z1 , gx2z2 , . . . , gxw−1zw−1 , gxwrw , gxw+1zw+1 , . . . ,

gxtrt , . . . , gxnzn)

=B.

Now, A can send Sx = {Xi : i ∈ [1, n]}, grw , grt and ω to A′.
A′ will identify ω as either A or B. If ω = A, then Ω = gab.
Else if ω = B, then Ω = gac. Thus, with the help of A′, we
can construct an adversary A that can break Assumption 1.
Hence, the lemma holds.

�
Lemma 3: Let C be a set of colluding bidders and H be

the set of honest bidders. C ∪ H = [1, n]. Let θ = |H|. Let
us assume dhij is the bit corresponding to the cryptogram
submitted in iteration j by Vhi for hi ∈ H, i ∈ [1, θ] and
dcij is the bit corresponding to the cryptogram submitted in
iteration j by Vci for ci ∈ C, i ∈ [1, n − θ]. The colluding
bidders learn nothing more than

∨θ
i=1 dhij .

Proof: In an iteration j ∈ [1, c], if Kj =
∨θ
i=1 dhij = 0,

the colluding bidders will obviously learn that dhij = 0 for
all hi ∈ H, i ∈ [1, θ]. We shall have to prove that when Kj =∨θ
i=1 dhij = 1, the colluding bidders will not learn any other

information. In order for proving this fact it is sufficient to
show that

1) the colluding bidders will not be able to distinguish
between the two cases where Kj =

∨θ
i=1 dhij = 1,

but the number of bidders who submitted 1-cryptogram
is different.

2) if two honest bidders who submitted different bits ex-
change their inputs, then this cannot be detected by the
adversary.

We choose two scenarios in which a particular honest bidder
submits different cryptograms: i.e in one scenario the bidder
submits a 0-cryptogram and in the other one she submits a 1-
cryptogram. We show that if the value of Kj is 1 in both the
scenarios, then the two scenarios will be indistinguishable to
the adversary (colluding bidders). Once we prove these results,
they could be easily extended to show that the statement of the
above lemma holds. Let us assume that the public keys used
by the colluding bidders are (Xci , Rci) = (gxci , grci ), ci ∈
C, i ∈ [1, |C|]. Similarly, the public keys of the honest bidders
will be (Xhi , Rhi), hi ∈ H, i ∈ [1, θ]. The cryptograms of
the colluding bidders will be gxcizci , where zci ∈ {yci , rci}.
Let, φ = {xci : i ∈ [1, |C|]}. Now, let us assume that one
honest bidder Vhw has submitted a 1-cryptogram in the form:
gxhw rhw . As such we need to show that the colluding bidders
will not be able to find whether or not there is another bidder
Vht , ht ∈ H, t ∈ [1, θ] who also submitted a 1-cryptogram.
If Vht submitted a 1-cryptogram, then her cryptogram will be
this: bht = gxhw rhw , and if she submitted a 0 cryptogram, her
cryptogram should look like this: b′ht = gxhtyht , where the
notations bear usual meanings as they do in the paper. Now,
according to Lemma 2, no adversary can distinguish between
A and B, where

A =(φ, b1, b2, . . . , bhw , . . . , bht , . . . , bn)

B =(φ, b1, b2, . . . , bhw , . . . , b
′
ht , . . . , bn).

Hence, the colluding bidders will not be able to distinguish
between two cases where the value of Kj =

∨θ
i=1 dhij is

1, but the number of bidders Vhi , hi ∈ H who submitted 1-
cryptogram in iteration j is different.

Let us assume bhe = gxherhe and b′he = gxheyhe for e ∈
{w, t}. Now, observe that

B =(φ, b1, b2, . . . , bhw , . . . , b
′
ht , . . . , bn)

c
≈(φ, b1, b2, . . . , bhw , . . . , bht , . . . , bn)
c
≈(φ, b1, b2, . . . , b

′
hw , . . . , bht , . . . , bn).

