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Abstract— Photo Response Non-Uniformity (PRNU) has been
used as a powerful device fingerprint for image forgery detection
because image forgeries can be revealed by finding the absence
of the PRNU in the manipulated areas. The correlation between
an image’s noise residual with the device’s reference PRNU is
often compared with a decision threshold to check the existence
of the PRNU. A PRNU correlation predictor is usually used
to determine this decision threshold assuming the correlation
is content-dependent. However, we found that not only the
correlation is content-dependent, but it also depends on the
camera sensitivity setting. Camera sensitivity, commonly known
by the name of ISO speed, is an important attribute in digital
photography. In this work, we will show the PRNU correlation’s
dependency on ISO speed. Due to such dependency, we postulate
that a correlation predictor is ISO speed-specific, i.e. reliable
correlation predictions can only be made when a correlation
predictor is trained with images of similar ISO speeds to the
image in question. We report the experiments we conducted
to validate the postulate. It is realized that in the real-world,
information about the ISO speed may not be available in the
metadata to facilitate the implementation of our postulate in the
correlation prediction process. We hence propose a method called
Content-based Inference of ISO Speeds (CINFISOS) to infer the
ISO speed from the image content.

Index Terms— Digital forensics, image forgery detection, ISO
speed, photo response non-uniformity.

I. INTRODUCTION

WHEN a digital image is used in a forensic investigation
or presented as evidence to the court, it is important to

authenticate the image to ensure its content is free from manip-
ulation. Thus, image forgery detection draws substantial atten-
tions from researchers. Among different techniques developed
for image forgery detection, Photo Response Non-Uniformity
(PRNU) based methods have shown their unique strength.
PRNU is a sensor pattern noise intrinsically embedded in
images. It arises as a result of the manufacturing imperfections
of silicon wafers in image sensors. As such, pixels on a sensor
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would have a non-uniform response to the incident light and
introduce a unique pattern noise to the image, which can be
treated as the fingerprint of a device. Many different algo-
rithms have been proposed for PRNU-based source camera
identification [1]–[11] and image forgery detection [12]–[17].
In most of these works, PRNU is utilized by computing the
image-wise or block-wise correlations between the source
device’s reference PRNU and the test image’s PRNU. The
corresponding image-wise (source camera identification) or
pixel-wise decision (forgery detection) can be made by com-
paring the correlations with a decision threshold.

The PRNU is often estimated in the form of the noise
residual of an image. The noise residual can be extracted
from an image by simply subtracting the de-noised image
from the original image. By nature, PRNU is a weak noise.
The existence of camera artifacts and other PRNU-irrelevant
noises (e.g. shot noise, thermal noise, etc.) in an image’s
noise residual can reduce the correlation between the noise
residual and the device’s reference PRNU. It becomes a
non-trivial problem to separate the inter-class (images from
different source devices) from the intra-class (images from
the same source device) correlations. It becomes particularly
problematic when the PRNU quality in the noise residual is
poor such that these two types of correlations’ distributions
can have large overlaps.

Despite a large number of works that have been done to
better extract, estimate and enhance the PRNU [3]–[6], [9],
[13], [18]–[22], the overlap between inter- and intra-class
correlations cannot be completely avoided. Thus, many
researchers have been working on refining the choice of
the decision thresholds to better separate the two classes,
especially for image forgery detection [13], [15], [17]. The
decision thresholds are often set with reference to the expected
intra-class correlations predicted by a correlation predictor.
The correlation between an image’s noise residual and the
device’s reference PRNU reflects the strength of the PRNU in
the image. As the strength of the PRNU is multiplicative of
the pixel intensity and some highly textured image content or
post-processing may damage the PRNU’s quality, correlation
prediction should be performed in an adaptive manner.
A content-dependent correlation predictor is proposed by
Chen et al. in [13], which formulates the correlation predictor
as a regressor model of four image features, namely the inten-
sity, texture, signal-flattening and a texture-intensity combina-
tive term. This correlation predictor has been adopted by many
PRNU-based forgery detection algorithms (e.g. [13]–[17]).
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Due to the complex nature of the PRNU correlation, despite
different attempts to re-engineer the correlation predictor over
the past decade, we have not witnessed much success. Thus,
the digital forensic community still relies greatly on the corre-
lation predictor from [13] for PRNU-based forgery detection.

However, over the last decade, we have also witnessed
great advancement in the digital camera industry, especially in
sensor design. Such advancement also brings new challenges
to PRNU-based digital forensics. Therefore, we have observed
a few issues about the correlation predictor proposed in [13].
An important feature ignored by the correlation predictor is
the camera sensitivity setting, which is commonly known by
the name of ISO speed. The ISO speed together with the
shutter speed and the aperture size are the three parameters,
which control an image’s exposure in digital photography. The
shutter speed and aperture size control the number of photons
arriving at the image sensor during the exposure process while
the ISO speed determines the camera’s signal gain. In real-
life, photographers may face many physical restrictions on the
aperture size and shutter speed. Such restrictions require more
freedom of choice in ISO speeds to achieve the desired expo-
sure. Thus, many camera manufacturers have been working on
improving sensor performance and providing more and higher
ISO speeds to digital cameras. While the improvements have
been brought to sensor technology, it is also a known fact
that high ISO speeds may introduce more noise to an image.
As a result, the quality of the PRNU left in the noise residual
will be reduced when a high ISO speed is used. A recent
work presented in [23] empirically shows that different ISO
speeds may affect the performance of PRNU-based source
camera identification. With camera manufacturers increasingly
supporting broader ranges of ISO speed settings on digital
cameras and mobile devices, a proper analysis of the ISO
speed’s influence on PRNU-based image forensics, especially
on the correlations, needs to be carried out.

As this work focuses on the correlation between an image’s
noise residual with its reference PRNU, for simplicity, we will
call it the correlation. The contribution of this work can be
summarized as follows:

• We first analytically and empirically proved in Section II
that the correlation between an image’s noise residual
and its reference PRNU is not only content-dependent
as previously known, but also dependent on the camera
sensitivity setting (i.e. the ISO speed).

• We then validate our postulate in Section III that, due
to such ISO speed dependency, reliable predictions of
the correlation between an image’s noise residual and its
reference PRNU can only be accurately made when a
correlation predictor is trained on images of similar ISO
speeds to the image in question.

