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Abstract—Latent Dirichlet Allocation (LDA) is a popular topic
modeling technique for hidden semantic discovery of text data
and serves as a fundamental tool for text analysis in various appli-
cations. However, the LDA model as well as the training process
of LDA may expose the text information in the training data,
thus bringing significant privacy concerns. To address the privacy
issue in LDA, we systematically investigate the privacy protection
of the main-stream LDA training algorithm based on Collapsed
Gibbs Sampling (CGS) and propose several differentially private
LDA algorithms for typical training scenarios. In particular, we
present the first theoretical analysis on the inherent differential
privacy guarantee of CGS based LDA training and further
propose a centralized privacy-preserving algorithm (HDP-LDA)
that can prevent data inference from the intermediate statistics
in the CGS training. Also, we propose a locally private LDA
training algorithm (LP-LDA) on crowdsourced data to provide
local differential privacy for individual data contributors. Fur-
thermore, we extend LP-LDA to an online version as OLP-
LDA to achieve LDA training on locally private mini-batches
in a streaming setting. Extensive analysis and experiment results
validate both the effectiveness and efficiency of our proposed
privacy-preserving LDA training algorithms.

Index Terms—Topic model, Latent Dirichlet Allocation, col-
lapsed Gibbs sampling, differential privacy

I. INTRODUCTION

LATENT Dirichlet Allocation (LDA) [1] is a basic build-
ing block widely used in many machine learning (ML)

applications. In essence, LDA works by mapping the high di-
mensional word space to a low dimensional topic space while
preserving the implicit probabilistic relationship. Therefore,
LDA is often used as a dimension reduction tool for extracting
main features from massive text datasets, thereby simplifying
the subsequent text processing tasks like classification and
similarity judgment. With such great benefits, a series of large-
scale LDA platforms have been developed in the era of big
data, including light LDA [2] for Microsoft, Peacock [3] and
LDA* [4] for Tencent, and Yahoo!LDA [5] for Yahoo!.

As shown in Fig. 1, with a broad spectrum of application
fields, LDA may be trained on information-sensitive datasets
from both large enterprises/organizations and massive crowd-
sourcing users. For example, patients’ electronic health records
can be fed in an LDA model to help doctors diagnose possible
diseases [6]. Social media profiles can be utilized with LDA
models to perform fine-grained community discovery [7].
However, similar to other ML techniques, the LDA model
improves its utility by constantly exploring the raw data, thus
inevitably memorizing some knowledge about the dataset.
By utilizing this characteristic, several attack models have
been proposed to distill private information of the training
data from machine learning models. For example, membership
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Fig. 1. Application Scenarios of LDA Model Training

inference attack [8] has been proved to be able to extract the
membership of training samples. Model inversion attack [9]
can be launched to recover the training data by observing the
model predictions. As a typical ML model, LDA may also
suffer from these attacks and cause severe privacy risks.

Differential privacy (DP) [10], as a rigorous paradigm
for privacy preservation, provides not only a mathematical
framework for quantifying the privacy risks of existing algo-
rithms, but also an efficient guidance for customizing privacy-
preserving algorithms. As a result, it has become the de-facto
standard of privacy preservation and has been adopted in a
broad wide of applications like data publication [11–13] and
machine learning [14, 15]. Similarly, DP for LDA has also
attracted lots of research interests [16–18]. For example, Park
et al. [16] provided DP for variational Bayesian algorithm
based LDA training. Zhu et. al. [17] introduced DP into
the collapsed Gibbs sampling(CGS) [19] training process, by
adding noise to the word counts statistics in the last iteration
of the sampling process. Wang et. al. [18] proposed a local
private solution to LDA training in a federated setting.

However, there are several limitations regarding the existing
studies. On one hand, few works consider strong adversaries
with full knowledge of the training mechanism and access to
intermediate statistics for CGS-based LDA training (a common
adversary model similar to [15]). In particular, in the training
process, both the word-count information and the sampled
topics for each word can reveal the information about specific
training samples. Nevertheless, the existing work [17] simply
focused on protecting the former but neglected the latter.
On the other hand, these methods mainly prevent third-party
adversaries from stealing the trained model (e.g., Attack Point
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2 in Fig. 1). They implicitly assume the LDA model is trained
on centralized datasets by a trustworthy server. However, the
central server may act as an “honest but curious” adversary and
steal training data silently (e.g., Attack Point 1 in Fig. 1). Then,
users may be reluctant to share their data directly. Furthermore,
most of the existing works focus on batched LDA for static text
data, thus cannot efficiently cope with many practical scenarios
where training data comes in a streaming fashion.

To address the issues, in this paper, we not only investigate
to provide more comprehensive protection for the whole
training process by utilizing the inherent privacy of the CGS
algorithm on centralized datasets, but also present a solution
to LDA training with local differential privacy (LDP). In
addition, we further extend the LDP solution to an efficient
online LDA scenario. Our contributions are summarized as
follows:

1) We present the first study on the inherent privacy of
CGS-based LDA by discovering the consistency be-
tween the topic sampling of CGS and the exponential
mechanism of DP. Based on the study, we propose
HDP-LDA, the first privacy-preserving LDA algorithm
to protect the whole training process of CGS-based LDA
on centralized datasets.

2) We propose LP-LDA, a novel privacy-preserving mech-
anism that supports training an LDA model on crowd-
sourced datasets. LP-LDA can provide local differential
privacy for individual data contributors.

3) We propose OLP-LDA, a privacy-preserving online
LDA algorithm for crowd-sourced data streams. In par-
ticular, we first provide a baseline online LDA frame-
work O-LDA, and then propose to utilize prior knowl-
edge to refine model accuracy on locally private data
streams.

4) We conduct extensive experiments on several real-world
datasets to validate the effectiveness of the proposed
algorithms. Experiment results show that the proposed
algorithms can achieve much higher model utility while
providing sufficient privacy guarantees.

This paper is an extension of our preliminary work [20],
which focuses on the privacy preservation of batch LDA
training on static datasets. Compared with [20], more extensive
analysis and experiments have been added to present a com-
prehensive study. Besides, the current paper further proposes
a novel online algorithm OLP-LDA to achieve efficient local
differential privacy for LDA training on crowd-sourced data
streams. In OLP-LDA, we first propose an online LDA training
framework O-LDA, and then present a novel Bayesian denois-
ing mechanism to enhance the utility of O-LDA on privacy-
preserved data batches by leveraging prior knowledge. Finally,
we perform extensive experiments to validate the performance
of OLP-LDA.

The remainder of this paper is organized as follows. We
discuss the related studies in Section II. We review the
background of LDA and differential privacy in Section III.
We present the intrinsic privacy study of CGS based LDA in
Section IV. Then, we give the LDP solutions for the batch
and online modes in Sections V and VI, respectively. The

experiments and simulation results are described and explained
in Section VII. Finally, we conclude this paper in Section VIII.

II. RELATED WORK

A. Machine Learning with Differential Privacy

Many studies [21–26] have adopted DP in the privacy
preservation of ML models. The basic idea is to perturb
the ML models in different parts. Output perturbation on
the final model result is the most straightforward solution.
However, many ML models incur unbounded sensitivities,
which makes it difficult to implement. To mitigate this issue,
sample-and-aggregate [27–29] framework is proposed to first
train on disjointedly sample partitions and then aggregate the
trained results with DP. Still, this technique applies to ML
on relatively small datasets. Objective perturbation random-
izes the cost function of ML models [14, 30]. Intermediate
perturbation aims to randomize the intermediate parameters
during iterative training, which is effective for deep learn-
ing [15, 16, 31]. Recently, input perturbation that trains ML
models on the perturbed datasets has attracted extensive re-
search interests. A relevant notion in DP is called local differ-
ential privacy [32, 33], which shows that meaningful statistics
could be obtained from massive randomized crowdsourced
data. Both input perturbation and local differential privacy
aim to eliminate the assumption for trustworthy servers, thus
providing a stronger privacy guarantee.

B. LDA Training with Differential Privacy

Similar to other ML models, LDA can also achieve DP pro-
tection by the aforementioned strategies except for objective
perturbation, since it has no explicit cost function. To the best
of our knowledge, most of the current works achieve privacy
protection by perturbing the intermediate parameters during
the training process. For instance, Park et al. [16] proposed
to obtain DP guarantee for LDA models by perturbing the
expected sufficient statistics in each iteration of the variational
Bayesian method, which is a parameter estimation algorithm
for LDA.