Hence, the colluding adversary will not be able to distinguish
between two cases where a pair of honest bidders exchange
the value of their submitted bits whose values are complement
to each other. This way anyone can prove that as long as at
least one bidder submits a 1-cryptogram in any iteration, the
colluding bidders will not be able to distinguish between the
set of all possible cryptograms corresponding to all possible
values of the bits submitted by honest bidders. What the
colluding bidders learn is the logical-OR of all bits submitted
by all honest bidders which is given by Kj =

∨θ
i=1 dhij ,

j ∈ [1, c].
�

Theorem 2: The proposed e-auction scheme satisfies the
exclusive-privacy in Definition 2.
Proof: Based on Lemma 3, at each bit iteration the colluding
set learn nothing more than Kj =

∨θ
i=1 dhij , j ∈ [1, c]. Here

dhij is the bit submitted by Vhi at the jth iteration; it is equal
to the actual bid value bhij only if the bidder Vhi remains
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in the race (she will have to submit 0 if she has lost in the
race as enforced by the ZKP in Eq. 2). Assume the winner is
decided at the βth iteration, 1 ≤ β ≤ c. If the colluding set
do not contain the winner, the bit value Kj that they learn is
the same as the jth most significant bit in the highest bid. In
other words, they learn nothing more than the highest bid of all
bidders. However, if the colluding set contain the winner, they
can learn K1||K2|| . . . ||Kβ , which are the β most significant
bits of the maximum bid of the non-colluding set H . The
colluding set will learn the maximum bid of the non-colluding
set in the worse case when β = c (namely, the winner is only
decided in the last bit iteration). Hence, the result. �

V. EFFICIENCY OF THE SCHEME

First, we discuss the computation overhead of our protocol.
Since exponentiation is the costliest operation in our scheme,
we measure the computation cost in terms of the number of
exponentiations performed by a single entity. During the setup
phase, each bidder generates commitments to each of the c bits
of its bid-price. Each commitment requires 3 exponentiations.
Hence, the total number of exponentiations required is 3c.
In order for generating NIZK proof of well-formedness of
the commitments, the bidder needs to do 8c exponentiations.
In every iteration of Stage 1, a bidder generates a pair
of keys, publishes the public key and a cryptogram which
encrypts a single bit. Computation of the public key requires
2 exponentiations. Also, the computation of the cryptogram
requires 1 exponentiation. The zero knowledge proofs in Stage
1 require 14 exponentiations. Thus for one each iteration of
Stage 1 a bidder needs to do 17 exponentiations. If there
are τ iterations of Stage 1, then each bidder will need to
perform 17τ exponentiations. Similar to Stage 1, in Stage
2, each bidder will need to perform 3 exponentiations in
order to generate the keys and the cryptogram in an iteration.
Again, computation of the NIZK proofs requires at most 30
exponentiations in every iteration of Stage 2. Hence, each
bidder needs to perform 33 exponentiations per iteration of
Stage 2. Since, the sum of all iterations of Stage 1 and Stage
2 is c, the total number of iterations of Stage 2 is c − τ .
Thus, each bidders performs 33(c− τ) exponentiations in all
the c − τ iterations of Stage 2. Therefore, the total number
of exponentiations done by a single bidder during all the
3 phases (Setup, Stage 1 and Stage 2) is 44c − 16τ . The
verifier needs to perform 48c − 16τ exponentiations in order
to check all the NIZK proofs generated by a single bidder
during the auction process. Table I shows a break-down of the
computation overhead on a bidder and a verifier.

During the setup phase a bidder generates c commitments
corresponding to c bits of the bid-price. Each commitment
is a 3-tuple. The bidder also generates NIZK proof of well-
formedness of the c commitments. Each of such proof consists
of 14 elements. Thus during the setup phase each bidder
generates information of size 17c. During one iteration of
Stage 1, a bidder publishes a key of size 2, a cryptogram
of size 1 and three NIZK proofs of total size 20. Hence, for
τ iterations of Stage 1, the total bandwidth consumed is 23τ .
During one iteration of Stage 2, a bidder generates a key of

size 2, a cryptogram of size 1, three NIZK proofs of total size
equal to 33. So, for c−τ iterations, the total space complexity
turns out to be 36(c−τ). In aggregate, each bidder generates a
total of 53c−13τ units of data. The verifier needs to download
all the data generated by n distinct bidders for examining the
authenticity of the NIZK proofs. Hence, the communication
overhead on the verifier is n times that of a common bidder.
Table II shows a break-down of the communication overhead
on a bidder and a verifier.

Based on Table I and II, we can conclude that with respect
to the bit length c of the bid price, our protocol incurs a
linear complexity O(c) for both the computational load and
the bandwidth usage. The computation per bidder remains
roughly unchanged with the number of participants n, although
the verification cost increases linearly with more participants.
Assuming that every bidder is also a verifier, responsible for
checking every other bidder’s ZKPs, our protocol incurs a
linear computational and communication complexity O(n),
with respect to the number of participants n. These are the
best possible system complexities that one may hope for.
In practice, the verification of the ZKPs may be centrally
performed by the public bulletin board before the data is
published and every observer is able to check at any time.
This can alleviate each bidder’s task in verifying the ZKPs.

