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AppAngio: Revealing Contextual Information of
Android App Behaviors by API-Level Audit Logs

Zhaoyi Meng, Yan Xiong, Wenchao Huang, Fuyou Miao, Jianmeng Huang

Abstract—Android users are now suffering severe threats from
unwanted behaviors of various apps. The analysis of apps’ audit
logs is one of the essential methods for the security analysts of
various companies to unveil the underlying maliciousness within
apps. We propose and implement AppAngio, a novel system that
reveals contextual information in Android app behaviors by API-
level audit logs. Our goal is to help security analysts understand
how the target apps worked and facilitate the identification of
the maliciousness within apps. The key module of AppAngio is
identifying the path matched with the logs on the app’s control-
flow graphs (CFGs). The challenge, however, is that the limited-
quantity logs may incur high computational complexity in the
log matching, where there are a large number of candidates
caused by the coupling relation of successive logs. To address
the challenge, we propose a divide and conquer strategy that
precisely positions the nodes matched with log records on
the corresponding CFGs and connects the nodes with as few
backtracks as possible. Our experiments show that AppAngio
reveals contextual information of behaviors in real-world apps.
Moreover, the revealed results assist the analysts in identifying the
maliciousness of app behaviors and complement existing analysis
schemes. Meanwhile, AppAngio incurs negligible performance
overhead on the real device in the experiments.

Index Terms—Contextual reveal, log matching, divide and
conquer, Android security.

I. INTRODUCTION

W ITH the growing popularity of the Android platform,
the threats from unwanted behaviors of various apps,

including malware and other potentially harmful apps, have
become more serious [1]. The apps may leak users’ private
information without consent, root users’ devices silently, send
premium SMS stealthily, etc., which have already affected the
dependability of the Android app ecosystem [2].

To ensure the security and privacy of Android users, security
analysts of various companies perform postmortem analysis
based on the specialized audit logs. Specifically, some device
manufacturers have collected log data of users from real
devices to diagnose potential Android attacks and generate
improved security policies [3], [4], [5]. Moreover, market
operators have adopted different techniques that perform app
auditing based on the logs from the configured emulators and
remove the detected malware from the regulated markets [6],
[7], [8]. In the scenarios, the more information the analysts
learn based on the logs, the more likely they are to unveil
underlying maliciousness. Therefore, the precise and complete
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reconstruction of app behaviors according to the logs is one
of the most crucial problems that the analysts concern about.

Many state-of-the-art techniques [7], [9], [10], [11], [12]
have been proposed to assist analysts in reconstructing An-
droid app behaviors based on runtime logs. For example,
DroidScope [9] reconstructs both the OS-level and Java-
level semantics by instrumenting the virtual machine. Cop-
perDroid [10] leverages system call-related information to
reconstruct app behaviors automatically. DroidForensics [11]
captures multi-layer forensic logs from the application level,
Binder level, and system-call level to reconstruct Android
attacks. These proposed schemes have achieved the behavior
reconstruction of many real-world apps, but there still exists
the problem of the lack of contextual information within
the reconstructed behaviors. Specifically, it is impractical to
deploy runtime mechanisms with heavyweight computations
(e.g., recording too much information from the system or
precisely tracking runtime information flows [13]) for behavior
reconstruction due to the resource-constrained feature of An-
droid devices or emulators. Instead, OS developers have to log
some key points (e.g., sensitive Android API calls or system
calls [10], [11]) to rebuild coarse-grained behaviors. However,
contextual information (e.g., guarding conditions of sensitive
actions [14], [15], obfuscated strings [16], malicious pay-
loads [17]) is unavailable in the app behaviors reconstructed
by the logging strategy mentioned above. The information is
valuable evidence to disclose the intentions of app behaviors.

We propose and implement AppAngio1 [18], a novel system
that reveals contextual information of Android app behaviors
by API-level audit logs. AppAngio gathers runtime logs about
the target app from the real Android device or emulator and
then extracts the path matched with the logs from the app’s
CFGs offline. The contextual information profiled from the
path enriches the semantics of the behaviors reconstructed
via the schemes mentioned above. Different from the above-
mentioned schemes that collect the low-level information from
the Android OS, AppAngio only requires to log Android API
calls for the contextual reveal, so the imposed performance
overhead is negligible. The goal of AppAngio is to help
security analysts understand how the target app worked and fa-
cilitate the identification of maliciousness within apps, instead
of directly reporting malicious app behaviors. Moreover, the
result of AppAngio can be used to complement existing anal-
ysis schemes (e.g., information-flow analysis [19], behavior
reconstruction [12]). To the best of our knowledge, AppAngio
is the first to reveal contextual information in Android app

1AppAngio stands for App Angiogram.
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behaviors by combining audit logs with apps’ bytecode.
The major challenge of implementing AppAngio is the high

computational complexity of the log matching. It is caused
by the coupling relation that is when a node is matched, its
successors are the candidates for matching subsequent logs.
There may be multiple nodes being candidates for matching a
log record involving reflection [20], inter-component commu-
nication (ICC) [21], transitions in the Android lifecycle [19]
and other mechanisms. For example, unresolved reflective
calls may hide the call hierarchies of different methods with
invoke() calls, which makes that the candidates of the calls
are undecided; imprecise ICC links and uncertain transitions in
the Android lifecycle may incur that the branches that are not
executed at runtime are regarded as candidate paths. What’s
worse, to evade malware detection, Android attackers may
abuse the mechanisms, which makes the number of possible
candidate paths increase exponentially.

To the best of our knowledge, the existing program analysis
techniques can solve a part of the aforementioned problems
respectively, but it is sophisticated to effectively manage dif-
ferent techniques for solving the various problems in practice.
For example, Harvester [16] can extract the runtime values of
reflective calls, but it does not support slices that span multiple
Android components. IC3 [22] correctly models the ICC
links that can be resolved statically. Some dynamic analysis
tools [13], [23] may extract the required information from the
OS. Because of their differences in the usage scenarios and
the implementation approaches, it is challenging to combine
them effectively for reaching expected results. For the log-
based techniques, Sherlog [24] and lprof [25] that combine
log messages and log printing statements in code to recon-
struct the execution sequence do not handle the anti-analysis
techniques (e.g., code obfuscation or string encryption [16]) on
statements. A straightforward method is to record enough logs
to distinguish each branch path, but the imposed performance
and space overhead is considerable.

We propose a divide and conquer strategy to address the
challenge. The computational complexity is reduced by divid-
ing the problem of the log matching into multiple independent
subproblems. In each subproblem, we leverage a small amount
of information from the runtime call stack to decompose the
coupling relation within the log matching and circumvent a
part of the defects of static analysis in the graph building. The
information helps locate log points2 individually and avoid
backtracking as much as possible during the log matching, so
our strategy achieves a precise and efficient path exploration.

As a result, AppAngio outputs the matched path with
sufficient contextual information that has wide practical usage.
Specifically, security analysts can leverage various methods
(e.g., manual checking, API usage analysis, machine learning-
based analysis) to extract concerned evidence for assessing the
maliciousness of the app’s behaviors. For instance, the path
can help the analysts generate signatures or extract features
automatically for machine learning-based schemes identifying

2In this paper, we use the term log point to refer to an invocation statement
that is used to call a logged API in app code.
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Fig. 1. An example for explaining the computational complexity of the log
matching for reflection.
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Fig. 2. An example for explaining the computational complexity of the log
matching for ICC.

malicious app behaviors. The analysts can also achieve a
precise information-flow tracking on the path.

Our main contributions are summarized as follows:
• We propose and implement AppAngio, a novel system

to reveal contextual information of Android app behav-
iors based on API-level logs, and meanwhile imposing
negligible performance overhead.

• We propose a divide and conquer strategy to achieve a
precise and efficient log matching.

• Our evaluations on the open-source benchmarks [26],
[27] and real-world apps [28], [29], [30] validate the
effectiveness of AppAngio.

The rest of the paper is organized as follows: Section II
introduces the motivating examples and AppAngio’s architec-
ture. Section III explains the collection and filtering of logs.
Section IV illustrates the details of the log matching. In Sec-
tion V presents experimental results on AppAngio. Section VI
discusses the limitations and future work. Section VII shows
the related work, and we conclude in Section VIII.

II. MOTIVATING EXAMPLES & ARCHITECTURE OVERVIEW

In this section, we first choose the simplified CFGs in
Figure 1 and Figure 2 extracted from two representative real-
world apps to illustrate the problem and the technical challenge
in implementing the log matching algorithm and how the
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TABLE I
THE CHANGES OF METHODS IN THE CALL STACK WHEN THE APP
EXECUTES ALONG THE RUNTIME EXECUTION FLOW IN FIGURE 1.

# Nodes The Sequence of Methods in the Runtime Call Stack
1 V1 ..., gdadbjrj.nglpsq.<clinit>
2 V2 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.gdadbjrj
3 V3 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.gdadbjrj, gdadbjrj.gdadbjrj
4 V4 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.gdadbjrj, gdadbjrj.gdadbjrj
5 V5 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.gdadbjrj, gdadbjrj.gdadbjrj
6 V6 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.gdadbjrj, gdadbjrj.gdadbjrj
7 V7 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.gdadbjrj, gdadbjrj.gdadbjrj
8 V8 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.gdadbjrj
9 V9 ..., gdadbjrj.nglpsq.<clinit>
10 V10 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.nglpsq
11 V3 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.nglpsq, gdadbjrj.gdadbjrj
12 V4 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.nglpsq, gdadbjrj.gdadbjrj
13 V5 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.nglpsq, gdadbjrj.gdadbjrj
14 V6 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.nglpsq, gdadbjrj.gdadbjrj
15 V7 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.nglpsq, gdadbjrj.gdadbjrj
16 V11 ..., gdadbjrj.nglpsq.<clinit>, gdadbjrj.nglpsq.nglpsq
17 V12 ..., gdadbjrj.nglpsq.<clinit>

algorithm helps analysts understand app behaviors. We then
describe the architecture of AppAngio.