Zhu et. al. [17] presented a differentially private LDA
algorithm by perturbing the sampling distribution in the last
iteration of the CGS process [19], which is another typical
training algorithm for LDA. Decarolis et. al. [34] decomposed
the LDA training into a workflow based on the spectral
algorithm (a parameter estimation algorithm for LDA) and
then perturbed those intermediate statistics located in the cut
of the workflow. There is other efficient differentially private
parameter estimation algorithm using Bayesian inference with
a Gibbs sampler [35]. However, the Gibbs sampler in it
only considers a single conjugate structure and cannot be
directly extended to LDA model training, which involves a
coupled conjugate structure. Besides, the above DP methods
[17, 19, 34] cannot defend against the untrustworthy data
curators by design. Wang et. al. [18] presented a locally private
LDA training algorithm for the federated setting, in which the
data are perturbed before uploading in each iteration. However,
it is not a general method for traditional batch or online LDA
learning. In this paper, we aim to present DP solutions to both
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batch and online LDA training which can defend against the
adversaries with full knowledge of the training process, even
the untrustworthy data curators.

C. Intrinsic Privacy of Randomized Algorithm

Several recent studies [36–39] have begun to look into the
intrinsic privacy guarantee provided by the randomized algo-
rithms. For example, Wang et al. [36] and Dimitrakakis et al.
[38] first demonstrated that, when meeting certain conditions
of the loss function, the posterior Bayesian sampling and the
stochastic gradient Markov Chain Monte Carlo (MCMC) tech-
niques could possess some inherent privacy guarantee without
the introduction of extra noise. Foulds et al. [40] further
extended this conclusion to the general MCMC methods. By
utilizing the inherent randomness of MCMC, they achieved a
certain level of privacy protection equivalent to that assured
by a Laplace mechanism. Minami et al. [41] then relaxed the
required conditions for the loss function in [36]. Nevertheless,
these works investigated the inherent privacy guarantee of
randomized algorithms in theory on the basis of some ideal
assumptions about the parameters, such as the bounds of their
sensitivities are known. However, in the LDA model training, it
is often infeasible to compute or bound the parameters. In such
a case, accurately measuring the inherent privacy guarantee
remains a great challenge.

III. PRELIMINARIES

A. Collapsed Gibbs Sampling based LDA

1) LDA Generative Model: LDA is a generative model,
which describes the hidden semantic architecture of document
corpus generation. In the view of LDA, each document dm
containing Nm words in the corpus (or text dataset1) D, is
a mixture of K different topics and can be represented by a
K-dimensional ”document-topic” distribution θm. Each topic
k is characterized by a mixture of V words, represented by a
V -dimensional ”topic-word” distribution φk.

As shown in Fig. 2, LDA defines the generative process of
a given corpus as follows:

1) For each topic k, draw a “topic-word” distribution φk ∼
Dir(β) over all V words, where β is the hyperparameter
describing the prior observation for the “topic-word”
count.

2) For each document dm, draw a “document-topic” distri-
bution θm ∼ Dir(α) over all K topics, where α is the
hyperparameter describing the prior observation for the
“document-topic” count.

3) For each word wi in dm, 1 ≤ i ≤ Nm, sample a topic
k ∼ θm and a word t ∼ φk.

2) Collapsed Gibbs Sampling: The objective of LDA train-
ing is to learn the topic-word distribution φk for each topic
k, which can be used to infer the document-topic distribution
θm for any unseen document dm. Collapsed Gibbs Sampling
(CGS) is the most popular training algorithm for LDA. As a
special MCMC method, CGS works by generating topic sam-
ples alternatively for all the words in D, and then conducting

1For simplicity, we use both terms interchangeably.
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Fig. 2. LDA Graph Model

Bayesian estimation for the topic-word distribution based on
the generated topic samples. Three main procedures of CGS
are summarized as follows:

• Initialization. In the beginning, each word w ∈ D is
randomly assigned with a topic k ∈ K, and the word-
count information nkm and ntk is counted2. ntk denotes
the number of times that word t has been assigned with
the topic k, and nkm refers to the number of times that
topic k has been assigned to a word of the document dm.

• Burn-in. In each iteration, the topic assignment for each
word w ∈ D is updated alternatively by sampling from
a multinomial distribution P = [p1, ..., pk, ..., pK ]. Each
component of P can be computed by

pk ∝
ntk + β∑V

t=1(ntk + β)
· nkm + α∑K

k=1(nkm + α)
(1)

where pk refers to the probability that topic k is sampled.
The word-count information nkm and ntk is updated in
each sampling. After the given T iterations, the burn-in
process stops and the topic samples z can be obtained.

• Estimation. The topic-word distribution φk for each topic
k is estimated based on the topic samples z and the words
w ∈ D. In particular, each component of φk can be
estimated by

E[φtk|z,w] =
ntk + β∑V

t=1(ntk + β)
, (2)

where φtk refers to the probability that word t is generated
by topic k (corresponds to the assumption of LDA that
words are generated by topics).

The detailed algorithm of CGS can be referred to in [42].

B. Differential Privacy and Exponential Mechanism

Differential privacy (DP) provides a rigorous framework to
quantify the privacy guarantee by analyzing the statistical dif-
ference between the algorithm outputs on neighboring datasets.

Definition 1. (Differential Privacy [10]) A randomized
mechanism M : D → Y satisfies ε-differential privacy if for

2For simplicity, nk
m is called document-topic count and nt

k is called topic-
word count in this paper.
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any neighboring datasets D,D′ that differ by one record (i.e.,
|D ⊕D′| = 1) and any output S ⊆ Y , there is

Pr[M(D) ∈ S] ≤ exp(ε) · Pr[M(D′) ∈ S],

where Pr[·] is the probability and ε is the privacy level ofM.

Exponential mechanism is a fundamental technique to
achieve ε-DP for the situations where a query requires an
approximately ”best” answer returned privately without any
perturbation. The core idea of the exponential mechanism is
to return an answer sampled from the answer set based on a
certain distribution.

Definition 2. (Exponential Mechanism [10]) A mechanism
ME(x, u,R) : D → R satisfies ε-DP ifME(x, u,R) outputs
an element r ∈ R with probability pr satisfies that

pr ∝ exp(
ε

2∆u
u(x, r))

where u(x, r) is the utility function and ∆u is its sensitivity.

C. Local Differential Privacy

As a variant of DP, local differential privacy (LDP) describes
a new privacy paradigm that any two different inputs will be
mapped to the same value with similar probability.

Definition 3. (Local Differential Privacy [43]) A randomized
function f satisfies ε-local differential privacy if and only if
for any two input tuples t and t′ in the domain of f , and for
any output t∗ in the range of f , there is:

Pr[f(t) = t∗] ≤ exp(ε) · Pr[f(t′) = t∗],

where Pr[·] is the probability and ε is the local differential
privacy parameter.

LDP can be implemented via randomized response mecha-
nism and well adapted to the crowd-sourcing scenario where
the central server may not be trustworthy to end users who
prefer to protect their own data individually.

IV. HDP-LDA: A HYBRID PRIVATE LDA TRAINING
ALGORITHM

In this section, we first point out the limitations of existing
methods in protecting the intermediate statistics in LDA train-
ing. Then we present a systematical study on the inherent DP
guarantee of CGS-based LDA training on centralized datasets.
Finally, we propose a hybrid privacy-preserving algorithm
HDP-LDA, which can protect all the intermediate statistics
of the whole CGS-based LDA training.

A. Limitations of the Existing Methods

A direct method to achieve DP in the CGS-based LDA
algorithm is to add noise to the inner statistics [40][17],
e.g., word counts ntk and nkm, based on which the sampling
probability would be computed to perform topic sampling.
In [40], the authors provide a general method to achieve DP
in Gibbs Sampling, i.e., adding Laplace noise to the sufficient
statistics, ntk and nkm in LDA at the beginning of the Gibbs
Sampling process. [17] proposes to add Laplace noise to ntk

and nkm in the final iteration. Actually, both methods cannot
really protect the training process against strong adversaries
with full knowledge of the training mechanism and access to
intermediate statistics in LDA. The reasons are as follows:

• Insufficient protection on word-counts. In some train-
ing scenarios, e.g., in the distributed training of CGS-
based LDA [44], the topic-word counts ntk would be
released frequently to synchronize the training progress
among all parties participating in training. In such a
scenario, simply adding noise in the first or final iteration
cannot sufficiently prevent privacy leakage in the word-
count information3 released in the training process.

• No protection on the sampled topics. Before each topic
sampling, the CGS algorithm would first access to the
word w to be sampled on and then compute the sampling
distribution based on the word-count information ntk and
nkm according to Equation (1). Therefore, the sampling
process is not a post-process after sanitizing the word-
counts since it depends not only on the sanitized word-
counts but also on the word w in the raw dataset. That
is to say, the sampled topics would cause additional
privacy cost. In some practical scenarios [3], the topic
assignments might be also exchanged among different
parties to collaboratively train the model.

As analyzed above, we need a privacy-preserving algorithm
which can prevent privacy leakage from both the word-count
information and the sampled topics. For the former, we can
introduce noise in each iteration to protect the word-counts.
For the latter, we propose to utilize the inherent privacy of the
CGS algorithm to achieve protection.

