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Abstract—There has been an increasing consensus in learning
based face anti-spoofing that the divergence in terms of camera
models is causing a large domain gap in real application
scenarios. We describe a framework that eliminates the influence
of inherent variance from acquisition cameras at the feature
level, leading to the generalized face spoofing detection model
that could be highly adaptive to different acquisition devices.
In particular, the framework is composed of two branches.
The first branch aims to learn the camera invariant spoofing
features via feature level decomposition in the high frequency
domain. Motivated by the fact that the spoofing features exist
not only in the high frequency domain, in the second branch the
discrimination capability of extracted spoofing features is further
boosted from the enhanced image based on the recomposition of
the high-frequency and low-frequency information. Finally, the
classification results of the two branches are fused together by a
weighting strategy. Experiments show that the proposed method
can achieve better performance in both intra-dataset and cross-
dataset settings, demonstrating the high generalization capability
in various application scenarios.

Index Terms—Face anti-spoofing, camera invariant, deep
learning, generalization capability

I. INTRODUCTION

FACE authentication services have been growing exponen-
tially in the past decade, coinciding with the accelerated

proliferation of acquisition devices and advances of artificial
intelligence. Though unexceptionable performance has been
achieved, the security issue is a very challenging problem as
the system can be easily attacked even by a printed photo
or replayed video. To prevent the face recognition system
from being vulnerable, face Presentation Attacks Detection
(PAD) algorithms have been widely studied to distinguish the
spoofing faces from the live one.

Recently, various face presentation attacking methods have
been developed to deceive the authentication systems, such
as print attack (printing a face on a paper), replay attack
(replaying a face video by other devices), and mask attack
(wearing a mask). In the literature, numerous methods have
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Fig. 1: Illustrations of live (a) and spoofing (b) faces acquired
with two different cameras. The gray-scale maps show cor-
responding features of the second residual layer of the face
images. Two types of cameras in CASIA-FASD [14] database
are used for demonstration, including the low quality camera
(first and third columns) and high quality camera (second and
fourth columns). The features are from the ResNet-18 [15]
network trained on CASIA-FASD database.

been investigated for PAD, and the majority of them rely
on computational vision algorithms. In particular, both hand-
crafted [1], [2], [3], [4] and deep learning [5], [6], [7], [8]
based features have been developed. For deep learning based
methods that rely on training of models based upon labelled
data, a large gap between the limited performance and essential
requirements have been observed when the training and testing
data are from different domains. One typical example is that
the training data are acquired with one type of camera and
testing data are from another type of camera. To increase the
domain adaptation and generalization capability, efforts have
been devoted to extracting auxiliary information, including
depth [9] and Remote Photoplethysmography (rPPG) signals
[10]. Attempts have also been made to use domain adaptation
technology [11], [12], [13] for mitigating the gap between
different domains.

It has been widely recognized that the camera information
is a dominant factor causing the domain gap. One typical
example is shown in Fig. 1. In particular, although the spoofing
face images are generated by an identical attack type (print at-
tack) and identity, the spoofing patterns still dramatically vary
according to the cameras. This phenomenon reveals that the
camera divergence between training and testing could cause
the PAD performance degradation, which is further validated
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in Fig. 2(a). More specifically, it is observed that features
from spoofing faces and live faces are lack of discrimination
capabilities with large overlapping in-between when training
and testing are performed based on cross-camera settings.
However, given numerous camera types, it is difficult to collect
sufficient training data and specifically train a model for each
of them, especially with the surge of emerging cameras. Mo-
tivated by this, we aim to propose a novel deep learning based
PAD model with high generalization capability. To this end,
the camera information should be effectively removed. The
composition of facial features, which has been widely studied
in the literature [16], [17], motivates us to automatically learn
the camera invariant features. Herein, we propose a feature
level decomposition scheme, such that the trained model does
not depend on the acquisition device. This allows the model
to be widely applied in myriad applications, as the learned
model can be well generalized to unseen cameras at large.
Extensive experiments have demonstrated that the proposed
scheme achieves the state-of-the-art performance and reveals
high generalization capability. The main contributions of this
paper are as follows,
• We propose a novel framework with two branches to

improve the generalization capability of face spoofing.
The first is camera invariant branch, aiming to provide
high-frequency domain features with the elimination of
camera variance. Considering spoofing features in other
frequency domains (e.g., lighting) may be neglected in
the first branch, our second branch is feature discrimi-
nation augmentation branch which generates features by
an enhanced image recomposed from the low and high
frequency layers of the original input image.

