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Abstract—Internet of things (IoT) devices are becoming in-
creasingly popular thanks to many new services and applications
they offer. However, in addition to their many benefits, they
raise privacy concerns since they share fine-grained time-series
user data with untrusted third parties. In this work, we study
the privacy-utility trade-off (PUT) in time-series data sharing.
Existing approaches to PUT mainly focus on a single data point;
however, temporal correlations in time-series data introduce new
challenges. Methods that preserve the privacy for the current
time may leak significant amount of information at the trace
level as the adversary can exploit temporal correlations in a
trace. We consider sharing the distorted version of a user’s true
data sequence with an untrusted third party. We measure the
privacy leakage by the mutual information between the user’s
true data sequence and shared version. We consider both the
instantaneous and average distortion between the two sequences,
under a given distortion measure, as the utility loss metric. To
tackle the history-dependent mutual information minimization,
we reformulate the problem as a Markov decision process (MDP),
and solve it using asynchronous actor-critic deep reinforcement
learning (RL). We evaluate the performance of the proposed
solution in location trace privacy on both synthetic and GeoLife
GPS trajectory datasets. For the latter, we show the validity
of our solution by testing the privacy of the released location
trajectory against an adversary network.

Index Terms—Advantage actor-critic, deep reinforcement
learning, information theoretic privacy, location trace privacy,
GeoLife dataset, Markov decision processes, time-series data
privacy.

I. INTRODUCTION

RECENT advances in Internet of things (IoT) devices
have increased the variety of services they provide,

such as health monitoring, financial analysis, weather analysis,
location-based services (LBSs) and smart metering. Moreover,
the integration of some IoT devices with social networks has
encouraged the users to share their personal data to obtain
useful information from these social platforms. While the
users can receive hotel, restaurant and product recommenda-
tions from Facebook, Twitter or YouTube when they share
their location information, they can also benefit from the
personalized dietary tips as a result of sharing their Fitbit
activity. However, fine-grained time-series data collected by
IoT devices contain sensitive confidential information about
the user. Account balance, biomedical measurements, location
trace, weather forecast and smart meter readings are typical
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examples of time-series data which carry sensitive personal
information. For instance, a malicious third party can derive an
individual’s frequently visited destinations, financial situation
or social relationships using the shared location information
[1]. Using non-intrusive load monitoring techniques on smart
meter data, an eavesdropper can deduce the user’s presence
at home, disabilities and even political views due to the TV
channel the user is watching [2]. Besides all, the most sensitive
private information, such as patient history, chronic diseases
and psychological state, can be revealed by health monitoring
systems [3], [4]. Therefore, time-series data privacy has been
an important concern, and there is an increasing pressure from
consumers to keep their data traces private against malicious
attackers or untrusted service providers (SPs), while preserving
the utility obtained from these IoT services. Our goal in this
paper is to study the fundamental privacy-utility trade-off
(PUT) when sharing sensitive time-series data.

A. Related Work

Time-series data privacy and its applications to various do-
mains have been extensively studied [5]–[25]. A large body of
research has focused on protecting the privacy of a single data
point, e.g., the current sensitive measurement [12]–[17]. How-
ever, the temporal relations in time-series data requires going
beyond single data point privacy. Individual measurements
taken at each time instance, such as electrocardiogram (ECG),
body temperature, location, account balance and smart meter
readings, are highly correlated and the strategies focusing on
the current data privacy might reveal sensitive information
about the past or future measurements.

Differential privacy (DP), k-anonymity and information
theoretic metrics are commonly used as privacy measures
[5]–[25]. By definition, DP prevents the SP from inferring
the current sensitive data of the user, even if the SP has
the knowledge of all the remaining private data points. K-
anonymity ensures that a sensitive data is indistinguishable
from at least k − 1 other data points. However, DP and k-
anonymity are meant to ensure the privacy of a single data
point in time. Group-DP tackles this issue by applying DP for
each user; however, keeping a large number of points private
causes high utility loss. In [26], it is stated that these are not
appropriate measures for location trace privacy since temporal
correlations are not taken into account.

As an intermediate framework between DP which assumes
complete independence, and group-DP which assumes com-
plete correlation, pufferfish privacy considers low average
temporal correlations in time-series data [27]–[29]. In [27],
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the location release mechanism assumes a hidden Markov
model for actual locations. A Bayesian belief on the true
current location is updated at each time by observing the noisy
location, which is generated via a differentially private method,
e.g., by adding independent and identically distributed (i.i.d)
random noise drawn from Laplace distribution. However, this
work does not focus on protecting the privacy of a trace
or trajectory as the authors mention in Section 3.2 in [27].
Instead, the mechanism releases random locations around the
possible current location, which might preserve the privacy
of the current location while revealing the information about
future locations. The reason is that the privacy loss is not
measured between the true and released traces, but in the
neighborhood of each individual true location. A generaliza-
tion is proposed in [28], which introduces a Markov blanket
mechanism assuming that the temporal correlations decrease
as the distance between two nodes increases. To hide the effect
of a node on the result of a query under the DP framework, the
mechanism adds noise which is determined by the number of
nearby nodes. In [29], continuous aggregate location release is
considered in a pufferfish privacy framework under temporal
correlations modeled as a Markov chain. This approach takes
into account a certain number of steps forward and backward,
while minimizing the differential privacy loss of the current
location. Hence, the accumulating privacy loss of DP mecha-
nism is limited to a level determined by the number of forward
and backward steps. However, [28] and [29] do not take into
account trajectory privacy for reasons similar to those in [27].

Several other papers on DP and k-anonymity consider
temporal correlations. In [8], physiological measurements are
obfuscated before reporting to an SP for PUT. Instead of
the entire time-series history, a selected temporal section of
the sensor data is considered, and solved by using dynamic
program and greedy algorithm. The work in [10] focuses
on keeping the user identity private in a location privacy
setting by performing random permutation on a set of multiple
users. However, the users might still be re-identified when
attackers have access to auxiliary information. In [11], authors
improve this approach by considering both user identity and
location privacy and merging anonymization with obfuscation.
However, the risk of re-identification of the user by the
adversary still exists and privacy gain by obfuscation depends
highly on the number of users. In [16], DP in a smart meter
with a rechargeable battery is achieved by adding noise to
the meter readings before reporting to an SP. In order to
guarantee DP, the perturbation must be independent of the
battery state of charge. However, for a finite capacity battery,
the energy management system cannot provide the amount of
noise required for preserving privacy.

On the other hand, information-theoretic privacy considers
the statistics of the entire time-series in terms of temporal cor-
relations, and study privacy mechanisms that allow arbitrary
stochastic transformations of data samples, rather than being
limited to addition of noise of a specific form. This is the
biggest advantage of information-theoretic privacy over puffer-
fish privacy where only some degree of temporal correlations
are taken into account, and a fixed type of i.i.d. random noise
is added for privacy. In [18], the authors introduce location

distortion mechanisms to keep the user’s trajectory private,
measuring the privacy by the mutual information between the
true and released traces, under a constraint on the average
distortion between the two. The true trajectory is assumed to
form a Markov chain. Due to the computational complexity
of history-dependent mutual information optimization, authors
propose bounds which take only the current and one-step past
locations into account. However, due to temporal correlations
in the trajectory, the optimal distortion introduced at each time
instance depends on the entire distortion and location history.
Hence, the proposed bounds do not guarantee optimality.