• Base on the postulate, we propose an ISO specific corre-
lation prediction process. Recognizing that in the real-
world, information about the ISO speed may not be
available to facilitate the implementation of our postu-
late in the correlation prediction process, we propose a
method called Content-based Inference of ISO Speeds
(CINFISOS, /’sin.f@.s@s/) in Section IV to infer the ISO
speed from the image content.

In order to carry out this in-depth investigation into how the
ISO speed can affect PRNU-based image forensics, we use the
purposefully built Warwick Image Forensics Dataset [24]. The
images in this dataset are taken with diverse exposure para-
meter settings. The dataset involves 14 cameras and images
of various scenes. In particular, for 20 different scenes for
each camera, multiple images of the same scene are shot with
varying ISO speeds and exposure times. Thus, these images
allow us to conduct studies on the ISO speed’s influence on
the correlation.

II. ISO SPEED DEPENDENT CORRELATION

In this section, we demonstrate that an image’s ISO speed
can affect its correlation. As a general noise model can be
complicated, to show the existence of such an ISO Speed-
Correlation relationship in a concise manner, we use a special
case to prove this relationship analytically and then empirically
show it with more general cases. The special case considered is
a single color channel of a flat-field RAW image, from which
we expect the same value for every pixel if they are noise-
free. To conduct PRNU-based pixel-wise forgery detection,
the correlation between the noise-residual of a block centered
at each pixel and the corresponding block of the reference
PRNU is calculated. Let z be a noise residual within a block
Ni centered at pixel i and ω be the reference fingerprint
within the corresponding block. Assume both z and ω are
standardized, which means they follow the normal distribution
N (0, 1). We can model both signals as the sum of a PRNU
component and a PRNU-irrelevant part. At pixel j ∈ Ni :{

ω j = x j + α j

z j = y j + β j
(1)

where x and y are the PRNU components of ω and z while
α and β are the PRNU-irrelevant noises. As for a flat-field
image, we can approximate its PRNU component, x in this
case, as a normal distribution N (0, σx

2) and α conforms to
N (0, 1 − σx

2). For intra-class pairs, x and y represent the
same PRNU. As they may differ in strength, without losing
generality, we can express y as N (0, σy

2) with σy = √
λσx

and y = √
λx. α and β are mutually independent. So when

we compute the correlation ρi of the block Ni , the correlation
ρi becomes:

ρi ∼ N (μi ,�i ) (2)

with {
μi = σxσy = √

λσx
2

�i = (1 + λσx
4)/|Ni | (3)

From the above expression, we can see that the expected
correlation value, μi , is proportional to the standard devia-
tion σy of the PRNU component, y, in the image’s noise
residual, z. Based on the Poissonian-Gaussian noise model
[25]–[27], we can see that the ISO speed would affect this
standard deviation σy and eventually exert influence on the
PRNU correlations.

The relationship between the camera gain, g, which is
directly determined by the camera’s ISO speed, and the noisy
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raw pixel intensity, I , is analyzed in [26]. The raw pixel
intensity is proportional to the number of electrons counted
on the sensor. Photo-electron conversion is the main source
of the electrons collected from the sensor. Reference [26]
considers the Poissonian statistics of the incident photon
counting process as follows. At pixel i , the number of the
counted electrons is the sum of the electrons generated from
photo-electron conversion Npi and dark electrons Nt i from the
thermal noise. It is assumed that the variance of the thermal
noise is uniform across the sensor and all other electronic
noises can be modeled as a zero-mean Gaussian noise with
variance s2. So the raw pixel intensity, Ii , at pixel i , can be
written as:

Ii ∼ g · [p0 + P(ηi Npi + Nt i − p0) + N (0, s2)] (4)

where P(·) represents the Poisson distribution and ηi is the
photon-electron conversion rate at pixel i . p0 is a base pedestal
parameter introduced in the camera design to provide an offset-
from-zero of the pixel’s output intensity. For each pixel, as a
large number of electrons are counted, the normal approxima-
tion of Poisson distribution can be exploited. Therefore, Ii can
be modeled as:

Ii ∼ N (ϕi , gϕi + t) (5)

with {
t = g2 s2 − g2 p0

ϕi = g · (ηi Npi + Nt i )
, (6)

ϕ can be viewed as the expected pixel intensity. Notice that this
model from [26] has not yet considered the PRNU. To include
the PRNU in this model, we write the photo-electron conver-
sion rate ηi as the following expression by considering the
non-uniform response of each pixel to the photons:

ηi = η̄(1 + ki ), (7)

where η̄ is the average photo-electron conversion rate and ki

is the PRNU factor at pixel i . k follows normal distribution
N (0, σ 2

k ). As we are considering the case of a flat-field image
here so we can fix the number of photons, Npi , collected at
every pixel. By expanding Equation (5), we have:

Ii ∼ N ((1 + ki )ϕ − gki Nt i , g(1 + ki )ϕ + t − g2ki Nt i ) (8)

As in most cases, both the PRNU and the thermal noise are
weak noises. We can ignore the terms involving ki Nt i . When
we consider a block Ni , often it consists of thousands of pixels
(e.g. 4096 pixels for a 64 × 64 block). Such a large number
of pixels allow us to approximate the overall distribution of
the pixel values in this block by another normal distribution.
By substituting t of Equation (8) with the expression for t
in Equation (6), we approximate the distribution of the pixel
values in block Ni as:

INi ∼: N (ϕ, ϕ2σk
2 + gϕ + g2s2 − g2 p0) (9)

We expect the de-noised version of this block to have pixels of
uniform intensity, ϕ. Thus, we can approximate the variance
of the noise residual of this block as:

σres
2 ≈ ϕ2σ 2

k + gϕ + g2s2 − g2 p0 (10)

The PRNU component in the noise residual has a variance
of ϕ2σ 2

k . By normalizing the noise residual, the standard
deviation of the PRNU component in the normalized noise
residual becomes:

σy =
√

ϕ2σ 2
k

ϕ2σk
2 + gϕ + g2s2 − g2 p0

(11)

Clearly, σy is dependent on the camera gain g. By substituting
this expression back to Equation (3), we can conclude that the
correlation ρi can be affected by the camera gain g and thus
affected by ISO speed.