B. Model Assumptions

Here we give some assumptions on the adversary model and
the neighboring datasets.

1) Adversary Model: We assume that the data curator is
trustworthy and has no interest in inferring data privacy. But
there exists a strong external adversary who can observe the
sampled topic assignments K and the word-count matrices N t

k

and Nk
m in each iteration of the training process. Based on the

observed statistics, the adversary attempts to infer the private
information of the training data.

2) Neighboring Datasets: We construct the neighboring
dataset D′ by replacing a single word wr = t ∈ D by t′

and call this process as word replacement. And we expect
to prevent the adversary from detecting the impact of this
word replacement on the CGS algorithm and thus stealing the
sensitive information.

C. Inherent Privacy of CGS Training Algorithm

In the following, we will systemically study the inherent
privacy of CGS-based LDA training algorithm.

3For simplicity, we also say ”protect the word-count information”.
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TABLE I
NOTATIONS

α, β hyper-parameters for LDA
W word space
K topic space
φk topic-word distribution for topic k
φtk probability that word t is generated by topic k
nkm count of words with topic k in document dm
ntk count of word t with topic k in corpus D
nt total word count of t ∈ D
pk probability that topic k is sampled
wr replaced word
w+ set of related words
w− set of unrelated words
εri inherent privacy loss on wr in the i-th iteration
εti, ε

t′

i inherent privacy loss on related words t or t′

1) Basic Idea: It has been shown that, Gibbs sampling
process has some degree of inherent DP for free [40] since
it works in the same way as an exponential mechanism for
DP. As a variant, Collapsed Gibbs Sampling (CGS) naturally
inherits this property. Intuitively, CGS conducts random sam-
pling iteratively to learn a topic-word distribution, which acts
as a mechanism that probabilistically outputs a topic from
the topic set. As described in Section III-B, the exponential
mechanism works by probabilistically sampling an answer
from the answer set. This intuitive consistency motivates
us to analyze CGS process in the view of the exponential
mechanism.

Without loss of generality, we consider the sampling process
of any word w in the i-th iteration. Suppose its sampling
distribution on K topics is P = (p1, p2, ..., pK)>, where pk
represents the probability that topic k is sampled. Define a
function u(w, k) = log pk with sensitivity ∆uk 6= 0, then pk
could be written as

pk = exp(log pk) = exp(
∆uk
∆uk

log pk)

= exp(
∆uk · u(w, k)

∆uk
). (3)

According to Definition 2, Equation (3) can be viewed as the
probability that an exponential mechanism ME(w, u,K) :
W → K outputs the topic k ∈ K according to its util-
ity u(w, k) = log pk. And ME(w, u,K) provides (∆uk)-
DP. Notably, if taking the unnormalized probability rk, e.g.,
pk ∝ rk, to define the utility function as u(w, k) = log rk,
then ME(w, u,K) preserves 2(∆uk)-DP.

This observation enables us to calculate the inherent privacy
of the CGS algorithm. To do so, we first investigate the
inherent privacy loss in each iteration of the CGS training
algorithm and then compose the privacy in total iterations by
utilizing the composition theorem of DP.

2) Inherent Privacy in Each Iteration: In the i-th iteration,
to bound the inherent privacy, it requires analyzing the impact
of the word replacement on each sampling. According to the
relationship with the replaced word, we consider the following
three cases for each word in D respectively.

I love to eat apple.

She likes the banana trees.

He likes the apple trees.

What do you like？

I love to eat banana.

She likes the banana trees. 

He likes the apple trees.

What do you like？

Replaced word

Related wordsD D’

Fig. 3. An Example of Neighboring Datasets

• Replaced word is defined as the word wr = t ∈ D
which is replaced by t′ in the neighboring dataset D′.
For example, in Fig. 3, the word apple marked in red is
the Replaced word in D.

• Related words refer to the words in w+ which satisfies
{w = t orw = t′,∀w ∈ w+}. w+ doesn’t contain the
Replaced word. The words apple and banana marked in
green shown in Fig. 3 are related words in D.

• Unrelated words are the words in w− which satisfies
{w 6= t andw 6= t′,∀w ∈ w−}. All the rest words in
D marked in black are unrelated words in the example
shown in Fig. 3.

To analyze the privacy loss on the three types of words,
the basic idea is to utilize the consistency between each topic
sampling process and the exponential mechanism of DP as
observed in Section IV-C1.

First, we analyze the privacy loss incurred by the topic
sampling on the replaced word wr. In particular, in D, this
sampling is performed on wr = t while in D′, this sampling
is performed on wr = t′. Here, we present a proposition to
compute the incurred privacy loss in this sampling.

Proposition 1. Suppose D′ is constructed from D by replac-
ing wr = t ∈ D by t′, then the privacy loss εri incurred by the
topic sampling on the replaced word wr in the i-th iteration
can be bounded by

εri ≤ 2 max
k
{| log

nt
′

k + β

ntk + β
|}, (4)

where nt
′

k and ntk represent the counts of topic k assigned to
t′ and t in D, respectively.

Proof. Shown in Appendix A.

Then, we consider the privacy loss incurred by the topic
sampling on the related words w+. For each word w ∈ w+,
the word replacement impacts the topic sampling process
through the topic-word counts ntk and nt

′

k , which would be
used to compute the sampling distribution.

In particular, for some specific topic k, suppose the topic-
word count for t and t′ are ntk and nt

′

k respectively in D, the
corresponding topic-word count would be ntk−1 and nt

′

k +1 in
D′. Here, we also give a proposition to compute the inherent
privacy loss.

Proposition 2. The privacy loss in the CGS sampling process
on each related word w = t ∈ w+ or w = t′ ∈ w+ in the
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i-th iteration can be bounded by

εti ≤ 2 log (1 +
1

β
), εt

′

i ≤ 2 log (1 +
1

β
),

where εt
′

i and εt
′

i represent the privacy loss on w = t′ and
w = t in w+ respectively.

Proof. The proof logic is similar to that of Proposition 1.

Finally, we consider the unrelated words w−. Actually, for
each word w = t̂ ∈ w−, the word replacement could not
impact the sampling process on w = t̂ .

So far, we have analyzed the impacts of word replacement
on the sampling process on all three types of words involved in
the i-th iteration. Based on the impact analysis, the following
theorem can bound the total privacy loss in the i-th iteration.

Theorem 1. Given the replaced word wr = t ∈ D, the
total privacy loss εi incurred by CGS algorithm Si in the i-th
iteration could be bounded by

εi ≤ εri + (nt − 1)εti + nt′ε
t′

i

≤ 2{log (
maxk,t′ {nt

′

k }
β

+ 1)

+ (max
t′
{nt′}+ nt − 1) · log (1 +

1

β
)},

(5)

where nt and nt′ denote the total word-counts of t and t′

appearing in D respectively. nt
′

k denotes the total count of
topic k assigned to t′ in D when performing sampling on the
replaced word wr.

Proof. Shown in Appendix B.

Theorem 1 demonstrates that the inherent privacy loss in
a single CGS iteration is the sum of the privacy losses on
the replaced word and all the related words. And as we can
see, the inherent privacy loss can be adjusted by the hyper
parameter β. The larger β, the less privacy loss, and vice versa.
That is reasonable since β represents the prior information for
the topic-word count and a larger β means that the sampling
process is mainly determined by the prior information instead
of the training data. Then, less data information can be inferred
in the sampling process.

3) Inherent Privacy in Total CGS Training: So far, we have
identified an upper bound for the privacy loss in a single
iteration. Now, based on the composition theorem of DP, we
can bound the total privacy loss in the whole training process
with multiple iterations.

Theorem 2. Suppose the privacy loss of each word w in the
i-th iteration is εwi , then the total privacy loss ε in the whole
training process with n iterations could be bounded by

ε ≤ max
w∈D

{
n∑
i=1

εwi }. (6)

Proof. Shown in Appendix C.

4) Limitations of Inherent Privacy: We have systemically
analyzed the inherent privacy of the CGS training algorithm.
Here, we present two limitations of the inherent privacy of
CGS regarding the privacy protection.

• Rapid Accumulation of Privacy Loss. As shown in the
second term of Equation (5), the privacy loss accumulates
almost linearly with respect to the word count nt and nt′ .
This is mainly because the word replacement impacts not
only the replaced word, but also all the related words in
the sampling process.

• Lack of Protection on Word-count Information. Obvi-
ously, the inherent privacy cannot protect the word-count
information, e.g., ntk, which also reflects the raw data
information. Since there is no noise introduced, the word
replacement would incur an unmaskable change on the
word-counts, e.g., ntk−1 and nt

′

k +1, thus further causing
the privacy leakage if we assume an adversary who can
observe that.

