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Abstract— Abnormal event detection is an important task
in research and industrial applications, which has received
considerable attention in recent years. Existing methods usually
rely on standard frame-based cameras to record the data and
process them with computer vision technologies. In contrast, this
paper presents a novel neuromorphic vision based abnormal
event detection system. Compared to the frame-based camera,
neuromorphic vision sensors, such as Dynamic Vision Sensor
(DVS), do not acquire full images at a fixed frame rate but
rather have independent pixels that output intensity changes
(called events) asynchronously at the time they occur. Thus,
it avoids the design of the encryption scheme. Since events are
triggered by moving edges on the scene, DVS is a natural
motion detector for the abnormal objects and automatically
filters out any temporally-redundant information. Based on this
unique output, we first propose a highly efficient method based
on the event density to select activated event cuboids and
locate the foreground. We design a novel event-based multiscale
spatio-temporal descriptor to extract features from the activated
event cuboids for the abnormal event detection. Additionally,
we build the NeuroAED dataset, the first public dataset dedicated
to abnormal event detection with neuromorphic vision sensor.
The NeuroAED dataset consists of four sub-datasets: Walking,
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Campus, Square, and Stair dataset. Experiments are conducted
based on these datasets and demonstrate the high efficiency and
accuracy of our method.
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I. INTRODUCTION

W ITH the increasing awareness of the public security,
abnormal event detection (AED) in video surveillance

plays a more and more important role in ensuring public safety.
A typical method to detect anomaly event is to detect patterns
in video scenes that do not agree with the established normality
(see Fig. 1). With the rapid development of computer vision
technologies, AED has a wide range of applications, such as
crowd surveillance [1], public security [2], traffic monitor-
ing [3], and individual safety [4]. Many efforts have been done
to automatically detect and locate the abnormal events to avoid
laborious and time-consuming work of manually recognizing
them.

Existing AED methods can be mainly classified into three
categories: object-trajectory based methods, global-pattern
based methods, and grid pattern based methods. Object-
trajectory based methods usually segment the crowd scene
into different objects and then conduct objects tracking or
identification. The trajectory of the object is the clue for
abnormal events detection [5]. The abnormality of objects’
trajectories are often evaluated by zone based analysis [6], fast
matching algorithm [7], spatial-temporal path research [8], and
deep learning algorithms [9]. Most of global-pattern based
methods do not detect and track individuals in the scene
separately. Instead, the goal of these methods is to extract low-
or intermediate-level features from the video and analyzes the
sequence as a whole [10]. Designing robust and descriptive
features, which capture the unique properties of normal behav-
ior, are quite commonly used. Grid-pattern based methods
split frames into several blocks and analyze the pattern in
blocks separately [11]. Sparse reconstruction cost [12], local
features probabilistic framework [13], mixtures and temporal
anomaly maps [14], low-rank and sparse decomposition [15],
and joint sparsity model [16] are often utilized to evaluate the
effectiveness of these methods.

While existing methods show significant performance, they
highly depend on advanced computer vision technologies such
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Fig. 1. Abnormal and normal event samples from NeuroAED dataset. In each sub-figure, left image contains abnormal event (marked with red square),
right image only contains normal event. (a) Walking dataset, abnormal event: running, normal event: walking; (b) Campus dataset, abnormal event: bicycle,
normal event: walking; (c) Square dataset, abnormal event: scattering, normal event: walking; (d) Stair dataset, abnormal event: wrong direction, normal event:
walking down stairs.

as accurate object detection and tracking for object trajectory
based methods, and robust feature descriptors extraction from
images for global pattern based methods. In fact, the accuracy
of object detection and tracking relies on the large amount
of data for both online and offline model training. The
heavy computation resources are always needed for image
data processing. Further, when collecting data using standard
frame-based cameras in static surveillance scenarios, it is
unavoidable to record the redundant data from the background
which are valueless for abnormal event detection.

To address these issues, we propose a new abnormal event
detection system with neuromorphic vision sensor, which is
named NeuroAED. Neuromorphic vision sensors such as the
Dynamic Vision Sensor [17] are bio-inspired sensor that,
in contrast to standard cameras, have independent pixels that
output only intensity changes (called events1) asynchronously
at the time they occurs. Comparing to the full images acquisi-
tion at a fixed frame rate of standard cameras, neuromorphic
vision sensors have several advantages such as high dynamic
range (140dB) and high temporal resolution (microseconds).
Moreover, since changes of light intensity induced by moving
object generating events in the scene, neuromorphic vision
sensors are natural motion detectors and automatically filter
out any redundant information such as static background
in surveillance system [18]. As illustrated in Fig. 2(e) and
Fig. 2(f).

Due to the unique principle of operation and unconventional
output, new algorithms are developed in this work to exploit
their capabilities in abnormal event detection. The major
contributions of our work can be summarized in the following
four aspects:

1To avoid any misunderstanding, the italic event represents the output data
of a neuromorphic vision sensor. The normal event represents an incident
happening on a scene such as abnormal event and normal event.

1) We develop a novel vision based abnormal event detec-
tion system that is different from most of the existing computer
vision based methods.

2) To take the full advantages of the neuromorphic vision
sensor, we develop a highly efficient event-based multiscale
spatial-temporal (EMST) descriptor.

3) Considering the lack of a neuromorphic benchmark for
the abnormal event detection, we record and publish the first
neuromorphic vision based abnormal event detection dataset
(called NeuroAED dataset). The dataset will be released,2 and
serves as a standard platform to shape the development of
neuromorphic vision based abnormal event detection field.

4) Extensive experiments on NeuroAED dataset demon-
strate that by using the proposed EMST descriptor, our system
achieves great performance without relying on heavy compu-
tation of feature processing and complicate inference model.