Notice that when we introduce PRNU by considering differ-
ent photo-electron conversion rate, ηi , at each pixel to the raw
pixel intensity model from [26], the noise residual variance
model described in Equation (10) becomes a quadratic func-
tion of the expected pixel intensity ϕ, which can be expressed
as:

σres
2 = Aϕ2 + Bϕ + C (12)

with ⎧⎪⎨
⎪⎩

A = σk
2

B = g

C = g2s2 − g2 p0

(13)

It differs from the linear model in [26]. We will empirically
validate Equation (10) to show the physical importance of the
PRNU term, ϕ2σk

2, in the equation despite the approximations
made.

We use four cameras for the test, namely a Nikon D7200,
a Canon 6D MKII, a Canon 80D, and a Canon M6. Each of the
four cameras can generate 14-bits RAW images, which means
their pixel values can vary between the range of [0, 16383].
To better show the physical meaning of the coefficients in
Equation (10), we standardize the pixel values to the range
of [0, 1]. To validate Equation (10), we plot the variance of
the noise in the flat-field images against different pixel values
in Fig.1. We use the cameras to take images of a screen of flat
color. Each camera’s ISO speed is set to 100. The exposure
time is varied to change the pixel intensity for different shots.
As the cameras use Bayer-filter as their color filtering array
(CFA), we subsample the RAW images with a stride of 2 in
both vertical and horizontal directions to make sure the pixels
we test are from the same color channel. Despite the set-
up, the images are not completely flat due to other camera
artifacts, e.g. vignetting. Thus, we use the method from [26]
to estimate the expected pixel value and variance for multiple
image blocks from each noisy RAW image. Fig.1 shows the
fitting of Equation (12) to the experiment data, which is
computed using ordinary least squares (OLS) [28]. A good
agreement between the model and the data can be observed.

In addition to showing the good agreement of the derived
model and the real data, we would like to show the physical
meaning of the first order coefficient, B = g in the model
as well. We use the RAW images from the same Canon
6D MKII from the previous test for this test. We repeat the
previous experiment four times but set the cameras’ ISO speed
to ISO 200, 400, 800, and 1600, respectively. Again, we fit
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Fig. 1. Plots of noise’s variance σres
2 against pixel intensity ϕ, with a

quadratic fitting (red curve) as described by Equation (10) and (12), of RAW
flat-field ISO 100 images from four cameras: (a) Nikon D7200, (b) Canon
6D MKII, (c) Canon 80D and (d) Canon M6. The fitted coefficients for
Equation (12) for each image are: (a) A = 1.14×10−5, B = 2.23×10−5 , C =
−2.20 × 10−7, (b) A = 5.24 × 10−5, B = 1.41 × 10−5, C = −4.33 × 10−7,
(c) A = 3.15 × 10−5, B = 4.20 × 10−5, C = −1.70 × 10−6, (d) A =
4.85 × 10−5, B = 4.18 × 10−5, C = −3.51 × 10−7.

Equation (12) to the data. As for the same camera, despite the
change of ISO speed, we can assume that the PRNU factor on
the sensor should remain the same and so does the variance
of the PRNU factor, σ 2

k . Thus, it is reasonable for us to fix
the second order coefficient A = σ 2

k to 5.24 ×10−5, the value
estimated from Fig.1, in Equation (12) for these fittings and
the corresponding fittings generated using OLS are shown
in Fig.2. Once again, good agreement between the fitted curve
and the data can be observed. In addition, we show a log − log
plot of the estimated first order coefficients B from Fig.1(b)
and 2 against the ISO speed of their corresponding images
in Fig.3. We fitted a straight line to the plot given slope close
to 1. As a camera’s ISO speed is proportional to its camera
gain, g, Fig.3 validates our noise model from Equation (10)
with B = g. Therefore, it confirms that the correlation model
is dependent on ISO speed.

The above conclusions are made for the special condition
when we consider the images to be RAW flat-field image.
When we take post-processings (e.g. color interpolation and
JPEG compression) and the influence due to the image content
into consideration, the noise model could become rather com-
plicated. This is both because the PRNU is multiplicative of
image content and image content may propagate into the noise
residual due to imperfect denoising. And actually, higher ISO
images are more likely to suffer from strong JPEG compres-
sion and imperfect denoising (see supplementary material).
Thus, though Equation (10) cannot be translated directly to
the general conditions, all the factors suggest a higher ISO
speed can introduce more PRNU-irrelevant noise. As a result,
this will reduce the proportion of signals corresponding to the

Fig. 2. Plots of noise’s variance σres
2 against pixel intensity ϕ of images

with different ISO speed from a Canon 6D MKII. We fit Equation (10) to
the plots with a fixed second order coefficient, A = σ2

k = 5.24 × 10−5,
estimated from Fig.1(b). The first order coefficient B , for the four fittings
are: (a) B = 2.81 × 10−5, (b) B = 5.56 × 10−5, (c) B = 1.09 × 10−4 and
(d) B = 2.02 × 10−4.

Fig. 3. log-log plot of the estimated first order coefficient B against the ISO
speeds of the images used to estimate B . A straight line is fitted with a slope
of 0.99.

PRNU in the noise residual and eventually reduce the corre-
lation. We use Fig.4 to empirically show that the correlation
is dependent on the image’s ISO speed when post-processings
like de-mosaicing, gamma correction, JPEG compression, etc.,
are applied to a non-flat RAW image.

The images shown in Fig.4 are from a Canon 6D MKII
camera in the Warwick Image Forensics Dataset. All the
images shown here are saved in the JPEG format by the
camera’s default setting. Images of two scenes are taken under
different ISO speeds using different exposure times to ensure
that every image can reach the same exposure level. Thus,
there is nearly no difference in pixel intensity between the
images of the same scene. As the PRNU is a multiplicative
signal, having images of the same pixel intensity of the same
image content allows us to make a fair comparison with
ISO speed’s impact on the correlation. The correlation heat
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Fig. 4. Image of two different scene from a Canon 6D MKII from the Warwick Image Forensics Dataset. The images are taken with different ISO speeds.
The exposure time for each image is set accordingly to let the images of the same scene have similar exposure level. The block-wise correlation maps are
computed with a block size of 128 × 128 pixels. The color bars used for the correlation maps are at the right hand side, next to the ISO 6400 correlation
maps.

maps in Fig.4 are computed by correlating the noise residuals
from the images’ green channel with the device’s reference
green channel PRNU. The reference PRNU is extracted from
50 flat-field images. The block size for the computation of the
correlation at each pixel is 128×128 pixels. We use yellow to
show high correlation regions and blue to show the opposite.
Apparently, as the ISO speed increases, the correlation map
shows more regions with low correlation. It can be concluded
that despite these images with complex image content have
undergone post-processing, their correlation with the reference
PRNU is still dependent on the image’s ISO speed.