A. Problem Statement & Technical Challenge

The problem of the log matching is how to find the matched
path with as few backtracks as possible. The computation
complexity increases as the number of backtracks increases.
Straightforward algorithms (e.g., the backtracking search) that
match the signatures of the logged APIs with the APIs
represented by nodes of CFGs do not apply to the problem.

We first explain the computational complexity of the log
matching with reflection by Figure 1. It is a CFG snippet
of a real-world app named ynqgas.mqbgseos, where the API
named invoke() is logged twice when the app runs as the
depicted execution flow. In experiments, we perform the log
matching by the backtracking search and then observe that
the visit order of nodes may be inconsistent with the runtime
execution flow. Specifically, the inconsistent order is 〈V1, V2,
V3, V4, V5, V6, V4, V5, V6〉. In this case, the algorithm needs
to perform a backtrack to find the correct path. Actually, most
logged APIs of this app are invoke(). Considering that the
straightforward algorithms cannot distinguish these log points,
they may perform a large number of backtracks to achieve the
log matching, which causes a high computational complexity.

We then use Figure 2 to explain the computational com-
plexity of the log matching with ICC. It is extracted from
the app named ActivityCommunication6 in DroidBench [26].
The app runs along the execution flow at the bottom
of the figure, where an Intent is passed through a
linked-list along 〈V4, V5, V6, V7〉 in the method named
OutFlowActivity.onCreate(). Due to the limited ca-
pabilities of static analysis tools (e.g., IccTA [31]) in tracking
the Intent through a list operation statically, two ICC links
are built (i.e., ICC link1 and ICC link2), where the for-
mer is correct but the latter is redundant. In this circumstance,
the straightforward algorithms (e.g., the backtracking search)
may explore along 〈V1, V2, V3, V4, V5, V6, V7, V11, V12, V13〉
mistakenly and then perform backtracks to find the correct
path. If there are multiple imprecise ICC links in the graph,
the computational complexity of the algorithms in achieving
the log matching may increase exponentially.

Application Level

Android Middleware

Logging APIs

Using Apps

Preprocessings

Log Matching

Send

The Path with
Contextual Information 

Logging Module

Matching Module 

Obtain

Log segmentsSupergraphs

Fig. 3. Architecture of AppAngio.

In practice, developers (e.g., attackers) may use the afore-
mentioned mechanisms in combination with other mecha-
nisms that are hard to be handled by managing existing
techniques [10], [13], [19], e.g., uncertain transitions in the
Android lifecycle [19], junk code insertion [32], which incurs
that the computational complexity increases to a greater extent.

B. Our Motivation

We use the logging information from the runtime call stack
to locate the log points individually and avoid backtracking
as much as possible. For the case in Figure 1, we position
each log point based on the method call sequence for calling
the method that contains the log point. Here, the method call
sequence is logged from the runtime call stack. As listed in
Table I, the APIs named invoke() in V5 at the fifth row
and the thirteenth row are invoked along different method call
sequences. Specifically, the method call sequence for invoking
the invoke() for the first time is listed in the fifth row of
Table I. To find the log point, we need to orderly visit the
listed methods (i.e., searching from V1 to V5 in Figure 1).
To continue finding the next log point of the invoke(), we
need to search back to gdadbjrj.nglpsq.<clinit>()
along the node sequence 〈V5, V6, V7, V8, V9〉 and then orderly
visit the methods listed in the thirteenth row of Table I (i.e.,
searching from V9 to V5 in Figure 1).

For the case in Figure 2, we decide the ICC link cov-
ered at runtime according to the recorded caller method of
Log.i(). Specifically, the caller method logged at runtime
is InFlowActivity.onCreate(), so we obtain that ICC
link1 is the correct path for the log matching and ICC
link2 needs to be pruned.

C. Architecture of AppAngio

We therefore design AppAngio that executes the API-level
logging and helps analysts identify the path matched with the
logs on the target app’s CFG. Figure 3 depicts the overall
architecture of AppAngio that contains two modules.
Logging Module. The module is deployed on users’ Android
devices or the configured emulators to capture the invocations
of specified Android APIs when the target apps run in realtime,
where the logged contents are elaborated to facilitate the log
matching. The logs are then sent to Matching Module for the
following analysis.
Matching Module. The module is run offline to reveal con-
textual information of app behaviors by the logs received from
Logging Module. It obtains the APK file from app markets or
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public class AppClass 
{

void CallerMethod () 
{

invoke callStmt(Param);
return;

}
}

Stack Buttom
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……

……

CallerMethod
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pushed in the stack Dep methods 

in total

<AppClass: void callStmt(Param)> Param Dep

A Log Record

Des Csi

Call Stack

[Method1,Method2,…,CallerMethod] 

Pseudocode 

PID TID

13861

Fig. 4. An example of the composition of a log record.

the Internet according to the logs. Then it achieves the log
matching as follows. It preprocesses the app code and the
logs to output supergraphs and log segments respectively. The
supergraph combines CFGs and the callgraph (i.e., CG) of
the app. Next, it positions each log point matched with a log
record on the corresponding supergraph individually and then
explores a path to connect the log points.

III. COLLECTING & FILTERING OF LOGS

This section first depicts the information that profiles app
behaviors and needs to be logged for achieving the log match-
ing. There may be a large number of information unrelated
to the target apps being logged in practice, so the section
then describes how to remove the noise from log data, which
ensures the precision and efficiency of the contextual reveal.

A. Logged Information

We collect log information from the OS to prepare for the
log matching. Specifically, a time-stamped sequence of log
records is represented as L. Since L is temporally ordered,
we use the sequence without timestamps to model L. A log
record is a tuple 〈PID, TID, Des, Csi〉. PID and TID indicate
the process and the thread printing the log record. Des contains
the invoked API’s descriptions including the signature of the
logged API, the used arguments, the reture value, etc. Csi is
the information extracted from the runtime call stack when we
log the API. Figure 4 depicts an example of the composition
of a log record, and the details are shown as follows.

• PID is used to bind an app to the log records that the app
produces, and TID is used to distinguish the log records
output by different threads.

• Des is used to obtain the invoked API, to parse the API
when it involves to some mechanisms, e.g., reflection and
ICC, and to distinguish the same API calls with different
arguments or return values. Note that the selection of the
logged information depends on analysts’ requirements,
which is discussed in Section V and Section VI.

• Csi is the crucial information to position the log point
matched with the log record in the CFG of the target
app. As shown in Figure 4, it includes the last K methods
pushed in the call stack (Las) and the depth of the stack
(Dep). Specifically, Las indicates the method call se-
quence for finding the method that contains the log point
matched with the log record. Dep presents the number of

TABLE II
THE TOP-3 FREQUENTLY-OCCURRING APIS IN THE LOG FILES OF 8 APPS.

App Name First-ranked API Second-ranked API Third-ranked API
Chrome dispatchMessage/56% getCountry/26.3% getText/7.8%
TencentMap dispatchMessage/56.2% newInstance/15.6% invoke/6.8%
Note dispatchMessage/56.6% write/21.3% getText/8.5%
SogouInput dispatchMessage/68.9% newInstance/9.6% getText/7.1%
YoudaoDict dispatchMessage/49.4% invoke/13% run/11.5%
Androidesk dispatchMessage/51.2% getText/10.5% newInstance/10.4%
RipTide GP dispatchMessage/88.6% getText/1.5% getCountry/1.2%
HungryShark3 dispatchMessage/84.1% newInstance/3.8% invoke/2.8%

invoked methods in the stack. With the elements, the log
point can be located in a method.

We decide the value of K to balance the effective-
ness of the log matching and the imposed runtime over-
head. On the one hand, the methods that are close to
the stack bottom do not need to be logged because
they are related to the OS for initialization tasks (e.g.,
com.android.internal.os.ZygoteInit()) rather
than the target app code. In other words, there is no node
matched with the methods in the CG built on the app byte-
code. Furthermore, considerable overhead is imposed when
collecting overmuch information from the stack for each log
record. On the other hand, a log point may not be precisely
positioned if the sequence from the entry point to the method
containing the log point is not recorded entirely. The trade-off
is discussed in Section V to decide the value of K.

B. Log Filtering

To ensure that the log matching is not affected by noise,
we remove the log records produced by the OS, nontar-
get apps, the implementation of Android framework APIs,
etc., from L. Since maliciousness of target apps is usually
hidden in the code of host apps and embedded third-party
libraries [17], we focus on revealing contextual information
from them rather than the aforementioned noise. As mentioned
in Section III-A, PID is used to remove the log records
produced by the processes whose process IDs are different
from the target app. However, this approach cannot be used
to identify the log records produced by the implementation of
Android framework APIs used in the target app. For example,
the implementation of onCreate() requires to call the
API named <java.lang.Class: java.lang.Object
newInstance()>. The log record of the API call is not
our concern but has the same PID as the target app. We
adopt a solution that removes the log records based on class
names of the methods that contain the corresponding log points
(e.g., AppClass is the class name of CallerMethod() in
Figure 4). The class names indicate if the APIs are invoked
by the code of Android framework libraries. For instance,
android.app.∗ and java.security.* are the prefixes
of class names of the Android framework libraries.