The rest of this paper is organized as follows: Section II
gives a brief preliminary review of neuromorphic vision sen-
sors. Section III presents the proposed NeuroAED system.
Section IV describes our NeuroAED dataset. Section V shows
experiment results. Section VI concludes this paper.

II. PRELIMINARY

Neuromorphic vision sensors are bio-inspired sensors that
work radically different from standard frame-based cameras.
Instead of capturing images at a fixed rate, they response to
pixel-level brightness changes asynchronously by generating
a stream of events. In Fig. 2(a) and Fig. 2(d), the black ball
is static while the green ball makes a fast circular motion
around the black ball, the neuromorphic vision sensor and the
standard frame-based camera are used to observe two balls
simultaneously. Because the frame-based camera captures all
pixel intensities at a fixed frame rate, the green ball appears

2The dataset and code are released at the link: https://github.com/ispc-
lab/NeuroAED

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:47:15 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: NeuroAED: TOWARDS EFFICIENT ABNORMAL EVENT DETECTION IN VISUAL SURVEILLANCE 925

Fig. 2. Frame-based and Event-based normal and abnormal event. (a) Frame-based camera captures all pixel intensities at a fixed frame rate. (b) and
(c): Frames captured by Active Pixel Sensor (APS) integrated in DAVIS346 in NeuroAED dataset Square scene, where redundant background information
are all recorded. (d) Neuromorphic vision sensor captures intensity changes caused by the moving objects asynchronously. (e) and (f): Event slices corresponding
to (b) and (c), where static background information is automatically filtered out. Among them, (b) and (e) represent normal events, where the people are
walking, (c) and (f) represent abnormal events, where people are running away.

as a blurred trajectory on the image due to the fast motion
speed, as Fig. 2(a) shows. On the contrary, the neuromorphic
vision sensor only captures brightness changes caused by the
fast-moving green ball while information of stationary objects
(black ball and background) are not recorded, as Fig. 2(d)
shows.

The neuromorphic vision sensor has inherent advantages
over motion detection, which inspires increasing interests and
research efforts. Several newly neuromorphic vision datasets
are developed recently. DvsGesture dataset [17] is the first
gesture recognition dataset. Reference [19] proposes the first
dataset for evaluating optical flow algorithms. For pose esti-
mation and SLAM, [20] presents the world’s first collection
of datasets with a neuromorphic vision sensor for high-speed
robotics. In [21], the first large-scale dataset dedicated to
neuromorphic vision based intelligent driving is proposed.

Due to the unconventional output, algorithms and methods
proposed based on frame-based cameras can not be directly
extended to neuromorphic vision, and new algorithms are
developed [18], [22]–[30]. Reference [22] integrates optical
flow information computed at each event in a speed and
direction coordinate frame to build motion-based feature
for local corner detection and global gesture recognition.
Reference [25] describes novel spatio-temporal features called
time-surfaces for pattern recognition. Reference [23], [24]
introduce event-driven categorization systems based on Spik-
ing Neural Network. Reference [26] presents an neuromorphic
vision based visual odometry algorithm, which leverages the
outstanding properties of neuromorphic vision sensor to track
fast motions while recovering a semidense 3D map of the
environment. Reference [27] detects drowsiness driving using
features extracted from events density. Reference [18] presents
a deep neural network approach that unlocks the potential
of neuromorphic vision sensor on a challenging motion-
estimation task. Reference [28] presents an event-based visible

light positioning (VLP) system, which can leave out the need
for data association and traditional image processing methods.
In [29], a novel event-based feature representation together
with a new machine learning architecture is proposed and the
first large real-world event-based dataset for object classifica-
tion is released. In [30], a novel recurrent network is proposed
to reconstruct videos from a stream of events, which aims to
construct a bridge between neuromorphic vision algorithms
and mature conventional vision algorithms. Reference [31]
introduces the signal processing algorithms and applications
for event-based neuromorphic vision in autonomous driving
and various assistance systems. More emerging event-based
algorithms are summered comprehensively in [32].

With the development of intelligent video surveillance sys-
tems, abnormal event detection research has achieved fruitful
results due to the huge real life demands. Many of them focus
on inventing algorithms of feature descriptors and modeling
frameworks [6], [33]–[36]. In [6], an integrated pipeline that
incorporates the output of object trajectory analysis and pixel-
based analysis for abnormal behavior inference is proposed.
This method enables to detect abnormal behaviors related to
speed and direction of object trajectories, as well as complex
behaviors related to finer motion of each object. In [34],
the abnormal events are captured from a single static camera,
a novel spatio-temporal feature descriptor, called histograms of
optical flow orientation and magnitude and entropy is proposed
based on optical flow information. In [35], a minimal path
approach is used to model human trajectory behaviour for
abnormal behavior detection. In the paper, the velocity and
the orientation of the usual motion are considered to create a
time surface on image plane, where each node/pixel shows the
time needed to reach the pixel if the person behavior is normal
and vice versa. In [36], a fully unsupervised dynamic sparse
coding approach is proposed for detecting unusual events in
videos. Based on online sparse reconstructibility of query
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Fig. 3. Framework of the proposed NeuroAED system. We extract the optical flow information from training sample and select activated event cuboids based
on the optical flow and event density to locate foreground. For each activated event cuboid, the proposed event-based multiscale spatio-temporal (EMST)
descriptor is extracted and feed into models to learn the normal patterns. The trained models are used to identify descriptors of abnormal patterns extracted
from the testing sample.

signals from an atomically learned event dictionary, which
forms a sparse coding bases. In addition, [37] presents an
event based algorithm to track vehicle and people. It’s the first
application of the neuromorphic vision sensor in surveillance
system. Samsung recently launched an in-house monitoring
system, the SmartThings Vision product [38], which can detect
intruders and the falling in the house using a neuromorphic
vision sensor.