III. ISO SPEED’S IMPACT UPON CORRELATION

PREDICTION

A correlation predictor is an important component of
many PRNU-based tampering localization methods. Many
PRNU-based tampering localization methods are applied by
comparing the block-wise correlations with a decision thresh-
old set according to the predicted correlation. As a result,
the choice of the decision threshold and the performance of
these methods can be greatly affected by the accuracy of the
correlation prediction. As the correlation is content dependent,
without considering the ISO speed, [13] models the correlation
as a function of four image features, namely the intensity,
texture, signal flattening and a texture-intensity combinative
term. However, due to the correlation’s dependency on the
ISO speed, we postulate that: a correlation predictor can only
produce accurate predictions for images with the same ISO
speed as the training images. And we call such a correlation
predictor as a matching ISO correlation predictor.

To show the ISO speed’s influence on correlation predictor
and validate our postulate, we first compare the performance of
the correlation predictors trained with (a) images with mixed
ISO speeds and (b) images with the same ISO speed as the
test images. We did the test on 13 cameras from the Warwick
Image Forensics Dataset (An Olympus EM10 MKII camera
from the dataset doesn’t show the existence of PRNU. Thus
it is not included in this test). 50 flat-field images from each
camera are used to extract the cameras’ reference fingerprints.
For each camera, we select images from three ISO speeds to
form three test sets, namely ISO 100, 800, and 6400, apart
from the two Panasonic LumixTZ90, which do not have ISO
6400. For these two cameras, we test on ISO 3200 images
instead. Accordingly, we trained three matching ISO corre-
lation predictors, each with 20 images of the corresponding
ISO speed following the method from [13]. The correlations
are computed between image blocks of 128 × 128 pixels.
To make the comparison, for each camera, we trained another
correlation predictor with 20 images randomly selected from
the 60 images used for the training of the camera’s three
matching ISO correlation predictors. We call this correlation
predictor as a mixed ISO correlation predictor. Block-wise
correlation predictions are made for the test sets. For each set,
we computed the coefficient of determination (r2) and the root
mean square error (RMSE) for the matching ISO and mixed
ISO correlation predictors as shown in Table I. We highlighted
the better performance for each test set in terms of larger r2

and smaller RMSE with bold font.
The matching ISO correlation predictors show superior

performance over the mixed correlation predictors for all test
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TABLE I

r2 AND RMSE FROM CORRELATION PREDICTIONS MADE FROM MATCHING ISO AND MIXED ISO CORRELATION

PREDICTORS FOR 13 CAMERAS IN WARWICK IMAGE FORENSICS DATASET

sets except for the two Fujifilm XA-10 and the two Panasonic
Lumix TZ90 at high ISO speeds. These two models of cameras
are more prone to strong noise at high ISO speeds. As a
result, the correlations with their reference PRNU become
close to zero despite different image features. Due to the
relatively large variance of the correlations introduced by
the PRNU-irrelevant signal in the noise residuals, neither of
the correlation predictors managed to produce large r2 for
the correlation predictions. However, by using the Matching
ISO correlation predictor for these cameras, we notice small
RMSE still can be observed. This is particularly important as
the correlation predictors would not generate predictions that
deviate too much from the actual correlation. False positives
can be significantly reduced when we apply these correlation
predictors for forgery detection.

In addition to the test on the Warwick Image Forensics
Dataset, the experiments are extended to 9 cameras from the
Dresden Image Dataset [29] as well. In the Dresden Image
Dataset, about 150 images of natural scenes are produced by
each camera. However, as the dataset was created without
considering the ISO speed as an influential factor, the images’
ISO speeds span over many different values. For most ISO
speeds, the number of images available is not enough for
us to train a matching ISO correlation predictor using the
method mentioned above and to test it with the matching ISO
images. So we test the matching ISO correlation predictor on
the most popular ISO speed from each camera only, each with
20 test images. For each camera, we trained a matching ISO
correlation predictor with 20 images of the same ISO speed as
the test images and another 20 images are selected randomly
from all the images available for the training of the mixed
ISO correlation predictor. r2 and RMSE of the predictions
are shown in Table II. Again, the superior performance of
the matching ISO correlation predictors can be observed in
every case. Both the tests on images from Warwick Image
Forensics Dataset and Dresden Image Dataset show that the
performance of a correlation predictor may degenerate by
completely ignoring the impact of ISO speed and trained
images of mixed ISO speed.

1ISO 3200 for Panasonic Lumix TZ90_1 and TZ90_2

TABLE II

r2 AND RMSE FOR THE CORRELATION PREDICTORS GENERATED FROM

THE MATCHING AND NON-MATCHING ISO CORRELATION

PREDICTORS FOR 9 CAMERAS FROM

DRESDEN IMAGE DATASET

Knowing that we cannot ignore the ISO speed in the
correlation prediction training process, we also would like to
investigate how mismatched ISO speeds of training and testing
images would affect correlation prediction and subsequent
forgery detection. In specific, we would like to investigate
to what extent, a correlation predictor trained with images
with a particular ISO speed can predict reliable correlation
with images taken at other ISO speeds without significantly
influencing the forgery detection results. We use Fig.5 to
demonstrate the potential outcomes of forgery detection when
the training image’s ISO speed is significantly different from
the test image’s ISO speed.