In [30], a smart metering system is considered assuming
Markovian energy demands. Privacy is achieved by filtering
the energy demand with the help of a rechargeable battery.
Information theoretic privacy problem is formulated as a
Markov decision process (MDP), and the minimum leakage
is obtained numerically through dynamic programming, while
a single-letter expression is obtained for an i.i.d. demand. This
approach is extended to the scenario with a renewable energy
source in [23]. In [31], privacy-cost trade-off is examined
with an RB. Due to Markovian demand and price processes,
the problem is formulated as a partially observable MDP
with belief-dependent rewards (ρ-POMDP), and solved by
dynamic programming for infinite-horizon. In [24], the PUT
is characterized numerically by dynamic programming for a
special energy generation process.

In [32], PUT of time-series data is considered in both online
and offline setting. In the scenario, a user continuously releases
data samples which are correlated with its private information,
and in return obtains utility from a SP. The proposed schemes
are cast as convex optimization problems and solved under
hidden Markov model assumption. The simulation results are
provided for binary time-series data for a finite time horizon.
However, the dimensions of the optimization problems in both
schemes grow exponentially with time and the number of
sample states. Therefore, in a setting when fine-grained sensor
data is considered for a long time horizon, computational
complexity of the proposed schemes is very high.

B. Contributions

In this work, we consider the scenario in which the user
measures time-series data (e.g., location, heartbeat, tempera-
ture or energy consumption) generated by a first-order Markov
process through an IoT device, and periodically reports a
distorted version of her true data to an untrusted SP to gain
utility. We assume that the true data becomes available to
the user in an online manner. We use the mutual information
between the true and distorted data sequences as a measure
of privacy loss, and measure the utility of the reported data
by a specific distortion metric between the true and distorted
samples. For the PUT, we introduce an online private data
release policy (PDRP) that minimizes the mutual information
while keeping the distortion below a certain threshold. We
consider both instantaneous and average distortion constraints.
We consider data release policies which take the entire released
data history into account, and show its information theoretic
optimality. To tackle the complexity, we exploit the Markovity
of the user’s true data sequence, and recast the problem
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as a Markov decision process (MDP). After identifying the
structure of the optimal policy, we use advantage actor-critic
(A2C) deep reinforcement learning (RL) framework as a
tool to evaluate our continuous state and action space MDP
numerically. To the best of our knowledge, this is the first
time deep RL tools are used to optimize information theoretic
time-series data privacy.

The performances of the proposed PDRPs are examined in
two specific scenarios: In the first scenario, synthetic location
traces are generated considering a user moving in a grid-
world with a known Markov mobility pattern. In the second
scenario, we use GPS traces of a user from GeoLife dataset
[33], [34]. For the average distortion constrained case, the
proposed PDRP is compared with a myopic location data
release mechanism [18]. While the privacy leakage of the
considered PDRPs can be evaluated for the synthetic dataset,
this cannot be done for the GeoLife trace since we do not
know the true statistics of this dataset. Instead, we compare the
privacy achieved by the proposed and myopic policies using an
adversary which predicts the current location of the user from
the past released locations. The adversary is represented by a
long short-term memory (LSTM) predictor. The performances
of the proposed policies are tested under various adversary
memory sizes.

This paper extends the theoretical approach in our previous
work on PUT for location sharing [22]. Our contributions are
summarized as follows:
• We propose a simplified PDRP by exploiting the Markov

property of the user’s true data sequences. Then, we prove
the information theoretic optimality of the simplified
strategy.

• We recast the information theoretic time-series data PUT
problem as an MDP and evaluate the optimal PDRP
numerically using advantage actor-critic deep RL.

• We apply the obtained information-theoretically optimal
PDRP on the location trace privacy problem, and evaluate
its performance under instantaneous and average distor-
tion constraints using both synthetic and GeoLife [33]
trajectory datasets.

The remainder of the paper is organized as follows. We
present the problem statement in Section II where we also in-
troduce privacy and utility metrics. In Section III, we introduce
simplified data release mechanisms for the time-series data
PUT problem. In Section IV, we reformulate the problem as an
MDP and propose a numerical evaluation approach utilizing
advantage actor-critic deep RL. In Section V, we apply the
proposed solution to the location trace privacy problem, and
compare the performance of the proposed location release
strategy with a myopic policy numerically. Finally, we con-
clude our work in Section VI.

II. PROBLEM STATEMENT

We consider a time-series {Xt}t≥1, taking values from
a finite discrete set W . The user shares {Xt} with an SP
to gain utility through some online service. We assume that
the user’s true data sequence {Xt}t≥1 follows a first-order
time-homogeneous Markov chain with transition probabilities
qx(xt+1|xt), and initial probability distribution px1

. While the

Notation Definition
W Time-series data set
n Time-series data length

Xt, Yt Random variables representing the user’s true
and distorted data at time t

px1 Probability distribution of the true data at t = 1
qx(.|.) Markov transition of user data
Qx Markov transition matrix of transition probabilities
q(.|.) Conditional probability distribution, (policy)
QH Probability space of history dependent policies

QS ,Q′ Probability space of simplified policies under first-order
and m-th order Markov assumptions

TABLE I: Notation summary

first-order Markov structure assumed for the true data may
seem restrictive, we will show that our solution techniques
generalize to higher-order Markov chains, albeit with in-
creased complexity in the numerical solutions. In the literature,
Markov structure is a common assumption for time-series data,
and it is proved to be a reasonable assumption for location
trajectories [35], smart meter measurements [36] and financial
data [37] due to the history dependent behavior of these time-
series.

Instead of sharing its true data at time t, the user shares
a distorted version of her current data, denoted by Yt ∈ W .
The released data at time t, Yt, does not depend on future
data samples; i.e., for any 1 < t < n, Yt → (Xt, Y t−1) →
(Xn

t+1, Y
n
t+1) form a Markov chain, where we have denoted

the sequence (Xt+1, . . . , Xn) by Xn
t+1, and the sequence

(X1, . . . , Xt) by Xt. The notations which have been used
throughout the paper are listed in the Table I.

For a better understanding of the user’s private time-series
data generation process, a simple Markov chain with state
spaceW = {w1, w2, w3} and state transition probabilities pi,j
for (i, j) ∈ {1, 2, 3} are presented in Fig.1. The sensitive data
Xt takes the values {w1, w2, w3} according to the state transi-
tion probabilities. The user becomes aware of Xt in an online
manner and releases a distorted version Yt ∈ {w1, w2, w3},
following her privacy-preserving strategy.