We have implemented the SEAL auction scheme using Java
on a Linux platform. The experiment was done on an Asus A
Series Core i3 laptop (2.10 GHz with 4 GB RAM). We have
plotted four graphs on the basis of the data obtained from
this experiment. Figure 2a depicts the average time needed to
generate the parameters in one iteration of Stage 1 and Stage
2 for different values of c, i.e., the bit-length of the maximum
bid-price. Here we have fixed the number of bidders n at
10. Figure 2b shows the average time needed to generate the
parameters in one iteration of Stage 1 and Stage 2 for different
values of n, the number of bidders. Here, we have fixed the
value of c at 10. Figure 2c depicts the average time needed to
generate the c commitments by one bidder for different values
of c with n = 10. Figure 2d depicts the average time needed to
generate the commitments by one bidder for different values
of n with c = 10.

It can be observed from Figure 2a and 2b that the time
required to finish one iteration in Stage 1 and Stage 2 remains
almost the same irrespective of the number of bidders or the
value of c. In other words, if there are a iterations of Stage 1
and c−a iterations of Stage 2, then the total time to complete
all the c iterations will be a · t1 + (c − a) · t2, where t1 and
t2 are the time required to complete exactly one iteration at
Stage 1 and 2 respectively. So, the time to execute all the c
iterations will be upper-bounded by the the time to complete
c iterations of Stage 2. Figure 2c shows that the time taken
to generate all the commitments for all the c bits of one bid-
price also increases linearly with the increase of the value of c
when the number of bidders is constant. Additionally, Figure
2d shows that the time to compute the commitments for all the
c bits of the bid-price of one bidder does not depend on the
number of bidders. We therefore conclude that the overall time
required to finish the auction protocol per bidder (including
the time to generate commitments and the time to execute c
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Setup Stage 1 Stage 2
Entity Commitment ZKP Key Cryptogram ZKP Key Cryptogram ZKP Total
Bidder 3c 8c 2τ τ 14τ 2(c− τ) (c− τ) 30(c− τ) 44c− 16τ

Verifier - 12nc - - 20nτ - - 36n(c− τ) 48nc− 16nτ

TABLE I: The number of exponentiations in computational load. Here, c is the length of the binary representation of a bid-price.
n is the total number of bidders and τ is the number of iterations of Stage 1.

Setup Stage 1 Stage 2
Entity Commitment ZKP Key Cryptogram ZKP Key Cryptogram ZKP Total
Bidder 3c 14c 2τ τ 20τ 2(c− τ) (c− τ) 33(c− τ) 53c− 13τ

Verifier 3nc 14nc 2nτ nτ 20nτ 2n(c− τ) n(c− τ) 33n(c− τ) 53nc− 13nτ

TABLE II: Communication bandwidth (in total number of G and Zp elements). Here, c is the length of the binary representation
of a bid-price. n is the total number of bidders and τ is the number of iterations of Stage 1.

iterations of the main protocol) is linear in the bit length c
of the highest bid-price irrespective of the number of bidders.
This corroborates the theoretical analysis in Table I. Obviously,
the communication bandwidth per bidder scales linearly with
the bit length of the bid price as well given the constant size
of the message sent at each bit iteration for both Stage 1 and
2 (see Table II).

VI. RELATED WORK

Sealed-bid e-auction can be regarded as an instance of se-
cure multiparty computation (MPC) on a max function, where
participants jointly compute the maximum of a set of inputs
while preserving the privacy of other input values. Generic
MPC techniques generally require pairwise secret channels
between the participants, in addition to an authenticated public
channel [12]. However, pairwise secret channels are difficult
to realize among bidders who are mutually distrustful. In ad-
dition, generic MPC techniques suffer from various efficiency
issues [14]. For these reasons, although inspiring in theory,
they are not directly applicable to build a decentralized sealed-
bid e-auction scheme. In the following, we will review main
e-auction schemes in the literature.

Since the early work by Franklin and Reiter in
1996 [3], researchers have proposed many sealed-bid e-auction
schemes [2]–[4], [6]–[10], [16], [17], [25], [26]. Most of these
schemes involve the role of an “auctioneer”, which mirrors
a similar role in traditional auctions. Hence, the mainstream
research in this field focuses on applying cryptography to
distribute trust on the “auctioneer”. In general, there are two
main approaches.