Fig.5 shows the forgery detection results from tampered
images with ISO speed 100, 800 and 6400 from a Canon M6.
Images of the same scene taken at different ISO speeds are
manipulated using Adobe Photoshop. For each image, the tam-
pered region is replaced by using Photoshop’s content-aware
filling function, which leaves the tampered region at a
similar noise level as its surrounding regions. We apply
the Bayesian-MRF forgery detection algorithm from [15] to
the images. For all the images, we set the same parameters for
the forgery detection algorithm: with the interaction parameter
β set to 10 and probability prior p0 set to 0.01. The detection
results show that the forgery detection algorithm works the
best in terms of false detections when it is equipped with
the matching ISO correlation predictor. We also notice that
when we use ISO 100 correlation predictor for the forgery
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Fig. 5. Forgery detection results on realistic forgeries from a Canon M6 with images of ISO speed 100, 800 and 6400. The images are taken with different
exposure time to let them have similar exposure level. The Bayesian-MRF forgery detection algorithm is applied with the interaction parameter β set to 10
and probability prior p0 set to 0.01. The true detections are coloured with green and red for false detections. Missed tampered pixels are shown in white.

detection of the ISO 6400 forgery, despite the tampered region
is correctly identified, there are a lot of false positives in the
result. And when ISO 6400 correlation predictor is used for
the detection of forgery in ISO 100 forgery image, while the
entire authentic region is regarded as tampered, there are parts
of the tampered region still undetected.

To explain these observations, we have to consider the two
potential outcomes of using images of different ISO speeds for
the training of correlation predictors: the predicted correlation
being either overestimated or underestimated.

Overestimation of the correlations (when correlation pre-
dictions are larger than the actual values) often occur when
we use a correlation predictor trained with images of lower
ISO speeds than the test image’s ISO speed. As the actual
intra-class correlations will be smaller than the predicted
correlation, the corresponding pixels are more likely to be
labeled as tampered, which results in an increased number of
false detections as we have seen in Fig.5. This is particularly
harmful to real-life forensics. For most forgery detection
algorithms, the authenticity of a pixel is checked by comparing
its actual correlation with a threshold set with reference to
the predicted correlations and expected inter-class correlation,
which is expected to be zero. Though the actual algorithms
can be different with more complexity by considering the
distribution of the correlations from both inter- and intra-class
as well as neighboring pixels’ correlations, the comparison
of whether the actual correlation sits closer to the predicted
correlation or inter-class correlation when the correlation is
overestimated can be a good indicator of how likely false
detections can be introduced by a correlation predictor. Thus
we would like to compare the two values: d1 = ρ − ρ̄inter,
which is the relative position from the inter-class correlation,
ρ̄inter, to the actual computed correlation ρ and d2 = ρ̄intra−ρ,
which is the relative position of the actual correlation, ρ, to the
predicted intra-class correlation, ρ̄intra. Instead of comparing
the L1 distances, we compare these two values to focus
more on the situation when the correlation is overestimated,
which causes the actual correlation to be a value between
the expected inter-class correlation and predicted correlation.

Fig. 6. A plot of the percentages of image blocks with d1 −d2 smaller than 0
against the number of ISO stops the test image’s ISO speed is above the ISO
speed of the images used to train the correlation predictor for a Canon M6.
The percentage indicates the portion of the authentic image blocks at risk of
being misidentified as tampered blocks by forgery detection algorithms.

We estimate ρ̄inter as zero and use the predicted correlation to
estimate ρ̄predict, and it gives d1 − d2 ≈ 2ρ − ρ̄predict. When
d1 − d2 is negative, it indicates that the correlation has a large
chance of being misidentified as an inter-class correlation.

Again, use the camera Canon M6 as an example, we show
the percentages of the image blocks with d1 − d2 smaller
than 0 in Fig.6 when we use an ISO 100 and 800 correlation
predictors to predict for test images with ISO speed number
of stops above the training images. The plot shows that when
the test images’ ISO speeds are within the one-stop range
of the training images’ ISO speed, there is only a relatively
small portion of blocks (i.e. less than 10%) with d1 − d2
smaller than 0 for both ISO 100 and ISO 800 correlation
predictors. As the deviation from the test images’ ISO speed
to the training images’ ISO speed increases, we start to see a
higher percentage from Fig.6, indicating an increased number
of false detections could be introduced into forgery detection
results. As we approximate d1 −d2 as 2ρ− ρ̄predict, it becomes
an universal problem when ρ < 1

2 ρ̄predict.
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Fig. 7. Receiver Operating Characteristic (ROC) curves of tampering localization using Bayesian-MRF forgery detection method [15] on synthetic forgeries
taken at different ISO speeds from a Canon M6 and Sigma SdQuattro. The legend shows the ISO speeds corresponding to the correlation predictors used to
generate the ROC curves.

Base on the correlation model derived from Equation (11)
and observations from experiments, we found that for image
blocks of the same scene from images taken at different ISO
speeds, it is generally true that the block-wise correlation in
an image taken with ISO speed G1 is twice larger than the
correlation of the corresponding block from an image taken at
ISO speed G2 = 2G1. Thus, we claim that G2 =2 G1 is a safe
choice to be set as the largest ISO speed a correlation predictor
trained with images of ISO speed G1 can reliably predict for.
Similar behavior can be observed on other cameras as well and
we show the receiver operating characteristic (ROC) curve for
forgery detection in Fig.7 for further validation.

Each ROC curve in Fig.7 is plotted by running the
Bayesian-Markov random field (MRF) based forgery detection
algorithm from [15] on 80 synthetic forgery images at each
of the 7 presented ISO speeds. Three correlation predictors,
each trained with 20 natural images taken at ISO speed
100, 800 and 6400, respectively, are used to predict the
correlations for the forged images. We vary the interaction
parameter β in the range of [1, 1200] and the probability