We experiment to validate the necessity of the log fil-
tering with the configuration in Section V-A. Table II lists
the top-3 frequently-occurring logged APIs and their pro-
portions in the log files generated by 8 apps without the
log filtering. We find that more than 50% of logged APIs
are dispatchMessage(). After further investigation, we
know that the API is invoked by the code of the Android
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Algorithm 1 The implementation of our strategy.
1: procedure LOGMATCHING(L, CFGs, CG)
2: // Preprocessing
3: Set<tid,List<ls,m>> = logSplit(L)
4: Set<tid,List<ls,sg>>

= genGraph(CFGs,CG,Set<tid,List<ls,m>>)
5: // The divide and conquer strategy
6: ListEp = ∅, Set<tid,cp> = ∅
7: for each < tid, List<ls,sg> > ∈ Set<tid,List<ls,sg>>

do
8: for each <ls, sg> ∈ List<ls,sg> do
9: ListPos = ∅

10: for each lr ∈ ls do
11: pos = logPointPosition(lr)
12: Listpos = Listpos ∪ pos
13: ep ← pathExploration(sg, Listpos)
14: Listep = Listep ∪ ep
15: combinedPath = pathCombination(Listep)
16: Set<tid,cp> = Set<tid,cp> ∪ <tid, combinedPath>

framework library named android.os.Looper at the sys-
tem level. Similarly, newInstance() and getText() are
commonly invoked by the code of android.view for UI
operations in the experiment. We need to filter the log records
because they are a large part of the output logs, but are not
our concern for the contextual reveal in apps.

Note that our main contribution is achieving the precise and
efficient log matching for revealing contextual information of
app behaviors, instead of designing novel logging and filtering
techniques. Therefore, we adopt the standard logging scheme
as mentioned before. The experimental results in Section V
demonstrate that it is sufficient for our work to achieve the log
matching and the contextual reveal by the adopted scheme.

IV. LOG MATCHING

We depict how AppAngio reveals contextual information of
app behaviors after obtaining the required logs in this section.
The output results are program paths that contain various
details of app behaviors, on which security analysts are more
likely to identify hidden maliciousness of the target apps.

A. Preprocessing

In the following, we first explain how to split the log
sequence L received from Logging Module and then introduce
the graph structure used by AppAngio to identify the path
matched with audit logs.

1) Log Splitting: AppAngio splits L into multiple segments
based on TID and the logged callback methods that are invoked
by the Android framework [19]. The log records of L are
produced by different threads, and meanwhile, log points
matched with the log records are located in different CFGs.
Hence, the computational complexity is huge if performing
the log matching on the intertwined logs directly.

To facilitate the log matching, we first split L into multiple
subsequences, each of which contains the log records with the
same TID. In each subsequence, the produce of the log records
between two successive logged callback methods stems from
the invocation of the former method because the subsequence
is temporally ordered. Therefore, for each subsequence, we
obtain a list of log segments each of which consists of a
callback method and the log records between this method and
the next logged callback method.
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Search for the 1st log record
Search for the 2nd log record
Search for the 3rd log record

Fig. 5. Matching a log segment with the graph in Figure 1 by our strategy.

2) Supergraph Construction: We build supergraphs for
each logged callback method based on the CFGs and the CG
of the target app. Unlike traditional console applications which
have main() as entry points, there is no common entry point
for Android apps. They await orders from users (e.g., clicking
a button), systems (e.g., in a low battery state), or other
apps to launch a specific callback method. Existing static
analysis schemes [19], [22], [31] predefine the calling orders
of the callback methods in a dummy-main method, which is
regarded as the entry point of an app. Nevertheless, we find
that not all callback methods are collected in the dummy-main
method. For instance, a dummy-main method of an app named
com.shuqi.paid.controller built by FlowDroid misses a method
named com.shuqi.controller.Main.onStart().
Furthermore, the sophisticated maintenance of the calling
order of callback methods may be error-prone, which is
illustrated in Section V-C.

To solve the problem, AppAngio orderly extracts invoked
callback methods from L of the target app and builds a
supergraph for each of them. The root node of each super-
graph is the head node of the CFG of a callback method,
and a supergraph is built by combining the CFGs for all
methods that are reachable from a callback method via the
app’s CG. This scheme recognizes all the callback methods
invoked at runtime and models a definite calling order for
them, which complements the existing static analysis schemes.
Furthermore, a callback method corresponds to a supergraph,
so we get the matching relation between each log segment
and a supergraph based on the callback method of the log
segment. Note that AppAngio aims to circumvent a part of
the inherent defects of static analysis in building the precise
graph structure based on the runtime information, instead of
thoroughly solving the problem.

B. Our Divide and Conquer Strategy

We design a divide and conquer strategy to achieve the log
matching by local search instead of using the backtracking
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Fig. 6. The details of the call stack when we log Callback Method and
invoke() in gdadbjrj.gdadbjrj() respectively.

search globally. Algorithm 1 describes the implementation
of our strategy for the log matching. As explained in Sec-
tion IV-A, the algorithm splits the log sequence into multiple
log segments based on TID and the logged callback methods
and then constructs supergraphs for the methods (lines 3-
4). By the preprocessing, the strategy divides the problem
of matching a log sequence with the app code into multiple
subproblems, each of which matches a log segment with
a supergraph. Each pair of matching relation is saved in
List<ls,sg>. Next, the algorithm divides the subproblem into
multiple subsubproblems, each of which positions the log
point matched with a log record in the corresponding super-
graph based on the logged call stack information (lines 10-12).
After the positions are decided, the algorithm explores the path
corresponding to the runtime execution flow to connect the log
points orderly in the supergraph (lines 13-14). When the paths
matched with each log segment are obtained, the algorithm
combines them to generate the result (line 15). Finally, the
algorithm saves the mapping between TID and the combined
path in Set<tid,cp> (line 16).

Figure 5 depicts the process of our strategy in matching a
log segment with the graph snippet in Figure 1. We notice
that the APIs of the log points matched with the first two
log records are invoked along the same method call sequence,
while the method call sequence for invoking the API of the
log point matched with the third log record is different from
them. Considering that the log records are ordered temporally
in a program execution and the path extracted from the
graph of the program is matched with the log sequence, the
log points on the path are matched with the corresponding
log records orderly. Therefore, the APIs for the first two
log records are continuously invoked in the method named
gdadbjrj.gdadbjrj() at runtime, but the API for the
third log record is invoked along another method call sequence.
As shown in Figure 5, our strategy explores the three log points
along the three path segments orderly on the graph.

1) Positioning Log Points: Our strategy finds the method
that contains the log point matched with a log record in the
supergraph based on the Csi in the log record. We describe
the position of a log point by a tuple 〈Numreq , Las〉. As
depicted in Figure 6, Numreq is the number of methods
that are pushed in the runtime call stack after the callback
method (e.g., Callback Method) but are not included
in Las, and Seq is the method call sequence from the
callback method to the method that contains the log point

Algorithm 2 The implementation of the path exploration.
1: Stackm = ∅
2: procedure PATHEXPLORATION(N)
3: if N is a head node of method m then Stackm.push(m)
4: if Stackm.length() < Numreq + 2 then
5: for each n ∈ N.successors do PATHEXPLORATION(n)
6: if Stackm.length() ≥ Numreq + 2 then
7: d = Stackm.length() - (Numreq + 1)
8: if Stackm.sub(Numreq + 1,Stackm.length()) == Las.sub(0,d) then
9: if d == Las.length then Find a log point in N

10: for each n ∈ N.successors do PATHEXPLORATION(n)
11: else
12: if N is a head node then Stackm.pop()
13: else
14: if N is a tail node then Stackm.pop()
15: for each n ∈ N.successors do PATHEXPLORATION(n)

(e.g., gdadbjrj.gdadbjrj()) in the stack. We calculate
Numreq by the following equation:

Numreq=

{
Depcur − Depinit − K − 1 if Las ( Seq
0 if Seq ⊆ Las

, where Depcur is the depth of the call stack when we log the
API invoked at the log point (e.g., invoke() in Figure 6),
Depinit is the depth of the call stack when we log the callback
method, and K is the length of Las.

Based on this equation, if Seq is a subset of Las, our
strategy positions the log point along the method call sequence
in Seq without Numreq. If Las is a proper subset of Seq,
the strategy uses Numreq to help position the log point.
Specifically, there may be multiple method call sequences
between the callback method and the first method of Las (e.g.,
gdadbjrj.nglpsq.<clinit>() in Figure 6) on the
supergraph. Hence, the strategy leverages Numreq to indicate
the number of methods that need to be traversed from the
callback method before searching along Las.

2) Exploring the Path: Our strategy explores the path corre-
sponding to the runtime execution flow by orderly connecting
the log points matched with a log segment. Overall, the
strategy addresses the log matching during the path exploration
according to the consistency between the call stack recorded
when running the target program and the method call sequence
generated when traversing the supergraph. Specifically, we
need to solve two problems as follows.