The first approach is to apply threshold cryptography, or
MPC techniques [10] to distribute the trust from a single
auctioneer to several auctioneers. Franklin et al. presented a
second-price sealed-bid auction scheme in [3]. In this scheme,
a number of servers play the role of the auctioneer, and they
apply Shamir’s secret sharing to split each bid among them-
selves so no single server sees all bids. However, if a sufficient
number of servers collude, the secrecy of all bids is lost. Sako
proposed a similar scheme based on threshold cryptography to
let auctioneers jointly decrypt submitted bids [4]. Kurosawa
and Ogata proposed a bit-slice approach for auctioneers to
determine the highest bid, bit by bit, assuming the majority

of the auctioneers are honest [17]. Their system involves m
bidders and n auctioneers. The auctioneers apply secure multi-
party computation on a bit-slice circuit, and decrypt the result
at each bit position using verifiable threshold decryption. The
threshold is set such that compromising the decryption requires
compromising at least the majority of the auctioneers. The
number of rounds required for threshold decryption is O(n·c),
c being the bit length of the bid and n being the number
of participants in the decryption process. The Kurosawa-
Ogata’s method, like many other works [3], [9]–[11], performs
encryption and decryption of bids as two separate phases. By
comparison, in our protocol, the encryption and decryption
operations are more integrated within the constant 2-round
Boolean-OR computation (veto protocol) at each bit iteration,
which results in O(c) rounds in total regardless of the number
of participants. Furthermore, our protocol is free from any
auctioneers. Bogetoft et al. proposed to apply secure MPC
to sealed-bid auction [9], [10]. Their solution was used in
Denmark for auction sales on sugar beets. In Bogetoft et al.’s
solution, the role of the auctioneer is played by three parties.
It is assumed that at least 2 parties must be honest. Cartlidge
et al. proposed an e-auction scheme for dark pools/markets
where all bids are encrypted under a global public key and
the decryption is performed by auctioneers using MPC [11].
They presented two implementations based on the SCALE-
MAMBA library: the first uses the SPDZ protocol [11] to
implement the role of “auctioneer” as two servers assuming
at least one is trustworthy; the second uses Shamir’s secret
sharing to implement the auctioneers as three servers assuming
at least one of them is trustworthy. In all these auctioneer-
based protocols, if auctioneers collude all together, they can
trivially break the privacy of sealed bids.

The second approach is to introduce more trusted third par-
ties in addition to auctioneers. Naor et al. presented a second-
price sealed auction scheme in [5]. This scheme uses two
different auction servers who communicate using an oblivious
transfer protocol. One server takes the role as an auctioneer
and the other as an auction issuer. The two servers are assumed
not to collude. However, the original Naor et al.’s scheme
has a weakness in which one of the two servers can cheat
to modify bids without detection. This weakness was later
addressed by Juels and Szydlo in [8], but the revised scheme

9
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(a) Computation time needed by the bidder application per iteration
for 10 bidders.
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(b) Average computation time needed by the bidder application per
iteration for c = 10.
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(c) Computation time needed by the bidder application in the
Commit phase for 10 bidders
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Commit phase for a fixed c = 10

Fig. 2: Time required by a bidder at different stages.

still requires the two servers must not collude. In [26], Abe and
Suzuki proposed an (M + 1)-st price sealed bid auction using
homomorphic encryption and the mix and match technique.
The scheme involves an auctioneer and a trusted authority, who
are assumed not to collude. In [27], Montengero et al. propose
a sealed-bid online auction scheme that employs an auctioneer
and a randomness server. The randomness server is trusted to
provide the randomness for the bidders in the protocol and
not to collude with the auctioneer. In [25], Lipmaa et al.
proposed Vickrey auction schemes that involve a seller and
an auction authority. The seller and the authority authority are
assumed not to collude. In [28], Galal and Youssef proposed
a Vickrey auction system by using the Intel SGX enclave as a
trusted hardware device to compute the winner. Here, the SGX
enclave essentially plays the role as an auctioneer. Similar
solutions based on trusted computing are presented in [29].

Brandt was among the first to argue that neither of the
above approaches is desirable due to the involvement of trusted
auctioneers or third parties. He proposed the notion of “bidder-
resolved auction” and a concrete auctioneer-free solution in [7]
by applying secret sharing techniques. Follow-up works by
Brandt, with improvement in efficiency, are published in [2],
[13], [14]. In all these “bidder-resolved auction” schemes, a
seller is actively involved in the protocol and is assumed not
to collude with bidders. However, as pointed out by Dreier
et al. [30], if the seller colludes with a subset of bidders in

Brandt’s bidder-resolved auctions schemes, they can learn the
bids of other participants. Another major limitation in Brandt’s
schemes is that they incur exponential computational and
communication complexities O(2c), where c is the bit length
of the bid price. Motivated by Brandt’s initial 2002 scheme [7],
Wu et al. remove the seller and propose a decentralized sealed-
bid auction scheme based on a general socialist millionaire
protocol. However, a critical downside of their system is that
the computational load and the bandwidth usage per bidder
is exponential O(2c) with respect to the bit length of the bid
price, which makes their scheme less than practical.