A. Privacy and Utility Measures

Mutual information can be written as the reduction in the
uncertainty of a random variable (r.v.) due to the knowledge
of another r.v., i.e., I(Xt;Yt) = H(Xt) − H(Xt|Yt), where
H(Xt|Yt) is the conditional entropy. In information theoretic
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�1,3
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Fig. 1: Markov chain example for the true data generation.
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time-series data privacy framework, we assume the strongest
model for the malicious third party. That is, both the user and
the SP are assumed to have complete statistical knowledge of
the user’s data as well as her data release mechanism; that is,
the transition probabilities of the Markov chain generating the
true data sequence and the potentially stochastic mechanism
that generates Yt depending on the history. Then, we quantify
the privacy by the information leaked to the untrusted SP
measured by the mutual information between the true and
released data sequences. Accordingly, the information leakage
of the user’s data release strategy for a time period n is given
by

I(Xn;Y n) =

n∑
t=1

I(Xn;Yt|Y t−1) =

n∑
t=1

I(Xt;Yt|Y t−1), (1)

where the first equality follows from the chain rule of mutual
information, while the second from the Markov chain Y t →
(Xt, Y

t−1)→ Xn
t+1.

Even though a malicious third party can obtain the statistics
of the user’s data release strategy over an infinite time horizon,
i.e., n → ∞, he cannot infer the realizations of the private
information due to the privacy measure based on uncertainty.
Since information theoretic metrics are independent of the
attack’s behavior and computational capabilities, they are
preferable as privacy measures.

In the time-series data privacy problem, we want to min-
imize the information leakage to the SP. However, as we
apply more distortion to the true data sequence for privacy,
the more utility is lost due to increased deviation from the
original sequence. That is, releasing distorted data reduces
the utility received from the SP, and the distortion applied
by the user should be limited to a certain level. Therefore,
our main purpose is to characterize the trade-off between
the privacy and utility. The distortion between the true data
sample Xt and the released version Yt is measured by a
distortion measure d(Xt, Yt) specified based on the underlying
application (e.g., Manhattan distance or Euclidean distance),
where d(Xt, Yt) <∞,∀Xt, Yt ∈ W .

Our main goal is to minimize the information leakage rate
to the SP while satisfying the distortion constraint for utility.
Throughout the paper, we consider two different constraints on
the distortion introduced by PDRP, namely an instantaneous
distortion constraint and an average distortion constraint. The
infinite-horizon optimization problem can be written as:

lim
n→∞

min
{qt(yt|xt,yt−1):
d(Xt,Yt)≤D̄}nt=1

1

n

n∑
t=1

Iq(Xt;Yt|Y t−1) (2)

under the instantaneous distortion constraint D̂, and as

lim
n→∞

min
qt(yt|xt,yt−1):

E
[

1
n

n∑
t=1

d(Xt,Yt)
]
≤D̂

1

n

n∑
t=1

Iq(Xt;Yt|Y t−1) (3)

under the average distortion constraint D̄, where xt and yt rep-
resent the realizations of Xt and Yt, q = {qt(yt|xt, yt−1)}nt=1

is a conditional probability distribution which represents the

user’s randomized data release policy at time t. The ran-
domness stems from both the Markov process generating
the true data sequence, and the random release mechanism
qt(yt|xt, yt−1). The mutual information induced by policy
qt(yt|xt, yt−1) ∈ q is calculated using the joint probability
distribution

P q(Xn = xn, Y n = yn)

= px1
q1(y1|x1)

n∏
t=2

[
qx(xt|xt−1)qt(yt|xt, yt−1)

]
. (4)

In the next section, we characterize the structure of the
optimal data release policy, and using this structure we recast
the problem as an MDP, and finally evaluate the optimal trade-
off numerically using advantage actor-critic deep RL.

III. PUT FOR TIME-SERIES DATA SHARING

In this section, we analyze the optimal PUT achievable
by a privacy-aware time-series data release mechanism under
the notion of mutual information minimization with both
instantaneous and average distortion constraints. Moreover, we
propose simplified PDRPs that still preserve optimality.

By the definition of mutual information, the objectives (2)
and (3) depend on the entire history of X and Y . Therefore, the
user must follow a history-dependent PDRP qht (yt|xt, yt−1),
where the feasible set QH consists of policies that satisfy∑
yt∈W qht (yt|xt, yt−1) = 1. As a result of strong history

dependence, computational complexity of the minimization
problem increases exponentially with the length of the data
sequence. To tackle this problem, we introduce a class of
simplified policies, and prove that they do not cause any loss
of optimality in the PUT.

A. Simplified PDRPs

In this section we introduce a set of policies QS ⊆ QH
of the form qst (yt|xt, xt−1, y

t−1), which samples the distorted
data only by considering the true data in the last two time
instances and the entire released data history. Hence, the
joint distribution (4) induced by qs ∈ QS , where qs =
{qst (yt|xt, xt−1, y

t−1)}nt=1 can be written as

P qs(Xn = xn, Y n = yn)

= px1q
s
1(y1|x1)

n∏
t=2

[
qx(xt|xt−1)qst (yt|xt, xt−1, y

t−1)
]
. (5)

Next, we show that considering PDRPs in set QS is without
loss of optimality.

Theorem 1. In both minimization problems (2) and (3), there
is no loss of optimality in restricting the PDRPs to the set of
policies qs ∈ QS . Furthermore, information leakage induced
by any qs ∈ QS can be written as:

Iqs(Xn, Y n) =

n∑
t=1

Iqs(Xt, Xt−1;Yt|Y t−1) (6)

=

n∑
t=1

∑
yt∈Wt

xt,xt−1∈W

P qs(xt, xt−1, y
t) log

qst (yt|xt, xt−1, y
t−1)

P qs(yt|yt−1)
, (7)
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Fig. 2: Markov chain induced by the simplified PDRP.

and the average distortion induced by any qs ∈ QS can be
written as:

Eqs
[ 1

n

n∑
t=1

d(Xt, Yt)
]

=
1

n

n∑
t=1

Eqs [d(Xt, Yt)] (8)

=
1

n

n∑
t=1

∑
yt∈Wt,

xt,xt−1∈W

P qs(xt, xt−1, y
t)d(xt, yt), (9)

where the first equation comes from the linearity of expecta-
tion.

See Appendix A for the proof of Theorem 1.

Remark 1. Although the proof of Theorem 1 assumes that
the true data sequence is a first-order Markov chain, it is
possible to generalize it to higher-order Markov chains, i.e.,
qx(Xt|Xt−1) = qx(Xt|Xt−1

t−m) for order m. Let Qm
S ⊆ QH

denote the set of policies q′

q′t(yt|xtt−m, yt−1) = P q
′

Yt|Xt
t−m,Y

t−1(yt|xtt−m, yt−1). (10)

Then the following theorem holds.

Theorem 2. If the true data sequence {Xt} is a Markov chain
of order m, then there is no loss of optimally in using a PDRP
from the set Qm

S . Moreover, information leakage induced by
q′ ∈ Qm

S can be written as:

Iq
′
(Xn, Y n) =

n∑
t=1

Iq
′
(Xt

t−m+1;Yt|Y t−1), (11)

and the average distortion induced by any q′ ∈ QmS can be
written as:

Eq
′
[ 1

n

n∑
t=1

d(Xt, Yt)
]

=

n∑
t=1

∑
yt∈Wt,

xt
t−m+1∈W

m−1

P q
′
(xtt−m+1, y

t)d(xt, yt).