The first problem is how to explore the path with as few
backtracks as possible. As explained in Section II-A, straight-
forward searches may cause high computation complexity.
Therefore, we design Algorithm 2, in which we aim to ensure
the consistency of three pairs of elements during the log
matching: 1) the length of Stackm and the length of Seq shown
in Figure 6, 2) the API invoked by the log point and the API
in the log record, and 3) the last K methods pushed in Stackm
and Las in the log record.

The algorithm saves the methods being visited on the
explored path in Stackm one by one. If the length of Stackm
is less than (Numreq + 2), it performs the pure backtracking
search to increase the length (lines 4-5). When the length of
Stackm is greater than or equal to (Numreq + 2), it searches
with keeping that the method sequence in Stackm is consistent
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Fig. 7. Two cases of updating the supergraph snippet for invoke().

with Las (lines 6-8). After the method that contains a log point
is visited, it searches the method’s CFG to find the matched
log point (lines 8-10). If the method sequence in Stackm is
inconsistent with Las, it stops exploring the method at the top
of Stackm (line 12) or searches back to the visited methods
along the return edges of the supergraph (lines 14-15). The
path exploration finishes when all log points are connected.

Our strategy addresses the log matching for recursive calls.
With the aforementioned consistency, the strategy differenti-
ates the log points invoking the APIs at different recursion
depths. Even if the APIs are the same or some methods in
the runtime call stack are not logged due to the insufficient
length of Las, the strategy searches the method recursively or
exits from a recursion based on the difference of the length
between Stackm and Seq.

The second problem is how to decide the successors of
the nodes, where the represented APIs involve some Android
mechanisms (e.g., ICC, reflection) that make callee methods be
determined dynamically. Supergraphs built by static analysis
are imprecise because of unresolved reflective calls [20],
imprecise ICC links [22], etc. To circumvent a part of the
inherent defects of static analysis, our strategy updates the
successors of the nodes according to the used arguments in log
records. It supports handling many cases for reflection, ICC,
etc.. Due to the page limit, we show a solution for invoke()
as follows. Our strategy obtains the signature of the invoked
method from the recorded arguments and then updates the
supergraph based on the two types of methods.

• The method defined in the Android framework libraries,
e.g., sendTextMessage(). As shown in the left part
of Figure 7, our strategy inserts a new node, where the
statement calls the method m explicitly, in the supergraph.

• The method defined in the host app code or third-party
libraries, e.g., gdadbjrj.gdadbjrj() in Figure 5.
Our strategy not only inserts a new node but also embeds
a sub-supergraph in the original supergraph where the
root node is in the head node of the method’s CFG.

3) Combining Explored Paths: We obtain the final results
matched with L by combining the explored paths according
to the TID and the logging sequence of callback methods. We
first connect the nodes of the paths according to the execution
orders where the same nodes are merged, if there are multiple
paths matched with a log segment. Next, for the log segments
with the same TID, we orderly connects the last node of the
path matched with the previous log segment to the first node

of the path matched with the next log segment.

V. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of AppAngio, we seek to
answer the following questions:

• RQ1: How is the performance overhead and space con-
sumption imposed by Logging Module of AppAngio?

• RQ2: Whether our log matching can handle various
scenarios of Android apps in micro-benchmarks?

• RQ3: How precise and efficient is our log matching
on real-world apps? Whether contextual information is
correctly revealed via AppAngio for real-world apps?
Whether the revealed details of AppAngio complement
the reports of existing techniques?

• RQ4: Whether AppAngio helps analysts disclose mali-
ciousness of app behaviors? How to make experts analyze
the matched paths and retrieve information efficiently?

A. Experimental Setup

1) Implementation: We implement a prototype of AppAn-
gio. Logging Module can be deployed on real devices or
emulators with different Android versions, and here we choose
to modify the source code of Android 5.0.1 to achieve the
logging mechanism and flash its system image into the device
of Nexus 4. Moreover, Matching Module is developed on
Soot [33] and extends some off-the-shelf interfaces [19], [20],
[31] to generate the supergraphs and rebuild the call relations
for reflection, ICC, etc. The module is deployed on a server
with Intel Broadwell E5-2660V4 2.0GHz CPU, 128G memory
and Ubuntu 16.04 LTS (64 bit).

2) Datasets: We randomly select 3000 market apps from
AndroZoo [28] and also collect 3000 malware samples, in-
cluding 1000 samples from MalGenome project [29] and 2000
samples from VirusShare [30]. Then we also choose the open-
source test suites of DroidBench [19] and ICC-Bench [34] as
our micro-benchmarks.

3) Selection of Logged APIs: AppAngio supports the flex-
ible selection of logged APIs, which means that security
analysts can set the APIs in their released Android OSes based
on the requirements of security analysts. Note that the analysts
do not need to make major modifications to the OS, because
AppAngio only logs the API calls rather than low-level system
operations. In this experiment, we log 166 APIs about privacy
leaks by reviewing previous literature [19], [31], [35], because
the analysis of privacy-breaching behaviors is one of the most
important tasks for the Android security [19]. The APIs are
under framework/, libcore/ and art/ directories of the
Android OS source code and in the following three types.
Event Handlers. The event handlers are a series of callback
methods related to the state transitions of Android lifecycles,
GUI operations and system events [36]. An event handler
contains the semantic of behavioral activation.
Privacy-related Operations. These are the operations of
privacy leaks. We choose the frequently-used operations from
sources or sinks specified in SuSi [37]. The logged operations
are divided into the following categories: account, bluetooth,
device information, database, file, network, SMS, etc.
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Fig. 8. The statistics under different values of K.

ICC and Reflection-based Operations. These logged op-
erations are used to update supergraphs. Specifically, we
record the origin, the target and the invoked API for each
ICC link. We also record the reflection-based APIs and their
used arguments. The arguments indicate dynamically loaded
classes, invoked methods, etc.

AppAngio can log native APIs invoked via JNI by adding
log printing statements at the C/C++ level in the files under
libnativehelper/ directory of our Android OS source
code. For example, it logs the APIs named GetMethodID(),
CallVoidMethod() and CallObjectMethod(), etc.,
in jni.h file to obtain the signatures and the arguments of
the invoked Java APIs. Similarly, it can log different native
APIs invoked via JNI even if native code is obfuscated.
Since the Soot framework is not capable of processing native
code, neither as source code nor as binaries [38], we do not
experiment to reveal contextual information of app behaviors
in native code temporarily, which is discussed in Section VI.

4) Deciding the value of K: Since the value of K is related
to practical factors (e.g., the selection of logged APIs, the per-
formance of the device), we perform empirical experiments as
follows. To balance the effectiveness of the log matching and
the runtime performance of the Android device as explained
in Section III-A, we aim to find the maximum ratio of the
coverage of the log points whose depths are less than or equal
to the value of K and the performance overhead of the device
under different values of K. Here, the depth is the longest
length of the method call sequence from the entry point to the
method that includes a log point on an app’s callgraph. When
the depth is less than or equal to the value of K, the method call
sequence is completely saved in a log record. Moreover, when
the value of K increases, more call stack information is logged,
so the performance overhead of the device also increases.

We obtain the aforementioned coverage and performance
overhead from the apps and the Android device respectively.
On the one hand, for each app in our datasets, we first
collect the depths of the log points of the selected APIs in
the corresponding callgraph. We then calculate the cumulative
distribution function (CDF) of the APIs that can be positioned
under different values of K. On the other hand, we use
a benchmark named AnTuTu to measure the performance
overhead of the smartphone under different values of K,
where the measured smartphone is not installed any third-
party app. AnTuTu measures the device automatically and
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Fig. 9. The scores of four detailed test scenarios of AnTuTu.

comprehensively, which reduces our burden on designing test
methods and collecting related data separately. The adoption
of AnTuTu in many literature [9], [11], [13] also demonstrates
its reliability. Therefore, the score reported by AnTuTu is our
reference to assess the performance of the device. Under each
K, we run AnTuTu five times on the device. After each run,
AnTuTu output a total score that is the sum of the scores of
four detailed test scenarios (i.e., CPU, GPU, Memory, UX),
where the higher scores present better device performance. We
calculate the average of the total scores for each K and obtain
the overhead by comparing it with the average score of the
device without the runtime logging.

Based on the collected data, we fix K as 11 in our evalua-
tion. Figure 8 depicts the statistics of the CDF and the average
performance overhead under different values of K, where the
device is not equipped with Logging Module when K is 0.
Specifically, the depths of most log points (97.88%) are less
than or equal to 11, and the average performance overhead
gradually increases (from 1.13% to 2.73%) when the value
of K increases from 1 to 16. When K is 11, the ratio of the
aforementioned two indicators is the biggest.

B. RQ1: Performance Overhead and Space Consumption

1) Performance Overhead: We analyze the performance of
the device based on the experimental results in Section V-A4.
The experiments show that our logging module that aims to
collect API-level logs incurs negligible performance overhead
(1.98% on average).

Figure 9 depicts the detailed results of the device on the
four test scenarios of AnTuTu with and without AppAngio
respectively. Specifically, for the tests of CPU, GPU and
Memory, the changes of the median value of scores when
AppAngio is deployed on the device are negligible (less than
70), while the change for the UX test is 739. After further
analysis, we find that the change depends on the selection of
logged APIs. The UX test intensively performs the operations
of I/O, data processing, etc., which makes the involved APIs
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be logged frequently. In daily use, we do not feel the affect
of AppAngio on the performance of the device.