VII. CONCLUSION

In this paper, we propose a publicly verifiable sealed bid
auction scheme that does not require any auctioneer and
has a linear system complexity in terms of computation and
communication with respect to the bit length of the bid.
The bidders execute the protocol themselves and compute
the highest bid while preserving the privacy of losing bids.
Furthermore, our protocol does not require any secret channels
and all operations are publicly verifiable. Overall, our work
removes the dependence on any auctioneer and drastically
reduces the system complexity associated with existing state-
of-the-art auction schemes. This brings secure e-auction much
closer to practice.
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APPENDIX

NIZK proof systems used in this paper

In this section we show how the various non-interactive
zero knowledge proofs [19], [20], [24] essential for the imple-
mentation of our proposed auction scheme can be constructed.
Following [18], we propose to include the unique user identity
(i.e., the index i of each participant) into the hash function
when generating the challenge using the Fiat-Shamir transfor-
mation [31]. The inclusion of the user identity is to prevent the
replay of a ZKP by a different party (say back to the sender).

We have provided construction of four different NIZK
proofs. The first proof is for showing the well-formedness
of each commitment posted by the bidders during the setup
phase. This proof allows a bidder to show that the commit-
ments provided by her indeed correspond to bits, rather than
anything else. The second proof shows that the bidder knows
the part of the secret key that will allow her to compute
the cryptogram. This NIZK proof is provided by the bidder
during the key generation sub-phase of Stage 1 and Stage 2.
The last two NIZK proofs are generated by bidders during
each iteration of Stage 1 and Stage 2 and they show the
well-formedness of the cryptograms issued by the bidders.
Examples of first two types of NIZK proofs can be found in
[22], [24], [32]. We provide the construction of NIZK proofs
for cryptogram well-formedness in the following sections.
Construction of this type of NIZK proofs can also be found
in [23].

Well-formedness of Commitments: Each commitment of our
scheme is of the form ε = 〈gαβgv, gα, gβ〉, where v is the
committed bit. The bidder has to provide c commitments, each
for exactly one of the c bits in the binary representation of the
bid-price of that bidder. The construction of the NIZK proof
of well-formedness of the commitment is as follows:
First, given gα and gβ , the bidder needs to prove knowledge
of α = logg(g

α) and β = logg(g
β) using Schnorr’s signa-

ture [18] (See next subsection on well-formedness of public
keys). Then the statement that the prover (bidder) needs to
show is that ε is well formed for v ∈ {0, 1}, that is:

σ ≡ ( φ = gαβ ∧ A = gα ∧ B ≡ gβ )

∨ ( φ = gαβg ∧ A = gα ∧ B = gβ ).
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Note that only one of the statement can be true. Let us assume
that the first statement is correct, that is (φ = gαβ ∧ A =
gα∧B = gβ). So, the prover needs to provide a real proof for
this statement and a simulated proof for the other statement
(φ = gαβg ∧ A = gα ∧ B = gβ). The prover selects random
r1 ∈R Zp and computes following commitments:

ε11 = gr1 , ε12 = (gβ)r1 .

The prover then chooses random ch2, ρ2 ∈R Zp and computes
commitments:

ε21 = gρ2(gα)ch2 , ε22 = (gβ)ρ2(φ/g)ch2 .

Let, ch be the grand challenge of the NIZK protocol. Now,
the bidder computes a response ρ1 = r1 − α · ch1, where
ch1 = ch− ch2. The verification equations are as below:

1) gρ1
?
= ε11

(gα)ch1

2) (gβ)ρ1
?
= ε12

(φ)ch1

3) gρ2
?
= ε21

(gα)ch2

4) (gβ)ρ2
?
= ε22

(φ/g)ch2

If all 4 relations hold then the proof is accepted. The proof
consists of 4 commitments, 2 challenges and 2 responses,
making the space complexity equal to 8. The prover needs
to do 6 exponentiations for generating the proof. The verifier
needs to do 8 exponentiations for verifying them. Again, in
order for showing knowledge of α and β, the prover needs to
do 2 exponentiation and the size of the two proofs will be 6
in total.