prior p0 between [0, 1] to set different combinations of the
parameters for the algorithm. This allows us to generate the
enveloping curves for the ROCs to show the best performance.
The 80 synthetic forged images are generated from 20 full-
sized authentic images. From each full-sized image, we select
4 regions of 1024 × 1024 pixels. We replace the center of
each 1024 × 1024 pixel region’s center with a tampered patch
of 256 × 256 pixels. The patch used to replace the center
is cropped from the same original image but from a different
position to ensure that it does not have the same PRNU. In fact,
we fully facilitate the Warwick Image Forensics Dataset which
provides images of the same content at different ISO speeds.
This allows us to generate the synthetic forged images in the
way that for one synthetic forged image at one ISO speed,
we can find images of the same content at other ISO speeds
as well. By doing this, Fig.7 not only allows us to compare
the performance of different correlation predictors for forged
images at one ISO speed but we can also systematically com-
pare the performance of one correlation predictor for different
ISO speeds.
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We run the test on different cameras from Warwick Image
Forensics Dataset. To save space, we only show the ROC
curves of two most representative cameras, a Canon M6 and a
Sigma SdQuattro in Fig.7. Canon M6 represents the cameras
that can generate relatively less noisy images (with a large
peak to noise ratio (PSNR)) for most ISO speeds from the
camera while Sigma SdQuattro represents the cameras whose
image quality is highly dependent on the selected ISO speed.
The false positive rate (FPR) and true positive rate (TPR)
are computed at the pixel-level. As for real-life tampering
localization application, we usually require the method to
produce a small FPR, thus we focus on the range of [0, 0.2]
of FPR in the plots.

From Fig. 7, we first notice that for ISO 100, 800 and
6400 forgery images, the matching ISO correlation predictor
works the best in both cameras in almost every case. The only
exception is for Sigma SdQuattro ISO 6400 forgery images.
In this case, despite the ISO 6400 correlation predictor can
make predictions accurately as we have seen from Table I,
none of the three correlation predictors can produce accurate
detections. This is because, for high ISO images from this
camera, the images’ intra-class correlations are generally very
close to zero and hard to be separated from inter-class correla-
tions. For such images, PRNU-based methods may not be the
best tool to perform forgery localization. However, the ISO
specific correlation predictor can still be helpful in such a
scenario as it will be able to accurately predict the correlations
close to zero. Thus, the users can be warned that the PRNU
based methods may not be suitable under such a scenario.
Overall, the results show the benefit of using a matching ISO
correlation predictor for forgery detection.

For both cameras, we observe that the detection results
of using the ISO 100 correlation predictors (i.e. predictors
trained with images taken at ISO speed 100) are better when
the forged image’s ISO speed is smaller than 400. While
the Canon M6’s relatively good high PSNR at higher ISO
speeds allows the ISO 100 correlation predictor to perform
reasonably well for a forged image with ISO speed up to
1600, it is not the case for the Sigma SdQuattro camera. From
ISO 400 and above, the ISO 100 correlation predictor for the
Sigma SdQuattro starts to struggle. And the similar effect can
be observed for ISO 800 correlation predictors when they are
used to predict for images with ISO speed much higher than
800. Thus, it conforms to our argument that a predictor trained
with images taken at ISO speed G1 can perform reliably on the
images taken at an ISO speed G2 that is lower than or equal
to 2 G1. While depending on the camera, some correlation
predictors may perform when the test image’s ISO speed is
above the range, the above argument provides a safe range
for the choice of correlation predictor’s training ISO speed
without risking too many false detections.

Fig.7 also shows the situation when the correlation predic-
tors underestimate the test image’s correlations. Underestima-
tion often occurs when we use a correlation predictor trained
with images of a much higher ISO speed than the test image’s
ISO speed. In the plots, we noticed that the ISO 6400 correla-
tion predictors, especially for the Canon M6 camera, appear to
have difficulty in correctly localizing the forgery for images

with low ISO speed. This is because when the correlation
predictor underestimates the correlations, it eventually reduces
the forgery detection algorithm’s capability of correctly identi-
fying tampered pixels. Thus, to avoid the underestimation but
still provides a practical range from which a training ISO speed
can be conveniently selected, we empirically set the lower
bound of the ISO speed a correlation predictor can be used
for to half of the ISO speed of its training images. From the
plots, we see by using this range, the corresponding detection
results either outperform other correlation predictors or are
on par with the best performance. Altogether, we conclude
that for a test image taken at ISO speed G1, using correlation
predictors trained with images of ISO speed, G2, which is in
the one-stop range of G1 (G2 ∈ [G1/2, 2G1]) can produce
forgery detection result without risking false detections being
excessively introduced due to the correlation predictor.

IV. ISO SPECIFIC CORRELATION PREDICTION PROCESS

Observing the ISO speed’s impact on correlation prediction,
we concluded that reliable correlation predictions should be
made in an ISO specific way. Thus, we propose an ISO specific
correlation prediction process. To predict correlations for an
image of ISO speed G1, we have to use a correlation predictor,
preferably trained with images of the same ISO speed at G1,
or similar to G1. An ISO speed G2 is considered as similar to
G1 if G2 is in the one-stop range of G1. The images used for
the training of the correlation predictor should cover diverse
image feature settings: including both bright and dark scenes,
highly textured and flat patterns, etc. To cover such a diverse
set of image features, it usually requires a large number of
images. Thus, a good correlation predictor should be trained
with no less than 20 full-sized images. With a relatively large
collection of images of good feature diversity taken at an ISO
speed similar to the test image, the weight for each defined
feature can be learned following the process presented in [13]
for the correlation predictor.

In order to complete the correlation prediction process,
we need to have the knowledge of the ISO speed G1 to find
images of the same or similar ISO speeds to form the training
set. However, as the image in question may have undergone
some unknown manipulations, either on its image content or
metadata, the ISO speed information presented in the metadata
can be unreliable or even unavailable. Thus, we can often face
the problem when we have an image of unknown ISO speed
and we would like to select images with the closest ISO speed
to the image to train a correlation predictor.

As a known factor, for the same camera, the higher the
ISO speed is, the higher the level of noise is introduced to
the content of images. Thus, it is intuitive to infer an image’s
ISO speed by exploiting its noise characteristics in the content.
Based on the Poissonian-Gaussian noise model [25], methods
are proposed in [26], [27], [30] to infer the camera gain, g,
from a RAW image, which then can be directly related to the
camera’s ISO speed. Despite these methods showing promis-
ing performance on RAW images, as the noise model generally
cannot be applied directly to non-RAW image formats, their
performance is suboptimal and cannot be practically used to
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Fig. 8. A demonstration of the idea behind the proposed ISO speed inferring
method. We expect patches from different images to show similar noise
characteristics if they have similar content and the same ISO speed. The
example shows a patch from an ISO 3200 query image. It shows similar
noise characteristics with a patch of similar content from an ISO 3200 training
image.

infer a JPEG image’s ISO speed. Furthermore, for similar rea-
sons, though many noise level estimation algorithms [31]–[34]
may work well on RAW images to give clues about an image’s
ISO speed, JPEG images still pose challenges. As JPEG is one
of the most common image formats, being able to identify a
JPEG image’s ISO speed is a prerequisite for ISO specific
correlation prediction.