• We develop a sophisticated camera variance removal
scheme based on the feature level decomposition. The
features with the mixture of spoofing and camera infor-
mation are efficiently decomposed with a pseudo siamese
network, in an effort to blindly infer the feature that well
reflects the spoofing information while being invariant to
different camera types.

• The classification results of the two branches are fused
for the final decision. Experiments show that our pro-
posed method can achieve high accuracy not only on
intra-dataset settings but also on cross-dataset scenar-
ios, demonstrating superior generalization capacity with
camera-invariant feature extraction.

The rest of this paper is organized as follows. We first
review the related works in Section II. Subsequently, the
proposed scheme is detailed in Section III. The experimental
results are presented in Section IV, and finally we conclude
this paper in Section V.

II. RELATED WORKS

For face anti-spoofing, the intrinsic spoofing features relying
on which the binary classification can be performed are
expected to be both discriminative and of high generalization
capability [20]. In the literature, a series of features have been
studied and developed, including both hand-crafted and deep
learning features.

MSU_Live Replay_LiveMSU_Spoofing Replay_Spofing

（a） （b）

Fig. 2: T-SNE [18] visualization of the second-to-last fully
connected layer. (a) ResNet-18; (b) the first branch of our
proposed model. The two networks are trained on CASIA-
FASD database and tested on two types of cameras in MSU-
MFSD [19] and Replay-Attack [1] databases.

A. Hand-crafted Features

Based on the observation that certain characteristics of tex-
ture in spoofing face and live face are different, hand-crafted
features are first exploited, including Local Binary Patterns
(LBP) [1], Local Phase Quantization (LPQ) [2], Histogram
of Gradients (HoG) [3], Scale-Invariant Feature Transform
(SIFT) [4] and Speeded Up Robust Features (SURF) [2].
In contrast with the feature extraction performed in spatial
domain, in [21], Li et al. utilized the dissimilarity in Fourier
spectra by considering that less High Frequency (HF) compo-
nents exist in spoofing images compared with the live ones.
To obtain texture features based on the 3-D plane in videos,
the high frequency information in both spatial and temporal
domains is exploited in [22]. In [23], Chan et al. incorporated
flash light for more stable spoofing feature extraction by reduc-
ing the influence of environmental factors. Compared with HF
texture features, Low Frequency (LF) features have also been
utilized together in image quality based methods [24], [25],
[8]. In [25], with the live face image as the reference, color
distortion relevant features are extracted and compared by
Mean Squared Error (MSE), Maximum Difference (MD), R-
Averaged Maximum Difference (RAMD), etc. Regarding no-
reference image quality assessment, in [19], the concatenated
features of specular, blurriness and color distortion are utilized.

Although those handcrafted features are computationally
efficient and perform well in intra settings, they may easily
fail when there are large variations in terms of attack scenar-
ios [26]. To tackle this issue, additional clues such as motion,
depth and blood circulation have also been incorporated.
Motion clues from eye blinking [27], [28] and word speaking
[29], [30] can be acquired from multi-frames. Moreover, in
[31], the pulse generated by facial blood circulation is used
since only the live face videos have such traits. In [29], the
facial expression clues were firstly enhanced by an Eulerian
motion magnification algorithm, then the LBP texture features
and Histograms of Oriented Optical Flow (HOOF) motion
features were fused together for final classification. The 3D
depth information of the captured face [32], [33] and infrared
images [34] are effective clues though these solutions rely on
additional sensors and could be more expensive to launch.



B. Deep Learning Features

For face PAD, deep learning based methods have also
been widely studied for obtaining more discriminative features
that account for the spoofing patterns. Yang et al. [5] first
proposed to use Convolutional Neural Network (CNN) for
face spoofing detection. In [32], the pulse information and
other spatial and temporal features learned by CNNs are fused
together to boost the performance. In [35], a multi-level deep
dictionary learning based method was proposed especially for
the silicone mask attacks. To improve the performance of
CNNs, transfer learning based schemes have been adopted
based on CNNs pretrained on ImageNet [36], VGG-Face [37]
and GoogLeNet [6]. Motivated by the denoising algorithms, in
[17] the spoofing patterns are treated as spoofing noise in the
live face and extracted by a CNN architecture for classification.