(12)

Then the simplified PDRP followed by the user is illustrated
by the Markov chain in Fig. 2, where Y t denotes the released
data history, i.e., {Y1, . . . , Yt}. That is, the user samples the
distorted data, Yt, at time t following qst (yt|xt, xt−1, y

t−1) by
considering the current and previous true data, (Xt, Xt−1),
and the released data history, Y t−1.

B. Online PDRP with an Instantaneous Distortion Constraint

As we have stated earlier, we are assuming that the utility
gained by the user by sharing its private data diminishes
as the distortion between the true data sequence and the
released version increases, under the specified distortion mea-
sure. Therefore, the utility requirements of the user imposes

distortion constraints on the PDPR. Here, we assume that
the user would like to guarantee a minimum utility level at
each time instant, which, in turn, imposes an instantaneous
constraint on the distortion between the true data sample
Xt and the released version Yt at each time instance, i.e.,
d(xt, yt) ≤ D̂, ∀t.

Accordingly, given (Xt, Xt−1, Y
t−1) = (xt, xt−1, y

t−1),
the set of feasible simplified PDRPs satisfying an instanta-
neous distortion constraint is qIs ∈ Q

I
S , and the set of the

released data samples induced by qIs is given by

Yq
I
s(xtt−1, y

t−1) :=
{
yt ∈ W : d(xt, yt) ≤ D̂

}
. (13)

Furthermore, we require qIs to satisfy∑
yt∈YqI

s (xt
t−1,y

t−1)

qIs (yt|xtt−1, y
t−1) = 1. (14)

The objective of the PUT for online PDRP with an instanta-
neous distortion constraints (PDRP-IDC) can be rewritten as

min
qIs(yt|xt

t−1,y
t−1)

1

n

n∑
t=1

Iq
I
s (Xt, Xt−1;Yt|Y t−1). (15)

C. Online PDRP with an Average Distortion Constraint

Alternatively, the user may want to limit only the average
distortion applied to the true-data sequence. That is, the
utility loss averaged over the time horizon n is denoted
by D(xn; yn) = E[ 1

n

∑n
t=1 d(xt, yt)]. The feasible set of

simplified PDRPs with an average distortion constraint is
qAs ∈ Q

A
S , and the feasible set of the released Yt induced

by qAs is given by

Yq
A
s (xtt−1, y

t−1) :=
{
yt ∈ W : D(xn, yn) ≤ D̄

}
, (16)

where the constraint follows from the linearity of expectation,
i.e., D(xn; yn) = 1

n

∑n
t=1 Eq

A
s [d(xt, yt)], and the expectation

is taken over the joint probabilities of xt and yt. Similarly to
(13), qAs is required to satisfy∑

yt∈YqA
s (xt

t−1,y
t−1)

qAs (yt|xtt−1, y
t−1) = 1. (17)

Hence, the objective of the problem for online PDRP with an
average distortion constraint (PDRP-ADC) can be written as:

min
qAs (yt|xt

t−1,y
t−1)

1

n

n∑
t=1

Iq
A
s (Xt, Xt−1;Yt|Y t−1). (18)

Minimization of the mutual information subject to a dis-
tortion constraint can be converted into an unconstrained
minimization problem using Lagrange multipliers. Since the
distortion constraint induced by the simplified PDRP is mem-
oryless, we can integrate it into the additive mutual informa-
tion objective easily. Hence, the unconstrained minimization
problem for time-series data release PUT can be rewritten as

min
qs∈Qs

1

n

n∑
t=1

[
Iqs(Xt, Xt−1;Yt|Y t−1)+λ(Eqs [d(xt, yt)]−D̄)

]
,

(19)
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where λ is the Lagrangian multiplier, and determines the
operating point on the trade-off curve, i.e., it represents where
the gradients of the mutual information and the distortion
constraint point in the same direction. When λ = 0, the user
releases data samples which only minimize the information
leakage. On the other hand, as λ → ∞, the released data
minimizes only distortion constraint rather than information
leakage, which results in full information leakage.

In the following section, we present the MDP formulation
of the problem for both PDRPs and the evaluation method
utilized by advantage actor-critic RL.

IV. MDP FORMULATION

Markovity of the user’s true data sequence and the additive
objective functions in both (15) and (19) allow us to represent
the problem as an MDP with state Xt. However, the informa-
tion leakage at time t depends on Y t−1, resulting in a growing
state space in time. Therefore, for a given policy qs and any
realization yt−1 of Y t−1, we define a belief state βt ∈ PX as
a probability distribution over the state space:

βt(xt−1) = P qs(Xt−1 = xt−1|Y t−1 = yt−1). (20)

This represents the SP’s belief on the true data sample
at the beginning of time instance t, i.e., after receiving the
distorted-data yt−1. The actions are defined as probability
distributions with which the user samples the released value
Yt at time t and determined by the randomized PDRPs. The
user’s action induced by a policy qs can be denoted by
at(yt|xt, xt−1) = P qs(Yt = yt|Xt = xt, Xt−1, βt). At each
time t, the SP updates its belief on the true data sample
βt+1(xt), after observing its distorted version yt by

βt+1(xt) =
p(xt, yt|yt−1)

p(yt|yt−1)
=

∑
xt−1

p(xt, xt−1, yt|yt−1)∑
xt,xt−1

p(xt, xt−1, yt|yt−1)

=

∑
xt−1

p(xt|xt−1)qst (yt|xt, xt−1, y
t−1)p(xt−1|yt−1)∑

xt,xt−1
p(xt|xt−1)qst (yt|xt, xt−1, yt−1)p(xt−1|yt−1)

=

∑
xt−1

qx(xt|xt−1)a(yt|xt, xt−1)βt(xt−1)∑
xt,xt−1

qx(xt|xt−1)a(yt|xt, xt−1)βt(xt−1)
. (21)

We define the per-step information leakage of the user due to
taking the action at(yt|xt, xt−1) at time t as,

lt(xt, xt−1, at, y
t; qs) := log

at(yt|xt, xt−1)

P qs(yt|yt−1)
. (22)

The expectation of n-step sum of (22) over the joint prob-
ability P qs(Xt, Xt−1, Y

t) is equal to the mutual information
expression in the original problem (6). Therefore, given the
belief and action probabilities, average information leakage at
time t can be formulated as,

Eqs [lt(x
t
t−1,at, y

t)]=
∑

xt,xt−1,yt∈W
βt(xt−1)at(yt|xt, xt−1)qx(xt|xt−1)

× log
at(yt|xt, xt−1)∑

x̂t,x̂t−1∈W
βt(x̂t−1)at(yt|x̂t, x̂t−1)qx(x̂t|x̂t−1)

:= L(βt, at). (23)

�+1

��+1

Agent

Environment

Cost,�
State,
		��

Action,	
��

Fig. 3: RL for a known model.