D. Hybrid Privacy-preserving LDA Training

In Section IV-A, we summarized the limitations of the
existing works in protecting the sampled topics, while in
Section IV-C4, we identified that the inherent privacy is
lack of protection on the word-count information. To address
these issues, we propose a hybrid privacy-preserving algorithm
named HDP-LDA that combines the inherent privacy of CGS
approach and external privacy based on noise injection. The
basic idea is to introduce a proper noise in each iteration of
CGS to protect the word-count information while mitigating
the rapid privacy loss accumulation of inherent privacy. The
detailed algorithm process is shown in Algorithm 1. Two main
operations in the algorithm are explained as follows.
• Adding noise: As analyzed, both limitations of inherent

privacy are caused by the difference on the topic-word
counts ntk between D and D′. Therefore, we introduce
some noise to obfuscate the difference on ntk in each
iteration (Line 9 in Algorithm 1). Theorem 3 proves
that Algorithm 1 can mitigate the rapid privacy loss
accumulation of inherent privacy.

• Clipping: Quantifying the inherent privacy requires the
knowledge of the upper bound of topic-word counts
maxk,t {ntk}, as shown in Equation (5). A natural bound
for ntk is the total count nt of word t, which, however,
might be too loose if there are too many K topics in total.
Therefore, we resort to a clipping method to limit the
inherent privacy in each iteration. Notably, this clipping
is only performed on a copy of ntk for the computation
of sampling distribution (Line 12), but does not impact
the subsequent updating of ntk in CGS (Lines 15 ∼ 16).

Theorem 3. Algorithm 1 satisfies (εL + εI)-DP in each
iteration, in which

εI = 2 log (
C

β
+ 1) (7)

denotes the inherent privacy loss, εL denotes the privacy loss
incurred by the Laplace noise, and C denotes clipping bound
for ntk.

Proof. Shown in Appendix D.

As shown in Theorem 3, the privacy loss in HDP-LDA
consists of two parts: privacy loss εL incurred by the Laplace
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Algorithm 1: HDP-LDA
Input: Document corpus D, Prior parameters α, β,

Topic number K, Clipping bound C
Output: Trained topic-word distribution Φ, Privacy

loss ε = T · (εL + εI)
// Initialization

1 for dm ∈ D do
2 for w = t ∈ d do
3 Sample topic: k ∼Mult( 1

K · IK);
4 Initialize word counts ntk and nkm;
5 end
6 end
// Collapsed Gibbs Sampling

7 Set iter = 0;
8 while iter < T do
9 Add noise to each ntk independently:

ntk ← ntk + η, η ∼ Lap(2/εL);
10 for d ∈ D do
11 for w = t ∈ d do
12 Clip: (ntk)temp ← min{ntk, C};
13 Compute sampling distribution p:

pk ∝ (ntk)
temp+β∑V

t=1(n
t
k+β)

· nkm+α∑K
k=1(n

k
m+α)

;

14 Compute inherent privacy loss:
εI ← 2 log (Cβ + 1);

15 Sample topic and update word count ntk;
16 end
17 end
18 iter ← iter + 1;
19 end
20 Compute the trained model Φ;

noise and the inherent privacy loss εI of CGS algorithm.
Equation (7) presents the inherent privacy loss. Comparing
with Equation (5), we can see that the rapid accumulation of
inherent privacy loss has been mitigated since the second term
of Equation (5) has been removed.

V. LP-LDA: LDA MODEL TRAINING WITH LDP

We have developed a comprehensive privacy protection
approach for protecting the CGS training process on a cen-
tralized curated dataset, where the central server is assumed
trustworthy. Nevertheless, in many distributed applications, the
data curator may not be reliable and the individual data owners
may be reluctant to share their sensitive data. In this case, we
propose an LDP solution of LP-LDA for LDA that can train
on crowdsourced data with LDP. LP-LDA is constituted by
two parts: local perturbation at the user side and training on
reconstructed dataset at the server side.

A. Local Perturbation

The local perturbation at the user side includes the following
steps:
• Step 1. Each document m is encoded as a binary vector

Vm, in which each bit Vm[j] represents the presence of
the j-th word in the word bag of the corpus.

• Step 2. Each bit Vm[j] of the binary vector Vm is then
randomly flipped according to the following randomized
response rule:

V̂m[j] =


Vm[j], with probability of 1− f
1, with probability of f/2
0, with probability of f/2

where f ∈ [0, 1] is a parameter that specifies the random-
ness of flipping and adjusts the local privacy level.

• Step 3. Then the noisy binary vector V̂m[j] is sent to the
central server by each user. Obviously, V̂m[j] is locally
sanitized without concerning user’s privacy.

B. Training on the Reconstructed Dataset

After receiving the flipped binary vectors from a large
number of data contributors, the central server can aggregate
the vectors, reconstruct the dataset, and then perform training
on the reconstructed dataset. The rationale behind this is that
the training result of topic-word distribution is insensitive to
the document partitions and only depends on the total word
counts in the corpus.
• Step 1. For each bit in the noisy binary vectors, the server

counts the number of 1′s as nt =
∑M
m=1 V̂m[t].

• Step 2. The server then estimates the true count Nt of
each bit in the original binary vectors Vm as N̂t = (2nt−
fM)/2(1− f).

• Step 3. For each bit, the server first computes the differ-
ence δt = N̂t − nt.

• Step 4. For each bit t, if δt > 0, the server randomly
samples δt binary vectors with the t-th bit as 0 and sets
the t-th bit as 1; if δt < 0, then the server randomly
samples |δt| binary vectors with the t-th bit as 1 and sets
the t-th bit as 0; otherwise, keeps the noisy bit vectors
as received.

• Step 5. Based on the noisy bit vectors, the server recon-
structs a dataset and performs the CGS process on it.

Algorithm ?? presents the detailed procedures of LP-LDA on
both the user side and the server side.

C. Privacy Analysis of LP-LDA

Theorem 4. LP-LDA satisfies log 1−f/2
f/2 -LDP for each word,

and V · log 1−f/2
f/2 -LDP for each document.

Proof. Suppose a word t appears in a noisy bit vector, then
the probability of it being kept from the original bit vector is
Pr(V̂m[t] = 1|Vm[t] = 1) = 1 − f/2 and the probability of
it being flipped from the original bit vector is Pr(V̂m[t] =
1|Vm[t] = 0) = f/2. Then, according to the definition, it
guarantees the local differential privacy of

ε =

∣∣∣∣∣log
Pr(V̂m[t] = 1|Vm[t] = 1)

Pr(V̂m[t] = 1|Vm[t] = 0)

∣∣∣∣∣ = log
1− f/2
f/2

.

The analysis holds for any bit t that V̂m[t] = 0.
Each bit of the document Vm is perturbed independently.

Then according to the sequential composition theorem of DP,
LP-LDA guarantees V ·ε-local DP for the entire document.
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Since the reconstruction and training process are essentially
post-processes on the noisy bit vectors, the LDP guarantee
remains unchanged for all the documents.

D. Utility Analysis of LP-LDA
Theorem 5. Let Nt and nt denote the counts of word t in
the original and perturbed datasets, respectively, then

N̂t =
2nt − fM
2(1− f)

(8)

is an unbiased estimator of Nt with the variance of

Var(N̂t) =
(2− f)fM

4(1− f)2
+

(M −Nt)Nt
M

. (9)

Proof. Let n1 denote the count of word t retained from the real
datasets and n2 denote the noisy part, then n1 and n2 follow
two Binomial distributions, i.e., n1 ∼ B(Nt, 1 − f/2), n2 ∼
B(M −Nt, f/2). Let X = n1 + n2, then its first theoretical
moment E(X) = Nt(1−f/2)+(M −Nt) · (f/2) and its first
sample moment X̄ = nt. Therefore,

N̂t =
2nt − fM
2(1− f)

is the moment estimator as well as an unbiased estimator. Its
variance is then

Var(N̂t) =
Var(nt)

(1− f)2
=

Var(n1 + n2)

(1− f)2

=
Var(n1) + Var(n2) + 2Cov(n1, n2)

(1− f)2

=
(2− f)fM

4(1− f)2
+

(M −Nt)Nt
M

.

VI. OLP-LDA: ONLINE LDA MODEL TRAINING WITH
LDP

A. Motivations

In LP-LDA, we consider a static scenario that one-time LDA
is trained on the locally sanitized dataset. Here, we consider
the following two practical issues that may encounter in LDA
model training.
• Online Training. Many practical applications require that

ML models can be continuously trained on streaming
datasets, which are contributed by users in mini-batches
and accumulated over time. However, it is usually infea-
sible to store all streaming batches and perform batch
model training such as LP-LDA.

• Prior Knowledge. In many real-world scenarios, the
training server may not begin model training from zero
but possess some prior datasets for building an initial
model. These prior datasets may be from the publicly
available datasets or the purchased high-quality crowd-
sourced datasets, which are often non-private.