Well-formedness of public keys: In each iteration of Stage
1 as well as Stage 2, a bidder selects a random secret key of
the form (x, r) ∈ Z2

p and publishes the corresponding public
key (X,R) = (gx, gr). The public key comes along with
an NIZK proof that proofs that given a public key (X,R),
the prover knows the discrete logarithm of X with respect
to g. We show how the prover (bidder) can provide NIZK
proof showing the knowledge of the discrete logarithm of
X . The prover generates random r̄ ∈ Zp and computes a
commitment ε = gr̄. Let ch be the random challenge of the
NIZK proof obtained through feeding the commitment and
all other available argument into a random oracle. The prover
generates a response ρ = r̄− ch · x. The verification equation
is: gρ ?

= ε
Xch

. The prover needs to do just one exponentiation
for generating the proof that contains one challenge, one
commitment and one response, 3 parameters in total. The
verifier needs to do 2 exponentiations to verify the proof.
Similarly a NIZK proof can be constructed for proving the
knowledge of r = logg R.

NIZK proof of Stage 1: Here, we discuss the construction
of NIZK proofs of well-formedness of cryptograms mentioned
in Stage 1 of the e-auction scheme.

In iteration j, each bidder Vi constructs a NIZK proof πij
of well-formedness of bij . The proof πij proves the following

statement:

σ ≡
(

(bij = gxijyij ∧Xij = gxij ∧ Yij = gyij )

∧ (cij = gαijβij ∧Aij = gαij ∧Bij = gβij )
)

∨
(

(bij = gxijrij ∧Xij = gxij ∧Rij = grij )

∧ (cij = gαijβijg ∧Aij = gαij ∧Bij = gβij )
)
.

For ease of writing, we denote bij as B, xij as x, yij as y,
cij as C, αij as α, βij as β, Xij as X , Yij as Y , rij as r,
Aij as Ā, Bij as B̄ and Rij as R. Hence, σ can be rewritten
as

σ ≡
(

(B = gxy) ∧ (X = gx) ∧ (Y = gy)

∧ (c = gαβ) ∧ (Ā = gα) ∧ (B̄ = gβ)
)

∨
(

(B = gxr) ∧ (X = gx) ∧ (R = gr)

∧ (c = gαβg) ∧ (Ā = gα) ∧ (B̄ = gβ)
)
.

This is a one-out-of-two statement. Hence, only one of the
two constituent sub-statements is true. That is, either (B =
gxy)∧ (X = gx)∧ (Y = gy)∧ (c = gαβ)∧ (Ā = gα)∧ (B̄ =
gβ)) is true or ((B = gxr) ∧ (c = gαβg) ∧ (Ā = gα) ∧ (B̄ =
gβ)) is true but not both. We show how a NIZK proof can be
constructed when the first sub-statement is true, i.e. if (B =
gxy)∧ (X = gx)∧ (Y = gy)∧ (c = gαβ)∧ (Ā = gα)∧ (B̄ =
gβ)) is true. The bidder selects random r11, r12 ∈ Zp and
computes these commitments:

ε11 = gr11 , ε12 = gr12 , ε13 = (Y )r11 , ε14 = (B̄)r12

The bidder also selects random ρ21, ρ22 ∈ Zp and ch2 ∈ Zp
and computes ε21 = gρ21(X)ch2 , ε22 = gρ22(Ā)ch2 ,
ε23 = (R)ρ21(B)ch2 , ε24 = (B̄)ρ22(C/g)ch2 . Let,
the grand challenge of NIZK proof be ch. The
bidder computes ch1 = ch − ch2 and two responses
ρ11 = r11 − x · ch1, ρ12 = r12 − α · ch1.
The verification equations are as below:

1) gρ11
?
= ε11

(X)ch1

2) gρ12
?
= ε12

(Ā)ch1

3) (Y )ρ11
?
= ε13

Bch1

4) (B̄)ρ12
?
= ε14

Cch1

5) gρ21
?
= ε21

(X)ch2

6) gρ22
?
= ε22

(Ā)ch2

7) (R)ρ21
?
= ε23

Bch2

8) (B̄)ρ22
?
= ε24

(c/g)ch2

If the above 8 relations hold, the NIZK proof is
authentic. A bidder needs to do 12 exponentiations for
computing the above NIZK proof arguments. The proof
itself consists of 8 commitments, two challenges and 4
responses. Hence, the space complexity of the proof is 14.
Moreover, a verifier needs to do 16 exponentiations for
checking all the arguments of this NIZK proof. Similarly
a NIZK proof can be constructed if the second statement
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((B = gxr) ∧ (c = gαβg) ∧ (Ā = gα) ∧ (B̄ = gβ)) is true.
Here, we skip the construction due to space constraint.

NIZK proof of Stage 2: Now, we discuss the construction
of the NIZK proof π′ij of well-formedness of the cryptogram
bij of Stage 2.