We can recast the PDRP-IDC problem in (15) as a
continuous state and action space MDP. The actions sat-
isfying the instantaneous distortion constraint are denoted
by aIDC

t (yt|xt, xt−1) and induced by the simplified PDRP
qIs (yt|xtt−1, y

t−1). The solution of the MDP for PDRP-IDC
problem relies on minimizing the objective

CIDC(βt, a
IDC
t ) := L(βt, a

IDC
t ), (24)

where L(βt, a
IDC
t ) is the average information leakage obtained

by taking the actions aIDC
t (yt|xt, xt−1), at each time step t.

We remark that the representation of average distortion in
terms of belief and action probabilities is straightforward due
to its additive form. Similarly to (23), average distortion for
PDRP-ADC at time t can be written as,

Eqs [d(xt, yt)]=
∑

xt,xt−1,yt∈W
βt(xt−1)at(yt|xt, xt−1)qx(xt|xt−1)d(xt, yt)

:= D(βt, at), (25)

where there is no restriction on how the actions are chosen,
i.e., yt ∈ W . Hence, we can recast the PDRP-ADC problem
in (19) as a continuous state and action space MDP with a
per-step cost function given by

CADC(βt, at) := L(βt, at) + λ(D(βt, at)− D̂). (26)

Finding optimal policies for continuous state and action
space MDPs is a PSPACE-hard problem [38]. In practice,
they can be solved by various finite-state MDP evaluation
methods, e.g., value iteration, policy iteration and gradient-
based methods. These are based on the discretization of the
continuous belief states to obtain a finite state MDP [39].
While finer discretization of the belief reduces the loss from
the optimal solution, it causes an increase in the dimension
of the state space; hence, in the complexity of the problem.
To overcome the complexity limitation, we will employ a
deep learning based method as a tool to numerically solve
our continuous state and action space MDP problem.
A. Advantage Actor-Critic (A2C) Deep RL

In this section, we simply use C(βt, at) and at(yt|xt, xt−1)
to represent the MDP cost and action pair of both PDRP-IDC
and PDRP-ADC, respectively. Integration of the solution into
the instantaneous and average distortion constrained cases is
straightforward.

In RL, an agent discovers the best action to take in a
particular state by receiving instantaneous rewards/costs from
the environment [40]. On the other hand, in our problem,
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Fig. 4: Critic (a) and actor (b) DNN structures.

we have the knowledge of the state transition probabilities
and the cost for every state-action pair without the need for
interacting with the environment. We use A2C-deep RL as a
computational tool to numerically evaluate the optimal PDRP
for our continuous state and action space MDP.

To integrate RL framework into our problem, we create an
artificial environment which inputs the user’s current action,
at(yt|xt, xt−1), samples an observation yt, and calculates the
next state, βt+1, using Bayesian belief update (21). Instanta-
neous cost revealed by the environment is calculated by (26).
The user receives the experience tuple (βt, at, yt, βt+1, Ct)
from the environment, and refines her policy accordingly. Fig.
3 illustrates the interaction between the artificial environment
and the user, which is represented by the RL agent. The
corresponding Bellman equation induced by policy qs can be
written as

V qs(β) + J(qs) = min
a

{
C(β, a) + V qs(β′)

}
, (27)

where V qs(β) is the state-value function, β′ is the updated
belief state according to (21), a represents action probability
distributions, and J(qs) is the cost-to-go function, i.e., the
expected future cost induced by policy qs [41].

RL methods can be divided into three groups: value-based,
policy-based, and actor-critic [42]. Actor-critic methods com-
bine the advantages of value-based (critic-only) and policy-
based (actor-only) methods, such as low variance and con-
tinuous action producing capability. The actor represents the
policy structure, while the critic estimates the value function
[40]. In our setting, we parameterize the value function by the
parameter vector θ ∈ Θ as Vθ(β), and the stochastic policy
by ξ ∈ Ξ as qξ. The difference between the right and the

Algorithm 1: A2C-deep RL algorithm for online PDRP
Initialize DNNs with random weights ξ and θ
Initialize environment E
for episode=1, N do

Initialize belief state β0;
for t = 0, n do

Sample action probability vector
at ∼ Dirichlet(a|ξ) according to the current
policy;

Perform action at and calculate cost Cξt in E;
Sample an observation yt and calculate next

belief state βt+1 in E;
Set TD target Cξt + γV ξθt(βt+1);
Minimize the loss
`c(θ) = δ2 = (Cξt + γV ξθt(βt+1)− V ξθt(βt))

2;
Update the critic θ ← θ + ηc∇θδ2;
Minimize the loss
`a(ξt) = ln(Dirichlet(a|ξt))δt;

Update actor ξ ← ξ − ηa∇ξ`a(ξt);
Update belief state βt+1 ← βt

end
end

left hand side of (27) is called temporal difference (TD) error,
which represents the error between the critic’s estimate and
the target differing by one-step in time [43]. The TD error for
the experience tuple (βt, at, yt, βt+1, Ct) is estimated as

δt = Ct(βt, at) + γVθt(βt+1)− Vθt(βt), (28)

where Ct(βt, at)+γVθt(βt+1) is called the TD target, and γ is
a discount factor that we choose very close to 1 to approximate
the Bellman equation in (27) for our infinite-horizon average
cost MDP. To implement RL in the infinite-horizon problem,
we take sample averages over independent and finite data
sequences, which are generated by experience tuples at each
time t via Monte-Carlo roll-outs.

Instead of using value functions in actor and critic updates,
we use advantage function to reduce the variance in policy
gradient methods. The advantage can be approximated by TD
error. Hence, the critic is updated by gradient descent as:

θt+1 = θt + ηct∇θ`c(θt), (29)

where `c(θt) = δ2
t is the critic loss and ηct is the learning rate

of the critic at time t. The actor is updated similarly as,

ξt+1 = ξt − ηat∇ξ`a(ξt), (30)

where `a(ξt) = ln(qs(yt|βt, ξt))δt is the actor loss and ηat
is the actor’s learning rate. This method is called advantage
actor-critic RL.

In our A2C-deep RL implementation, we represent the actor
and critic mechanisms by fully connected feed-forward deep
neural networks (DNNs) with two hidden layers as illustrated
in Fig. 4. The critic DNN takes the current belief state β(X)
of size |W| as input, where X is the true data sequence vector,
and outputs the value of the belief state for the current action
probabilities V ξθ (β). The actor DNN also takes the current
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Fig. 5: True and released user trajectory example for n = 5.

belief state β(X) as input, and outputs the parameters used
for determining the action probabilities of the corresponding
belief. Hence, the input/output sizes of the critic and actor
DNNs are |W|×1 and |W|×|W|, respectively. Here, the actor
DNN output parameters {ξ1, . . . , ξ|W|} are used to generate a
Dirichlet distribution, which represents the action probabilities.
The overall A2C-deep RL algorithm for online PDRP is
described in Algorithm 1. In the next section, we apply the
proposed deep RL solution to a location trace privacy problem.

V. APPLICATION TO LOCATION TRACE PRIVACY

In this section, we consider an application of the theoretical
framework we have introduced to the location trace privacy
problem. We focus on location trace as an example of time-
series data. In this scenario, the user shares a distorted version
of her trajectory with the SP due to privacy concerns. An
example for the user trajectory of length n = 5 in a grid
area is illustrated in Fig. 5. While the user’s location at time
t = 0 is depicted with a grey circle, the true and released user
trajectories over the next 5 time steps are represented by black
and grey arrows, respectively.

