
1

Functional Analysis Attacks on Logic Locking
Deepak Sirone Pramod Subramanyan

Abstract— Logic locking refers to a set of techniques that
can protect integrated circuits (ICs) from counterfeiting, piracy
and malicious functionality changes by an untrusted foundry. It
achieves these goals by introducing new inputs, called key inputs,
and additional logic to an IC such that the circuit produces the
correct output only when the key inputs are set to specific values.
The correct values of the key inputs are kept secret from the
untrusted foundry and programmed after manufacturing and
before distribution, thus rendering piracy, counterfeiting and
malicious design changes infeasible. The security of logic locking
relies on the assumption that the untrusted foundry cannot infer
the correct values of the key inputs by analysis of the circuit.

In this paper, we introduce a new attack on state-of-the-art
logic locking schemes which invalidates the above assumption. We
propose Functional Analysis attacks on Logic Locking algorithms
(abbreviated as FALL attacks). FALL attacks have two stages.
Their first stage is dependent on the locking algorithm and
involves analyzing structural and functional properties of locked
circuits to identify a list of potential locking keys. The second
stage is algorithm agnostic and introduces a powerful addition to
SAT-based attacks called key confirmation. Key confirmation can
identify the correct key from a list of alternatives and works even
on circuits that are resilient to the SAT attack. In comparison
to past work, the FALL attack is more practical as it can often
succeed (90% of successful attempts in our experiments) by only
analyzing the locked netlist, without requiring oracle access to an
unlocked circuit. Our experimental evaluation shows that FALL
attacks are able to defeat 65 out of 80 (81%) circuits locked using
Stripped-Functionality Logic Locking (SFLL-HD).

I. INTRODUCTION

Globalization and concomitant de-verticalization of the
semiconductor supply chain have resulted in IC design houses
becoming increasingly reliant on potentially untrustworthy off-
shore foundries. This reliance has raised concerns of integrated
circuit (IC) piracy, unauthorized overproduction, and malicious
design modifications by adversarial entities that may be part
of these contract foundries [9, 13, 30]. These issues have both
financial [11] and national security implications [21].

A potential solution to these problems is logic locking [3,
6, 10, 16, 17]: a set of techniques that introduce additional
logic and new inputs to a digital circuit in order to create a
“locked” version of it. The locked circuit operates correctly
if and only if the new inputs, referred to as key inputs, are
set to the right values. Typically, key inputs are connected
to a tamper-proof memory and the circuit is activated by
the design house by programming the correct key values in
the tamper-proof memory after manufacturing and prior to
sale. The security assumption underlying logic locking is that

Deepak Sirone is currently with the Department of Computer Sciences at
University of Wisconsin-Madison. This work was done when he was at the
Indian Institute of Technology, Kanpur. E-mail: dsirone@cs.wisc.edu.

Pramod Subramanayan is with the Department of Computer Science
and Engineering at the Indian Institute of Technology, Kanpur. E-mail:
spramod@cse.iitk.ac.in.

the adversary (untrusted foundry) does not know the correct
values of the key inputs and cannot compute them.

Initial proposals for logic locking did not satisfy this as-
sumption and were vulnerable to attack [14, 15, 24, 35, 38].
For example, Rajendran et al. [15] used automatic test pattern
generation (ATPG) tools to compute input values that would
allow an adversary to reveal the values of key bits. Subra-
manyan et al. [24] developed the SAT attack which defeated all
known logic encryption techniques at the time. The SAT attack
works by using a Boolean SATisfiability solver to iteratively
find inputs that distinguish between equivalence classes of
keys. For each such input, an activated IC (perhaps purchased
from the market by the adversary) is queried for the correct
output and this information is fed back to the SAT solver when
computing the next distinguishing input. The practicality of
this attack depends on the number of equivalence classes of
keys present in the locked circuit.

Much subsequent work has focused on SAT attack resilient
logic locking [31, 32, 36, 39, 40]. These proposals attempt to
guarantee that the number of equivalence classes of keys is
exponential in the key length. Broadly speaking, they have
two components. One sub-circuit “flips” the output of the
original circuit for a particular cube or set of cubes. The
cube stripping unit is independent of the key inputs but is
dependent on the correct key input values. We refer to this
component as the cube stripping unit. This flipped output
is then inverted by a key-dependent circuit that we refer
to as the progammable functionality restoration unit. This
latter circuit is guaranteed to have an exponential number of
equivalence classes of keys and ensures SAT attack resilience.
Initial proposals along these lines were Anti-SAT [31, 32]
and SARLock [36]. However, Anti-SAT was vulnerable to
the signal probability skew (SPS) [36] attack while SARLock
was vulnerable to the Double DIP [20] attack and the Ap-
proximate SAT [19] attack. Both schemes are vulnerable to
removal and bypass attacks [33, 37]. Subsequently, Yasin et
al. proposed TTLock [40] and Stripped-Functionality Logic
Locking (SFLL) [18, 39]. SFLL was the only family of logic
locking techniques resilient to all known attacks at the time
of submission of our conference paper [23].

In this paper, we introduce a novel class of Functional
Analysis attacks on Logic Locking (abbreviated as FALL
attacks). FALL attacks defeat TTLock and the SFLL-HDh

variant of SFLL. Our approach uses structural and functional
analyses of circuit nodes to first identify the gates that are the
output of the cube stripping module in order to determine the
locking key. There are two challenges involved in this.

First, the locked netlist is a sea of gates, and it is unclear
which of these is the gate being searched for. Examining every
gate using computationally expensive functional analyses is
not feasible. Testing whether a gate is equivalent to the cube

ar
X

iv
:1

81
1.

12
08

8v
3

 [
cs

.C
R

]
 1

0
Ja

n
20

20

2

stripping function for some key value involves solving a quan-
tified Boolean formula (QBF). QBF is PSPACE-complete [2]
in comparison to to SAT which is “only” NP-complete [8].
Therefore, the naı̈ve approach of examining every gate does
not even scale to small netlists. We tackle these problems by
the development of a set of structural and functional properties
of the cube stripping function used in SFLL-HDh and use
SAT-based analyses to find nodes with these properties. The
second challenge is determining the key given the output of
cube stripping unit. Here too, we develop SAT-based analyses
to extract potential locking keys from a given circuit node.

In about 90% of successful attempts in our experiments, the
first stage of the attack shortlists exactly one potential key. In
such cases, the FALL attack does not require input/output (I/O)
oracle access to an unlocked circuit. Any malicious foundry
who can reconstruct gate-level structures from the masks can
use FALL without setting up logic analyzers, loading the scan
chain, etc. This suggests that attacking logic locking may be
much easier than previously believed.

In a few cases, more than one key may be shortlisted.
To address this problem, we introduce a novel SAT-based
key confirmation algorithm. Given a list of suspected key
values and I/O oracle access, key confirmation can be used
to find which one (or none) of these suspected key values is
correct. This has important implications as key confirmation
can be used in isolation with arbitrary analysis techniques
and for arbitrary locking techniques and not just the analyses
developed for SFLL-HDh/TTLock in this paper. An attacker
need only guess a key value through some circuit analysis and
key confirmation can be used to verify this guess. For instance,
recent work has introduced the SURF attack [5] which uses
machine learning (ML) techniques to guess the key input
values. While these techniques can determine a likely key, they
cannot guarantee correctness. This is where key confirmation
comes in: it can prove/disprove a high-probability guess. Key
confirmation succeeds on circuits resilient to the SAT attack
and provides a new pathway for the use of powerful Boolean
reasoning engines in logic locking attacks.

We present a thorough experimental analysis of the FALL
attack. Our evaluation shows that FALL attacks succeed on 65
out of 80 benchmark circuits (81%) in our evaluation. Among
these 65, the functional analysis shortlists exactly one key
for 58 circuits (90% of successful attempts), supporting our
claim that Oracle-less attacks are indeed practical. We show
experimentally that the key confirmation attack succeeds on
all the circuits we examine and is orders of magnitude faster
than the SAT attack [24].

A. Contributions

This paper makes the following contributions.
• We present functional analysis attacks on logic locking

which use structural and functional analyses to defeat
SFLL-HDh and TTLock.

• We present an important improvement to the SAT attack
called key confirmation that enables the combination
of key value hints gathered from structural/functional
analyses with the SAT-based analyses. Key confirmation

allows the SAT attack to succeed even against SAT-
resilient logic locking and applies to all combinational
logic locking schemes.

• We present a thorough evaluation of FALL attacks and
key confirmation on set of over 80 benchmarks circuits
locked using SFLL-HDh and TTLock. Our attacks defeat
65 (81%) of these circuits.

Conference Publication: This paper is based on a con-
ference publication in DATE 2019 [23]. This journal paper
introduces the following novel contributions: (i) the key con-
firmation attack that extends the SAT attacks to target so called
“SAT-resilient” attack schemes (§ VI), and (ii) proofs for the
FALL lemmas and the correctness of key confirmation, and
(iii) a working example of locking using SFLL and TTLock
(§ III-B) and FALL attacks on this example (interspersed with
the text in § IV and § V), and (iv) an experimental evaluation
of the key confirmation attack (§ VII-C).

II. BACKGROUND AND NOTATION

This section provides the background and notation used in
the rest of this paper.