2) Space Consumption: To analyze the space consumption
of our logging scheme, we randomly install 8 apps including
Chrome web-browser, Tencent Map, and some other utility and
game apps on the device and run them separately. We manually
operate each app up to 20 minutes to cover its functionalities
as many as possible and obtain the log file via the command
“adb logcat”. To exhibit the space consumption of our logging
scheme intuitively, we make a comparison with the log file
sizes in the COTS device and the device with AppAngio. To
get the log files of the COTS device, we first obtain the log
files from the device with AppAngio and then remove all the
log records generated by Logging Module of AppAngio.

The comparative results are shown in Figure 10. We notice
that the space overhead of AppAngio, which increases the log
file size by 144 KB on average, is related to various factors,
e.g., the functionalities of testing apps, the embedded libraries,
the logged APIs. Note that the log files from the device with
AppAngio are generated when the apps are operated inten-
sively, so the log file sizes in Figure 10 are close to the worst-
case results. Moreover, to make a comprehensive evaluation
for AppAngio in experiments, we log 166 APIs, which is
more than the number of logged APIs reported by existing
tools (e.g., DroidForensics [11] logs 21 Android APIs). When
fewer APIs are selected to log, the space overhead is reduced.

According to the aforementioned analysis, security analysts
can choose to customize AppAngio in practice as follows. For
example, AppAngio can be designed to gather and upload log
data periodically, and meanwhile, analysts can set the upper
limit of the log file size and allow to overwrite the file when
the file size exceeds the limit. AppAngio can also maintain
a whitelist configured by analysts to avoid logging for some
trusted apps (e.g., YoudaoDict or TencentMap developed by
the well-known enterprises). Moreover, AppAngio can output
the log records with a more compact format.

C. RQ2: Effectiveness on Micro-benchmarks

We regard the cases in the micro-benchmarks as the ground
truth to examine if AppAngio can handle a variety of sce-
narios of Android apps. DroidBench and ICC-Bench are the
widely-adopted test suites to measure the effectiveness of

TABLE III
THE REPRESENTATIVE DETECTION RESULTS ON MICRO-BENCHMARKS (•

= TRUE POSITIVE, � = TRUE NEGATIVE, ◦ = FALSE POSITIVE, � = FALSE
NEGATIVE, DB = DROIDBENCH, IB = ICC-BENCH).

AppName FlowDroid + IccTA FlowDroid + AppAngio /
FlowDroid + IccTA + AppAngio AppAudit

General Java
DB-VirtualDispatch2 •◦ •� •�
DB-VirtualDispatch3 ◦ ◦ �
DB-StaticInitialization1 � • •
DB-StaticInitialization3 � • •
DB-StringFormatter1 � • �
DB-Serialization1 � • �

Android Specific
DB-PrivateDataLeak3 � • �
DB-PublicAPIField2 � • •

Inter-Component Communication (ICC)
DB-ActivityCommunication2 •�◦ •�� ���
DB-ActivityCommunication3 •� •• ��
DB-ActivityCommunication4 � • �◦ • • �� ����
DB-ActivityCommunication5 •• •• ��
DB-ActivityCommunication6 •� •• ��
IB-PrivateDataLeak3 � • �

Callbacks
DB-Button3 • • �
DB-MethodOverride1 • • •

Threading
DB-AsyncTask1 • • �
DB-Executor1 • • �

Arrays and Lists
DB-ListAccess1 ◦ ◦ �
DB-ArrayToString1 ◦ • �

Sum, Precision, Recall, and F1 measure
True positives #, TP 97 111 36
True negatives #, TP 23 28 31
False positives #, FP 11 6 3
False negatives #, FN 14 0 75
Precision, p = TP

TP+FP 89.81% 94.87% 92.31%
Recall, r = TP

TP+FN 87.39% 100% 32.43%
F1 measure, 2pr/(p+ r) 0.89 0.97 0.48

Android analysis tools. The cases include various program-
ming schemes of Android apps involving different Android-
specific challenges (e.g., modeling lifecycle, asynchronous
callbacks, ICC). Furthermore, the amount of code in each
app is small (i.e., 56 LOC on average for each app), so it
is suitable to analyze the code of each app detailedly. We
exclude 6 apps from DroidBench because they are designed
for testing in Android emulators and inter-app communication,
which are not considered in AppAngio temporarily. Another
excluded app in ICC-Bench cannot normally run due to the
illegal integer assignment. Therefore, we choose 113 cases in
DroidBench and 19 cases in ICC-Bench for the evaluation.

1) Complmentations to Static Data-flow Analysis: To val-
idate the reliability of our log matching in handling different
Android scenarios, we verify if the revealed path of AppAngio
complements the data-flow detectability of FlowDroid [19]. In
comparison, we choose IccTA [31] to improve the accuracy of
ICC-based data-flow tracking in FlowDroid. Furthermore, we
select an efficient hybrid analysis tool named AppAudit [6]
to test the apps in micro-benchmarks. AppAudit’s implemen-
tations are unavailable, so we cannot complement its data-
flow detectability directly but regard its analysis results as the
reference to assess our complementations on FlowDroid. It
provides a website for uploading APK files and receiving anal-
ysis results. Since AppAudit does not treat some sinks (e.g.,
Log.d()) as sensitive operations, to avoid reducing recall
caused by this reason, we replace all the sinks in the code of
testing apps with sendTextMessage() beforehand.

We review the apps’ code and manually operate them on
the real device to collect logs. Then we combine the revealed
path of each app with its inter-procedural control-flow graph
(i.e., ICFG) built by FlowDroid to produce the complemented
ICFG automatically. The complementation is to rebuild the
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TABLE IV
THE MATCHING RESULTS OF OUR DIVIDE AND CONQUER STRATEGY AND THE PURE BACKTRACKING SEARCH FOR THE HIGHLIGHTED CASES.

App Package Name # of Matched Logs # of Nodes # of Branch Nodes Our Divide and Conquer Strategy Backtracking Search
Time (sec) # of Visited Nodes # of Backtracks Correct? Time (sec) # of Backtracks

ynqgas.mqbgseos 15713 2634 604 531.8 2236 96022
√

>3600 >421920
ngjvnpslnp.iplhmk 3507 1830 953 42.3 260 70939

√
>3600 >1382039

com.android.system.admin 1231 2371 1176 84.3 116 253823
√

>3600 >2171368

missed call relations of some APIs (e.g., for unresolved
reflective calls), prune the call relations uncovered at runtime
(e.g., for imprecise ICC links), and decide the method call
sequence (e.g., for uncertain transitions in Android lifecycle)
in the ICFGs. We modify the implementation of FlowDroid
to make it perform data-flow analysis on the original and
complemented ICFG respectively.

The experimental results show that FlowDroid achieves
the data-flow tracking for more apps in micro-benchmarks
with the complementation of AppAngio. The representative
detection results are shown in Table III, where each symbol
represents a detection result for a data-flow path and the
number of symbols in a row means the number of data-flow
paths detected from an app. In the table, precision and recall of
FlowDroid increase from 89.81% and 87.39% to 94.87% and
100% respectively after the complementation. Meanwhile, the
precision of the complemented FlowDroid is higher than the
precision of AppAudit. Note that the results of FlowDroid +
AppAngio and FlowDroid + IccTA + AppAngio are the same,
because in the complemented ICFGs the precise ICC links of
IccTA are preserved and the imprecise ICC links of IccTA are
pruned according to the runtime information of AppAngio.

Furthermore, limited by the nature of static analysis, some
cases (e.g., ListAccess1 or VirtualDispatch3) still cannot be
solved by FlowDroid even if the ICFG is complemented.
AppAudit uses the dynamic execution to check if the data
leaks detected by static analysis can happen in real execution,
so it produces less false positives.

2) Case Studies: By manual checking, we confirm that the
ICFGs built for various scenarios of Android apps are all
complemented correctly. We use three representative cases to
show the effectiveness of AppAngio in complementing ICFGs.
Deciding the Method Call Sequence. In Button2, the data
leakage will occur only if the user clicks a button in a specific
order. We collect different log sequences corresponding to
different UI operating orders to perform the log matching and
complement the ICFG of the app according to the matched
paths. The results show that the data leakage is detected by
FlowDroid on only one of the complemented ICFG, which
validates that the call relations uncovered at runtime are
precisely pruned from the original ICFG and the method call
sequence is decided based on the sequence of log records.
Amending the ICFG. The result of AppAngio helps find a
design flaw of FlowDroid in modeling the lifecycle. Specifi-
cally, there is an app named MethodOveride1 in DroidBench.
FlowDroid models onCreate() as the first method in-
voked in the dummy-main method of the app. Actually, the
overridden method attachBaseContext() in this case
is invoked before onCreate() at runtime. The problem is
corrected by combining the original ICFG with the revealed

path, because the path indicates the real execution sequence of
the methods. This flaw may cause false negatives for detecting
some sophisticated cases, though it does not affect the result
of the data-flow analysis in MethodOveride1. Furthermore,
malicious developers may use this flaw to elude the detection
of FlowDroid deliberately.
Differentiating Log Points. The case of ImplicitFlow3 in
DroidBench exemplifies the method of AppAngio in differ-
entiating the same log points on the two branches of the
same method. There are two Log.i() in the method named
leakInformationBit(). It is insufficient to differentiate
which log point was executed at runtime only by the signature
of Log.i(). As mentioned in Section III-A, our tool can
be extended to log the arguments of APIs to differentiate log
points. Specifically, AppAngio distinguishes the two log points
because the second arguments of them are different (i.e., one is
”0” and the other is ”1”). If the arguments of the logged APIs
cannot be determined statically sometimes, e.g., the strings are
preprocessed by encryption or code obfuscation, AppAngio
supports logging more auxiliary information (e.g., the types
of the used arguments or the type of the return value) to
differentiate the branch paths.