III. METHOD

In this section, we present our NeuroAED system for
abnormal event detection in detail. We divide our scheme
into training and testing stages. An overview of our approach
is illustrated in Fig. 3. Both stages consist of three main
steps: optical flow extraction, activated event cuboid selec-
tion, and EMST descriptor generation. Our approach firstly
divides the whole event stream into spaced event slices. For
each event slice, activated event cuboids are selected. On the
training stage, EMST descriptors are extracted from these
cuboids which are kept as normal patterns. During testing,
each activated event cuboid is identified by the trained model.
The major technical contribution of proposed system focus
on the construction of EMST descriptor, more specifically,
the way of multiscale spatio-temporal encoding. First of all,
in the pre-processing step, our method takes full advantages
of dynamic sensitivity property of the neuromorphic vision
sensor, and only capture foreground information by a simple
scheme which is called activated cuboid. By using activated
cuboid, it reduces large amount of data to be processed and
improves the overall efficiency. Secondly, in order to guarantee
the information contained in features that is rich enough,
we integrate neighbour motion information of the activated
cuboid on three different spatial-temporal planes and process
them respectively. In this way, the features can not only
record the motion characteristics of the cuboid itself, but
also reveal the connections and differences with the adjacent

region, which plays an important role in identifying abnormal
cases. Thirdly, to handle the variety of different sizes of
moving targets, the activated cuboid is expanded and shrunk
respectively to obtain multi-scale features. Finally, features in
different scales are concatenated.

A. Optical Flow Extraction

Neuromorphic sensor such as DVS sensor is a natural
motion detector for moving objects on a scene. However,
the direction and amplitude information can not be obtained
directly from the events triggered by motion. We therefore
choose optical flow to extract low-level features from the
raw event stream as optical flow can characterize both the
direction and amplitude information of an object movement.
We assume that the moving direction and amplitude reflected
by optical flow is the key to distinguish abnormal events from
normal event in video surveillance. In this work, adaptive
block-matching optical flow (ABMOF) presented in [39] is
adopted. Fig. 4 shows its main principle, they use three time-
slices, t − 2d , t − d , t to accumulate previous and current
events respectively, d is the slice duration. It should be noted
that the event polarity is not used in the accumulating process,
because it requires one bit of pixel memory to record and
cannot improve accuracy significantly [39]. When a new event
arrives, a reference block is generated in slice t − d (red box
in t − d), centered on the location of current event; then the
best matching block is found in slice t − 2d based on the
sum of absolute difference (red box in t − 2d). The optical
flow can be calculated using the offset of blocks and the time
interval. To ensure the generated slices have enough features
to match, the algorithm adopts a feedback control mechanism
for adapting slice duration.

B. Activated Event Cuboid Selection

Extracting descriptors for each pixel of images from stan-
dard cameras is computationally expensive. It is encouraging
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Fig. 4. BMOF block matching [39]. It uses three time-slices to accumulate
previous and current events respectively. When a new event arrives, a reference
block is generated in slice t − d, centered on the location of current event;
then the best matching block is found in slice t − 2d based on the sum of
absolute difference. The optical flow can be calculated using the offset of
blocks and the time interval.

Fig. 5. Event-based histogram of optical flow (eHOF) of the activated event
cuboid. Left: the activated event cuboid with the size of �x × �y × �t ,
blue squares represent events inside the cuboid, some of the events carry
optical flow information, whose directions are distinguished by color. Middle:
accumulating optical flow magnitude of events into o bins based on the
corresponding direction. Right: eHOF feature of the cuboid (best viewed in
color).

that DVS sensor does not acquire full images at a fixed frame
rate but rather has independent pixels that output intensity
changes. To this end, we design a very simple but highly effi-
cient principle to select the so-called activated event cuboids
which could be the candidate regions of abnormal events
occur. Our approach firstly splits the event slice into M × N
non-overlapping event cuboids with the size of �x ×�y ×�t .
Then, activated event cuboids are chose if the cuboids contain
optical flow information and the event density are above a
certain threshold. The threshold is set by extensive experiments
by comparing the average value of the number of events
in background and foreground cuboids in various scenarios.
Because there is a huge margin, the threshold is simply set as
the mean of event number of all the cuboids (half of them are
foreground cuboids). As shown in Fig. 3, the selected activated
event cuboids marked with dark red color cover the foreground
of the scene quite well.

C. Event-Based Multiscale Spatio-Temporal Descriptors

With the optical flow information and the selected activated
event cuboid, we aim to construct a robust descriptor for
the abnormal event detection. Inspired by the histogram of
optical flow (HOF) feature which is widely used in computer
vision [33], our approach extracts the event-based histogram
of optical flow feature (eHOF) for each activated event cuboid
(See Fig. 5). We process events inside each activated cuboid

Fig. 6. Single scale spatio-temporal feature. Left: activated event cuboid
and its neighbour cuboids. Centered on the activated event cuboid (black),
neighbour cuboids of xy-plane (green), xt-plane (red) and yt-plane (blue)
with identical size are selected, among them, yellow cuboids indicate the
intersections between xy-plane and xt-plane, aqua green ones indicate inter-
sections between xy-plane and yt-plane, purple ones indicate intersections
between xt-plane and yt-plane. Right: in each plane, the average value and
variance for each direction of the eHOF features of nine cuboids are calculated
and concatenated to form the single scale spatio-temporal feature (best viewed
in color).

by accumulating their optical flow magnitude into o bins based
on the corresponding direction to form eHOF feature, which
is expressed as:

H = (T1, T2, . . . , To) ∈ R1×o (1)

where Ti is the accumulated magnitude in the i − th direc-
tion. We then choose eight adjacent cuboids around current
activated event cuboid in each of the xy-plane, xt-plane
and yt-plane. As shown in Fig. 6, activated event cuboid
is colored in black. We take xy-plane as an example. Our
method calculates eHOF feature for each neighbour cuboid,
marked with green, yellow and aqua green. The neighbour
yellow cuboids indicate the intersections between xy-plane
and xt-plane, aqua green ones indicate intersections between
xy-plane and yt-plane. In this way, the accumulated eHOF
features of the c (c = 9, eight neighbour cuboids plus activated
event cuboid) cuboids located in xy-plane are obtained:

Pxy = (Hxy−1, Hxy−2, . . . , Hxy−c) ∈ Ro×c (2)

Then, the average value and variance for each direction are
calculated:

μ(i)
xy = 1

c

c∑
j=1

H (i)
xy− j ∈ R1×o (3)

σ 2(i)
xy = 1

c

c∑
j=1

(H (i)
xy− j − μ(i)

xy )
2 ∈ R1×o (4)

where, i ∈ [1, o] represents the direction as mentioned before.
We combine the μ

(i)
xy and σ

2(i)
xy to form the description vector

of xy-plane Fxy = (μ
(i)
xy , σ

2(i)
xy ) ∈ R1×2o, which emphasizes

on depicting spatial motion character in local region. Fig. 8
reveals how our descriptor uses spatial motion information to
detect abnormal events. Fig. 8(a) shows two typical abnormal
cases: (i) When an activated event cuboid and its neighbour
cuboids most locate within the contour of a fast moving object
or multiple fast moving objects with the same direction, their
eHOFs will have larger magnitude on the motion direction,
which results in the correspond average value of Fxy becoming
larger. (ii) When activated event cuboid locate near the contour
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Fig. 7. Multiscale spatio-temporal cuboids. The green cuboid represents the
original activated event cuboid. The gray and orange cuboids are obtained by
expanding and shrinking in both space and time dimensions (best viewed in
color).

of fast moving objects, the eHOFs of neighbour cuboids
inside contour will have larger magnitude on the moving
direction, in contrast, the eHOFs of neighbour cuboids outside
the contour, i.e. lie in background region or slow moving
objects, will have smaller magnitudes, which results in the
correspond variance becoming large. By comparing with two
typical normal cases given in Fig. 8(b), we can find out that,
either the mean or variance of abnormal Fxy will be larger
than the normal ones, which is helpful to identify abnormal
events. Note that, here, we just use one direction to elaborate.
In case of multiple directions, differences in features can be
reflected in each direction.

To describe the motion characteristic more specifically, Fxt

and Fyt are calculated in the same manner. Different from
Fxy that focuses on describing motion characteristic with
respect to spatial space, these two descriptors pay attention
to extracting motion features in time sequence. Their variance
values contain the velocity change in time dimension, which
correspond to the acceleration value that serve as an important
evaluation indicator. Then, description vectors of three planes
are combined to form the single scale event-based spatio-
temporal descriptor Fs = (Fxy, Fxt , Fyt ).

In order to deal with the scale variation of the moving
objects, each activated event cuboid in event slice is resized
into three scales, as shown in Fig. 7. The green cuboid repre-
sents the original activated event cuboid. The gray and orange
cuboids are obtained by expanding and shrinking in both
space and time dimensions. Then, single scale spatio-temporal
features are extracted from the resized cuboids respectively,
and the final event-based multiscale spatio-temporal descriptor
is acquired by concatenating them Fm = (Fs , Fexp, Fshr ).

D. Abnormal Event Detection

The main idea of the abnormal event detection is to learn the
normal event model and classify the testing inputs as normal
or abnormal according to the trained model. The abnormal
event is detected based on whether it deviates from or violates
the normal patterns. In this work, sparse representation (SR)
model is used to model normal event patterns for abnor-
mal event detection, which has been thoroughly studied and
extensively tested in [12], [15], [16]. It consists of four
parts, including Dictionary learning, Sparse encoding, Iterative
updating, and Abnormal measurement. First, we construct

a dictionary of features from the input features. Following,
we employ the dictionary to obtain the sparse coding results
of the input features. Furthermore, we calculate the recon-
struction loss to update the dictionary which could be used
for sparse coding again. By alternative updating between the
dictionary learning and sparse encoding, we can obtain sparse
encoding results of the input features. After that, we apply
the rarity similarity between the input features to predict the
anomaly score of each testing input. In the following, we will
describe these parts separately.

1) Dictionary Learning: The goal of dictionary learning
is to learn an effective dictionary from an basis feature set
to obtain the sparse coding results. Assuming that the input
features is X ∈ R

m×n , we want to learn an overcomplete
dictionary D ∈ Rm×d (m < d), so that the feature x could be
described by sparse linear combinations of the atoms with the
coefficients β. The dictionary learning can be formulated as:

min
β

‖X − Dβ‖2
2 s.t . ‖β‖p ≤ s (5)

where ‖β‖p is the penalty or regularization constraint of
parameter s (≤ n) to produce sparse representation.

Generally, D and β can be alternatively optimized. When
D is fixed, the problem is called sparse coding. And vice
versa, if β is fixed, the problem is called dictionary learning.
In this, in order to demonstrate the efficiency of the designed
EMST descriptor, we utilize K-SVD [40] and ODL [41]
algorithms to construct the dictionary from the input EMST
features, respectively. For a given scene in video stream,
a set of training input EMST features can be described as
X = {Fm1, Fm2, . . . , Fmn}, where m is the dimension of the
EMST descriptor, n is the number of the training normal
cuboids.

2) Sparse Coding: With the learned dictionary, we employ
sparse encoding algorithm to obtain the sparse representation
α of each EMST descriptor. In this work, we employ
k-LIMAPS [42] and LASSO algorithms for the sparse coding
task, respectively. After sparse coding, the input features X
are represented as R(X) = {

RFm1 , RFm2, . . . , RFmn

}
.