A. Notation

Let B = {0, 1} be the Boolean domain. A combinational
circuit is modeled as a directed acyclic graph (DAG) G =
(V,E). Nodes in the graph correspond to logic gates, input
nodes. Some input nodes and logic gates may also be outputs.
Edge (v1, v2) ∈ E if v2 is a fanin (input) of the gate v1.

Given a node v ∈ V , define fanins(v) = {v′ | (v, v′) ∈ E}.
#fanins(v) is the cardinality of fanins(v). For v ∈ V such
that #fanins(v) = k, nodefnv is the k-ary Boolean function
associated with the node; nodefnv : V → (Bk → B). For
example, if v1 is a 2-input AND gate, nodefnv1 = λab. a∧ b.
For input nodes, nodefnv is an uninterpreted 0-ary Boolean
function (or equivalently, a propositional variable). The circuit
function of node v, denoted cktfnv is defined recursively
as: cktfnv = nodefnv(cktfnv1 , . . . , cktfnvn) where vi ∈
fanins(v). The transitive fanin cone of a node v, denoted
TFC(v), is the set of all nodes vj such that (v, vj) ∈ E or there
exists some vi ∈ V such that (vi, vj) ∈ E and vi ∈ TFC(v).
The support of a node, denoted by Supp(v), is the set of all
nodes vj such that vj ∈ TFC(v) and #fanins(vj) = 0.

The notation 〈x1, x2, . . . , xm〉 refers to the m-tuple consist-
ing of x1, . . . , xm. We will write tuples of variables in upper
case; e.g. X , Y and K. For example X = 〈x1, x2, . . . xm〉.
We will use italics: x1, x2, k1, k2, etc. to refer to variables.
Constant values are shown in fixed width: X, K, x1, k1, etc.

The notation a∧b refers to the conjunction (AND) of a and
b, a ∨ b refers to their disjunction (OR), a ⊕ b refers to their
exclusive or (XOR), and ¬a refers to logical negation (NOT).
A literal is either a variable (e.g., a) or its negation (e.g., ¬a).
A conjunction of literals (e.g., a ∧ ¬b ∧ c) is called a cube.

B. Representing Circuits and Sets in SAT Solvers

In a locked netlist, some input nodes are key inputs while
the remaining are circuit inputs. We will represent the tuple

3

of key inputs by K, and the tuple of circuit inputs by X . The
set of outputs of circuit is Y . Define the Boolean function
isKey(v) s.t. isKey(v) = 1 iff node v ∈ K; in other words,
isKey(v) is the characteristic function of K.

When using SAT solvers to reason about circuit behavior,
we will represent the functional behavior of the circuit via the
characteristic function of its input/output relation: the Boolean
function C(X, K, Y) will be satisfiable iff the circuit input
values X, and key input values K result in the output value
Y. The characteristic function is typically computed using the
Tseitin transformation [29] which introduces new variables but
we will ignore this detail in the interest of simplicity.

The key confirmation attack needs an I/O oracle for an
activated circuit. This is modelled as a Boolean function
oracle : Bm → Bn where m and n are the number of circuit
inputs and outputs respectively. oracle(X) is the output value
of the activated circuit for the input value X.

Similarly, in order to represent sets of Boolean values in
SAT solvers, we will use the indicator function of the set.
Suppose we have the following set of values for the key
inputs: Kset = {〈1, 0, 1, 1〉, 〈1, 0, 0, 1〉, 〈0, 1, 1, 0〉, 〈0, 0, 1, 0〉}.
This set can be represented by the formula ϕ(k1, k2, k3, k4)

.
=

(k1 ∧¬k2 ∧ k4)∨ (¬k1 ∧ k3 ∧¬k4). Note that function ϕ has
output 1 exactly for the members of the set Kset .

C. Useful Properties of Boolean Functions

We will use the following properties of Boolean functions
in the functional analyses of SFLL and TTLock.
Hamming Distance: Given two bit vectors X1 =
〈x11, . . . , x1m〉 and X2 = 〈x21, . . . , x2m〉, define HD(X1, X2)

.
=∑m

i=1(x
1
i ⊕ x2i) to be their Hamming distance.

Unateness: A Boolean function f is said to be positive (resp.
negative) unate in the variable x if changing x from 0 to 1
while keeping all the other variables the same, never changes
the output of the function f from 1 to 0 (resp. 0 to 1).

Formally, we say that a Boolean function f(x1, . . . , xm) :
Bm → B is positive unate in the variable xi if
f(x1, . . . , xi−1, 0, xi+1, . . .) ≤ f(x1, . . . , xi−1, 1, xi+1, . . .).
We say that f is negative unate in the variable xi if
f(x1, . . . , xi−1, 1, xi+1, . . .) ≤ f(x1, . . . , xi−1, 0, xi+1, . . .).
Function f is said to be unate in xi if it is either positive
or negative unate in xi.1 Intuitively, unateness is a mono-
tonicity property which states that the function monotonically
increases/decreases along with a specific variable x.

In § V, we will show that the cube stripping function of
TTLock has the property of unateness and that this property
can be exploited to extract the protected cube.

D. A Model of SFLL and TTLock

Figure 1 shows the structure of SFLL-HDh and TTLock. As
described in the previous section, the locking scheme consists
of three components. The first is the original circuit which is
shown as the blue triangle. The second is the cube stripper,
which is shown as the red rectangle. The output of the cube
stripper is XOR’d with the output of the original. This means

1a ≤ b is defined as ¬a ∨ b.

Functionality-Stripped Circuit

X = 〈x1, . . . , xm〉

Cube Stripper
strip(Kc)(X)

Functionality

Restoration Unit
K = 〈k1, . . . , km〉

Original Circuit

Y

Fig. 1: Overview of SAT attack resilient locking algorithms
like TTLock and SFLL-HDh. We show a single output circuit
for simplicity, additional outputs are handled symmetrically.

that the original circuit produces the “wrong” output for all
inputs which result in a high output from the cube stripper.
The blue rectangle near the bottom of the figure shows the
functionality restoration unit.

The circuit inputs are represented by the tuple X =
〈x1, . . . , xm〉. The key inputs are represented by the tuple
K = 〈k1, . . . , km〉. The output of the cube stripper is the
Boolean function striph(Kc)(X). Here Kc is the protected cube
and is a fixed bit-vector value while X is the tuple of input
variables. We exploit the insight that a general implementation
of SFLL must leave structural traces of the value of Kc in
the netlist and our analyses provide algorithms to infer this
value for TTLock and SFLL-HDh. We note that there are
other variants of SFLL, e.g. SFLL-fault [18]. Extending the
analyses to these variants is not in the scope of this paper.

III. ATTACK OVERVIEW

This section first describes the adversary model for the FALL
attack. It then provides an overview of the attack itself.

A. Adversary Model

The adversary is assumed to be a malicious foundry with
layout and mask information. The gate level netlist can be
reverse engineered from this [28]. The adversary knows the
locking algorithm and its parameters (e.g., h in SFLL-HDh).
We follow [15, 24, 39] etc. and assume the adversary can
distinguish between key inputs and circuit inputs, and restrict
our attention to combinational circuits. Sequential circuits
can viewed as combinational by treating flip-flop inputs and
outputs as combinational outputs and inputs respectively. We
assume the adversary may have access to an activated circuit
through which they can observe the output for a specific input.

If parameter h in SFLL-HDh is not known, then one can
sweep values of h. This may lead to some incorrect key
values being inferred for the wrong values of h, but these
can be eliminated by the key confirmation attack (see § VI).
Distinguishing key inputs from circuit inputs is easily done by
examining which inputs are connected to I/O pads/flip-flops
and which are connected to tamper-proof memory.

4

B. Overview of TTLock and SFLL

Figure 2a shows a simple circuit that computes the Boolean
function y = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) ∨ d. This circuit
is locked using the TTLock algorithm [40] and the resulting
circuit is shown in Figure 2b. The same circuit locked using
the SFLL-HDh algorithm is shown in Figure 2c. This section
provides an overview of the locking algorithms, the challenges
in attacking them and the vulnerabilities in the algorithm that
are exploited by FALL attacks.

1) Overview of TTLock: The locked circuit shown in Fig-
ure 2b has two components: (i) a functionality-stripped circuit
shown in the dashed blue box, and (ii) the functionality
restoration unit shown in the dashed cyan box.

Let us first consider the functionality-stripped circuit. The
two new additions to the circuit in comparison to Figure 2a
are the two gates shown in red. What is the impact of the
gate labelled F ? The output of this gate is high only when
a ∧ ¬b ∧ ¬c ∧ d = 1, or equivalently when a = d = 1 and
b = c = 0. In the SFLL/TTLock terminology, the product
term a ∧ ¬b ∧ ¬c ∧ d is called a protected cube. Notice the
functionality-stripped circuit’s output differs from the original
circuit (in Figure 2a) for exactly this cube.

Now let us turn our attention to the functionality restoration
unit. This circuit compares the values of inputs a, b, c and d
with the key inputs k1, k2, k3 and k4 respectively. If a = k1,
b = k2, c = k3 and d = k4, then the functionality restoration
unit flips the output of the functionality-stripped circuit. What
is the purpose of the functionality restoration unit? If the
key inputs k1, k2, k3 and k4 are set to the same value as the
protected cube, that is if k1 = k4 = 1 and k2 = k3 = 0, then
output y of the locked circuit in Figure 2b is identical to the
output of the original circuit in Figure 2a. In other words, the
circuit only produces the correct output when the keys are set
to the protected cube.