D. RQ3: Effectiveness of Log Matching and Contextual Reveal
for Real-world Apps

To verify the effectiveness of AppAngio in the log matching
and contextual reveal, we cooperate Monkey [39] and manual
operations to execute apps and collect logs. Specifically, we
use Monkey to generate and input 4000 pseudo-random events
for each app automatically, and perform manual operations to
cover each app’s functionalities as many as possible and help
Monkey handle the circumstances like adding friends, login,
etc. We finally collect the logs of each app from the device
and execute Matching Module. More time needs to be spent
on manual efforts (more than 20 minutes for each app on
average), including operating apps and analyzing the revealed
contextual information, than on the automated testing or the
log matching (less than 10 minutes for each app on average).
Therefore, the size of our test set is not as large as automatic
tools [1], [37]. We randomly choose 800 real-world apps from
our datasets, among which 400 apps are from AndroZoo and
400 apps are from MalGenome project and VirusShare.

1) The Effectiveness of Our Divide and Conquer Strategy:
AppAngio achieves the log matching on all apps in our test set
and meanwhile, the identified paths are ensured to be matched
with runtime execution flows by manual checks of at least
two Android experts. To highlight the effectiveness of our
strategy in the log matching, we choose the cases of three
real-world apps from our test set in Table IV. These apps
contain a large number of reflective calls, so almost all logged
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TABLE V
THE COMPARISON OF INFORMATION OBTAINED FROM THE REPORTS OF VIRUSTOTAL AND FROM THE MATCHED PATHS OF APPANGIO FOR 18 APPS (THE

FIRST 10 APPS ARE MALWARE SAMPLES AND OTHERS ARE MARKET APPS).

App Package Name Reports of VirusTotal Information Revealed from the Matched Paths of AppAngio

1. ynqgas.mqbgseos

1. 82 methods, e.g., java.lang.String.toCharArray(), are invoked
via reflection
2. IMEI, IMSI, phone number, etc. are obtained
3. Detailed IP address, HTTP requests, DNS resolutions fornetwork communication
are used

1. Almost all methods in the path (e.g., java.lang.String.toCharArray())
are invoked by the reflective API named invoke()
2. Almost all method names, class names and strings in the path are obfuscated, e.g., strings are
obfuscated as 13GatVBbt3yV<b, Ba9@3R9aR9o+a7, etc.
3. There is a suspicious conditional statement that checks if each character of a string can
be transferred to a value with the integer type, which is explained in Section V-D1
4. The user’s IMEI and IMSI are obtained by the embedded library gdadbjrj.tbhcwnn.*
5. Network connection is executed by the code of the host app

2. ngjvnpslnp.iplhmk

1. 57 methods, e.g., java.lang.System.arraycopy(), are invoked
via reflection
2. IMEI, IMSI, phone number, etc. are obtained
3. Detailed IP address, HTTP requests, DNS resolutions for network communication
are used

1. Almost all methods in the path (e.g., java.lang.System.arraycopy())
are invoked by the reflective API named invoke()
2. Almost all method names, class names and strings in the path are obfuscated, e.g., class names are
obfuscated as ngjvnpslnp.iplhmk.yqniqkxgpoo, ngjvnpslnp.iplhmk.gsnuxoavi
3. The user’s IMEI, IMSI and phone number are obtained by the code the host app
4. Network connection is executed by the code of the host app

3. com.android.system.admin

1. 117 methods,
e.g., android.app.admin.DevicePolicyManager.isAdminActive(),
are invoked via reflection
2. Shell command (i.e., su -c ’id’) is used

1. The API named android.app.admin.DevicePolicyManager.isAdminActive()
is invoked via reflection for checking if the given administrator component is active repeatedly
2. Almost all methods names in the path are obfuscated, e.g., oCIlCll(), OcIcoOlc()

4. com.rbigsoft.easyunrar.wnvz

1. 13 methods, e.g., com.cosc.k.IPCKUM.KU() are invoked via reflection
2. Detailed IP address, HTTP requests, DNS resolutionsfor network communication
are used
3. File system actions, e.g., opening, deleting and writing files, are executed

1. The APIs of the embedded libraries (e.g., com.cosc, com.cosb) are invoked via reflection
2. Network connection is executed by the libraries named com.cosb and com.ulk
3. The user’s operations on UI are recorded

5. org.baole.app.antismsspam 1. Location information and the ISO country code are obtained
2. File system actions, including opening, deleting and copying files, are executed

1. The user’s location information is collected by the advertising library Admob
2. The user’s configurations, e.g., SPAM BLACKLIST, are recorded
3. The password set by the user is saved

6. com.eamobile.sims3 row qwf
1. Location information, phone number, IMEI are obtained
2. Detailed IP address, HTTP requests, DNS resolutions for network communication
are used

1. The user’s IMEI and location information are collected by the library named PushAds
when the app launches
2. Network connection is executed by the library named com.av111236

7. com.example.child

1. IMSI, IMEI, Network information, etc. are obtained
2. 3 methods, e.g., com.zdt.shell.ShellActivity.startAd1,
are invoked via reflection
3. Detailed IP address, HTTP requests, DNS resolutions for network communication
are used

1. The user’s information, e.g., uid, timing mode, is collected by the library named jypush
2. The APIs of the advertising library named ELM are invoked via reflection
3. Network connection is executed by the library named ELM
4. The unicode strings are the encoding results of voice data

8. com.pianfang.book 1. IMEI, IMSI, MAC address, etc. are obtained
2. Network communication to the advertising server is executed

1. The user’s IMEI, IMSI, MAC address and country code are collected by the advertising library WAPS
2. Network connection is executed by the advertising library named WAPS

9. com.doaspx.Happy
1. IMEI, IMSI, MAC address, etc. are obtained
2. Network communication to the advertising server is executed
3. File system actions, e.g., opening, writing and deleting files, are executed

1. The user’s IMEI, IMSI, MAC address and country code are collected by the advertising library WAPS
2. Network connection is executed by the advertising library named WAPS
3. The user’s settings, e.g., bookmark, are saved

10. com.evilsunflower.compass 1. Network communication to the advertising server is executed 1. The user’s IMEI and IMSI are collected by the advertising library named Domob
2. Network connection is executed by the code of the host app

11. com.sentra.lowongan 1. File system actions, including opening files, are executed
2. Network communication to the Google server is executed

1. The user’s configurations, e.g., javascript enabled, zoom enabled, are saved
2. Some method names are obfuscated as a(), b(), etc.
3. The API in the Google advertising library is invoked via reflection

12. com.appmk.book.main No report

1. The user’s search history is saved
2. The activities that can be performed for the given intent about
com.google.android.apps.circles.platform.PlusOneActivity are checked by
the Google advertising library

13. com.kkd.folca No report 1. The information of taking photos, e.g., duration time, storage path, is saved

14. aboard.and.koabacus 1. Network communication to the advertising server is executed
1. The user’s MAC address and configurations (e.g., Jar version) are collected by
the advertising library named mocoplex
2. Network connection is executed by the library named mocoplex

15. jotart.sltheme.minimal No report
1. The number of activities that can be performed for the given intents about
ginlemon.flowerpro, ginlemon.flowerpro.special and ginlemon.flowerfree
is checked repeatedly to decide if the specified launcher is installed successfully

16. me.barkfor.findspy No report No sensitive behavior is found
17. sms.smslegal.free No report No sensitive behavior is found
18. ru.realision.abyss No report No sensitive behavior is found

APIs are invoke(). Therefore, the apps are representative to
verify if the positions of the log points are precisely decided
by our strategy. Moreover, there is no work, to the best of our
knowledge, focusing on the same problem of the log matching
with us. To assess the benefits brought by our proposed scheme
in reducing the number of backtracks, we compare our divide
and conquer strategy with the pure backtracking search, which
is a downgraded version of our strategy.

The experimental results validate that our strategy effec-
tively avoids backtracking as much as possible in achieving the
log matching. As listed in Table IV, our strategy achieves the
log matching with 96022, 70939 and 253823 backtracks for
the three apps respectively, while the backtracking search does
not find the paths corresponding to the runtime execution flows
when performing more than 421920, 1382039 and 2171368
backtracks for the apps respectively. After further inspection,
we notice that our backtracks are mainly produced by search-
ing the CFGs of the methods with complex structures, e.g.,
successive exception handling. Moreover, the supergraphs that
need to be explored for three apps contain 2634, 1830 and
2371 nodes respectively, where there are 604, 953 and 1176
branch nodes. Our strategy spends 531.8 seconds, 42.3 seconds
and 84.3 seconds to find the matched paths, during which

only 2236, 260 and 116 nodes are visited. In comparison, the
backtracking search does not report the correct paths when it
has been running for more than 3600 seconds. The algorithm
may have to find the correct paths by exhaustively visiting the
nodes in supergraphs in all possible sequences at worst.