3) Iterative Updating: For the first iteration, we use the
initialization dictionary, which is built by randomly sampling
from the input features, to obtain the sparse representations of
the input features. Then the sparse representations are used to
calculate reconstruction errors for updating the dictionary by
minimizing the reconstruction errors. And for the following
iterations, the updated dictionary is utilized for sparse coding
again. Through jointly optimizing between the dictionary
learning and sparse coding, we obtain effective dictionary
and sufficiently sparse representations of the input features.
In this work, two model, SR (k-LIMPAS)+K-SVD and SR
(LASSO)+ODL, are built.

4) Abnormal Measurement: Based on the learned dictionary
and sparse representations, we capture the inherent structures
and patterns of the input data to detect anomalies. Specifically,
we measure the abnormality of an event according to the rarity
similarity between the input features. The atoms indicate the
basis vectors in the over-complete dictionary D. Each atom
could be regarded as an attribute or a feature. If two inputs
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Fig. 8. Spatial motion characteristic embedded in single scale spatio-temporal feature for xy-plane (a) Abnormal events. Up: an activated event cuboid and
its neighbour cuboids most locate within the contour of a fast moving object, their eHOFs will have larger magnitude on the motion direction, which results
in the correspond average value of Fxy becoming large; Bottom: when activated event cuboid locate near the contour of fast moving objects, the eHOFs of
neighbour cuboids inside contour will have larger magnitude on the moving direction, in contrast, the eHOFs of neighbour cuboids outside the contour, i.e.
lie in background region or slow moving objects, will have small magnitudes, which results in the correspond variance becoming large. (b) Normal events.
Either the mean or variance of normal events is smaller, no matter where the cuboids locate at.

share some specific atoms and the corresponding coefficients
are close, it’s obvious that they could be similar to each other
in terms of motion patterns (speed or direction). Therefore,
the rarity similarity can be used to predict the anomaly scores
of each testing input. We use Mahalanobis distance to measure
similarity in this work. In the training phase, we construct
the statistical distribution of the sparse representations of all
training inputs, where the mean values and the covariance
matrix of the sparse representations are computed. In the
testing phase, we calculate the Mahalanobis distance between
the sparse representation of each testing input and the statis-
tical distribution for anomaly prediction based on a certain
detection threshold θ , given by

Label (X test) =
{

normal M (R (X test)) < θ

abnormal M (R (X test)) ≥ θ
(6)

where M(R(Xtest )) is the Mahalanobis distance, and R(Xtest )
is the sparse representations of the testing feature. The θ is
obtained through training, which represents maximum distance
of all training inputs.

IV. NEUROAED DATASET

Frame-based computer vision algorithms with standard
cameras are in rapid development partially due to the widely
accepted datasets, which allow direct comparison between
algorithms. Considering the important role of datasets playing
in the development of abnormal event detection system and the
lack of a neuromorphic vision based abnormal event dataset,
we build the first neuromorphic vision dataset dedicated to
the abnormal event detection, which is named NeuroAED
dataset. The NeuroAED dataset comprises 152 samples of
four different indoor and outdoor scenarios, and is split
into four sub-dataset: Walking, Campus, Square and Stair
dataset. And each dataset contains two slice sequences:
training samples and testing samples. The training samples
only contain normal events, while testing samples are both
normal and abnormal events. For each slice sample of the
NeuroAED dataset, the groundtruth annotation of a binary
flag indicating normal or abnormal events occur is provided.
With the exception of the Square dataset, the manually
generated pixel-level binary masks are contained in each slice
sample, which identify the abnormal events regions. More
details refer to IV-B and Table I.

A. Dataset Recording

The NeuroAED datasets are acquired with a stationary
neuromorphic vision sensor DAVIS346 with a 346×260 pixel
resolution mounted on the top of a retractable tripod with a
maximum elongation of five meters, in which a pan-tilt is used
to adjust camera angle for covering the entire region of inter-
est. For Walking and Campus dataset, the data are recorded
from walkways of a college campus with pedestrian movement
parallel to the camera plane, and the abnormal events occur
naturally, e.g. bike or motorcycle. For Square and Stair dataset,
volunteers are required to stage for assembling the data. The
video footage recorded from each dataset is chopped into
various clips varying from 10 seconds to 24 seconds, referring
to Table I for details.

B. Dataset Description

1) Walking Dataset: The Walking dataset is recorded on a
walking street on a sunny day. The data are captured through
overlooking the walking street. It contains 30 training samples
and 28 testing samples. Most of the samples have a rather
sparse crowd density. The duration of each sample is around
8-20 seconds. The normal events only contain people walking.
The abnormal events are due to either anomalous pedestrian
motion patterns (running) or non-pedestrian moving objects
(bike, motorcycle), as Fig. 1(a) shows. The pixel-level binary
masks are provided for evaluating the anomaly localization.

2) Campus Dataset: The Campus dataset is collected in
a campus walkway on a cloudy day. And different from the
Walking dataset, it is captured in a horizontal view. The crowd
density in the walkway varies from sparse to very crowded.
It contains 30 training samples and 30 testing samples. Each
sample has a duration of 5-14 seconds. The definition of both
the normal and abnormal events are same as the Walking
dataset, as the Fig. 1(b) shows.

3) Square Dataset: The Square data is only for slice level
abnormal event detection inspired by the UMN dataset, and
recorded at a square. It consists of 12 training samples and
6 testing samples with 7-10 seconds and 10-16 seconds time
interval, respectively. Each of the testing samples starts with an
initial part of normal event and ends with abnormal behavior
sequences. The normal events refer to people walking around
in the square, and the abnormal events are people suddenly
scattering to different directions, as Fig. 1(c) shows.
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TABLE I

DESCRIPTION OF THE NEUROAED DATASET

4) Stair Dataset: The stair dataset is collected in an indoor
stair, and the lighting condition is poor in which 10 training
samples and 6 testing samples are recorded. Each one lasts
about 13-24 seconds. The normal events are people walking
down stairs. The abnormal events mainly include wrong direc-
tion events and running events, as Fig. 1(d) shows. Being same
with the Walking dataset and Campus dataset, the Stair dataset
has pixel-level groundtruth annotation to identify the abnormal
events regions.