A. Numerical Results for Synthetic Data

In this section, we evaluate the PUT of the proposed PDRP-
ADC and PDRP-IDC methods for synthetic user mobility data.
We also compare the PDRP-ADC results with the myopic
Markovian location release mechanism proposed in [18]. For
the simulation results presented in the following sections, we
train two fully connected feed-forward DNNs, representing the
actor and critic networks, respectively, by utilizing ADAM
optimizer [44]. Both networks contain two hidden layers of
sizes 3000 with leaky-ReLU activation [45]. We obtain the
corresponding PUT by averaging the total information leakage
for the specified distortion constraint over a time horizon of
n = 300.

1) PDRP-IDC Results: We first consider a simple 4 × 4
grid-world, where |W| = 16 as in Fig. 5. The cells are num-
bered such that the first and the last rows of the grid-world are
represented by {1, 2, 3, 4} and {13, 14, 15, 16}, respectively.
The user’s trajectory forms a first-order Markov chain with
a transition probability matrix Qx of size |W| × |W|, whose
index Qx(i, j), i, j ∈ {1, . . . , |W|}, represents the transition
probability qx(xt = i|xt−1 = j) from the state j to i.
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Fig. 6: Average information leakage as a function of the
allowed instantaneous distortion under Manhattan distance as
the distortion measure.

The user can start its movement at any square with equal
probability, i.e., px1 = 1

16 . Our goal is to obtain the PUT
under instantaneous distortion constraints D̂ ∈ {1, . . . , 4} with
Manhattan distance on the distortion measure between the true
position and the reported one.

In Fig. 6, PUT curves are obtained for transition probability
matrices Q0

x, Q1
x and Q2

x, each corresponding to a different
temporal correlation level. In all the cases, the user can move
from any square to any other square in the grid at each
step, i.e., Qmx (i, j) > 0, ∀m, i, j. While all the transition
probabilities are equal to 1

|W| for Q0
x, the probability of the

user moving to a nearby square is greater than taking a larger
step to a more distant one for Q1

x and Q2
x. Moreover, Q1

x

represents a more uniform trajectory, where the agent moves
to equidistant cells with equal probability, while with Q2

x the
agent is more likely to follow a certain path, i.e., the random
trajectory generated by Q2

x has lower entropy. The transition
probabilities for Q1

x are given by:

q1
x(xt|xt+1) =

rd(xt,xt+1)/d(xt, xt+1)∑
xt+1∈W rd(xt,xt+1)/d(xt, xt+1)

, (31)

where d(xt, xt+1) is the Manhattan distance between positions
xt and xt+1; rd(xt,xt+1) is a scalar which determines the
probability of the user moving from one square to any of
the equidistant squares in the next step. Fig. 7 is obtained
by setting r0 = 1 and ri = 7− i, i = 1, . . . , 6.

For Q2
x, we set

q2
x(xt|xt+1) =

u(xt, xt+1)/d(xt, xt+1)∑
xt+1∈W u(xt, xt+1)/d(xt, xt+1)

, (32)

where, for xt ∈ {1, 2, . . . , 15}, we have

u(xt, xt+1)=


r1, for mod(xt, 4) 6= 0, xt+1 = xt + 1,

r1, for mod(xt, 4) = 0, xt+1 = xt + 4,

r0, otherwise,

where mod(.) is the modulo operator which finds the re-
mainder after division of xt by 4, and u(16, xt+1) = r0 for
xt+1 ∈ {1, . . . , 15}, and u(16, 16) = r1. As a result, temporal
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Fig. 7: Average information leakage as a function of the
allowed average distortion under Manhattan distance as the
distortion measure.

correlations in the location history increase in the order Q0
x,

Q1
x, Q2

x.
We train our DNNs for a time horizon of n = 300 in

each episode, and over 5000 Monte Carlo roll-outs. Fig. 6
shows that, information leakage increase in the order Q2

x, Q1
x,

Q0
x. As the temporal correlations between the locations on a

trace increases, the proposed PDRP-IDC leaks less information
since it takes the entire released location history into account.

2) PDRP-ADC Results: Next, we consider the same sce-
nario as before, but evaluate the PUT under an average
distortion constraint. We evaluate the performance of the
proposed PDRP-ADC and compare the results with the myopic
Markovian location release mechanism proposed in [18]. In
[18], an upper bound on the PUT is given by a myopic policy
as follows:

n∑
t=1

min
q(yt|xt,xt−1,yt−1):

Eq [d(xt,yt)]≤D̂

Iq(Xt, Xt−1;Yt|Yt−1). (33)

Exploiting the fact that (33) is similar to the rate-distortion
function, Blahut-Arimoto algorithm is used in [18] to min-
imize the conditional mutual information at each time step.
Finite-horizon solution of the objective function (33) is ob-
tained by applying alternating minimization sequentially. In
our simulations, we obtained the average information leakage
and distortion for this approach by normalizing for n = 300.

In Fig. 7, PUT curves of the proposed PDRP-ADC and the
myopic location release mechanism are obtained for the same
environment defined in Section V-A1. The same transition
matrices are used, i.e., Q0

x, Q1
x and Q2

x represent increasing
temporal correlations in the user’s trajectory. The Lagrangian
multiplier λ ∈ [0, 20] denotes the user’s choice for the
operating point on the PUT curve. Distortion is again measured
by the Manhattan distance. Similarly to Section V-A1, we train
our DNNs for n = 300 in each episode, and over 5000 Monte
Carlo roll-outs. Fig. 7 shows that, for Q2

x the proposed PDRP-
ADC obtained through deep RL leaks much less information
than the myopic location release mechanism for the same
distortion level, indicating the benefits of considering all the
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Fig. 8: Convergence of PDRP-ADC for λ = 1, D̂ = 0.8 and
Q2
x.

history when taking actions at each time instant. The gain
is less for Q1

x, since there is less temporal correlations in
the location history compared to Q2

x; and hence, there is less
to gain from considering all the history when taking actions.
Finally, for Q0

x the proposed scheme and the myopic policy
perform the same, since the user movement with uniform
distribution does not have temporal memory; and therefore,
taking the history into account does not help.

Fig. 8 shows the convergence behaviour of the A2C-DRL
algorithm when evaluating PDRP-ADC’s objective function
(19) for Q2

x, λ=1, D̂=0.8. Various realizations of the con-
vergence curve lie in the light blue area, and the dark blue
curve represents the average value of these realizations. We
observe that the convergence typically occurs after about 2500
iterations. On the other hand, we remark that the optimal pol-
icy for a stationary environment can be obtained in an offline
manner using the available dataset; therefore the convergence
time and the number of iterations has no impact on the real-
time application of this solution in practice.