2) Overview of SFLL-HDh: Notice that Figure 2c is very
similar to Figure 2b except for the nodes F and G. Node F
implements the following function.

F (a, b, c, d)
.
= (¬a ∧ ¬b ∧ ¬c ∧ d) ∨ (a ∧ b ∧ ¬c ∧ d) ∨

(a ∧ ¬b ∧ c ∧ d) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d) (1)

The output of the function F (a, b, c, d) is 1 for all cubes that
Hamming distance 1 from the protected cube a∧¬b∧¬c∧ d.
This value 1 corresponds to the parameter h in SFLL-HDh

and is the crucial difference between SFLL-HD and TTLock.
In TTLock, the functionality-stripped circuit’s output differs
from the original circuit for exactly one cube. In contrast, the
functionality-stripped circuits output differs from the protected
cube for all inputs that are Hamming distance h from the
protected cube in SFLL-HDh. As a result, SFLL-HDh can
cause exponentially more output corruption than TTLock.

The functionality restoration unit in SFLL-HDh is analo-
gously changed. Node G implements the following function.

G(p, q, r, s)
.
= ¬

(
(p ∨ q ∨ r) ∧ (p ∨ r ∨ s) ∧
(p ∨ q ∨ s) ∧ (q ∨ r ∨ s)

)
(2)

a

b

c

d

y

(a) Original circuit.

F

c1

c2

c3

c4

G

a

b

c

d

k1

k2

k3

k4

y

Functionality-Stripped Circuit

Functionality
Restoration Unit

(b) Circuit locked using TTLock. The protected cube is a ∧
¬b ∧ ¬c ∧ d.

F

c1

c2

c3

c4

G

a

b

c

d

k1

k2

k3

k4

s
q

p
q
r
s

r
p

y

Functionality-Stripped Circuit

Functionality
Restoration Unit

(c) Circuit locked using SFLL-HD1. All cubes exactly Ham-
ming distance 1 from the protected cube a ∧ ¬b ∧ ¬c ∧ d are
flipped by the functionality-stripped circuit.

Fig. 2: Example circuit locked with TTLock and SFLL-HD1.

It flips the output of the functionality-stripped circuit for all
cubes that are Hamming distance 1 from the values of the
key inputs. If the key inputs are equal to the protected cube,
then the original functionality of the circuit is restored because

5

the functionality restoration unit “un-does” the corruption
introduced by the functionality-stripped circuit.

y

39

37 38

36

24 34 35

23

21

30

3322

18

29

d

12 1528

27

32

10 11 13 14 16 17 19 2025 2631

cak1 b k2 k3 k4

Fig. 3: Optimized version of the circuit shown in Figure 2b.
Since ABC uses the AND-Inverter-Graph (AIG) representa-
tion, each node in this circuit is a AND gate. Dotted edges
represent inverted inputs while solid edges represent non-
inverted inputs. Upward facing triangles are inputs and the
downward facing triangle is the output.

C. Overview of Attacking TTLock and SFLL-HDh

Observe that the protected cube must be hard-coded into the
circuit in both Figures 2b and 2c. For instance, if the protected
cube (and hence correct key) were to be changed from
(k1, k2, k3, k4) = (1, 0, 0, 1) to (1, 1, 1, 1), the locked circuit
would need to change as well: the inputs to the gate F would
not have any inverters (negation bubbles). Therefore, structural
and functional analyses of the circuit could potentially leak the
correct key and this is the key insight we use in this paper.

Specifically, if the adversary could identify the NAND gate
F and the comparators (XOR gates) labelled c1, c2, c3 and
c4, it would be easy to figure out what the protected cube is
and set the key inputs appropriately. The catch is that finding
these gates is difficult due to synthesis-time optimizations.
Figure 3 shows the same circuit as Figure 2b but after it has
been processed using ABC’s [12] structural hashing (strash)
command. We see that it is not at all obvious which node in
Figure 3 is equivalent to the gate F in Figure 2b and which
nodes are equivalent to the four comparators. This is despite
the fact that we have both the unlocked and unoptimized
circuits available to us. An attacker would not have this
information, so it would be harder to find the gate.

Overview of Attack Stages: We now provide a high-level
overview of the FALL attack. Figure 4 shows the main stages
of the FALL attack. The first two stages use structural analyses
to identify candidate gates that may be the output of a cube
stripping module. These are described in Section IV. The next
two stages subject these candidate nodes to functional analyses

Comparator Analysis (§ IV-A)

Support Set Analysis (§ IV-B)

Functional Analyses (§ V-A and § V-B)

Equivalence Checking (§ V-C)

Key Confirmation (§ VI)

comparators Comp

candidate cube stripping gates Cand

potential key values {K1c , K2c , . . . }

filtered potential key values {K1c , K2c , . . . }

key value Kc

Fig. 4: Attack algorithm overview.

to identify suspected key values. Algorithms for functional
analysis exploit unateness and Hamming distance properties of
the cube stripping functions used in SFLL and are described in
Section V. Given a shortlist of suspected key values, the final
stage verifies whether one of these key values is correct using
the key confirmation algorithm described in Section VI. This
stage need not be carried out if only one key was identified
by the functional analyses or if the adversary does not have
oracle access to an activated circuit.

IV. STRUCTURAL ANALYSES

This section describes structural analyses to identify nodes
that may be the output of the cube stripping unit.

A. Comparator Identification

The first step in systematically attacking TTLock and SFLL
is to identify the comparators (XOR gates) – gates c1, c2,
c3 and c4 – in Figures 2b and 2c. Identifying these gates is
helpful because it gives the pairing between the key inputs and
the circuit inputs. In these example circuits, k1 is compared
with a, k2 with b, k3 with c and k4 with d. If we know that
the protected cube is a ∧ ¬b ∧ ¬c ∧ d, the above pairing lets
us deduce that 〈k1, k2, k3, k4〉 = 〈1, 0, 0, 1〉 is the correct key.
While finding the comparators is easy in Figure 2a, how do
we do it in an optimized netlist like Figure 3? Here, the FALL
attack uses structural analysis followed by functional analysis.

1) First, we find all nodes in the circuit whose support
consists of one key input and one circuit input. Some
nodes in Figure 3 which satisfy this criterion are nodes
10, 11, 12, 13, 14 and 15. Examples of nodes which do
not satisfy this criterion are node 25, which depends on
two circuit inputs and node 28 which depends on more
than two inputs.

2) Second, among the nodes identified in step 1 which
satisfy the support criterion, we check using a SAT solver
if their functionality is equivalent to an XOR/XNOR gate.
If so the gate is marked as a comparator. In Figure 3 both

6

node 12’s and node 13’s functionality are equivalent to
an XNOR gate but node 10 is not.

Stated precisely, comparator identification is an algorithm
that finds all gates in the locked circuit whose circuit function
is equivalent to (z ⊕ xi) ⇐⇒ ki for some z. Here xi must
be a circuit input, ki must be a key input and z captures
whether ki is being compared with xi or ¬xi. The result of
comparator identification is the set Comp = {〈vi, xi, ki〉, . . . }
where each tuple 〈vi, xi, ki〉 is such that Supp(vi) = {xi, ki},
isKey(xi) = 0, isKey(ki) = 1, and one of the following
two formulas is valid: (i) cktfnvi ⇐⇒ xi ⊕ ki and (ii)
cktfnvi ⇐⇒ ¬(xi ⊕ ki).

B. Support Set Matching

The set of all circuit inputs that appear in the comparators
identified by the algorithm described in the previous subsec-
tion also tells us the set of circuit inputs appearing in protected
cube. This insight can help us shortlist potential circuit nodes
corresponding to the protected cube.

In formal notation, the above insight says that all circuit
inputs xi that appear in Comp should be the support of
the cube stripping unit. Support set matching finds all such
nodes. Given the set Comp = {〈vi, xi, ki, 〉, . . . }, define the
projection Compx as Compx = {xi | (vi, xi, ki) ∈ Comp}.
Cand is set of all gates whose support is identical to Compx.
This set of gates contains the output of the cube stripping unit.

In Figure 3, nodes 30 and 33 have a, b, c and d in their
support but not any of the key inputs. Therefore, both nodes
are part of Comp. One of these likely to be the node F in
Figures 2b and 2c, the output of the cube stripping unit.

To identify which of these two nodes is the actual output
of the cube stripper, we use Boolean functional analysis. This
will be described in the next section.

V. FUNCTIONAL ANALYSES

This section first develops functional properties of the
cube stripping function used in SFLL. It then describes three
algorithms that exploit these properties to find the “hidden”
key input parameters of the cube stripping unit.

A. Functional Properties of Cube Stripping

Cube stripping involves the choice of a protected cube, rep-
resented by the tuple Kc = 〈k1, . . . , km〉 where m = |Comp|
and ki ∈ B. The stripping function strip(Kc) : Bm →
(Bm → B) is parameterized by this protected cube. The
output of the functionality stripped circuit (the dashed box
in Figure 1) is inverted for the input X = 〈x1, . . . , xm〉
when strip(Kc)(X) = 1. For a given locked circuit and
associated key value, the value of Kc is “hard-coded” into the
implementation of strip, which is why we typeset Kc in a fixed
width font. The attacker’s goal is to learn this value of Kc.