Considering the above issues, we further propose OLP-
LDA, a privacy-preserving online LDA training algorithm.
OLP-LDA aims to not only realize efficient online training on
mini-batches with LDP, but also greatly improve the model
utility by extracting knowledge from the prior dataset.

OLP-LDA consists of two components: the baseline online
LDA training framework O-LDA, and the Bayesian denoising
technique for the continuous reconstruction of noisy batches.

B. O-LDA: Framework of Online LDA Model Training
1) Basic Idea of Online LDA Training: Given the prior

information P (Θ|D0) of LDA model parameter Θ from the
prior dataset D0, the Online LDA training aims to update
the LDA model P (Θ|D) with the evolving mini-batch se-
quence D1:L = {D1, ..., Dl, ..., DL} where Dl represents the
l−th mini-batch. Considering the correlations between mini-
batches, the online training process could be regarded as a
Bayesian learning process, in which P (Θ|D) is updated based
on a recurrence relationship:

P (Θ|D0:l) ∝ P (θ|D0:l−1)P (Dl|Θ),

where the posterior P (Θ|D0:l−1) learned from D0:l−1 would
be used as the prior when learning from Dl.

2) O-LDA Generative Model: To capture the correlations
between consecutive mini-batches Dl−1 and Dl, we introduce
a correlation factor λ. And the prior parameters βl for Dl

is represented as the combination of βl−1 for Dl−1 and the
topic-word matrix N l−1

k,t learned from Dl−1. That is

βl = βl−1 + λN l−1
k,t . (10)

In Equation (10), a larger λ means a stronger dependency
between Dl−1 and Dl. When λ = 0, the training result of
Dl−1 will not influence the training process of Dl. Apparently,
βl could also be written as

βl = β1K,V +

l−1∑
i=1

λN i
k,t, (11)

where β denotes a hyperparameter fixed for the whole corpus.
As a result, we redefine the corpus generative process of

the O-LDA model as follows:
1) Generate the first mini-batch D1 according to the stan-

dard LDA with given hyperparameters α and β, and
draw a correlation factor λ ∼ U(0, 1) for the corpus.

2) For each mini-batch Dl, l ≥ 2, generate the topic-word
distribution Φl ∼ Dir(βl) for Dl.

3) For each document m in mini-batch Dl, generate all the
words according to the standard LDA with hyperparam-
eter α and topic-word distribution Φl.

Then, the sampling distribution for word w = t in mini-
batch Dl shown in Equation (1) should be replaced as

p(zw = k) ∝
nlk,t + βlk,t∑V

t=1(nlk,t + βlk,t)
· nkm + α∑K

k=1(nkm + α)
, (12)

where βlk,t denotes the element in the k-th row and t-th column
of βl. Similar to the standard LDA, the training result Φ of
topic word distribution is updated by

E[φtk|D1:l] =
nlk,t + βlk,t∑V

t=1(nlk,t + βlk,t)
. (13)

The parameter λ could be optimized with each mini-batch
to reach a better performance using the MCMC method [45].
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C. Bayesian Denoising Scheme

1) Basic Idea of Bayesian Denoising: Recall that the
locally sanitized dataset can be reconstructed based on the
moment estimation of the word counts in LP-LDA (Sec-
tion V-B). Bayesian denoising scheme aims to further improve
this estimation, i.e., reducing the variance in Equation (9),
with the knowledge in the prior dataset. The denoising process
can be also viewed as a Bayesian estimation problem, where
the word count Nt is the underlying parameter for a prior
distribution π(Nt) and the observation nt. The objective is
to find an estimation function B(nt) of nt to minimize the
following Bayes risk:

R(π(Nt)) = min
B(nt)

ENt [Ent|Nt [‖B(nt)−Nt‖2|Nt]].

According to [46], the optimal estimator can be calculated as
the posterior expectation

E[Nt|nt] = arg min
B(nt)

R(π(Nt))

which depends on the prior distribution π(Nt) and the likeli-
hood function P (nt|Nt).

2) Prior Distribution: The prior distribution π(Nt) can
be assumed to follow a Gaussian distribution N(µt, σ

2) for
simplicity, where µt denotes the word count information
extracted from the prior dataset and σ2 represents the level
of belief to the prior information. Gaussian distribution is a
common assumption and σ2 could be adjusted according to
the practical requirement.

3) Likelihood Function: The likelihood function P (nt|Nt)
can be computed as follows. As did in LP-LDA, each bit of
the binary word vector transformed from the document has
a probability of f/2 to be flipped at the user side, so the
likelihood function of the observed noisy word count could
be written as

P (X = nt|Nt) =

min{Nt,nt}∑
i=0

p(X1 = i,X2 = nt − i)

=

min{Nt,nt}∑
i=0

(
Nt
i

)
(1− f

2
)i(
f

2
)Nt−i×(

M −Nt
nt − i

)
(1− f

2
)M−Nt−nt+i(

f

2
)nt−i,

(14)
where X1 denotes the count of word t retained from the real
datasets, X2 denotes the noisy part and X = X1 + X2, and
M denotes the document number in this mini-batch. Note that
X1 and X2 follow two Binomial distributions

X1 ∼ B(Nt, 1− f/2) X2 ∼ B(M −Nt, f/2). (15)

It is still intractable to present the posterior E[Nt|nt] in
a closed form due to the complicated likelihood function in
Equation (14). To tackle this problem, we consider deriving an
approximate results based on the following Gaussian conjugate
property.

Lemma 1. (Gaussian Conjugate Property [47]) Given a
marginal Gaussian distribution p(X) and a conditional Gaus-

sian distribution p(Y |X), the conditional distribution p(X|Y )
satisfies that

p(X|Y ) = N(X|wµ0 + (1− w)
Y − b
a

,
σ2
0σ

2
1

σ2
1 + a2σ2

0

),

if it holds that,

p(X) = N(X|µ0, σ
2
0), p(Y |X) = N(Y |aX + b, σ2

1),

where w =
σ2
1

σ2
1+a

2σ2
0

.

Lemma 1 implies that the posterior of a parameter θ will
be also a Gaussian distribution when the prior distribution of
θ and the likelihood function of the observed data conditioned
on θ are based on Gaussian distribution. Based on Lemma 1,
we consider approximating the binomial distributions shown
in Equation (15) using Gaussian distributions. The following
lemma provides theoretical support for such approximation.

Lemma 2. (De Moivre-Laplace Central Limit Theorem) Sup-
pose that in a series of n independent Bernoulli trials, event
A has a probability p of occurrence (0 < p < 1) in each trial.
Denote Sn as the occurrence time of A, and let

Y ∗n =
Sn − np√

npq
,

where q = 1− p, Then for each real number y, it holds that

lim
n→∞

P (Y ∗n ≤ y) =
1√
2π

∫ y

−∞
e−t

2/2dt.

Lemma 2 states that a binomially distributed random vari-
able approximates the Gaussian random variable with mean
np and standard deviation

√
npq as n grows larger. It has

been validated that when np > 5 or n(1 − p) > 5, this
approximation is reasonable and effective. Based on Lemma
2, both binomial distributions shown in Equation (15) could
be approximated as:

X1 ∼ N(Nt(1−
f

2
), Nt ·

f

2
(1− f

2
))

X2 ∼ N((M −Nt)
f

2
, (M −Nt)

f

2
(1− f

2
)).

(16)

Furthermore, according to the additive property of Gaussian
distributions, the word count variable X should follow a
Gaussian distribution

X ∼ N((M −Nt)
f

2
+Nt(1−

f

2
), σ2

p), (17)

where σ2
p = M f

2 (1− f
2 ) + 2cov(X1, X2) and then the likeli-

hood function shown in Equation (14) could be approximated
as:

P (X = nt|Nt) =
1√

2πσ2
p

exp(− [2X −Mf − 2Nt(1− f)]2

4σ2
p

).

(18)

Theorem 6. Suppose the prior distribution of count Nt of
word t is set as N(µt, σ

2), and the likelihood function of the
noisy count nt is approximated by Gaussian distribution, then
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the posterior distribution of Nt should be as follows:

N(ω · µt + (1− ω)
2nt − fM
2(1− f)

,
σ2σ2

p

σ2
p + (1− f)2σ2

),

and then the Bayesian estimator

B(nt) = ω · µt + (1− ω)
2nt − fM
2(1− f)

, (19)

where ω = Mf(2−f)
Mf(2−f)+4σ2(1−f)2 .

Proof. Based on Equation (18) and Lemma 2, the result could
be derived directly.

Recall the moment estimator of the word count Nt shown
in Equation (8), we can observe that the Bayesian estimator
of Nt is a linear combination of the moment estimator and
the prior µt. And the weight ω of µt is controlled by the
prior parameter σ2 which is adjustable according to practical
requirement. Intuitively, as σ2 grows larger, the belief to
the prior information becomes weaker, and the weight of µt
becomes smaller.