The logical statement for which a NIZK proof is to be
constructed is the following:

σ ≡
( (

(bij = gxijrij ) ∧ (Xij = gxij ) ∧ (Rij = grij )
)

∧
(

(bij′ = gxij′rij′ ) ∧ (Xij′ = gxij′ ) ∧ (Rij′ = grij′ )
)

∧
(

(cij = gαijβijg) ∧ (Aij = gαij ) ∧ (Bij = gβij )
) )

∨
( (

(bij = gxijyij ) ∧ (Xij = gxij ) ∧ (Yij = gyij )
)

∧
(

(bij′ = gxij′rij′ ) ∧ (Xij′ = gxij′ ) ∧ (Rij′ = grij′ )
)

∧
(

(cij = gαijβij ) ∧ (Aij = gαij ) ∧ (Bij = gβij )
) )

∨
( (

(bij = gxijyij ) ∧ (Xij = gxij ) ∧ (Yij = gyij )
)

∧
(

(bij′ = gxij′yij′ ) ∧ (Xij′ = gxij′ ) ∧ (Yij′ = gyij′ )
) )

The above statement is a one-out-of-3 logical statement.
If a NIZK proof for the above statement can be constructed
each bidder will be able to show the well-formednss of her
cryptogram without revealing whether the cryptogram is
an encryption of 0 or 1. Again, the NIZK statement will
not reveal the state of the Wi variable for a bidder Vi.
Nonetheless, the NIZK proof will establish the fact that the
cryptogram provided by Vi is the correct encryption of the
logical-AND of pij and the value of Wi as of iteration j.
We denote bij as Bi, bij′ as Bj and cij as Ci for ease of
writing. We also write Rij as Ri, Rij′ as Rj , rij as ri, rij′
as rj , Xij′ as Xj , Xij as Xi, Yij′ as Yj , Yij as Yi, xij′ as
xj , xij as xi, yij′ as yj , yij as yi, Yij as Yi, Yij′ as Yj ,
yij as yi, yij′ as yj , Aij as A, Bij as B, αij as αi and βij
as βi. Hence, we can rewrite the above statement as following:

σ ≡ (((Bi = gxiri) ∧ (Xi = gxi) ∧ (Ri = gri)) ∧ ((Bj =
gxjrj ) ∧ (Xj = gxj ) ∧ (Rj = grj )) ∧ ((Ci = gαiβig) ∧ (A =
gαi) ∧ (B = gβi)))
∨ (((Bi = gxiyi) ∧ (Xi = gxi) ∧ (Yi = gyi)) ∧ ((Bj =
gxjrj ) ∧ (Xj = gxj ) ∧ (Rj = grj )) ∧ ((Ci = gαiβi) ∧ (A =
gαi) ∧ (B = gβi)))
∨ (((Bi = gxiyi) ∧ (Xi = gxi) ∧ (Yi = gyi)) ∧ ((Bj =
gxjyj ) ∧ (Xj = gxj ) ∧ (Yj = gyj )))

The above statement is a 1-out-of-3 statement. So, exactly
one of the three constituent sub-statements has to be true. We
show how this could be done for each of the three cases below.

a) Case 1:: : the first statement (((Bi = gxiri)∧ (Xi =
gxi) ∧ (Ri = gri)) ∧ ((Bj = gxjrj ) ∧ (Xj = gxj ) ∧ (Rj =
grj )) ∧ ((Ci = gαiβig) ∧ (A = gαi) ∧ (B = gβi))) is true.

Generate r11, r12, r13 ∈R Zp and compute commitments

ε11 = gr11 , ε12 = gr12 , ε13 = gr13

and
ε′11 = (Ri)

r11 , ε′12 = (Rj)
r12 , ε′13 = (B)r13

Then select ch2, ρ21, ρ22, ρ23 ∈R Zp and compute

ε21 = gρ21(Xi)
ch2 , ε22 = gρ22(Xj)

ch2 , ε23 = gρ23(A)ch2

and ε′21 = (Yi)
ρ21(Bi)

ch2 , ε′22 = (Rj)
ρ22(Bj)

ch2 , ε′23 =
(B)ρ23(Ci)

ch2 . Also select ch3, ρ31, ρ32, ρ33 ∈R Zp and
compute

ε31 = gρ31(Xi)
ch3 , ε32 = gρ32(Xj)

ch3

and
ε′31 = (Yi)

ρ31(Bi)
ch3 , ε′32 = (Yj)

ρ32(Bj)
ch3

Let, the grand challenge be ch. Compute ch1 = ch−ch2−ch3.
Now, compute three responses

ρ11 = r11−xi ∗ ch1, ρ12 = r12−xj · ch1, ρ13 = r13−αi · ch1

Publish all the commitments, challenges and the responses.
The verification equations are as below:

1) gρ11
?
= ε11

(Xi)ch1

2) gρ12
?
= ε12

(Xj)ch1

3) gρ13
?
= ε13

(A)ch1

4) (Ri)
ρ11 ?