We next consider a toy example for PDRP-ADC to visualize
the location release strategy for a better understanding. We
consider a 2×3 grid-world, where the user’s trajectory forms a
first-order Markov chain with the transition probability matrix
Qx, given in Table II. We assume that the user can start its

xt−1

xt 1 2 3 4 5 6

1 0.11 0.64 0.05 0.11 0.05 0.04
2 0.1 0.1 0.6 0.05 0.1 0.05
3 0.05 0.11 0.11 0.04 0.05 0.64
4 0.11 0.05 0.04 0.11 0.64 0.05
5 0.05 0.1 0.05 0.1 0.1 0.6
6 0.04 0.05 0.11 0.05 0.11 0.64

TABLE II: The transition probability matrix Qx of the toy
example for PDRP-ADC, when |W| = 6.

movement at any square with equal probability, i.e., px1
= 1

6 .
The Lagrange multiplier is chosen as λ = 3, and the distortion
constraint is D̄ = 0.6.

After training the actor and critic DNNs, we obtain the best
action probabilities that minimize the objective function CADC
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xt, xt−1

yt 1 2 3 4 5 6

(1,1) 0.19 0.06 0.22 0.18 0.23 0.12
(1,2) 0.21 0.19 0.28 0.09 0.06 0.17
(1,3) 0.19 0.13 0.18 0.19 0.28 0.03
(1,4) 0.3 0.24 0.17 0.07 0.07 0.15
(1,5) 0.03 0.05 0.51 0.01 0.25 0.15
(1,6) 0.22 0.14 0.13 0.16 0.21 0.14

...
...

...
...

...
...

...
(6,1) 0.03 0.07 0.21 0.21 0.32 0.16
(6,2) 0.18 0.13 0.35 0.1 0.16 0.08
(6,3) 0.21 0.08 0.18 0.12 0.13 0.28
(6,4) 0.18 0.05 0.19 0.36 0.14 0.08
(6,5) 0.31 0.14 0.3 0.07 0.16 0.02
(6,6) 0.09 0.29 0.21 0.16 0.01 0.24

TABLE III: Best action probabilities at(yt|xt, xt−1) for Qx

in Table II, β = [ 1
6 , . . . ,

1
6 ] and λ = 3.

in (26). Given the user trajectory pattern in Table II, β =
[ 1
6 , . . . ,

1
6 ] and λ = 3, the action distribution matrix induced

by PDRP-ADC is obtained as in Table III. It is clear from
the table that Yt is not released according to a deterministic
pattern.

B. Numerical Results for GeoLife Dataset

Next, we present the simulation results on the GeoLife
dataset [33], [34], which contains 182 user’s GPS trajectories
collected by Microsoft Research Asia. GeoLife trajectories
are recorded densely, e.g., every 1 ∼ 5 seconds or every
5 ∼ 10 meters per point [34]. In our experiments, we focus
on the high-density areas which represent the important stops
for the users. Hence, we use a density-based data mining
algorithm, namely DBSCAN (density-based spatial clustering
of applications with noise) [46] to cluster the raw GPS data
into the important stops of the user trajectory. We obtain a
16-cluster representation of the user-016’s data, i.e., W = 16,
by applying DBSCAN algorithm to the 51 trajectories of user-
016 provided in GeoLife dataset. For the implementation of
our MDP approach in the clustered dataset, center-points of the
clusters represent user locations Xt ∈ W , and the trajectories
through the clusters represent user’s state transitions. We use
Euclidean distance between the true and released user cluster
centers as the distortion measure.

Assuming that the user mobility forms a first-order Markov
chain, we generate a transition probability matrix Q016

x from
the user-016’s trajectories. That is, we assume the user location
Xt at time t depends only on the previous location Xt−1,
and we find the empirical probabilities of transitions between
locations. After the generation of Q016

x , implementation of
PDRP-IDC, PDRP-ADC or the myopic policy is the same as
in the synthetic data case. To obtain the optimal policies, we
train two fully connected feed-forward DNNs, representing
the actor and critic networks, respectively, by using ADAM
optimizer. Both networks contain two hidden layers each with
3000 nodes. While all the hidden layers have ReLU activation,
the output layers of the actor and critic networks have tanh
and Softmax activations, respectively. We obtain the PUT
curves by averaging the total information leakage for the
corresponding distortion constraint over a time horizon of
n = 600 for 1000 Monte Carlo roll-outs.

Instantaneous Distortion Const.: 15 km 5 km 3 km

PDRP-IDC
Avg. Info. Leakage 0.18 0.39 0.53

Cross-entropy Loss m=1 1.05 0.66 0.52
m=5 0.46 0.40 0.35

TABLE IV: Cross-entropy loss of the predictor for certain
PUT levels of PDRP-IDC.

Note that the mutual information computed based on the
first-order Markov assumption, used by our approach to obtain
the PDRP, may not correspond to the real information leakage.
Since we do not know the underlying ”true” statistics of the
data, we examine the effectiveness of the proposed algorithms
using an adversary which tries to predict the user’s current
true location from past released locations in an online manner.
The predictor consists of an LSTM recurrent neural network
layer with 200 nodes and a dropout of 0.5, which is followed
by a fully connected hidden layer of 200 nodes with ReLu
activation, and a fully connected output layer with Softmax
activation. We train the predictor on the released distorted
locations with the goal of minimizing the categorical cross-
entropy between the estimated and true current locations by
utilizing ADAM optimizer.

In Table IV, we show the adversary’s cross-entropy loss
for predicting user-016’s true locations from their distorted
versions released by PDRP-IDC at various PUT points. Here,
m is the LSTM based adversary’s look-back memory. For both
m = 1 and m = 5, Table IV shows that the cross-entropy
loss decreases as the average information leakage increases.
In Table IV, there is a decrease in the adversarial loss for
m = 5 compared to m = 1, which means that the first-
order Markov assumption may not be valid for the data as
the adversary benefits from considering information further
in the past. To understand the benefit of releasing distorted
data better, we also obtained the cross-entropy loss of the
adversary when it predicts the current location by observing
the past true locations. When the privacy is not preserved, the
adversary’s cross-entropy loss is 0.36 for m = 1 and 0.28 for
m = 5, which is much lower than the privacy preserved case
as expected.

In Table V, we show the adversary’s prediction performance
against PDRP-ADC and the myopic policy at various PUT
points. For the same average distortion constraints, the adver-
sary has higher cross-entropy loss of predicting true locations
when they are distorted by PDRP-ADC rather than the myopic
policy for both m = 1 and m = 5. Hence, considering the
temporal correlations in the trajectory preserves PDRP-ADC’s
advantage over the myopic policy even when the adversary
has a less strict Markov assumption on the true location

Average Distortion Const.: 9 km 5.7 km 1.7 km

PDRP-ADC
Avg. Info. Leakage 0.11 0.20 0.35

Cross-entropy Loss m=1 1.30 1.25 0.90
m=5 0.78 0.73 0.67

Myopic PDRP
Avg. Info. Leakage 0.27 0.33 0.50

Cross-entropy Loss m=1 1.10 0.99 0.82
m=5 0.52 0.48 0.45

TABLE V: Cross-entropy loss of the predictor for certain PUT
levels of PDRP-ADC and myopic policy.
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(a)

(b)