Theorem 7. The Bayesian estimator B(nt) of Nt in Equa-
tion (19) has a variance of

Var(B(nt)) = (1− ω)2(
(2− f)fM

4(1− f)2
+

(M −Nt)Nt
M

),

(20)
where ω = Mf(2−f)

Mf(2−f)+4σ2(1−f)2 .

Proof. Since µt is a constant, then

Var(ω · µt + (1− ω)N̂t) = (1− ω)2 ·D(N̂t),

where N̂t denotes the estimator of Nt in Equation (8).

Theorem 7 reveals that if we replace the moment estimator
in Equation (8) by the Bayesian estimator in Equation (19)
to implement the dataset reconstruction process, the variance
term could be reduced to (1 − ω)2 of that of the moment
estimator.

D. OLP-LDA Algorithm

We present the online LDA algorithm on locally private
mini-batches by embedding the Bayesian denoising process
into the training procedures of O-LDA.

Let D0 be the prior dataset, Dl be the l-th locally sanitized
mini-batch arriving at the central server, N l

t be the real count
of word t in Dl, µlt be the prior parameter for N l

t , shown
as the mean of the prior distribution, and ηlt be the Bayesian
estimation B(nlt) of N l

t in Equation (19). We give the updating
rule of µlt as follows:

µlt =
µl−1t + ηl−1t

2
× |Dl|
|Dl−1|

, (21)

where |Dl| refers to the documents number in mini-batch Dl.
Especially, it holds that µ0

t = η0t since D0 is possessed by
the central server as the clean dataset and no need to be
reconstructed. Algorithm 2 shows the details of our proposed
OLP-LDA.

E. Analysis of OLP-LDA

We discuss the impacts of the mini-batch size and the prior
data size on the model utility in terms of Bayesian denoising.

1) Impact of Mini-batch Size: Given a mini-batch Dl, the
Bayesian estimation B(nlt) =

B(nlt)
|Dl| |Dl| of N l

t is used to
perform the denoising. Obviously, more accurate frequency
estimation B(nlt)

|Dl| would lead to more accurate denoising.

According to Equation (20), the variance of B(nlt)
|Dl| should be:

Var(
B(nlt)

|Dl|
) = (1− ω)2(

(2− f)f

4(1− f)2|Dl|
+

(|Dl| −N l
t)N

l
t

|Dl|3
),

(22)
where

(1− ω)2 = (
4σ2(1− f)2

f(2− f)|Dl|+ 4σ2(1− f)2
)2.

As seen, the larger |Dl|, the smaller variance of B(nlt)
|Dl| , thus

the more accurate denoising.
2) Impact of Size of Prior Dataset: Given a prior dataset

D0, if we take a random variable Xi
t ∈ {0, 1} to represent

whether a given word t appears in the i-th document in D0,
then according to the law of large numbers, the mean of Xi

t

in the prior dataset should tend to the real frequency statistic
pt in the whole corpus as the size D0 keeps increasing, that
is

lim
|D0|→∞

Pr{| 1

|D0|

|D0|∑
i=0

Xi
t − pt| < ε} = 1,∀ε > 0, (23)

where 1
|D0|

∑|D0|
i=0 X

i
t =

N0
t

|D0| . That means that the larger prior
dataset can extract more accurate word-count information.
Then, according to Equation (21) and µ0

t = η0t , the more accu-
rate prior information would be generated for the subsequent
noisy mini-batches.

Therefore, we can conclude that both the larger size of the
prior dataset and mini-batches could further improve the model
utility.

VII. EVALUATION

In this section, we conducted extensive simulation experi-
ments on four real-world datasets to evaluate the effectiveness
of our proposed algorithms.

A. Experiment Setup

Datasets: Four real-world datasets were used in our exper-
iments:
• KOS4 contains 3, 430 blog entries from dailykos website.
• NIPS5 contains 1, 500 research papers from NIPS con-

ference.
• Enron6 contains email messages from about 150 users.

The first 10, 000 documents are extracted for experiments.

4http://archive.ics.uci.edu/ml/datasets/KOS
5http://archive.ics.uci.edu/ml/datasets/NIPS
6http://archive.ics.uci.edu/ml/datasets/Enron

http://archive.ics.uci.edu/ml/datasets/KOS
http://archive.ics.uci.edu/ml/datasets/NIPS
http://archive.ics.uci.edu/ml/datasets/Enron
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Algorithm 2: OLP-LDA
Input: Flipping propablity f , Hyperparameters α, β,

Topic number K, Correlation factor λ,
Reconstruction factor ω, Prior dataset D0,
Local dataset D

Output: Training results Φ0:∞

// On the user side
1 foreach document d ∈ D do
2 d̂ = RR(d) ; // Randomized response

3 Upload d̂ to the server ;
4 end
// On the server side

1 Train initial model: Φ0, N0
k,t = LDA(D0, α, β,K) ;

// Standard LDA training algorithm
2 foreach word t do
3 Initialize µ0

t = η0t =
∑
kN

0
k,t ;

4 end
5 for l=1 :∞ do
6 for d̂ uploaded in the l-th time window do
7 Aggregate d̂: Dl = {d̂1, d̂2, ..., d̂Nl} ;
8 Generate prior for Dl acc. to Equation (21) ;
9 Reconstruct Dl by Bayesian denoising scheme

acc. to Equation (19) ;
10 Update β = β + λN l−1

k,t ;
11 Train model: Φl, N l

k,t = LDA(α, β,K) ;
12 foreach word t do
13 Compute µlt = ηl−1t ;
14 Compute ηlt = B(nt) acc. to Equation (19);
15 end
16 end
17 end

TABLE II
DETAILS OF THE DATASETS

Dataset #. words #. training docs #. test docs
KOS 209169 3000 430
NIPS 410753 1350 150
Enron 356363 8000 2000

FVENA 386061 1350 450

• FVENA 7 contains books written by 50 authors in the
19th century. 1, 800 documents from the first and eighth
authors (900 for each) are extracted for experiments.

We extracted part of these datasets as our training datasets
and the rest as the testsets. For simplicity, we conducted a
pre-processing on these datasets, in which, all stop words were
removed, and 1, 000 most frequent words in each dataset were
chosen as the corresponding vocabulary list. Details about the
datasets after pre-processing can be found in Table II.

Simulation Methodology:
For HDP-LDA, we designed a simple Topic-based Attack al-

gorithm to validate its performance on protecting the sampled

7http://archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+
Attribution

Algorithm 3: Topic-based Attack Algorithm
Input: The attacked word wmn
Output: The inferred result t̄

1 Set i = 0;
2 while i < T do
3 Add noise: ˆ(ntk)

i
← ntk + η, η ∼ Lap(2/εL);

4 Record ˆ(ntk)
i
;

5 for w ∈ D do
6 Sample topic: ki ∼ P;
7 if w = wmn then
8 Record ki;
9 end

10 end
11 i← i+ 1;
12 end
13 Compute t̄ = arg max

t
P [wmn = t|k1, ..., ki, ..., kT ]

acc. to Equation (24);

topics. Specifically, for the n-th word wmn = t in document
dm, we utilized all the sampled topics {k1, ..., ki, ..., kT }
on wmn in T iterations and the sanitized word-counts s =
{ ˆ(ntk)

i
, i ≤ T} to infer wmn. The detailed algorithm is

shown in Algorithm 3. In our experiment, for simplicity, we
selected the last word in D as the attacked word and took the
inferred probability P [wmn = t|k1, ..., ki, ..., kT ] computed by
Equation (24) as the attack accuracy.

Pr(wmn = t|k1, ..., ki, ..., kT )

=
Pr(wmn = t, k1, ..., ki, ..., kT )

Pr(k1, ..., ki, ..., kT )

=

∏
i Pr(wmn = t, ki)∏

i Pr(ki)
=
∏
i

Pr(wmn = t, ki)

Pr(ki)

≈
∏
i

(n̂tki)i/
∑
k,t(n̂

t
k)i∑

t (n̂tki)i/
∑
k,t(n̂

t
k)i

=
∏
i

(n̂tki)i∑
t

ˆ(ntki)i

.

(24)

For both LDP solutions LP-LDA and OLP-LDA, all docu-
ments in the training datasets Dtrain were perturbed with the
randomized response technique described in Section V-A in
a centralized manner to simulate the procedures of crowd-
sourcing users. Then, for LP-LDA, the reconstruction process
and model training were implemented. For OLP-LDA, the
prior dataset owned by the server was generated by randomly
sampling from Dtrain and used for constructing the initial
model. The arriving mini-batches were generated by randomly
drawing from the sanitized dataset, and then reconstructed
according to the Bayesian denoising scheme. Finally, OLP-
LDA was trained on those reconstructed mini-batches.