Though finding an accurate noise model for a JPEG image
can be of great complexity, we can simplify this problem
by making the following assumption: image patches from the
same camera with similar content and JPEG quality factor
should show similar noise characteristics if they are of the
same ISO speed, and vice versa as shown in Fig.8. Thus,
we propose a method called Content-based Inference of ISO
Speed (CINFISOS, pronounced as /’sin.f@.s@s/) to determine
an image’s ISO speed by doing patch-wise noise comparison
with patches of similar content from images taken with the
same camera at different ISO speeds.

Consider the case when we have a query image, Q, and
t candidate training sets, S = {S1, . . . , St }, each consists of
multiple images and the sets are with different ISO speeds.
We would like to find the set with the ISO speed closest to
the query image Q. The query image is first partitioned into a
set of non-overlapping patches, P = {pi}, each patch of size
d × d pixels. As we would like to use the patches to best
represent the image’s noise characteristics, patches with too
many dark and saturated pixels in any color channel should
be removed. We consider the patches in the RGB color space.
For each pixel q in the j th channel of the patch, p j

i , the pixel
is considered as dark or saturated if its pixel value I (q) is not
in the range [λ1, λ2]:

U(q) =
{

1, if I (q) < λ1 or I (q) > λ2

0, otherwise
(14)

The i th patch is excluded from P̂ if ∀ j (
∑

q∈p j
i

U(q) > λτ d2),

when the ratio of the dark or saturated pixels in every channel
of the patch is over a limit λτ . In addition to removing the
dark and saturated pixels, the image’s noise characteristics can

be better revealed by including only the less textured patches.
Thus, we only keep m least textured patches in PQ, the set of
patches that we believe can best represent the query image’s
noise characteristics. To evaluate how textured a patch is,
we use the texture feature definition from [13] but extends
its definition to patches of three color channels by a simple
summation:

fT (pi) =
3∑

j=1

(
1

d2

∑
q∈p j

i

1

1 + var5(F(q))
) (15)

where F() is the high-pass filter and var5() measures the
variance of 5 × 5 neighbourhood. The feature fT is defined
in the range [0, 1] with lower values for more texture patches.
We select m least textured patches from P̂ to form the set of
qualified query image patches PQ:

PQ = {pi |(pi ∈ P̂) ∧ ( fT (pi ) > fT m+1)} (16)

fT m+1 is the texture feature of the m + 1th least textured
patch from P̂. As PQ only contains patches with relatively
smooth texture, we can approximate their image content by
applying a low pass filter. We implement the method of finding
patches with similar content using a block-matching method
similar to [35]. The distance between two patches in each
color channel is measured as the Euclidean distance between
the discrete cosine transforms (DCT) of the two with hard
thresholding applied. And the overall distance between two
patches is the summation of the distances in the three color
channels:

�(pi , pk)=
3∑

j=1

‖(DCT(p j
i ), λDCT)−(DCT(p j

k ), λDCT)‖2

(17)

where (x, λDCT) is the hard thresholding operation:

(x, λDCT) =
{

x, if x > λDCT,

0, otherwise
(18)

For each patch pi in PQ, from each candidate training
set Sk , n patches with the least distance to pi will be
selected. Though the exhaustive search for the patches with
the shortest distance is computationally expensive, this step
can be easily parallelized. We call this set of selected patches
as P i

k . We define the distance, which measures the sum of the
absolute differences in noise characteristics in all three color
channels from each patch pi in PQ to each candidate training
image set Sk , as:

D(pi , Sk) =
3∑

j=1

(|var(p j
i − p̃ j

i ) − 1

n

∑
pl∈P i

k

var(p j
l − p̃ j

l )|)

(19)

where p̃ j
l is the low-pass filtered version of the patch pl of

the j th channel:
p̃ j

l = IDCT((DCT(p j
l ), λDCT)) (20)

For each patch pi in PQ, it will have a vote for a candidate
training set, Sk , who has the smallest D(pi , Sk). The candidate
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training set with the closest ISO speed to the query image
will be determined by a simple majority vote from all the
patches in PQ. The ISO speed that receives the majority votes
will be deemed as the ISO speed of the query image and the
correlation predictor can be trained with the corresponding
images.

V. EXPERIMENTS

A. Inferring ISO Speed With CINFISOS

To test the performance of the proposed CINFISOS, we con-
duct experiments on our Warwick Image Forensics Dataset.
In the previous section, we concluded that for a correlation
predictor trained with ISO speed G1, reliable correlation
predictions can be made for images taken with ISO speed
in the range of [G1/2, 2G1]. Therefore, to select a correlation
predictor trained with images of an ISO speed suitable for the
image in question, the inferred ISO speed only needs to be
within the one-stop range of the real value. As a result, we only
need a few candidate training sets, Sk , to cover a broad range
of ISO speeds to give reliable correlation predictions.

In our experiments, for each camera in the Warwick Image
Forensics Dataset, we have three candidate training sets with
images of ISO speed 100, 800 and 6400, respectively (with
the exception for the two Panasonic Lumix TZ90, of we
select the ISO 3200 candidate training set instead of the ISO
6400 training set). These three ISO speeds are selected as they
cover a broad range of commonly used ISO speeds. Besides,
we deliberately avoid overlapping between the one-stop range
of the ISO speeds, each of the three candidate ISO speed can
predict for, to make it easier for the performance evaluation.

To apply CINFISOS, we set the following parameters. The
size of each query image patch is 32 × 32 pixels. m = 50
is the number of patches in the qualified query set PQ.
λDCT is set to 13.0315 in a similar manner as how it is set
in [35]. For each query patch, we find 5 similar patches from
each candidate set. For each camera in the Warwick Image
Forensics Dataset apart from the two Panasonic Lumix TZ90,
we have 20 query images, each with ISO speed 100, 200, 400,
800, 1600, 3200 and 6400 in the JPEG format. Each candidate
training set consists of 20 images. For the two Panasonic
Lumix TZ90, in addition to the fact that ISO 6400 images
are unavailable, we also excluded ISO 1600 query images as
both ISO 800 and 3200 can be considered as inferred correctly.