=
ε′11

(Bi)ch1

5) (Rj)
ρ12 ?

=
ε′12

(Bj)ch1

6) (B)ρ13
?
=

ε′13
(Ci/g)ch1

7) gρ21
?
= ε21

(Xi)ch2

8) gρ22
?
= ε22

(Xj)ch2

9) gρ23
?
= ε23

(A)ch2

10) (Yi)
ρ21 ?

=
ε′21

(Bi)ch2

11) (Rj)
ρ22 ?

=
ε′22

(Bj)ch2

12) (B)ρ23
?
=

ε′23
(Ci)ch2

13) gρ31
?
= ε31

(Xi)ch3

14) gρ32
?
= ε32

(Xj)ch3

15) (Yi)
ρ31 ?

=
ε′31

(Bi)ch3

16) (Yj)
ρ32 ?

=
ε′32

(Bj)ch3

If the above 16 equations hold, the proof is correct.
b) Case 2:: The second statement (((Bi = gxiyi) ∧

(Xi = gxi)∧(Yi = gyi))∧((Bj = gxjrj )∧(Xj = gxj )∧(Rj =
grj )) ∧ ((Ci = gαiβi) ∧ (A = gαi) ∧ (B = gβi))) is true.
Generate r21, r22, r23 ∈R Zp and compute commitments

ε21 = gr21 , ε22 = gr22 , ε23 = gr23

and
ε′21 = (Yi)

r21 , ε′22 = (Rj)
r22 , ε′23 = (B)r23

Then select ch1, ρ11, ρ12, ρ13 ∈R Zp and compute

ε11 = gρ11(Xi)
ch1 , ε12 = gρ12(Xj)

ch1 , ε13 = gρ13(A)ch1

and

ε′11 = (Ri)
ρ11(Bi)

ch1 , ε′12 = (Rj)
ρ12(Bj)

ch1 , ε′13 = (B)ρ13(Ci/g)ch1

Also select ch3, ρ31, ρ32, ρ33 ∈R Zp and compute

ε31 = gρ31(Xi)
ch3 , ε32 = gρ32(Xj)

ch3
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and
ε′31 = (Yi)

ρ31(Bi)
ch3 , ε′32 = (Yj)

ρ32(Bj)
ch3

Let, the grand challenge be ch. Compute ch2 = ch−ch1−ch3.
Now, compute three responses

ρ21 = r21−xi · ch2, ρ22 = r22−xj · ch2, ρ23 = r23−αi · ch2

Publish all the commitments, challenges and the responses.
The verification equations are as that of Case 1.

c) Case 3:: The third statement (((Bi = gxiyi)∧ (Xi =
gxi)∧(Yi = gyi))∧((Bj = gxjyj )∧(Xj = gxj )∧(Yj = gyj )))
is true. Generate r31, r32 ∈R Zp and compute commitments

ε31 = gr31 , ε32 = gr32

and
ε′31 = (Yi)

r31 , ε′32 = (Yj)
r32

Then select ch1, ρ11, ρ12, ρ13 ∈R Zp and compute

ε11 = gρ11(Xi)
ch1 , ε12 = gρ12(Xj)

ch1 , ε13 = gρ13(A)ch1

and

ε′11 = (Ri)
ρ11(Bi)

ch1 , ε′12 = (Rj)
ρ12(Bj)

ch1 , ε′13 = (B)ρ13(Ci/g)ch1

Also select ch2, ρ21, ρ22, ρ23 ∈R Zp and compute

ε21 = gρ21(Xi)
ch2 , ε22 = gρ22(Xj)

ch2 , ε23 = gρ23(A)ch2

and

ε′21 = (Yi)
ρ21(Bi)

ch2 , ε′22 = (Rj)
ρ22(Bj)

ch2 , ε′23 = (B)ρ23(Ci)
ch2

Let, the grand challenge be ch. Compute ch3 = ch−ch1−ch2.
Now, compute two responses as follows

ρ31 = r31 − xi · ch3, ρ32 = r32 − xj · ch3

Publish all the commitments, challenges and the responses.
The verification equations are as that of Case 1.
Overall it requires at most 28 exponentiations for computing

the above zero knowledge proof. Also the space complexity
of the proof is 27. The verifier needs to perform 32 exponen-
tiations for verifying all the arguments.
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