In this paper we study functional properties of the following
cube stripping function: striph(Kc)(X)

.
= HD(Kc, X) = h.

striph flips the output for all input patterns exactly Hamming
distance h from the protected cube 〈k1, . . . , km〉. This is the
cube stripping function for SFLL-HDh and the special case of

h = 0 corresponds to the cube stripping function for TTLock.
This function has three specific properties that can be exploited
to determine the value of Kc.

1) Unateness (TTLock/SFLL-HD0): An important insight
in attacking TTLock is that regardless of the exact values of
the key inputs, the function computed by the gate F has the
special property of unateness in all its variables.

In our running example, the functionality of node 30
in Figure 3 is cktfn30(a, b, c, d) = a ∧ ¬b ∧ ¬c ∧ d.
Consider cktfn30(1, b, c, d), which is ¬b ∧ ¬c ∧ d, while
cktfn30(0, b, c, d) = 0. Therefore, changing a from 0 to 1
while keeping all the other variables the same will never
cause F to go from 1 to 0. This means that F is positive
unate in a. By a similar argument, F is negative unate
in the variables b and c, while it is positive unate in the
variable d. From this, we can deduce that the protected cube is
a∧¬b∧¬c∧d and hence a potential key is (k1, k2, k3, k4) =
(1, 0, 0, 1). For another example, let 〈k1, k2, k3〉 = 〈1, 0, 1〉.
Then strip0(〈k1, k2, k3〉)(〈x1, x2, x3〉) = x1 ∧¬x2 ∧ x3. This
is positive unate in x1 as 0 ≤ ¬x2 ∧ x3, and negative unate
in x2 as 0 ≤ x1 ∧ x3.

(Lemma 1) The cube stripping function for TTLock/SFLL-
HD0 is unate in every variable xi. Further, it is positive unate
in xi if ki = 1 and negative unate in xi if ki = 0.

Proof of the lemma is given in the appendix.
2) Non-Overlapping Errors Property (SFLL-HDh): Con-

sider the definition of striph, let Kc = 〈k1, . . . , k4〉 =
〈1, 1, 1, 1〉 and h = 1. Consider the two input values X1 =
〈1, 1, 1, 0〉 and X2 = 〈0, 1, 1, 1〉. strip1(Kc)(X

1) = 1 =
strip1(Kc)(X

2). X1 and X2 are Hamming distance 2 apart. Due
to the definition of strip1 they are also Hamming distance 1
from Kc. This means that the values of xi on which the two
patterns agree – x2 and x3 – must be equal to k2 and k3
respectively. This is because the “errors” in X1 and X2 cannot
overlap as they are Hamming distance 2h apart. Generalizing
this observation leads to the following result.

(Lemma 2) Suppose X1 = 〈x11, . . . , x1m〉, X2 =
〈x21, . . . , x2m〉, Kc = 〈k1, . . . , km〉 and striph(Kc)(X

1) = 1 =
striph(Kc)(X

2). If HD(X1, X2) = 2h, then for every j such
that x1j = x2j , we must have x1j = x2j = kj .

See appendix for proof.
Let us return to the example circuit in Figure 2c and the cube

stripping function F for this circuit shown in Equation 1. The
four values of (a, b, c, d) that result in F (a, b, c, d) = 1 are
(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 1, 1) and (1, 0, 0, 0). Recall that
h = 1 for this circuit and the protected cube is (a, b, c, d) =
(1, 0, 0, 1). Consider the pair (0, 0, 0, 1) and (1, 1, 0, 1). These
two vectors are Hamming distance 2 apart and we see that the
two indices on which the vectors agree (c and d) are equal to
their respective values in the protected cube. Therefore from
these two vectors, we can deduce that c = 0 and d = 1.
Similarly from the vectors (1, 0, 1, 1) and (1, 0, 0, 0) we can
deduce that a = 1 and b = 0.

3) Sliding Window Property (SFLL-HDh): Let us revisit the
example from the non-overlapping errors property. Let Kc =
〈k1, . . . , k4〉 = 〈1, 1, 1, 1〉 and h = 1. For the input value
X1 = 〈1, 1, 1, 0〉, we have strip1(Kc)(X

1) = 1. Notice that
there cannot exist another assignment X2 = 〈x21, . . . , x24〉 with

7

x24 = 0, HD(X1, X2) = 2 and strip1(Kc)(X
2) = 1. This is

because x24 6= k4, so the remaining bits in X2 must be equal to
Kc so that strip1(Kc)(X

2) = 1. But this forces the Hamming
distance between X1 and X2 to be 0 (and not 2 as desired).
This observation leads to the following result.

(Lemma 3) Consider the assignments X1 = 〈x11, . . . , x1m〉
and X2 = 〈x21, . . . , x2m〉. Let Kc = 〈k1, . . . , km〉 as before.
The formula striph(Kc)(X

1) = 1 ∧ striph(Kc)(X
2) = 1 ∧

HD(X1, X2) = 2h∧ x1j = x2j ∧ x1j = b is satisfiable iff b = kj .
The proof of this lemma is given in the appendix.

B. Functional Analysis Algorithms

Algorithm 1 Algorithm ANALYZEUNATENESS

1: procedure ANALYZEUNATENESS(c)
2: keys← ∅
3: for xi ∈ Supp(c) do
4: if isPositiveUnate(c, xi) then
5: keys← keys ∪ (xi 7→ 1)
6: else if isNegativeUnate(c, xi) then
7: keys← keys ∪ (xi 7→ 0)
8: else return ⊥
9: end if

10: end for
11: return keys
12: end procedure

In this subsection, we describe three attack algorithms on
SFLL that are based on Lemmas 1, 2 and 3. Each algorithm
takes as input a candidate node c in the circuit DAG. Let X =
Supp(c). The functional analyses described in this subsection
determine whether the circuit function of this node cktfnc(X)
is equivalent to strip(Kc)(X) for some assignment to Kc. In
other words, we are trying to solve the quantified Boolean for-
mula (QBF): ∃Kc. ∀X. cktfnc(X) = strip(Kc)(X). However,
solving this QBF instance is computationally hard. So instead
we exploit Lemmas 1, 2 and 3 to determine potential values
of Kc and verify this “guess” using combinational equivalence
checking.

1) ANALYZEUNATENESS: This is shown in Algorithm 1
and can be used to attack SFLL-HD0/TTLock. It takes as input
a circuit node c and outputs an assignment to each node in
the support set of c if the function represented by c is unate,
otherwise it returns ⊥. This assignment is the protected cube.
Applicability: This algorithm is only applicable to SFLL-HDh

when h = 0, i.e. TTLock.
2) SLIDINGWINDOW: Algorithm 2 takes as input the cir-

cuit node c and the algorithm checks if c behaves as the
cube stripping unit of SFLL-HDh. It works by asking if there
are two distinct satisfying assignments to cktfnc which are
Hamming distance of 2h apart. If no such assignment exists
then ⊥ is returned. Otherwise, by Lemma 2, bits which are
equal in both satisfying assignments must also be equal to
the corresponding key bits. The remaining bits are obtained
by iterating through each remaining bit and applying the SAT
query in Lemma 3. If any query is inconsistent with Lemma 3

Algorithm 2 Algorithm SLIDINGWINDOW

1: procedure SLIDINGWINDOW(c)
2: keys← ∅
3: S ← Supp(c)
4: c′ ← subsitute(c, {(xi, x′i) | x ∈ S})
5: F ← c ∧ c′ ∧HD(Supp(c),Supp(c′)) = 2h
6: if solve(F) = UNSAT then return ⊥
7: end if
8: for xi ∈ S do
9: (mi, m

′
i)← (modelxi(F), modelx′

i
(F))

10: if mi = m′i then
11: keys← keys ∪ (xi 7→ mi)
12: else
13: ri ← solve(F ∧ (xi = x′i ∧ x′i = mi))
14: r′i ← solve(F ∧ (xi = x′i ∧ x′i = m′i))
15: if ri = SAT ∧ r′i = UNSAT then
16: keys← keys ∪ (xi 7→ mi)
17: else if ri = UNSAT ∧ r′i = SAT then
18: keys← keys ∪ (xi 7→ m′i)
19: else
20: return ⊥
21: end if
22: end if
23: end for
24: return keys
25: end procedure

during this process then ⊥ is returned. If successful, the return
value is the protected cube.
Applicability: This algorithm is used to attack SFLL-HDh for
0 < h < bm/2c where m is the number of key inputs. Note
that h > bm/2c is symmetric to h < bm/2c with respect to
negation of the key.

3) DISTANCE2H: Algorithm 3 is based on Lemma 2. This
procedure is similar to SLIDINGWINDOW in that it computes
two satisfying assignments to c that are distance of 2h apart.
Any bits that are equal between the two assignments must be
equal to the key bits. The remaining bits are computed by
asking if there are two more satisfying assignments such that
the bits which were not equal in the first pair of assignments
are now equal. These new assignments must also be Ham-
ming distance of 2h apart. The second query, if successful,
determines the remaining key bits by Lemma 3.
Applicability: This algorithm is applicable when 0 < 4h ≤ m
where m is the number of key inputs.