To evaluate the practical performance on privacy protection,
the membership inference attack (MIA) [8] was implemented
to simulate the inference on trained models. Since MIA works
on supervised learning models, LDA models for unlabelled
datasets cannot be directly verified. Instead, the privately
trained LDA models were incorporated into a classifier to
derive an LDA-based classification model, which then acts as

http://archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution
http://archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution
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the target model for inference. In the simulation, the labeled
dataset FVENA was used to train and test the target models.
The detailed MIA attack process can be referred to [8, 48].

All our experiments were run on a laboratory-based work-
station equipped with 10 cores of Intel(R) Xeon(R) E5-
2640 v4@2.40GHz and 30GB memory. And the proposed
algorithms were implemented with Python (version 3.7). In
our experiments, for all datasets, the topic number was set as
50, and the default hyperparameters α, β were set as 1, and
0.01, respectively.

Metrics: We select Perplexity as the metric of LDA utility.
Perplexity measures the likelihood that the test data is gen-
erated by the trained LDA model. A lower perplexity means
a higher likelihood, and hence better model utility. Given a
test set Dtest with M documents, denote φtk as the learned
parameters from Dtrain and θkm as the inferred parameters from
Dtest, the perplexity on Dtest can be computed as

per(Dtest) = exp(−
∑
m

∑
i log (

∑
k θ

k
mφ

wi
k )∑

m |dm|
)

where |dm| and wi denote the number of words and the i-th
word in dm respectively.

Comparison: To validate our proposed algorithm, we also
compare with two algorithms:
• CDP-LDA [40], in which DP is achieved by perturbing

the word count matrices N t
k and Nk

m with Laplace noise
Lap(1/ε) in the first iteration.

• CDP-LDA+, which is an extended version of CDP-
LDA, introduces Laplace noise into N t

k and Nk
m in each

iteration to protect the training process.

B. Performance of HDP-LDA

We first validate the performance of our proposed HDP-
LDA algorithm in terms of both privacy protection and model
utility.

1) Defense Against Topic-based Attack: Fig. 4 reports the
privacy protection of HDP-LDA by validating its defending
ability against the Topic-based attack. In Fig. 4, HDP-LDA
achieves DP by setting proper clipping bound C and β to limit
the inherent privacy, according to Equation (7). While CDP-
LDA+ achieves DP by adding Laplace noise. As shown, for a
plain CGS algorithm without any intervention (referred to as
Non-Private in Fig. 4) and CDP-LDA+, the attack accuracy
curves show sharp increases with the iteration number even
in the strong privacy regime (ε = 1) of CDP-LDA+. This
is because both CDP-LDA+ and Non-Private can not limit
the inherent privacy loss in the topic sampling process, which
can accumulate rapidly with the iteration number. In contrast,
we can see that HDP-LDA can effectively defend against the
attack even when ε = 10. This demonstrates that HDP-LDA
which limits the inherent privacy can effectively prevent the
privacy leakage from the sampled topics.

2) Utility vs. DP: Fig. 5 compares the perplexity of HDP-
LDA and CDP-LDA+ under different privacy levels ε incurred
by the Laplace noise. In Fig. 5, HDP-LDA limits the inherent
privacy level as 10 in each iteration under which the topic
sampling process can be protected as shown in Fig. 4. The

curves marked by Limited Inherent present the perplexity of
HDP-LDA with limited inherent privacy as 10 but no Laplace
noise. Compared with Non Private (or plain CGS), Limited
Inherent shows a utility degradation since it has stronger
inherent privacy (through clipping the word-counts and setting
the hyper-parameter β larger).

However, the model utility of HDP-LDA is no worse than
CDP-LDA+, and much better on KOS dataset, even if CDP-
LDA+ incurs more privacy loss than HDP-LDA when taking
the inherent privacy loss into account. That is because in HDP-
LDA, we set a larger β in the training process as the prior
information which could improve the model robustness to the
noise.

C. Performance of LP-LDA

We then present the performance of our proposed LDP
based LDA algorithm LP-LDA for static dataset.

1) Utility vs. DP: Fig. 6 shows the perplexity of LP-
LDA in comparison with CDP-LDA under different levels
of local differential privacy. As we can see, the perplexity
curves of both LP-LDA and CDP-LDA show monotonous
decrease as ε increases, which illustrates the tradeoff between
the model utility and privacy. In particular, for stronger privacy
regime with smaller ε, the compared CDP-LDA performs
better than LP-LDA because the injected Laplace noise incurs
less randomness than the randomized response technique of
LP-LDA. However, for weaker privacy regime with larger ε,
LP-LDA performs much better than CDP-LDA, even close to
the non-private LDA model as ε keeps increasing.

2) Defense Against MIA: We also present the privacy
guarantee of LP-LDA by verifying the defending ability of
its LDA-based classification model against MIA. In particular,
we compare the membership inference accuracy between LP-
LDA and CDP-LDA. The baseline non-private model was
implemented by performing the CGS training process for 300
iterations. For reference, we also present the performance of
the target LDA-based classification models.

Fig. 7(a) shows the membership inference accuracy of MIA
on the LDA-based classification model generated by LP-LDA.
As shown, for both LP-LDA and CDP-LDA methods, the in-
ference accuracy curves are below that of the CGS algorithm,
which demonstrates that both privacy-preserving methods can
effectively mitigate the inference of MIA. Furthermore, both
inference accuracy curves show almost a monotonous increas-
ing trend with the increase of ε, which demonstrates that
smaller ε-DP could provide stronger defense ability.

Fig. 7(b) and Fig. 7(c) present the model utility (i.e., predic-
tion accuracy and F1 score) of the LDA-based classification
model generated by LP-LDA, versus the privacy levels ε. As
shown, both the prediction accuracy and F1-score for LP-LDA
and CDP-LDA increase with ε. This illustrates the general
tradeoff between the privacy level and model utility. Similar
to the results shown in Fig. 6, the LDA-based classification
model of LP-LDA performs better than CDP-LDA in the
weaker privacy regime. As ε keeps increasing, LP-LDA can
even approach to the plain CGS algorithm without extra noise.
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Fig. 4. Defense Against Topic-based Attack
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Fig. 5. Perplexity vs. Privacy level of HDP-LDA

1 2 3 4 5 6 7 8
480

500

520

540

560

580

600

P
e

rp
le

x
it
y

CDP-LDA

LP-LDA

Non-Private

(a) KOS

1 2 3 4 5 6 7 8

800

810

820

830

840

850

860

P
e

rp
le

x
it
y

CDP-LDA

LP-LDA

Non-Private

(b) NIPS

1 2 3 4 5 6 7 8

560

580

600

620

640

660

680

P
e

rp
le

x
it
y

CDP-LDA

LP-LDA

Non-Private

(c) Enron

Fig. 6. Perplexity vs. Privacy Level of LP-LDA

D. Performance of OLP-LDA

We finally present the performance of our proposed OLP-
LDA algorithm. In each experiment, the correlation factor λ
was set to 0.5, the reconstruction factor ω was set to 0.4, the
mini-batch size was set to 160 and the sizes of the prior dataset
for KOS, NIPS and Enron were set to 500, 200, and 1, 000
respectively.

1) Effect of Privacy Levels: Fig. 8 shows the average
perplexity (normalized by the number of mini-batches) of our
proposed OLP-LDA versus the number of mini-batches, under
different privacy levels. Particularly, the non-private solution
O-LDA is also compared for reference. As we can see in all
three subfigures, the perplexity curves for different privacy
levels decrease monotonically with the increase of batch
number, which demonstrates that OLP-LDA can iteratively

refine the model with the continuous training batches. And also
we can see, the different privacy level leads to different model
performance in terms of perplexity, which also illustrates the
tradeoff between the model performance and the privacy level.

2) Effect of the Prior Dataset Size: Fig. 9 depicts the
performance of OLP-LDA in comparison with its non-private
version O-LDA, under different sizes of the prior dataset.
The privacy level in OLP-LDA was set to 3.0 and the black
horizontal dashed lines marks the perplexity obtained by the
non-private batched CGS training algorithm. As expected, a
larger scale of the prior dataset leads to a better model per-
formance, that’s because a larger prior dataset could provide
more accurate prior knowledge for the word counts and reflect
more representative information of the whole corpus.
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Fig. 9. Perplexity of OLP-LDA vs. Prior Data Size

3) Effect of the Mini-batch Size: Fig. 10 shows the impact
of the mini-batch size on the model performance of OLP-
LDA. For comparison, we also present the model performance
of both OLP-LDA without the prior data and the non-private
algorithm O-LDA. As shown, the perplexity of OLP-LDA
without prior information is much larger than those of both O-
LDA and OLP-LDA with prior dataset. Besides, the perplexity
obtained by OLP-LDA with prior data can be very close to
that in the non-private O-LDA. These observations show that
the high effectiveness of our proposed OLP-LDA and validate
that prior data can better enhance the performance of OLP-
LDA. Furthermore, the perplexity of both OLP-LDA without
prior data and O-LDA fall with the increase of mini-batch size
respectively. However, for OLP-LDA, the perplexity does not
show a clear decreasing trend with the growth of the mini-

batch size, and even slightly increases, which means OLP-
LDA is relatively not sensitive to the mini-batch size. This is
because the prior dataset has sufficiently optimized the model
of OLP-LDA and achieved the approximate optimal model as
O-LDA.