V. EXPERIMENTS AND ANALYSIS

In this section, extensive experiments are conducted on our
NeuroAED dataset to evaluate the performance of the EMST
descriptor for abnormal event detection, and demonstrate its
effectiveness by comparing the state of the art approaches.

A. Evaluation Metrics

Two commonly used measurements are adopted to evaluate
the performance of abnormal event detection [43]: Slice-
Level and Pixel-level. All measurements consider the matching
between the evaluated result and the ground-truth.

1) Slice-Level: If one or more cuboids are detected as
abnormal cuboids in a testing event slice, it is labelled as an
abnormal slice. If the ground truth of this slice is abnormal,
it is a True Positive (TP). Otherwise, it is a False Positive (FP).

2) Pixel-Level: In pixel-level measurement, a detected
abnormal slice is TP if more than 40% truly abnormal pixels
are detected. A normal slice is FP as long as one pixel is
detected as abnormal. Pixel-level measurment emphasizes the
correct detection of abnormal objects.

3) Computational Cost: The computational cost is repre-
sented by the ratio between the time spent in detecting abnor-
mal events (including the process of optical flow extraction,
descriptors construction and abnormal events identifying) on
all testing samples and the total duration of all testing samples.
The lower the computational cost is, the better the efficiency
of the method is. We implement our algorithm using c++ for
feature generation and using python for model training on a
PC with 8 GB RAM and 1.60 GHz Intel i5 8250u processor.3

3It needs to be noted that the optical flow extracting method [39] is
integrated in jAER software, which can not provide the exactly computing
time. The extracting time is provided by the author of [39] upon our request,
which is calculated based on their implementation on the FPGA platform.

Fig. 9. Various kinds of basis descriptors. Left: Spatial Basis descriptor(SB),
covers whole slice with non-overlapping cuboids and the eHOF features of all
cuboids are concatenated to form the feature of the basis. Middle: Temporal
Basis descriptor, when a activated event cuboid is selected, based on which,
temporal basis with different time span are created, the eHOF features of
cuboids are concatenated to form the feature of the basis. Right: Spatial-
Temporal Basis descriptor(STB), based on activated event cuboid, neighbour
cuboids in time and spatial dimension are created to form the STB descriptor,
and the eHOF features of cuboids are concatenated to form the basis feature.

B. Experiment Setup

1) Baseline Methods: In order to evaluate our method
more comprehensive, inspired by the frame-based descriptors
in [12], we build event-based spatial and temporal basis
descriptors to detect abnormal events, as shown in Fig. 9. The
spatial basis covers whole slice and is suitable for detecting
global abnormal events. For detecting local abnormal events,
when a activate cuboid is selected, based on which, spatial-
temporal basis and temporal basis with different time span
are created. For each unit of the descriptor, the eHOFs are
calculated and concatenated to form the features of basis. Next,
we use both SR(k-LIMAPS)+K-SVD and SR(LASSO)+ODL
models to learn and identify feature vectors generated by them.

2) Parameter Setup: Since the proposed descriptor can
adapt to various scales of moving objects, the EMST para-
meters can be set to identical values in different scenarios.
We split the input video into non-overlapping cuboids with
the spatial size of 18 × 14 pixels and 100ms duration, the
event number threshold α for activated event cuboid selection
is set to 200. As for the spatial basis of baseline descriptor,
the whole slice is split into 6 × 5 units with 100ms duration.

C. Experiment Results
1) Experiments on Walking Dataset: In this section,

the detection results and the analyses on Walking dataset are
given. Selected visualized results are shown in Fig. 12 and
the detected abnormal events are marked with red rectangles.
The abnormal events include running, bicycle and motor-
cycle. Slice-level Receiver Operator Characteristic (ROC)
curves are shown in Fig. 10 and pixel-level ROC curves are
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TABLE II

COMPARISON OF SLICE-LEVEL AND PIXEL-LEVEL ON ALL DATASETS

Fig. 10. Slice-level ROC curves. (a) Walking Dataset; (b) Campus Dataset; (c) Square Dataset; (d) Stair Dataset.

Fig. 11. Pixel-level ROC curves. (a) Walking Dataset; (b) Campus Dataset; (c) Stair Dataset.

shown in Fig. 11. Based on these ROC curves, Area Under
Curve (AUC) and Equal Error Rate (EER) are computed and
listed in Table II. In addition, the computational cost of various
methods on the Walking dataset are listed in Table III.

For the slice-level comparison in Table II, the AUC of our
work is 95.8% and the EER is 12.5%. For the pixel-level
comparison in Table II, the AUC of our work is 87.9% and the
EER is 18.7%. Our results outperform the baselines methods,
because in our work, the EMST descriptor catch more spatial

and temporal connection information by considering multiple
spatio-temporal scales, which makes the representations of
activated event cuboids more robust. For the computational
cost reported in Table III, we can see that, our method encode
and process rich information at the price of slightly larger
computational cost. However, considering that our implemen-
tation is not optimized for high-speed processing, it is possible
to further reduce the computational cost of the proposed
method.
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Fig. 12. Demonstration of the abnormal event detection results in NeuroAED dataset. Fig. (a) and (b) are samples from Walking dataset. Fig. (c) and (d) are
samples from Campus dataset. Fig. (e) and (f) are samples from Stair dataset. In each sub-figure, left-side image shows the red-rectangle marked abnormal
events on top of the accumulated event slice and right-side image shows the red-color marked abnormal events in the spatial-temporal space of the raw event
slice.