C. Equivalence Checking

It is important to note that Lemmas 1, 2 and 3 encode neces-
sary but not sufficient properties of the cube stripping function.
We ensure sufficiency by using combinational equivalence
checking. Suppose the key value returned by Algorithm 1, 2 or
3 is Kc. We check satisfiability of striph(Kc)(X) 6= cktfnc(X)
where X is the support of the node c. If this query is
unsatisfiable, this means that the node c is equivalent to cube
stripping function striph(Kc).

8

Algorithm 3 Algorithm DISTANCE2H

1: procedure DISTANCE2H(c)
2: S ← Supp(c)
3: c′ ← subsitute(c, {(xi, x′i) | x ∈ S})
4: F ← c ∧ c′ ∧HD(Supp(c),Supp(c′)) = 2h
5: if solve(F) = UNSAT then return ⊥
6: end if
7: MF ← {(xi, modelxi

(F), modelx′
i
(F)) | xi ∈ S}

8: keysA ← {(xi 7→ mi) | (xi, mi, m′i) ∈MF ∧ mi = m′i}
9: Cnst ← {(xi = x′i) | (xi, mi, m′i) ∈MF ∧ mi 6= m′i}

10: G← F ∧ (
∧

pi∈Cnst pi)
11: if solve(G) = UNSAT then return ⊥
12: end if
13: MG ← {(xi, modelxi

(G), modelx′
i
(G)) | xi ∈ S}

14: keysB ← {(xi 7→ mi) | (xi, mi, m′i) ∈MG ∧ mi = m′i}
15: return keysA ∪ keysB
16: end procedure

VI. KEY CONFIRMATION

In most cases the functional analyses determine exactly
one correct locking key. However, there are few exceptions.
One case occurs when both the output of the cube stripper
module (F in Figure 2c) as well as its negation (¬F) appear
in the circuit. In this case, the algorithms may shortlist both
the correct key, e.g. 〈1, 0, 0, 1〉 and its complement 〈0, 1, 1, 0〉
Another scenario is when purely by coincidence the circuit
contains a function that happens to look like the cube stripper
module, but is actually not. In the case of TTLock, the latter
case occurs when the circuit contains any unate function of all
the circuit inputs. In this case too, the algorithms will output
multiple keys: one of these will be correct while the remaining
are spurious. How do we determine which of the keys in this
list is the correct key? We introduce the key confirmation
algorithm to solve this problem.

The key confirmation algorithm takes as input a circuit
represented by its characteristic relation C(X,K, Y), a set
of key values represented by the indicator function of this
set ϕ(K) and an I/O oracle. The indicate function ϕ is a
Boolean formula over the key variables that constrains the
search space of the algorithm. For example, suppose the circuit
analyses have shortlisted two keys 〈1, 1, 0, 1〉 and 〈0, 0, 1, 0〉.
The ϕ(K)

.
= (k1 ∧ k2 ∧¬k3 ∧ k4)∨ (¬k1 ∧¬k2 ∧ k3 ∧¬k4).

The algorithm either returns a key value Kc s.t. Kc |= ϕ or ⊥
if no key value is consistent with ϕ and the oracle.

If no information about the keys is available then we set
ϕ(K) = true; this corresponds to the universal set and in this
case, the algorithm devolves into the standard SAT attack [24].

A. Algorithm Description

To understand the algorithm, it is helpful to review the
notion of a distinguishing input introduced by Subramanyan
et al. [24] in the SAT attack paper. Following the notation in
that paper, we will represent the circuit by its characteristic
relation C(X,K, Y), where X is the vector of circuit inputs,
K is the vector of key inputs and Y is the vector of circuit
outputs. Recall that the relation C(X, K, Y) is satisfiable iff the

circuit produces output Y for input X when the key inputs
are set to K. Given the above relation, we say that Xd is a
distinguishing input pattern for the key inputs K1 and K2 iff
C(Xd, K1, Y

d
1)∧C(Xd, K2, Yd2)∧(Yd1 6= Yd2) is satisfiable. In other

words, a distinguishing input pattern for two keys is an input
such that the circuit produces different outputs for this input
and the corresponding keys.

Algorithm 4 Key Confirmation Algorithm

1: procedure KEYCONFIRMATION(C,ϕ, oracle)
2: i← 1
3: P1 ← ϕ(K1)
4: Q1 ← C(X,K1, Y1) ∧ C(X,K2, Y2) ∧ Y1 6= Y2
5: while true do
6: if solve[Pi] = UNSAT then
7: return ⊥
8: end if
9: Ki ← modelK1

(Pi)
10: if solve[Qi ∧ (K1 = Ki)] = UNSAT then
11: return Ki
12: end if
13: Xdi ← modelX(Qi)
14: Ydi ← oracle(Xdi)
15: Pi+1 ← Pi ∧ C(Xdi ,K1, Y

d
i)

16: Qi+1 ← Qi ∧ C(Xdi ,K2, Y
d
i)

17: i← i+ 1
18: end while
19: end procedure

The SAT-based key confirmation is shown in Algorithm 4.
The two main components of the algorithm are the sequences
of formulas Pi and Qi, which we implemented using two SAT
solver objects. Pi are used to produce candidate key values
that are consistent with ϕ and the I/O patterns observed thus
far. Note that since P1 is ϕ, all subsequent Pi =⇒ ϕ. Qi

is used to generate distinguishing inputs. When Pi becomes
UNSAT, it means no key value is consistent with ϕ and the
oracle. Or equivalently, the initial “guess” encoded in ϕ was
incorrect. The algorithm terminates with a correct key when
Qi becomes UNSAT, i.e. no more distinguishing inputs exist.

The algorithm works as follows. In line 9, we extract the key
value Ki that is consistent with ϕ and the input/output patterns
seen thus far. In line 10, we pose a query to the SAT solver to
find a distinguishing input such that K1 = Ki. In line 13, we
extract this distinguishing input. The oracle is queried for the
output for this input in line 14. Finally, the formulas Pi and
Qi are updated with the newly obtained input/output pattern
in lines 15 and 16. The two significant differences from the
SAT attack [24] are: (i) the two solver objects corresponding
to Pi and Qi which helps separate the generation of candidate
keys from the generation of distinguishing inputs, and (ii)
the restriction that Pi =⇒ ϕ. The former allows us to
differentiate between two different types of UNSAT results from
the solver: no key value being consistent with ϕ (line 7),
and no more distinguishing inputs (line 10). This would not
be possible in the SAT attack formulation because we only
get one type of UNSAT result. The latter change ensures that

9

instead of searching over the entire space of keys, we restrict
the search to keys satisfying ϕ.

B. Examples of Key Confirmation Algorithm Execution

Consider the operation of the key confirmation algorithm
for the TTLock netlist shown in Figure 2b. Without any
information about possible key values, i.e. when ϕ = true,
then every input is a distinguishing input for this circuit and
every input rules out only one incorrect key value. This ensures
security against the plain SAT attack.

Now consider the case when ϕ(k1, k2, k3, k4) = k1∧¬k2∧
¬k3 ∧ k4; this corresponds to the key value 〈k1, k2, k3, k4〉 =
〈1, 0, 0, 1〉. Lines 6–13 of Algorithm 4 attempt to find an input
that distinguishes between the key value 〈1, 0, 0, 1〉 and all
other key values. Note that every such distinguishing input
must be part of the protected cube. As a result, the first
distinguishing input is 〈a, b, c, d〉 = 〈1, 0, 0, 1〉. When the
oracle is queried for this input, we find that output is 1. After
this constraint is added to the formulas in lines 15 and 16,
no more distinguishing inputs can be found. The algorithm
terminates on line 11 with 〈1, 0, 0, 1〉 as the correct key.

Let us consider a scenario where we guess the wrong key.
Suppose ϕ(k1, k2, k3, k4) = k1 ∧ ¬k2 ∧ ¬k3 ∧ ¬k4; this
corresponds to the key value 〈k1, k2, k3, k4〉 = 〈1, 0, 0, 0〉. The
first distinguishing input between this key and all other keys
tested by the solver is 〈a, b, c, d〉 = 〈1, 0, 0, 0〉. The correct
output for this input pattern is 0, and this is returned by the
oracle. Note the output of the functionality stripped circuit for
this input 〈1, 0, 0, 0〉 is 0 and then the functionality restoration
unit flips this output to 1 because of the initial constraint on
the key inputs. Therefore, when we now add this constraint to
the formula P in line 15, the formula P becomes unsatisfiable.
This causes the algorithm to terminate with failure on line 7.

C. Correctness of Key Confirmation

Correctness of Algorithm 4 is stated in the following lemma.
(Lemma 4) Algorithm 4 terminates and returns either (i)

the key Kc or (ii) ⊥. The former occurs iff Kc |= ϕ and
∀X. C(X, Kc, Y) ⇐⇒ Y = oracle(X). The latter occurs iff
no such Kc exists.

The proof of this lemma is given in the appendix.
The second clause of Lemma 4 is important to emphasize.