2) The Effectiveness of Revealing Contextual Information:
To validate the effectiveness of AppAngio in the contextual
reveal, we make the comparative study between the contextual
information extracted from the matched paths of AppAngio
and the reports of VirusTotal [40]. Specifically, we first in-
vite two Android analysts to scrutinize and summarize the
information about sensitive behaviors from the matched paths
of randomly selected 18 apps (including 10 malware samples
and 8 market apps) from our datasets by manual review. Then
we resort to VirusTotal to check the 18 apps and collect the
detection results. VirusTotal is a website that inspects the
submitted mobile apps with over 70 antivirus scanners and
provides detailed reports, e.g., the APIs called via reflection,
obtained sensitive data, the operations on the network and
filesystem, to users. In the reports, the item named BEHAVIOR
lists the succinct descriptions for the detected behaviors of the
apps. We treat the descriptions as the baseline for evaluating
the effectiveness of AppAngio in the contextual reveal.
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toCharArray()
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URL.<init>()

toCharArray()

invoke()

Characters 
Combination
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String Check

Integrating
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Characters 
Combination

char cbhgc = 'C'; 
char gjgvulnp = 'h';
char bxfeop = 'a'; 
char tbhcwnn = 'r';
char dedepem = 'A'

…
Combining the characters into 
a string named toCharArray

Checking if each character 
of the string can be 

transferred to a value with 
the integer type

ynqgas.mqbgseos.lvaluo.onStart()
getSystemService()

Fig. 11. The comparison of two path segments built from the runtime logs
and revealed by AppAngio respectively for the real-world app.

The comparison of the results between VirusTotal and
AppAngio is shown in Table V. The contextual information
revealed by AppAngio is based on the runtime logs collected
in limited time but VirusTotal performs the comprehensive
analysis on the submitted apps, we focus on examining if
AppAngio can provide effective complementations to the
results of VirusTotal, instead of comparing if all the outputs of
VirusTotal are matched with the results of AppAngio directly.
Specifically, for each app, we present all the information
revealed from the matched path of AppAngio in the third
column. Then we extract the results corresponding to the
aforementioned information from VirusTotal’s reports and list
the results in the second column.

The comparative study manifests that the revealed details of
AppAngio complement the reports of VirusTotal effectively.
Overall, all the details in the third column of Table V enrich
VirusTotal’s reports from code obfuscation, user’s operations,
collectors of user’s privacy, etc. The enriched information can
be complementary evidence for security analysts to inspect the
internal logic of Android apps and capture potential malicious
behaviors. We exemplify the effectiveness of our work below:
1) AppAngio reveals that almost all the strings, method

names and class names within the code of the app named
ngjvnpslnp.iplhmk are obfuscated, while VirusTotal does
not report if the code of the app is obfuscated. Based on the
revealed contextual information, we have reason to doubt
if the app is malicious.

2) AppAngio reveals that the app named com.doaspx.Happy
writes the user’s settings, e.g., bookmark, display bright-
ness, into a file, while VirusTotal only reports that the app
performs the file writing operation. We speculate that the
operation is used to save the user’s configurations.

3) AppAngio reveals that the app named
com.eamobile.sims3 row qwf collects the user’s IMEI
and location information by the library named PushAds,
while VirusTotal only reports that the app collects the
user’s private data. According to the library name, we
guess that the data collection operations are activated by
the code in an ad library.

<ngjvnpslnp.iplhmk.yqniqkxgpoo: 
 void onCreate(android.os.Bundle)>

<ngjvnpslnp.iplhmk.tcgbor: 
 void idfhn(java.lang.Object,java.lang.String)>

1

<ngjvnpslnp.iplhmk.bahvvvxx: 
 java.lang.String idfhn(java.lang.Object,java.lang.String)>

2

<ngjvnpslnp.iplhmk.gsnuxoavi: 
 java.lang.String idfhn(java.lang.Object)>

65

<idfhn.hrotlwub: 
 int idfhn(byte)>

3 4

Fig. 12. The method visit sequence matched with the given logs.

E. RQ4: Assistance in Identifying Maliciousness of Apps

1) The Case of Disclosing Maliciousness within App Be-
haviors: We present an app named gta3 as our case study. It
is a malware sample of FakeInstaller family, whose MD5 is
dd40531493f53456c3b22ed0bf3e20ef [30]. In our evaluation,
most apps only use the reflection mechanism occasionally. In
this app, almost all the methods are invoked by reflective calls,
and meanwhile, the arguments of the reflective calls are all
obfuscated. However, the signatures of reflective calls are not
critical evidence to identify it as a malicious behavior due
to the lack of contextual information. Reflection techniques
sometimes can be used for legitimate reasons, such as ex-
ploiting Android hidden and private APIs [20].

The app is representative because it is challenging to obtain
the real intention of its behavior. On the one hand, it is
impractical to find the path matched with runtime logs by the
pure backtracking search because of the huge computational
complexity. Specifically, almost all the nodes about call state-
ments in the app’s supergraphs are invoke(). Even when the
app only runs about 20 seconds, invoke() is called for more
than 11200 times. The backtracking search cannot distinguish
these log points in supergraphs. On the other hand, traditional
static analysis tools [20], [19] are inapplicable to reveal the real
intention of the app’s behaviors. Harvester [16] cannot extract
all the runtime values for the app because of the limitation
of the code slicing. SherLog [24] or lprof [25] do not apply
to the case because the outputs of the log printing statements
are inconsistent with the obfuscated argument strings in code.
AppAudit [6] only finds that the app uses some sensitive
permissions. The existing behavioral reconstruction systems
[9], [10], [11] may need to log sufficient actions of the app
to reveal the required contextual information, which incurs
considerable runtime overhead.

AppAngio reveals hidden maliciousness of the app success-
fully. Figure 11 depicts two path segments, where the path on
the left is built from the log records directly and the path on
the right is the revealed result of AppAngio. Obviously, the
maliciousness of the app behavior is hard to be revealed based
on the left result alone without any contextual information.
In comparison, with the right path, analysts can obtain a
series of valuable information for assessing the behavior’s
maliciousness. We list three highlighted findings as follows:

1) The embedded library collects user’s privacy informa-
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Call from the method named 
 <ngjvnpslnp.iplhmk.bahvvvxx: java.lang.String idfhn(java.lang.Object,java.lang.String)>

$r0 := @this: idfhn.hrotlwub

......

$r2 = staticinvoke <idfhn.idfhn: java.lang.String idfhn(java.lang.String)>("oP/Pk<PgGkuwRK(Y")

......

$r2 = staticinvoke <idfhn.idfhn: java.lang.String idfhn(java.lang.String)>("PvvPwzlWw")

......

virtualinvoke $r9.<java.lang.reflect.Method: java.lang.Object invoke(java.lang.Object,java.lang.Object[])>(null, $r10)

Actually Invoked API: java.lang.System.arraycopy(java.lang.Object,int,java.lang.Object,int,int)

......

return $i1

Return back to the method named 
 <ngjvnpslnp.iplhmk.bahvvvxx: java.lang.String idfhn(java.lang.Object,java.lang.String)>

Fig. 13. The simplified path segment corresponding to the method named
<idfhn.hrotlwub: int idfhn(byte)>.

tion (i.e., IMEI, IMSI) by calling getDeviceId() and
getSubscriberId() when the app launches.

2) The app checks if each character of strings can be trans-
ferred to a value with the integer type. When the check
passes, the app transmits the strings to the specified server
by the network. We speculate that it is an anti-virtualization
technique to avoid obtaining mock information [32].

3) The app invokes toCharArray() by the reflection
mechanism, where the method’s signature is obtained by
recombining a group of unordered characters, which may
be a trick to evade static analysis.

With the aforementioned contextual information, we have
reason to conclude that this app behavior is malicious.

2) Ensurance for Manual Analysis: To assist human experts
in analyzing the matched path and retrieving critical informa-
tion efficiently, we adopt the hierarchical mode to manage the
path. Specifically, AppAngio first builds a graph to depict the
method visit sequence along the matched path. It then supports
displaying the path segment for a method or across multiple
methods based on the configuration of analysts. To display
the graph and the path segment clearly, our tool automatically
converts them to the related DOT files, which can be visualized
by the existing tools (e.g., Graphviz). In this way, the task of
analyzing the matched path is divided into multiple sub-tasks,
so the workload of manual analysis is relieved.

To exemplify the result of the above treatments, we extract
1000 log records about the app named ngjvnpslnp.iplhmk to
perform the log matching. We exhibit the graph and the path
segment in Figure 12 and Figure 13 respectively. In Figure 12,
the nodes represent method signatures and the edges labeled
with integer numbers represent the visit sequence among the
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The number of nodes in each path segment corresponding to a method

The node representing a log point

The node representing an invocation statement related to log points

Fig. 14. The statistics of the number of nodes within each path segment.

methods along the matched path. Figure 13 is the simplified
path segment for the method named <idfhn.hrotlwub:
int idfhn(byte)> in Figure 12. Due to the page limit,
the displayed path segment is simplified and some statements
are represented as ellipses in nodes. We create nodes with
different styles to help analysts distinguish the elements in
the graph. For example, the upper layer of the red box is the
log point in the app code (i.e., invoke()), and the bottom
layer of the red box is the API that is actually invoked (i.e.,
arraycopy()). The nodes filled with grey is the invocation
statements where the callee methods are not related to any
log points. The dotted edges indicate the call relations for the
method. With the help of these indicators, analysts can extract
the concerned information from the related path segments
selectively, instead of analyzing the matched path directly.