TABLE III

COMPARISON OF THE COMPUTATIONAL COST ON THE WALKING DATASET.
THE LOWER THE COMPUTATIONAL COST IS, THE BETTER THE EFFI-

CIENCY OF THE METHOD IS

2) Experiments on Campus Dataset: In this section,
the detection results and the analyses on Campus dataset are
given. Selected visualized results are shown in Fig. 12 and the
detected abnormal events are marked with red rectangles. The
abnormal events include bicycle and motorcycle. Slice-level
ROC curves are shown in Fig. 10 and pixel-level ROC curves
are shown in Fig. 11. Based on these ROC curves, AUC and
EER are computed and listed in Table II.

For the slice-level comparison in Table II, the AUC of
our work is 85.7% and the EER is 25.5%. For the pixel-
level comparison in Table II, the AUC of our work is 65.7%
and the EER is 38.5%. Comparing with Walking dataset,
Campus dataset has a lower AUC and EER. As both datasets
have very similar abnormal and normal events, we think that
the differences may come from the sensor setup. For the
campus dataset, data are recorded in a horizontal view which
an abnormal object is likely to be blocked by a walking
pedestrian, so the abnormal event such as moving bicycle is
not detected. On the other hand, due to the wider range of
depth in horizontal view, objects with same ground truth speed
can correspond to quite different optical flow information
at different depth, which would influence the training and
detection results. However, for the walking campus, the data
are captured with a DAVIS 346 mounted on top of a retractable
tripod which enjoy a broad field of view and has limited range
of depth, which can make abnormal objects appear on the
scene all the time and optical flow for objects with different
speed are more distinguishable.

3) Experiments on Square Dataset: In this section,
the detection results and the analyses on Square dataset are
given. The abnormal event is pedestrian scattering to different
directions. Slice-level ROC curves are shown in Fig. 10 and
pixel-level ROC curves are not available. Based on these ROC
curves, AUC and EER are computed and listed in Table II.
It is not surprising that our approach achieves 99% on this
dataset as the abnormal event such as crowd scattering differ
from normal pedestrian walking in several aspects such as the
velocity and moving direction of the pedestrians.

4) Experiments on Stair Dataset: In this section, the detec-
tion results and the analyses on stair dataset are given. Selected
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visualized results are shown in Fig. 12 and the detected
abnormal events are marked with red rectangles. The abnormal
events include running and wrong direction. Slice-level ROC
curves are shown in Fig. 10 and pixel-level ROC curves are
shown in Fig. 11. Based on these ROC curves, AUC and EER
are computed and listed in Table II.

For the slice-level comparison in Table II, the AUC of our
work is 92.0% and the EER is 15.3% that outperforms other
work. For the pixel-level comparison in Table II, the AUC of
our work is 74.9% and the EER is 32.2%, the baseline method
spatial-temporal basis achieves best performance with 75.4%
AUC and 30.2% EER. This is because the floor and stair
handrail are all reflective material, which cause the appearance
of many shadows. And EMST descriptor takes multi-scale
neighbour region into account that will be influenced by
shadows seriously and can not locate the anomalies accurately.
However, the STB is a single scale descriptor, which encodes
less neighbour information and is less affected by shadows
compared with our work. On the other hand, comparing
with various temporal basis, STB catches more spatial and
temporal connection information, which makes it outperform
other work.

5) Parameter Analysis: In this section, we analyze the
effect of various parameters on detection performance using
the Walking dataset, including both detection accuracy and
computational cost. The parameters include the event num-
ber threshold α for the activated event cuboid selection,
the number of orientations for eHOF and the scale of cuboid.
Besides, the multiscale spatio-temporal character of EMST is
also analyzed by comparing with single scale spatio-temporal
feature, i.e. do not change spatial and temporal scale in the
process of generating features. The analysis results are shown
in Table IV and Table V.

We analyze the event number threshold α first. From
Table IV, it can be found that with the increase of α, the detec-
tion performance is getting slightly better until α = 200, then
remains unchanged basically, this is because some noise events
are introduced into the construction process of EMST when
smaller α adopted, and reduce the detection accuracy, but this
effect is negligible since the robustness of the descriptor. The
noise would be filtered clearly enough if α is greater than 200,
thus keeps the performance more steady. On the other hand,
the number of features required to be generated and processed
are decreasing as α rises, which improves the computational
efficiency.

Then, the impact of the number of orientations of eHOF
feature on detection performance is analyzed, we test eHOF
features with two and eight orientations respectively and
compare the results with four orientations eHOF (used in
proposed EMST). It can be seen that the number of orien-
tations has little effect on detection performance. The two
orientations eHOF is slightly better than others, which may
be caused by clearly distinguishable motions in this dataset.
In addition, the computational cost of two orientations method
is minimal, eight and four orientations methods have roughly
equal computational cost.

Further, various scales of the cuboid are also analyzed,
including cuboids of 22 × 16 × 100 (Large Scale), cuboids

TABLE IV

COMPARISON OF DETECTION PERFORMANCE AND COMPUTATION COST
FOR DIFFERENT Event NUMBER THRESHOLD α ON THE WALKING

DATASET

of 18 × 14 × 100 (EMST) and cuboids of 14 × 12 × 100
(Small Scale). It needs to be noted that the event num-
ber threshold α is chosen based on the volume of cuboid,
i.e. α = [(22 × 16 × 100)/(18 × 14 × 100)] × 200 = 280 for
large scale and 130 for small scale. Although small scale
features achieves the best performance in slice-level among
all of them, the corresponding pixel-level performance and
computational cost is less satisfactory. On the other hand,
the computational cost of large scale methods is the smallest,
but its pixel-level performance is worse than others.