Key confirmation terminates with the result ⊥ iff no key value
Kc s.t. Kc |= ϕ is correct for the given oracle. This implies key
confirmation can be safely used even if the key value was
“incorrectly” guessed – the algorithm will detect this.

VII. EVALUATION

This section describes our experimental evaluation of FALL
attacks. We describe the evaluation methodology, then present
the results of the functional analyses, after which we present
our evaluation of the key confirmation attack.

A. Methodology
We evaluated the effectiveness of FALL attacks on a set

of ISCAS’85 benchmark circuits and combinational circuits
from the Microelectronics Center of North Carolina (MCNC).
Details of these circuits are shown in Table I. These bench-
mark circuits remain reflective of contemporary combinational
circuits and have been used extensively in prior work on logic
locking, e.g. [20, 24, 32]. We implemented the TTLock and
SFLL locking algorithms for varying values of the Hamming
distance parameter h and key size of 64 and 128 bits. We did
not study key size of 256 bits because there is only one circuit
with 256 circuit inputs. We study four different values of the
Hamming distance h for each key size: h = 0 (TTLock),
h = bm/8c, h = bm/4c, and h = bm/3c where m is the
number of key inputs. We chose these different values to study
the impact of key size and h in the scalability of the algorithm.
Due to space limitations, we only show graphs/tables for the
maximum key size of 64 bits. Results for the larger key size
are discussed in the text in subsection VII-B.

Locked netlists were optimized using ABC v1.01 [12] by
running the strash command followed by repeated applica-
tion of the rewrite, refactor and balance commands.
We note that ABC is a state-of-the-art open source synthesis
tool and is regularly used in the design automation and
verification research. These particular commands are very
effective in circuit optimization while also minimizing any
elidable structural bias. We chose ABC because we are not
aware of any other open source synthesis tool that comes close
to feature parity with it.

ckt #in #out #keys # of gates
Original SFLL

min max
ex1010 10 10 10 2754 2783 2899
apex4 10 19 10 2886 2938 3058
c1908 33 25 33 414 1322 1376
c432 36 7 36 209 1119 1155
apex2 39 3 39 345 1367 1407
c1355 41 32 41 504 1729 1746
seq 41 35 41 1964 3177 3187
c499 41 32 41 400 1729 1750
k2 46 45 46 1474 2890 2903
c3540 50 22 50 1038 2591 2595
c880 60 26 60 327 2338 2368
dalu 75 16 64 1202 3284 3312
i9 88 63 64 591 2981 3015
i8 133 81 64 1725 3609 3637
c5315 178 123 64 1773 4076 4108
i4 192 6 64 246 2261 2289
i7 199 67 64 663 3038 3066
c7552 207 108 64 2074 4076 4105
c2670 233 140 64 717 2733 2775
des 256 245 64 3839 7229 7257

TABLE I: Benchmark circuits. #in, #out and #key refer to the
number of inputs, outputs and keys respectively.

1) Implementation: The circuit analyses were implemented
in Python and use the Lingeling SAT Solver [4]. Source code
for these analyses is available at [22]. The key confirmation
algorithm was implemented in C++ as a modification to the
open source SAT attack tool [25].

2) Execution Platform: Our experiments were conducted
on the CentOS Linux distribution version 7.2 running on

10

0 200 400 600 800 1000
Execution Time (s)

0

4

8

12

16

of

 b
en

ch
m

ar
ks

 so
lv

ed

SFLL-HD0

SAT-Attack
AnalyzeUnateness

0 200 400 600 800 1000
Execution Time (s)

0

4

8

12

16

of

 b
en

ch
m

ar
ks

 so
lv

ed

SFLL-HDh where h = m/8

SAT-Attack
SlidingWindow
Distance2H

0 200 400 600 800 1000
Execution Time (s)

0

4

8

12

16

of

 b
en

ch
m

ar
ks

 so
lv

ed

SFLL-HDh where h = m/4

SAT-Attack
SlidingWindow
Distance2H

0 200 400 600 800 1000
Execution Time (s)

0

4

8

12

16

of

 b
en

ch
m

ar
ks

 so
lv

ed

SFLL-HDh where h = m/3

SAT-Attack
SlidingWindow

Fig. 5: Circuit analyses: execution time vs number of benchmarks solved in that time.

ex
10

10

ap
ex

4

c1
90

8

c4
32

ap
ex

2

c1
35

5

se
q

c4
99 k2

c3
54

0

c8
80

da
lu i9 i8

c5
31

5 i4 i7

c7
55

2

c2
67

0

de
s10 1

100

101

102

103

104

M
ea

n
ex

ec
ut

io
n

tim
e

(s
)

Key Verification SAT Attack

Fig. 6: Mean execution times of key confirmation and SAT attacks.

11

28-core Intel R© Xeon R© Platinum 8180 (“SkyLake”) Server
CPUs. All experiments had a time limit of 1000 seconds.

B. Circuit Analysis Results

Figure 5 show the performance of the circuit analyses
attacks on the benchmarks in our experimental framework.
Four graphs are shown: the left most of which is for SFLL-
HD0 while the remaining are for SFLL-HDh with varying
values of the Hamming Distance h. For each graph, the x-
axis shows execution time while the y-axis shows the number
of benchmark circuits decrypted within that time.

The DISTANCE2H attack defeats all SFLL-HDh locked
circuits for h = bm/8c and h = bm/4c. We repeated this
experiment for the seven largest circuits with a key size of
128 bits and the DISTANCE2H attack defeated all of these
locked circuits. Recall that DISTANCE2H is not applicable
when 4h > m. ANALYZEUNATENESS is able to defeat 18 out
of 20 TTLock circuits; the two remaining circuits are defeated
by the plain SAT attack. SLIDINGWINDOW is able to defeat
all locked circuits for h = bm/8c, but does not perform as
well for larger values of h. This is because the SAT calls for
larger values of h are computationally harder as they involve
more adder gates in the Hamming Distance computation. In
summary, 65 out of 80 circuits (81%) are defeated by at
least one of our attack algorithms.

Among these 65 circuits for which the attack is successful,
a unique key is identified for 58 circuits (90%). This means
58 out of 80 circuits were defeated without oracle access
(I/O access to an unlocked IC) — only functional analysis of
the netlist was required. Among the seven circuits for which
multiple keys were shortlisted, the attack shortlists two keys
which are bitwise complements of each other for four circuits,
three keys are shortlisted for two other circuits. One corner
cases occurs for c432: 36 keys are shortlisted, this is still a
huge reduction from the initial space of 236 possible keys.

Recall that Algorithm DISTANCE2H is only applicable for
0 < h ≤ bm/4c. Results show that DISTANCE2H defeats
all circuits for which it is applicable. SLIDINGWINDOW is
applicable for 0 < h < bm/2c, and results show that is less
scalable than DISTANCE2H because it has to make many more
calls to the SAT solver.

C. Key Confirmation Results

Figure 6 shows the execution time of the key confirmation
algorithm and compares and contrasts this with the “vanilla”
SAT attack. Note that the y-axis is shown on a log scale. The
bars represent the mean execution time of key confirmation for
a particular circuit encoded with the various locking algorithms
and parameters discussed above. Key values are obtained
from the results of the experiments described in the previous
subsection. The thin black line shows error bars corresponding
to one standard deviation. We note that key confirmation
is orders of magnitude faster than the SAT attack while
providing the same correctness guarantees.

Key confirmation provides a powerful new tool for attackers
analyzing a locked netlist. Attackers can use some arbitrary
circuit analysis to guess a few likely keys, and then use key

confirmation to determine which (if any) of these is the correct
key. Key confirmation is applicable even if the locked netlist
is SAT attack resilient. Indeed, the SAT attack fails on most
of these locked circuits as shown in Figure 5. This is because
SAT-resilience only requires that there be exponentially many
distinguishing inputs overall. However, key confirmation is
not searching over the entire space of distinguishing inputs,
but only over the inputs that distinguish from the keys in
ϕ. Therefore, even though there may be exponentially many
distinguishing inputs overall, if we can eliminate many of them
via structural, functional or statistical analyses, the remaining
set can be analyzed using key confirmation.

D. Why does the FALL attack fail?

Across all benchmarks and all attack algorithms, there are
a total of 25 cases in which some variant of the FALL attack
fails. In 23 of these cases, the time limit of 1000 seconds
is exceeded. All 23 timeouts occur for the SLIDINGWINDOW
algorithm. Note that this algorithm makes up to 2×|Kc| number
of calls to the SAT solver, where |Kc| is the number of literals
in the protected cube. This reliance on SAT solving causes it
to timeout on some of the larger benchmarks. Using Gaussian
elimination instead of SAT-based analyses, as done by Yang
et al. [34] could potentially speed up the attack; a detailed
comparison with [34] is deferred to § VIII.

In the remaining two cases, the cube stripper module has
been entirely optimized out of the netlist by the synthesis tool.
We note that both of these circuits have only 10 key inputs
and therefore the protected cube also has only 10 inputs. This
allows the synthesizer (abc) to merge the protected cube with
the rest of the circuit. However, the small number of keys
means that both circuits are defeated by the plain SAT attack.
This is not a coincidence; the ability of the synthesis tool to
remove the cube stripper is dependent on the efficacy of two-
level minimization (à la Espresso). Two-level minimization is
unlikely to scale beyond 16 or so inputs. Therefore, we do not
believe this will yield an effective countermeasure.