We run the experiment with a desktop equipped with an
Intel Core i7-9700K CPU. With the afore-mentioned setup,
it takes around 130 seconds for CINFISOS to run on a
full-resolution query image (e.g. 4160 × 6240 pixels for an
image from a Canon 6D MKII), including the exhaustive
search for similar patches among 60 full-resolution train-
ing images. The patch-level accuracy, which measures the
percentage of patches voting correctly for the inferred ISO
speed, is reported in Table III. We notice that the accuracy
varies greatly between cameras at different ISO speeds but
the accuracy is above 0.5 in every case. It means that overall,
every single patch is more likely to vote correctly. Given this
patch-level accuracy, a 99.52% accuracy at the image-level is
observed with only 9 out of 1880 test images wrongly inferred.

Fig. 9. The ROC curves depicting the performance of detector with various
correlation predictors tested on 560 synthetic forgery images of 7 different ISO
speeds for two cameras (a) a Canon M6 and (b) a Sigma SdQuattro. Forgery
detections are carried out with the Bayesian-MRF forgery detection algorithm
from [15] with correlation predictions generated from (i) a mixed ISO
correlation predictor (ii) an ISO 100 correlation predictor (iii) the proposed
ISO specific correlation prediction process with CINFISOS and (iv) the
proposed ISO specific correlation prediction process with an oracle correlation
predictor.

B. Forgery Detection With ISO Specific Correlation
Prediction

The high accuracy of CINFISOS in identifying the ISO
speed of an image within its one-stop range allows us to con-
duct the proposed ISO specific correlation prediction process
even when we do not know the test image’s ISO speed. Thus,
we would like to test the performance of the proposed ISO
specific correlation prediction process in terms of forgery
detection.

We apply the Bayesian-MRF forgery detection algo-
rithm [15] on the synthetic forgery images from two cameras:
a Canon M6 and a Sigma SdQuattro for the test. The images
are the same as the ones used in Section III. There are
560 synthetic images from each camera and they are equally
distributed over 7 different ISO speeds (namely ISO speed
100, 200, 400, 800, 1600, 3200 and 6400). We carry out the
proposed ISO specific correlation prediction process in two
ways: (a) using the proposed CINFISOS to determine whether
a correlation predictor is suitable for the test image, and
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TABLE III

PATCH LEVEL ACCURACY OF THE PROPOSED ISO SPEED INFERRING METHOD ON IMAGES FROM WARWICK IMAGE FORENSICS DATASET

(b) with an oracle correlation predictor. With the aforemen-
tioned one-stop range setting, we only need three correlation
predictors, namely an ISO 100, an ISO 800 and an ISO
6400 correlation predictor to cover the whole range of the
ISO speeds we need to predict for with CINFISOS. We apply
CINFISOS on each synthetic image to determine which of
the three correlation predictors should be used to produce the
predictions of each image. The oracle correlation predictor
uses a matching-ISO correlation predictor for each image
according to its ISO speed information. We trained 7 different
correlation predictors for the 7 different ISO speeds presented
in this test, each with 20 natural images, to realize the oracle
correlation predictor.

We compare the forgery detection results by our proposed
ISO specific correlation prediction process against the results
by using correlation predictions with a mixed ISO correlation
predictor and an ISO 100 correlation predictor. Mixed ISO
correlation predictors represent the situation when we select
training images randomly without considering the images’ ISO
speeds. Thus, the mixed ISO correlation predictors’ perfor-
mance can be viewed as the baseline for the forgery detection
results when we disregard the impact from ISO speed on
correlation prediction completely. For each camera, the mixed
ISO correlation predictor is trained with 20 training images
randomly selected from the 60 images of three different ISO
speeds. The ISO 100 correlation predictor is the same as the
one used in our proposed ISO specific correlation prediction
process. We vary the interaction parameter β and the probabil-
ity prior p0 for the Bayesian-MRF forgery detection method
to generate the enveloping ROC curves. Each data point on
the curve is generated by summing the detection results of the
560 synthetic images from each camera. The ROC curves for
the detection results are shown in Fig.9. We focus on the low
false positive rate range of [0, 0.2].

Unsurprisingly, the detection result from the oracle corre-
lation predictor comes as the best above all the predictors
for both cameras. However, the detection results based on the
proposed CINFISOS are comparable to the oracle correlation
predictor’s ones. It shows the effectiveness of the proposed
CINFISOS and validates that the one-stop range for ISO
speed prediction is a feasible choice without significantly
sacrificing the forgery detection performance. In comparison,
the mixed ISO and ISO 100 correlation predictors have worse
performance. Though in Fig.7, we have noticed that the ISO

100 correlation predictor can predict well for images with ISO
speed up to 1600, its poor performance on images of higher
ISO speed is evident. Thus, it is not a good choice to use a
correlation predictor trained with low ISO speed for all the
images. To conclude, the proposed ISO specific correlation
prediction process shows superior performance in terms of
forgery detection.

VI. CONCLUSION

In this work, we did both analytical and empirical studies
on the impact of different camera sensitivity (ISO speed)
settings on PRNU-based digital forensics. First, we show how
the correlation between an image’s noise residual with the
device’s reference PRNU can be dependent on the image’s ISO
speed. With this dependency in mind, we empirically show
how mismatched ISO speeds may influence the correlation
prediction process. Thus, we proposed an ISO-specific corre-
lation prediction process to be used in PRNU-based forgery
detection. To address the problem that the information about
the ISO speed of an image may not be available, a method
called Content-based Inference of ISO Speed (CINFISOS)
is proposed to infer the image’s ISO speed from its con-
tent. Clear improvements are observed in correlation predic-
tions and forgery detection results by applying our proposed
ISO specific correlation prediction process with CINFISOS.
By pointing out the influence of camera sensitivity setting on
PRNU-based forensic methods, the provided solutions from
this work can make the forensic analysis more reliable and
trustworthy.
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