To validate the feasibility of the treatments, we calculate
the number of nodes within the path segments of real-world
apps, and the statistics are shown in Figure 14. The result
demonstrates that the treatments ensure the efficiency of
manual analysis and the workload of analysts is acceptable.
Specifically, Figure 14 is plotted based on 440 path segments,
each of which corresponds to a method. The x-axis is the
number of nodes in each path segment (e.g., 128 nodes in
Figure 13), the y-axis on the left is the number of the nodes
representing the log points in each path segment (e.g., 1 of the
nodes in Figure 13), and the y-axis on the right is the number
of the nodes representing the invocation statements that need
to be explored for positioning log points (e.g., V2 in Figure 1).
The average length of the path segments is 22, where 94.3% of
the segments include less than 3 log points and 92.2% of the
segments contain less than 3 invocation statements that need
to be explored. In other words, the number of key elements
that need manual analysis in each path segment is limited.
Analysts can give priority to exploring a handful of the callee
methods related to log points and focus on retrieving critical
information around a small number of log points.

VI. LIMITATIONS AND DISCUSSION

AppAngio achieves to help analysts reveal contextual infor-
mation about app behaviors, but like any approach, it comes
with some limitations. We next point out the limitations and
discuss possible solutions for security analysts in practice.
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A. The Trade-off between the Volume of Logged Data and the
Effectiveness of Log Matching

Logging more information improves the effectiveness of
the log matching but increases the performance overhead. To
balance the trade-off, AppAngio may output multiple paths
matched with a given log segment with insufficient logging
information. Specifically, if all branches of a node involve
the same sequence of logged APIs or do not involve any
logged APIs, AppAngio may be unable to distinguish which
branch is executed in real-time. If the ambiguous cases are
found, AppAngio presents them to analysts for making further
identification and adjusting the existing logging strategy.

In practice, security analysts can customize the logging
configurations according to their requirements. If the analysts
plan to perform a coarse-grained and efficient analysis on app
behaviors, they can log a small number of runtime information.
When they tend to make a fine-grained analysis, they can log
more of the information. In the future, we will try to design a
machine learning-based approach for deciding the sweet-spot
of the trade-off based on the features of different scenarios.

B. Mechanisms for Disabling Our Work

AppAngio may be evaded by anti-analysis techniques, e.g.,
code obfuscation, dynamic code generation. As demonstrated
before, AppAngio addresses a part of the obfuscated code
and then rebuilds the missed method call relation in the
ICFGs. However, there are various code obfuscation methods
in practice, our solution is unable to address all the obfuscated
cases in Android. We plan to extend our work for solving
more code obfuscation problems by integrating state-of-the-art
deobfuscation techniques [16], [41] in the future. Moreover,
AppAngio does not support solving dynamic code generation
currently. In the future, we plan to extend our work to
collect sufficient information for revealing app behaviors in the
dynamically generated code with low performance overhead.

Due to the limitation of the Soot framework, AppAngio
does not support building the graph structure and performing
the log matching based on native code temporarily, though it
can log and present the APIs invoked via JNI. After further
investigation, we consider that the log matching process on
the graph structure of native code is similar to the process on
the graph built from Java code, where the critical idea of the
log matching is identical. Therefore, in the future, we plan to
combine our matching algorithm with the techniques that sup-
port modeling native code [42] to facilitate the identification
of maliciousness of app behaviors within native code.

AppAngio may be disabled by the kernel-level attacks.
Specifically, the attackers can tamper with the logs temporarily
stored in the user’s device by exploiting the kernel-level
vulnerability. This causes that no matched path can be found in
an app’s CFG. The optional methods to achieve secure logging
include access control, data encryption, etc. We believe that it
is orthogonal to our primary purpose.

C. Manual Efforts Required for Handling Revealed Results

Similar to taint-flow analysis, the core procedure (i.e.,
recording runtime logs and identifying the path based on the

CFG and the logs) of AppAngio is automated, while our
tool still requires manual efforts to comprehend contextual
information of the revealed path and gather their concerned
evidence on the path to assess the app’s maliciousness. A
possible solution is to design a machine learning-based system
to achieve automated behavioral identification by extracting
required contextual features from the matched path.

VII. RELATED WORK

A. Behavioral Reconstruction

1) For the Android Platform: As mentioned before, many
techniques have been proposed to reconstruct app behaviors
via runtime information [10], [9], [11], [12]. By combining
the logs with CFGs, AppAngio reveals the path with the con-
textual information that is unavailable from the logs directly.
Moreover, the result of AppAngio may be cooperated with the
techniques to achieve more accurate behavioral reconstruction.

2) For Other Platforms: Besides the techniques for the
Android ecosystem, some tools achieve behavioral reconstruc-
tion for other platforms. SLEUTH [43] reconstructs the real-
time attack scenario for the systems of Windows, Linux, and
FreeBSD by audit-log data. SherLog [24] helps programmers
diagnose the errors of the software and systems with runtime
logs. lprof [25] stitches runtime logs by analyzing the temporal
relationships between log printing statements.

AppAngio faces different challenges with SherLog and
lprof. Specifically, SherLog matches the dynamically gener-
ated strings in logs with the source code, and lprof obtains the
output string of each log printing statement by static analysis.
In the Android ecosystem, app source code is commonly
unavailable for security analysts and there exist some anti-
analysis techniques [16], [32] (e.g., string encryption, code
obfuscation) to hinder static or manual analysis. Therefore, it
is inapplicable to match the outputted logging messages with
argument strings of log printing statements extracted from app
code directly. In AppAngio’s implementation, we address the
problem by leveraging runtime logs to resolve the strings in
app code even if the strings are obfuscated.

B. Behavioral Analysis

1) Static Analysis: The performances of existing static
analysis techniques, e.g., signature-based schemes [44], [45]
or data-flow tracking schemes [19], [31], [34], all rely on the
completeness and precision of the underlying graph structures
(e.g., callgraph or CFG). The revealed paths of AppAngio
can be used to circumvent some defects of static analysis and
complement the existing graph structures.

2) Dynamic Analysis: TaintDroid [13] modifies the Dalvik
virtual machine to implement the dynamic taint tracking.
AppsPlayground [23] adopts an improved version of Taint-
Droid for the dynamic data-flow tracking. Due to different
implementation goals, AppAngio does not insert any module
inside the OS to track runtime data flows or perform the
elaborate path exploration for testing apps; instead, it only logs
the target API calls at runtime. Therefore, the performance
overhead imposed by Logging Module of AppAngio is less
than the techniques with heavyweight computations.
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AppAngio adopts a standard logging technique that is simi-
lar to Quire [46] and Compact [47], while the implementation
goals of the three tools are different, which makes that the
tools process the logged information differently. Specifically,
AppAngio aims to reveal contextual information in Android
app behaviors. Therefore, it links the logged API callsites
orderly on the app’s CFG based on the difference of the call
stack information (i.e., Csi) between successive log records.
In comparison, Quire aims to address the privilege escalation
problems across different apps, so it leverages Csi to reason
about the provenance of sensitive operations before granting
access to the requesting app. Compac aims to achieve a fine-
grained access control at app’s component level, so it uses Csi
to extract Java package call chain at runtime.

3) Hybrid Analysis: The effective combination of static
and dynamic analysis schemes can circumvent some of their
respective shortcomings and obtain the required results more
efficiently and precisely. AppIntent [36] identifies possible
execution paths about sensitive data transmission and lets
human analysts determine if they are user-intended. AppAu-
dit [6] proposes an efficient analysis framework with less
time and memory compared with AppIntent and FlowDroid.
Harvester [16] extracts the values of interest from apps.

AppAngio and the techniques solve the problems in dif-
ferent areas. For instance, AppAngio achieves the log-based
behavioral reconstruction and Harvester accomplishes the sen-
sitive data extraction. In the former area, AppAngio reveals
abundant contextual information of the logged APIs and
circumvents a part of the defects of static analysis in the graph
building, while some of the contextual information may be
unavailable for Harvester because of its limitations in the code
slicing for ICC, modeling the Android lifecycle, etc. In the
latter area, Harvester supports obtaining the runtime values
of the specified reflective calls in app code based on users’
configurations, but AppAngio does not support it currently.
Therefore, the two techniques may complement each other by
leveraging the technical advantages in their respective areas.

4) Machine Learning-based Analysis: Machine learning-
based systems [15], [48] can identify malicious app behaviors.
Imprecise graph structures caused by ICC, reflection or others
bring difficulties in extracting precise features from app code.
For instance, the unresolved reflective APIs are treated as
being security-sensitive [15], which causes false positives in
detection. The combination of AppAngio’s results and the
existing graph structures can help extract precise features for
training more effective models for behavioral identification.

VIII. CONCLUSION

We propose and implement AppAngio, a novel system for
revealing contextual information in Android app behaviors by
API-level audit logs. We design a divide and conquer strategy
that uses call stack information at runtime to position each
log point individually and guide the path exploration. The
experimental results on micro-benchmarks and real-world apps
validate the precision and effectiveness of the log matching and
the contextual reveal. The matched paths of AppAngio help
security analysts identify the maliciousness within real-world

apps. Meanwhile, AppAngio incurs negligible performance
overhead (1.98% on average) on the Android device.
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