VIII. CONCLUSION

This paper investigates the privacy protection of Latent
Dirichlet Allocation model training in the framework of dif-
ferential privacy. We present the first analysis on the intrin-
sic privacy-preserving effect possessed by Collapsed Gibbs
Sampling based LDA training algorithm and further propose
a centralized privacy-preserving algorithm (HDP-LDA) that
can prevent data inference from the intermediate statistics
in the CGS training. Concerning the privacy risks at the
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Fig. 10. Perplexity of OLP-LDA vs. Mini-batch Size.

central server, we also design an LDP solution of LP-LDA
by sanitizing the individual documents at the local side and
performing the model training on the reconstruction dataset
at the server side. For LDA training in a stream setting,
we further provide an online algorithm OLP-LDA that can
efficiently refine the training model on continuously perturbed
data batches. Both extensive analysis and experimental re-
sults on real-world datasets validate and demonstrate that our
proposed algorithms can achieve high model utility under
differential privacy.
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APPENDIX A
PROOF OF PROPOSITION 1

Proof. According to the observation in section IV-C1, we
need to compute an upper bound of the sensitivity ∆u =
maxk {∆ log pk} of the utility function u = log p.

As shown in Equation (1), the sampling probability on wi =
t ∈ D for any given topic k can be computed by

pk ∝ rk =
ntk + β∑V

t=1(ntk + β)
· nkm + α∑K

k=1(nkm + α)
(25)

And correspondingly, the sampling probability on w′i = t′ ∈
D′ can be computed by

p′k ∝ r′k =
nt
′

k + β∑V
t=1(ntk + β)

· nkm + α∑K
k=1(nkm + α)

(26)

Notably, here we assume nkm|D = nkm|D′ since if the word
replacement causes any change on nkm, which also means some
sampling process has been changed, then that change would
be observed by the adversary.

Then taking into account the normalization constants,
∆ log pk can be bounded by

∆ log pk = | log
p′k
pk
| = | log (

rk
r′k
·
∑
k r
′
k∑

k rk
)|

= | log (
rk
r′k

) + log (

∑
k r
′
k∑

k rk
)|

≤ | log (
rk
r′k

)|+ | log (

∑
k r
′
k∑

k rk
)|

≤ ∆ log rk + max
k
{| log

r′k
rk
|}

≤ 2 max
k
{∆ log rk} = 2 max

k
{| log

nt
′

k + β

ntk + β
|}

(27)

Until now, proposition 1 has been proved.

APPENDIX B
PROOF OF THEOREM 1

Proof. Let P (·) and P ′(·) denote the probability on D and D′

respectively, and for convenience of derivation, the conditional
probability Pr[|] are simply represented by Pr[], then

P ′(Si(D′) = oi|Si−1(D′) = oi−1) = P ′(Si(wr = t) = or)·
nt−1∏
h=1

P ′(Si(wh = t) = oth) ·
nt′∏
k=1

P ′(Si(wk = t′) = ot
′

i )·

P ′(Si(w−) = o−)

≤ eε
r
iP (Si(wr = t′) = or) · e

∑nt−1
h=1 εti

nt−1∏
h=1

P (Si(wh = t) = oti)

· e
∑n

t′
k=1 ε

t′
i

nt′∏
k=1

P (Si(wk = t′) = ot
′

i ) · P (Si(w−) = o−)

= eε
i
i+(nt−1)εti+nt′ε

t′
i P (Si(D) = oi|Si−1(D) = oi−1)

(28)
where nt and nt′ denote the counts of word t and t′ in D
respectively and w− denotes all the Unrelated words in D.

Then, according to Proposition 1 and Proposition 2, the
privacy loss in the i-th iteration can be bounded by

εi ≤ 2 max
k
{| log

nt
′

k + β

ntk + β
|+ (nt′ + nt − 1) · log (1 +

1

β
)}

Due to the arbitrariness of t′, εi can be further bounded by

εi ≤ 2{log (
maxk,t′ {nt

′

k }
β

+ 1)

+ (max
t′
{nt′}+ nt − 1) · log (1 +

1

β
)}

Until now, Theorem 1 has been proved.
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APPENDIX C
PROOF OF THEOREM 2

Proof. Given the replaced word wr ∈ D, the privacy loss of
wr in the i-th iteration εri can be bounded by Theorem 1. Now
consider the privacy loss in multiple iterations. Let S denotes
the CGS algorithm throughout the overall training process, Si
the algorithm in the i-th iteration.

P ′(S(D′) = o)

= P ′(S1(D′) = o1...,Si(D′) = oi, ...Sn(D′) = on)

=

n∏
i=1

P ′(Si(D′) = oi|S1(D′) = o1, ...,Si−1(D′) = oi−1)

≤
n∏
i=1

eεi · P (Si(D) = oi|S1(D) = o1, ...,Si−1(D) = oi−1)

= e
∑n
i=1 εiP (S1(D) = o1...,Si(D) = oi, ...)

= e
∑n
i=1 εiP (S(D) = o)

Until now, we have found the privacy loss εwr of wr over n
iterations.

However, due to the arbitrariness of wr, the upper bound of
the privacy loss incurred by CGS algorithm should be found
by traversing all the words in D. Therefore, the total privacy
loss ε can be bounded by

ε ≤ max
w∈D

{
n∑
j=1

εwi }

So far, Theorem 2 has been proved.

APPENDIX D
PROOF OF THEOREM 3

Proof. In each iteration of Algorithm 1, the privacy loss should
be divided into 2 parts: 1). privacy loss εL when protecting
the word counts information s = {ntk}, let A1(D) be the
protection process and s′ the sanitized word counts; 2). privacy
loss εI in the complete topic sampling process in this iteration,
let A2(s′, D) be the sampling process and o the outputs.

First consider the first part. Suppose D′ is constructed by
replacing wr = t ∈ D by t′, then this replacement will cause
ntk − 1 and nt

′

k + 1 on D′ for some k, and the added noise
will need to cover the two caused changes:

Pr[A1(D) = s′)]

=
∑
s′

Pr[..., (ntk) + ηtk = stk, ..., (n
t′

k ) + ηt
′

k = st
′

k , ...|D]

=
∑
s′

∏
h,j

Pr[(njh) + ηjh = sjh|D]

≤
∑
s′

∏
(h,j)6=(k,t),(k,t′)

Pr[(njh) + ηjh = sjh|D
′]

· e
εL
2 Pr[(ntk − 1) + ηtk = stk|D′] · e

εL
2 Pr[(nt

′

k + 1) + ηt
′

k = st
′

k |D′]

≤
∑
s′

eεLPr[..., (ntk − 1) + ηtk = stk, ..., (n
t′

k + 1) + ηt
′

k = st
′

k , ...|D′]

= eεLPr[A1(D′) = s′)]
(29)

Then consider the second part. According to Theorem 1, we
focus on the privacy loss on the Related words and the Replace

word. The privacy loss on the Related words can be computed
by

ε ≤ max
k
{∆ log pk} = max

k
{log

pk(w = t(t′)|D)

pk(w = t(t′)|D′)
}

= max
k
{log

(n
t(t′)
k )temp+β∑V
t=1((n

t
k)
′+β)

· nkm+α∑K
k=1(n

k
m+α)

|D

(n
t(t′)
k )temp+β∑V
t=1((n

t
k)
′+β)

· nkm+α∑K
k=1(n

k
m+α)

|D′
}

= max
k
{log

(n
t(t′)
k )temp + β|D

(n
t(t′)
k )temp + β|D′

} = 0

(30)

where t(t′) means t or t′ and the last step is because nt(t
′)

k has
been privatized by adding Laplace noise. Therefore, according
to Theorem 1, the privacy loss εI should be

εI ≤ 2 · log (
maxk,t′ {nt

′

k }
β

+ 1) ≤ 2 · log (
C

β
+ 1) (31)

where C denotes the clipping bound on ntk. Now, combine
Equation (29) and Equation (31),

Pr[A2(A1(D), D) = o]

=
∑
s′

Pr[A1(D) = s′] · Pr[A2(s′, D) = o]

≤
∑
s′

eεLPr[A1(D′) = s′] · eεIPr[A2(s′, D′) = o]

≤ eεL+εIPr[A2(A1(D′), D′) = o]

So far, Theorem 3 has been proved.
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