Fig. 9: True (a) and the distorted (b) trajectory of user-016 by
PDRP-ADC for W = 16, λ = 1 and D̂ = 5km.

distribution than both policies.
To understand the true and released location trajectories

better, we provide a toy example in which we apply PDRP-
ADC to previously clustered user-016 trajectories forW = 16,
λ = 1 and D̂ = 5km. An example for the true trajectory
of the user is shown in Fig. 9a, where the numbered circles
are the cluster center-points with the corresponding cluster
numbers in blue, black numbers represent how many steps the
user takes in that cluster, the black arrows show the direction
of the movement and the movement starts from the red circled
cluster 9. For instance, Fig. 9a represents the true trajectory
{9, 9, 9, 9, 9, 9, 9, 13, 13, 13, 0, 0, 0, 0, 0, 14, 0, 0, 0, . . . }. The
distorted version of the trajectory in Fig. 9a is depicted in Fig.
9b, where the movement starts from the red circled cluster
11 and the red arrows show the direction of movement. The
released trajectory can be deduced from the map in Fig. 9b as
{11, 11, 10, 9, 10, 11, 11, 12, 12, 12, 12, 2, 8, 8, 8, 8, 8, 8, 6, . . . }.
These figures show that the released locations by PDRP-ADC
follow a different path from the true locations for privacy
concerns, while the distortion constraint is satisfied.

VI. CONCLUSIONS

We have studied the PUT of time-series data using mutual
information as a privacy measure. Having identified some
properties of the optimal policy, we proposed information the-
oretically optimal online PDRPs under instantaneous and aver-
age distortion constraints, which represent utility constraints,
and solved the PUT problem as an MDP. Due to continuous
state and action spaces, it is challenging to characterize or
even numerically compute the optimal policy. We overcome
this difficulty by employing advantage actor-critic deep RL
as a computational tool. Then, we applied the theoretical
approach which we introduced for time-series data privacy
into the location trace privacy problem. Utilizing DNNs, we
numerically evaluated the PUT curve of the proposed PDRPs
under both instantaneous and average distortion constraints
for both synthetic data and GeoLife GPS trajectory dataset.
We compared the results with the myopic location release
policy introduced recently in [18], and observed the effect
of considering temporal correlations on information leakage-
distortion performance. We also examined the effectiveness of
our Markov assumption by testing the proposed policies using
an LSTM-based predictor network which represents the ad-
versary with adjustable memory. According to the simulation
results, we have seen that the proposed data release policies
provide significant privacy advantage, especially when the
user trajectory has higher temporal correlations. Even though
higher privacy leakage was observed for larger adversary
memory, proposed policies outperformed myopic policy.

APPENDIX A
PROOF OF THEOREM 1

The proof of Theorem 1 relies on the following lemmas and
will be presented later.

Lemma 1. For any q ∈ QH ,

Iq(Xn;Y n) ≥
n∑
t=1

Iq(Xt, Xt−1;Yt|Y t−1) (34)

with equality if and only if q ∈ QS .

Proof: For any q ∈ QH ,

Iq(Xn;Y n) =

n∑
t=1

Iq(Xt;Yt|Y t−1) (35)

≥
n∑
t=1

Iq(Xt, Xt−1;Yt|Y t−1), (36)

where (35) follows from (1), and (36) from the fact that mutual
information cannot be negative.

Lemma 2. For any qh ∈ QH , there exists a policy qs ∈ QS
such that
n∑
t=1

Iqh(Xt, Xt−1;Yt|Y t−1) =

n∑
t=1

Iqs(Xt, Xt−1;Yt|Y t−1),

(37)

for both cases where qh and qs satisfy an instantaneous
distortion constraint d(Xt, Yt) ≤ D̄, and average distortion
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constraints Eqh
[

1
n

n∑
t=1

]
≤ D̄ and Eqs

[
1
n

n∑
t=1

]
≤ D̄, respec-

tively.

Proof: For any qh ∈ QH , we choose the policy qs ∈ QS
such that

qst (yt|xt, xt−1, y
t−1)=P

qh
Yt|Xt,Xt−1,Y t−1(yt|xt, xt−1, y

t−1),

(38)

and we show that P
qh
Xt,Xt−1,Y t = P

qs
Xt,Xt−1,Y t . Then,

Iqh(Xt, Xt−1;Yt|Y t−1) = Iqs(Xt, Xt−1;Yt|Y t−1) holds,
which proves the statement in Lemma 2. The proof of the
equality P

qh
Xt,Xt−1,Y t = P

qs
Xt,Xt−1,Y t requires the proof of

P
qh
Xt,Xt−1,Y t−1 = P

qs
Xt,Xt−1,Y t−1 which is derived by induction

as follows,

P qh(xt+1, xt, y
t)

=
∑

xt−1∈W
qx(xt+1|xt)qht (yt|xt, xt−1, y

t−1)P qh(xt, xt−1, y
t−1)

=
∑

xt−1∈W
qx(xt+1|xt)qst (yt|xt, xt−1, y

t−1)P qs(xt, xt−1, y
t−1)

= P qs(xt+1, xt, y
t), (39)

where (38) holds, and P
qh
X1

(x) = px1(x) = P
qs
X1

(x) is used
for the initialization of the induction.

Having shown that the equality P
qh
Xt,Xt−1,Y t−1 =

P
qs
Xt,Xt−1,Y t−1 and (38) hold, the proof of P qhXt,Xt−1,Y t =

P
qs
Xt,Xt−1,Y t is straightforward:

P qh(xt, xt−1, y
t) = qht (yt|xt, xt−1, y

t−1)P qh(xt, xt−1, y
t−1)

= qst (yt|xt, xt−1, y
t−1)P qs(xt, xt−1, y

t−1)

= P qs(xt, xt−1, y
t). (40)

Following (40), the equality Iqh(Xt, Xt−1;Yt|Y t−1) =
Iqs(Xt, Xt−1;Yt|Y t−1) holds, and the integration of the in-
stantaneous distortion constraint into the additive mutual in-
formation is straightforward and does not affect the optimality,
and hence, (37) holds.

Furthermore, we show that there is no loss of optimality
in including the average distortion constraint into the mutual
information optimization when the policy is chosen according
to (38), as follows:

Eqh [d(Xt, Yt)] =
∑

yt∈Wt,
xt,xt−1∈W

P qh(xt, xt−1, y
t)d(xt, yt) (41)

=
∑

yt∈Wt,
xt,xt−1∈W

P qs(xt, xt−1, y
t)d(xt, yt), (42)

= Eqs [d(Xt, Yt)] (43)

where (41) follows from the history independence of
d(Xt, Yt), and (42) from (40). Following the linearity of
expectation, the average distortion constraint can be written
in an additive form, and hence, (37) holds.

Proof of Theorem 1: Following Lemmas 1 and 2, for any
qh ∈ QH , there exists a qs ∈ QS such that

Iqh(Xn;Y n) ≥ Iqs(Xn;Y n). (44)

Hence, there is no loss of optimality in using the time-
series data release policies of the form qst (yt, |xt, xt−1, y

t−1),
and information leakage and the average distortion constraint
reduce to (7) and (9), respectively.
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