E. Discussion

We now present a brief discussion of the limitations, impli-
cations, and avenues for future work related to the FALL and
key confirmation attacks.

1) Significance of the Key Confirmation Attack: The key
confirmation attack opens up new possibilities for the appli-
cation of Boolean reasoning engines based on SAT solvers to
logic locking research. This extension to the SAT attack shows
how keys that are “guessed” using some structural, functional
or statistical analysis can be provided as a hint to the SAT
solver. As discussed in § VII-C, these hints are usable by the
algorithm even against SAT-resilient locking schemes. In fact,
the key confirmation attack can also be used to parallelize the
SAT attack by partitioning the key input space into different
regions and setting ϕ to search over these distinct regions in
each parallel invocation. Exploration of these and other related
ideas is left for future work.

12

2) Applicability to other locking schemes: The structural
analyses of the FALL attack are not specific to SFLL/TTLock.
They can be used to identify the functionality restoration unit
in all variants of SFLL including SFLL-fault [18]. This can
help identify the circuit inputs for the protected cube. However,
the identification of cube stripper and extracting the protected
cube via the functional analyses in § V is specific to SFLL-
HDh and TTLock. Extending the analyses to find the protected
cube in SFLL-fault is an open problem for future work.

Note that the key confirmation attack is entirely independent
of the structural and functional analyses and not at all specific
to SFLL. It is an extension to the SAT attack where the attacker
only needs to somehow guess some set of keys or constraint
over keys and can provide this to the SAT solver as a hint. The
solver can use this information to greatly accelerate the search
for the correct locking key. We believe this is of independent
interest for general attacks on combinational logic locking.

VIII. RELATED WORK

This section provides a brief overview of related attacks.
Attacks on SFLL-HD: In concurrent work, Yang et al. [34]
introduce a novel attack that also uses structural analysis of
the netlist to identify the cube stripper. However, they use
manual inspection to look for signals connecting the cube
stripper and the functionality restoration unit and rely on the
topological structure of these nodes to identify the output of
the cube stripper. An important insight in their work is that the
cube stripper in SFLL-HDh will have a tree-like structure with
each branch of the tree corresponding to a particular protected
pattern. They introduce an algorithm that is based on Gaussian-
elimination to identify the key from the cube stripping unit.
The main differences with our attack are the following. First,
our analysis is completely automated, while Yang et al. used
manual inspection to identify the cube stripping unit. Second,
instead of using Gaussian elimination to identify the key, we
use Boolean function analyses (lemmas 2 and 3). Gaussian
elimination has the advantage of being a polynomial time
algorithm while we rely on SAT-based analyses. Combining
their functional analyses with ours could potentially result in
a more scalable attack on SFLL-HDh.

Alrahis et al. [1] also introduced novel attacks on SFLL
concurrently with this work. They use the reverse engineering
tool BSIM [26, 27] to identify the cube stripper and functional-
ity restoration unit. Our structural and functional analyses are
more sophisticated than the implementations in BSIM because
they are focused on SFLL-HD. The BSIM toolbox is based
on k-cut matching [7?] and so it will miss structures where
intermediate sub-circuits have more than k inputs. Alrahis et
al. work around this to some extent by reverse engineering
and then resynthesizing the circuit with a smaller gate library,
but this method is not guaranteed to be foolproof.
SAT-based Attacks: The key confirmation attack builds on
rich body of literature in SAT-based attacks on logic locking,
examples of which include the SAT attack [24], the Double
DIP attack [20] and AppSAT [19]. As discussed in § VII-E,
the main advantage of key confirmation is that it is an exact
attack that can work on netlists resilient to the SAT, double
DIP and AppSAT attacks.

IX. CONCLUSION

This paper proposed a set of Functional Analysis attacks
on Logic Locking (FALL attacks). We developed structural
and functional analyses to determine potential key values of a
locked logic circuit. We then showed how these potential key
values could be verified using our key confirmation algorithm.

Our work has three important implications. First, we showed
how arbitrary structural and functional analyses can be syner-
gistically combined with powerful Boolean reasoning engines
using the key confirmation algorithm. Second, our attack was
shown to often succeed (90% of successful attempts in our
experiments) without requiring oracle access to an unlocked
circuit. This suggests that logic locking attacks may be much
more easily carried out than was previous assumed. Experi-
ments showed that FALL defeated 65 out of 80 benchmark
circuits locked using SFLL-HDh.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
insightful comments which helped improve the quality of
this paper. We are also grateful to Intel Corp. for providing
access to computational resources which were used to run the
experiments for this paper. This work was supported in part
by the Science and Engineering Research Board, a unit of the
Department of Science and Technology, Government of India.

REFERENCES

[1] L. Alrahis, M. Yasin, H. Saleh, B. Mohammad, and M. Al-
Qutayri. Functional Reverse Engineering on SAT-Attack Re-
silient Logic Locking. In 2019 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–5, May 2019.

[2] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A
linear-time algorithm for testing the truth of certain quantified
boolean formulas. Information Processing Letters, 8(3):121 –
123, 1979.

[3] A. Baumgarten, A. Tyagi, and J. Zambreno. Preventing IC
Piracy Using Reconfigurable Logic Barriers. IEEE Design and
Test, 27(1), Jan 2010.

[4] A. Biere. Lingeling, Plingeling and Treengeling. In A. Balint,
A. Belov, M. Heule, and M. Järvisalo, editors, Proceedings of
the SAT Competition, 2013.

[5] P. Chakraborty, J. Cruz, and S. Bhunia. Surf: Joint structural
functional attack on logic locking. pages 181–190, May 2019.

[6] R.S. Chakraborty and S. Bhunia. Hardware Protection and Au-
thentication Through Netlist Level Obfuscation. In IEEE/ACM
International Conference on Computer-Aided Design, 2008.

[7] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and
T. Kam. Reducing Structural Bias in Technology Mapping.
In Proc. of the 2005 IEEE/ACM International Conf. on Comp.-
Aided Design, ICCAD ’05, pages 519–526, 2005.

[8] Stephen A Cook. The complexity of theorem-proving proce-
dures. In Proceedings of the third annual ACM symposium on
Theory of computing, pages 151–158. ACM, 1971.

[9] Defense Science Board Task Force on High Perfor-
mance Microchip Supply. http://www.acq.osd.mil/dsb/reports/
ADA435563.pdf, 2005.

[10] S. Dupuis, P.-S. Ba, G. Di Natale, M.-L. Flottes, and
B. Rouzeyre. A Novel Hardware Logic Encryption Technique
for Thwarting Illegal Overproduction and Hardware Trojans. In
IEEE International On-Line Testing Symposium, 2014.

[11] IHS Technology Press Release: Top 5 most counterfeited
parts represent a $169 billion potential challenge for global
semiconductor industry. https://technology.ihs.com/405654/top-

13

5-most-counterfeited-parts-represent-a-169-billion-potential-
challenge-for-global-semiconductor-market, 2012.

[12] Alan Mishchenko. ABC: System for Sequential Logic Synthesis
and Formal Verification. https://github.com/berkeley-abc/abc,
2018.

[13] M. Pecht and S. Tiku. Bogus! Electronic manufacturing and
consumers confront a rising tide of counterfeit electronics. IEEE
Spectrum, May 2006.

[14] S.M. Plaza and I.L. Markov. Solving the third-shift problem in
ic piracy with test-aware logic locking. In IEEE Transactions
on CAD of Integrated Circuits and Systems, 2015.

[15] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Security
Analysis of Logic Obfuscation. In Proceedings of the Design
Automation Conference, 2012.

[16] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino,
O. Sinanoglu, and R. Karri. Fault Analysis-Based Logic
Encryption. IEEE Transactions on Computers, 64(2), Feb 2015.

[17] J. A. Roy, F. Koushanfar, and I. L. Markov. EPIC: Ending Piracy
of Integrated Circuits. In Proceedings of Design, Automation
and Test in Europe, 2008.

[18] Abhrajit Sengupta, Mohammed Thari Nabeel, Muhammad
Yasin, and Ozgur Sinanoglu. Atpg-based cost-effective, secure
logic locking. In 36th IEEE VLSI Test Symposium, VTS 2018,
San Francisco, CA, USA, April 22-25, 2018, pages 1–6, 2018.

[19] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin.
Appsat: Approximately deobfuscating integrated circuits. In
2017 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2017.

[20] Yuanqi Shen and Hai Zhou. Double DIP: Re-Evaluating
Security of Logic Encryption Algorithms. In Proceedings of
the on Great Lakes Symposium on VLSI 2017, 2017.

[21] Semiconductor Industry Association: Anti-Counterfeiting
Whitepaper One-Pager. http://www.semiconductors.
org/clientuploads/directory/DocumentSIA/Anti%
20Counterfeiting%20Task%20Force/ACTF%20Whitepaper%
20Counterfeit%20One%20Pager%20Final.pdf, 2013.

[22] Deepak Sirone and Pramod Subramanyan. Fall Attacks Source.
https://bitbucket.org/spramod/fall-attacks, 2018.