Furthermore, by comparing the performance of EMST and
single scale feature, we can see that the multiscale spatial-
temporal character of proposed descriptor has a significant
enhancement on the detection performance, which, on the
other hand, increases the computational cost.

6) Comparison With the Frame-Based Methods: In this
section, we compare our method with two frame-based
approaches [44] [45] for anomaly detection on Walking
dataset. Two kinds of frames are adopted in this work (See
Fig. 14). The first one is the standard frame directly captured
by the APS of DAVIS346. The second one is the reconstructed
frame based on the events with the method proposed in [30].
The first frame-based method [44] proposes a discriminative
framework for abnormal event detection. By following their
approach, we compute gradient-based features for 10 × 10x5
(rows x columns x frames) spatio-temporal sub-units in testing
videos and each sub-unit is represented by a 100 dimensional
vector after Principal Component Analysis (PCA) and nor-
malization. The second frame-based method [45] presents a
combination of spatial feature extractor and temporal sequence
ConvLSTM to detect anomalies. They transform the detection
of abnormal event into spatiotemporal sequence outlier detec-
tion problem, and build an end-to-end model by incorporating
convolutional feature extractor in both spatial and temporal

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:47:15 UTC from IEEE Xplore.  Restrictions apply. 



934 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 13. Comparison of slice-level (a) and pixel-level (b) detection results for various EMST parameters on the walking dataset.

TABLE V

COMPARISON OF DETECTION PERFORMANCE AND COMPUTATION COST

FOR VARIOUS PARAMETERS ON THE WALKING DATASET

space into the encoding-decoding structure. The quantitative
comparisons in terms of AUC, EER and computation cost are
shown in Table VI. It needs to be noted that the method [44]
is tested under Matlab 2018a environment on the same PC
with our method. The method [45] is tested with a server with
64GB RAM, 2.50GHz Intel E5 processor and 1080Ti GPU.
It gets the best computational cost at the price of advanced
computation hardware. Our proposed approach outperforms
the frame-based methods while it is also more efficient than
the frame-based method [44].

7) Discussion: It is interesting to see that by relying on
simple optical flow information, our work achieves an average
AUC of 93.3% at the slice level and 76.3% at the pixel
level. This indicates that our EMST descriptor is robust to

Fig. 14. The sample frames used by frame-based methods in the Walking
dataset. (a) and (c) are captured by the APS of DAVIS346. (b) and (d) are
reconstructed using the method [30].

different scenes. Although our system can detect most of
the abnormal events, there are still failed cases. Because
the event stream from neuromorphic vision sensor contains
limited appearance information, it is challenging to detect
abnormal objects which has similar pattern of velocity and
motion with normal objects. Some failure cases are shown
in Fig. 15, (a) is a motorcycle moving very slowly in the
Walking dataset, it is difficult for our method to detect it
as our method does not consider either the geometry or the
appearance of the moving objects. Fig. 15(b) is a pedestrian
moving fast near the neuromorphic sensor, which our approach
fails to distinguish from the other pedestrians, because the
proposed EMST is a motion descriptor that relies on optical
flow information which will become large when object moving
fast near the sensor and cause false positive. Part of the reason
is that the neuromorphic visions sensor DAVIS346 has a pretty
low image resolution (346 × 260 pixel array). Fig. 15(c)
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Fig. 15. The failure cases in Walking and Campus dataset. (a) is a motorcycle
with low speed, which is missed by our method. (b) is a pedestrian moving
fast near the neuromorphic sensor, which causes false positive. (c) and (d) are
two continuous event slices, showing a person running through the street,
which are detected incompletely and discontinuously.

TABLE VI

COMPARISON WITH FRAME BASED METHODS ON THE WALKING DATASET

and 15(d) are two continuous event slices, showing a person
running through the street. Both cases have the defects of
incomplete detection, which is caused by the incorrect optical
flow information extracted. Since the construction of EMST
descriptor is highly dependent on optical flow, it is unlikely
to prevent such failures from happening. In addition, we can
find that the detection of (c) and (d) is discontinuous, this is
because the abnormal event is detected by a short event slice,
which makes the detection discontinuous. It only evaluates
the abnormal events based on the current activated cuboid
(although our works expand the scale of the cuboid). If an
abnormal object occupies several cuboids in several event
slices, only the detected abnormal cuboid will be marked.
Nevertheless, we aim at taking this opportunity to understand
how the abnormal detection could benefit from the natural
response of neuromorphic vision to motion and their inherent

data redundancy reduction. However, it will be an interesting
direction for future work to exploit the fusion of event stream
and RGB images for abnormal event detection.

Our future work will focus on these drawbacks and limita-
tions and exploit better solutions for these challenges.

VI. CONCLUSION

In this work, we show a novel neuromorphic vision-
based abnormal event detection system for visual surveillance,
named NeuroAED. In NeuroAED system, we firstly design a
simple but efficient method based on the sparse events to select
activated event cuboids, which locate the interesting regions
from the foreground fast and accurately. We then design
a novel event-based multiscale spatio-temporal descriptor to
extract features from the activated event cuboids for the abnor-
mal event detection. Additionally, we build the NeuroAED
dataset, the first public dataset dedicated to abnormal event
detection. Experiments are conducted based on this dataset
and demonstrate the high efficiency and accuracy.

Our NeuroAED system addresses the issues such as expen-
sive computation resources and large amounts of data storage,
which are suffered by the traditional visual surveillance sys-
tems based on RGB cameras. The neuromorphic vision sensor
used in this work automatically filters out any temporally-
redundant information, thus there is no need for background
video data storage and background subtraction processing. The
NeuroAED system is designed to exploit the natural motion
detection characteristics of the neuromorphic vision sensor,
which is able to detect abnormal events efficiently showing
great potential of on-line and cloud computation and storage
for future visual surveillance.
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