[23] Deepak Sirone and Pramod Subramanyan. Functional Analysis
Attacks on Logic Locking. In Proceedings of Design Automa-
tion and Test in Europe (DATE), 2019.

[24] P. Subramanyan, S. Ray, and S. Malik. Evaluating the Security
Logic Encryption Algorithms. In 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST),
2015.

[25] Pramod Subramanyan and Sayak Ray. SAT and Key Confirma-
tion Attacks Repository . https://bitbucket.org/spramod/host15-
logic-encryption, 2019.

[26] Pramod Subramanyan, Nestan Tsiskaridze, Wenchao Li, Adrià
Gascón, Wei Yang Tan, Ashish Tiwari, Natarajan Shankar,
Sanjit A. Seshia, and Sharad Malik. Reverse Engineering Digital
Circuits Using Structural and Functional Analyses. IEEE Trans.
Emerging Topics Comput., 2(1):63–80, 2014.

[27] Pramod Subramanyan, Nestan Tsiskaridze, Kanika Pasricha,
Dillon Reisman, Adriana Susnea, and Sharad Malik. Reverse
engineering digital circuits using functional analysis. In Design,
Automation and Test in Europe, DATE 13, Grenoble, France,
March 18-22, 2013, pages 1277–1280, 2013.

[28] R. Torrance and D. James. The State-of-the-Art in IC Reverse
Engineering. In Proceedings of the 11th International Workshop
on Cryptographic Hardware and Embedded Systems, 2009.

[29] G. S. Tseitin. On the complexity of derivation in propositional
calculus. In J. Siekmann and G. Wrightson, editors, Automation
of Reasoning 2: Classical Papers on Computational Logic 1967-
1970, pages 466–483. Springer, Berlin, Heidelberg, 1983.

[30] J. Villasenor and M. Tehranipoor. The Hidden Dangers of Chop-
Shop Electronics. IEEE Spectrum, Sep 2013.

[31] Y. Xie and A. Srivastava. Mitigating SAT Attack on Logic Lock-
ing. In International Conference on Cryptographic Hardware

and Embedded Systems, 2016.
[32] Y. Xie and A. Srivastava. Anti-sat: Mitigating sat attack on

logic locking. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2018.

[33] X. Xu, B. Shakya, M.M Tehranipoor, and D. Forte. Novel
Bypass Attack and BDD-based Tradeoff Analysis Against all
Known Logic Locking Attacks. In Cryptology ePrint Archive,
2017.

[34] F. Yang, M. Tang, and O. Sinanoglu. Stripped functionality
logic locking with hamming distance-based restore unit (sfll-
hd) unlocked. IEEE Transactions on Information Forensics
and Security, 14(10):2778–2786, Oct 2019.

[35] M. Yasin, B. Mazumdar, S.S. Ali, and Sinanoglu O. Security
Analysis of Logic Encryption against the Most Effective Side-
Channel Attack: DPA. In IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems, 2015.

[36] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu.
SARLock: SAT attack resistant logic locking. In 2016 IEEE
International Symposium on Hardware Oriented Security and
Trust (HOST), pages 236–241, 2016.

[37] M. Yasin, B. Mazumdar, O. Sinanoglu, and Rajendran J. Re-
moval Attackson Logic Locking and Camouflaging Techniques.
In IEEE Transactions on Emerging Topics in Computing, 2017.

[38] M. Yasin, S.M. Saeed, J. Rajendran, and O. Sinanoglu. Activa-
tion of logic encrypted chips: Pre-test or post-test? In Design,
Automation Test in Europe., 2016.

[39] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari
Nabeel, Mohammed Ashraf, Jeyavijayan (JV) Rajendran, and
Ozgur Sinanoglu. Provably-secure logic locking: From theory to
practice. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, 2017.

[40] Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrion
Schafer, Yiorgos Makris, Ozgur Sinanoglu, and Jeyavi-
jayan (JV) Rajendran. What to lock?: Functional and parametric
locking. In Proceedings of the on Great Lakes Symposium on
VLSI 2017, 2017.

Deepak Sirone received the B.Tech. degree from
the National Institite of Technology, Calicut in 2016
and the M.Tech. degree from the Indian Institite
of Technology, Kanpur in 2019. He is currently
pursuing his Ph.D. degree from the Department of
Computer Sciences at the University of Wisconsin-
Madison. His research interest is in systems security.

Pramod Subramanyan received the B.E. degree
from the R. V. College of Engineering in 2006,
the M.Sc. (Engg.) degree from the Indian Institute
of Science in 2011. He obtained a Ph.D. degree
from the Department of Electrical Engineering at
Princeton University in 2017. He is currently an
assistant professor at the Department of Computer
Science and Engineering at the Indian Institute of
Technology, Kanpur. His research interests lie at the
intersection of systems security and formal methods.

14

APPENDIX: PROOFS

This appendix proves the lemmas in § V and VI.

(Lemma 2) Suppose X1 = 〈x11, . . . , x1m〉, X2 =
〈x21, . . . , x2m〉, Kc = 〈k1, . . . , km〉 and striph(Kc)(X

1) = 1 =
striph(Kc)(X

2). If HD(X1, X2) = 2h, then for every j such
that x1j = x2j , we must have x1j = x2j = kj .

Proof: The proof is by induction on h. The base case for
h = 0 is clearly true, because in this case striph(Kc)(X

1) =
striph(Kc)(X

2) = 1 iff Kc = X1 = X2. This implies that x1j =
x2j = kj for all j.

In the inductive step, assume the lemma holds for h − 1.
Consider some arbitrary X1, X2 such that striph−1(Kc)(X

1) =
striph−1(Kc)(X

2) = 1 and HD(X1, X2) = 2h − 2. Suppose
there exist i and l with i 6= l and x1i = x2i and x1l = x2l .
By the lemma for h − 1, we have x1i = x2i = ki and x1l =
x2l = kl. Now consider the vectors Y1 = 〈y11, . . . , y1m〉 and
Y2 = 〈y21, . . . , y2m〉 which are constructed as follows. Y1 is
the same as X1 except that index i is flipped, while Y2 is
the same as X2 except at index l which is flipped. Notice
that striph(Kc)(Y

1) = striph(Kc)(Y
2) = 1 because each of

these vectors differ from the protected cube on one more index
(either i or l). Further HD(Y1, Y2) = 2h because i 6= l. We see
that for all j such that y1j = y2j , we must have y1j = y2j = kj
because these indices are the same in both Y1 and X1 as well
as Y2 and X2 respectively. In other words, we have shown the
lemma also holds for h if it holds for h− 1.

(Lemma 3) Consider the assignments X1 = 〈x11, . . . , x1m〉
and X2 = 〈x21, . . . , x2m〉. Let Kc = 〈k1, . . . , km〉 as before.
The formula striph(Kc)(X

1) = 1 ∧ striph(Kc)(X
2) = 1 ∧

HD(X1, X2) = 2h∧ x1j = x2j ∧ x1j = b is satisfiable iff b = kj .
Proof: The proof of this lemma is a direct consequence

of Lemma 2. Note that the above statement of the lemma is
equivalent to saying that the formula striph(Kc)(X

1) = 1 ∧
striph(Kc)(X

2) = 1∧HD(X1, X2) = 2h∧ x1j = x2j ∧ x1j = b is
unsatisfiable iff b 6= kj . This follows from Lemma 2.

(Lemma 1) The cube stripping function for TTLock/SFLL-
HD0 is unate in every variable xi. Further, it is positive unate
in xi if ki = 1 and negative unate in xi if ki = 0.

Proof: The proof is by induction on the number of literals
in the protected cube. In the base case, the protected cube has
only one literal; it is either xi or ¬xi. The function f(xi)

.
= xi

is positive unate in the variable xi while the function f(xi)
.
=

¬xi is negative unate in the variable xi.

Now consider the inductive step. We have cube
C(x1, . . . , xi−1) consisting of i− 1 literals which is assumed
to be unate in all its variables. We have to show that both
the cubes C(x1, . . . , xi−1) ∧ xi and C(x1, . . . , xi−1) ∧ ¬xi
are unate in the variable xi. Let us consider only the cube
C(x1, . . . , xi−1) ∧ xi w.l.o.g as the argument is symmetric
for C(x1, . . . , xi−1) ∧ ¬xi. This cube is positive unate in the
variable xi. For all the other variables in C(x1, . . . , xi−1),
since C is unate in each of those variables, it is also unate in
C(x1, . . . , xi−1) ∧ xi for those variables.

(Lemma 4) Algorithm 4 terminates and returns either (i)
the key Kc or (ii) ⊥. The former occurs iff Kc |= ϕ and
∀X. C(X, Kc, Y) ⇐⇒ Y = oracle(X). The latter occurs iff
no such Kc exists.

Proof : Each iteration of the loop rules out at least one
distinguishing input. Since there are only a finite number
of distinguishing inputs of the circuit, this guarantees the
algorithm will terminate. If the algorithm returns a key Kc, then
this key is satisfies Pi, so this ensures that Kc |= ϕ. Further,
this also means there are no distinguishing inputs for Kc and
any other key as line 10 was UNSAT. This guarantees that Kc
is the correct key. If the algorithm returns ⊥, it means that
there is no input consistent with ϕ(K1) and the input/output
patterns from the oracle.