However, due to the limited size of existing labeled data,
the CNN models may be prone to over-fitting. To address
this issue, methods can be classified into three categories.
The first one is using the auxiliary information. In [38],
Atoum et al. proposed a two-steam CNN based model, where
one stream is responsible for patch-based anti-spoofing while
another one is developed for depth-estimation. In addition
to depth, remote Photoplethysmography (rPPG) signals have
also been exploited by a CNN-RNN scheme from the raw
videos in [9]. Considering the domain shift between different
databases, domain adaptation based methods have been pro-
posed to shrink the domain gap between samples in training
and testing sets. In [11], Li et al. proposed an embedding
function to map the image data into another space, such
that the Maximum Mean Discrepancy (MMD) based loss can
be optimized to evaluate the similarity of source and target
domains. In recent work [39], Wang et al. utilized a generative
adversarial network for domain adaptation based face spoofing
detection. The shared embedding space by both the source and
target domains can be learned when the discriminator cannot
reliably predict whether a sample is from the source or target
domain. However, due to the requirement of attack samples
in the test database, domain adaptation based method may not
be practical as it is difficult to acquire the spoofing images for
any unseen device. The last category is domain generalization
based methods. In [12], Li et al. utilized a 3D CNN model
for the spatial-temporal information extraction. To reduce the
domain shift among different domains, the regularization term
is incorporated by minimizing the MMD. To learn a more
generalized representation for face anti-spoofing, Tu et al.
adopted the Total Pairwise Confusion (TPC) [40] loss for CNN
training and moreover an identity based method was studied.

III. THE PROPOSED SCHEME

A. Framework

Generally speaking, the hardware and software processing
in visual information acquisition leave unique traces in final
images or videos [41], [42], [43]. These distinct fingerprints,
which usually lie in the HF domain (e.g., sensor pattern
noise), imply unique camera information and exhibit strong
invariance to the captured scene. Unfortunately, important
clues in performing face spoofing such as the moiré pattern

in replay attack or texture of artificial materials (paper, mask)
also belong to the HF domain. As such, to obtain camera
invariant spoofing features, the camera contamination causing
the domain divergence between different cameras should be
eliminated in a scientifically sound way.

As illustrated in Fig. 3, we propose a two branch based
model, in an effort to extract camera-free and spoofing specific
features to achieve generalized face anti-spoofing. In the first
branch, we focus on the HF information which contains abun-
dant clues regarding camera and spoofing relevant features.
Instead of performing metric learning to learn the camera
irrelevant features, we treat the camera information as a factor
varying the distribution of the spoofing features such that a
feature decomposition scheme is proposed to align features
captured from different cameras to pursue camera-invariant
features learning. In particular, unlike the conventional siamese
CNN architecture [44] which is designed with shared weights
for these sub-networks, we propose an architecture with the
pseudo-siamese network, in which the two sub-networks share
the same structure while each sub-network will learn its own
weights. More specifically, the first sub-network aims for cam-
era information extraction, and the second sub-network targets
for extracting spoofing features accompanied with camera
information. Due to the fact that two sub-networks share the
same camera classifier, the first sub-network is expected to ex-
tract the same camera information existing in the second one.
Then we utilize a feature decomposition scheme, with which
the spoofing features can be independently extracted based on
the obtained camera feature. However, straightforwardly using
the first branch may limit the performance as only HF features
are considered, while other spoofing clues including lighting,
reflection etc. tend to be neglected. In view of this, in the
second branch, we extract discrimination augmented features
based on the enhanced image recomposed from low/high-
frequency signal to enhance the detection accuracy. Finally,
the detection results of the two branches are fused for final
classification.

B. Pre-processing of Input Images

Apparently, face anti-spoofing relying on textures aims to
extract the unique features that could distinguish acquired
genuine facial skin with the screen, paper, photo and mask.
In analogous to the camera information, these clues are
irrelevant to the face identity but closely relevant to the texture
quality, motivating us to first focus on the HF domain. As
shown in Fig. 4, the Eight-Direction Differential Filter-set
(EDDF) is adopted for high-frequency information extraction.
In particular, to eliminate the influence of the background,
we first crop the face region from the original image using
a face detection algorithm proposed in [45]. Subsequently,
we perform the filtering based on EDDF such that the fixed
2D convolution layers with eight 3 × 3 kernels on three
channels of the input image can be obtained and the output
24 feature maps are denoted as Mdiff . Then the Mdiff is
further enhanced by enlarging the respective field adaptively
with a multi-channel CNN layer of kernel size 5× 5, and the
corresponding CNN layer is denoted as Convhf in Fig. 3. The
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Fig. 3: Illustration of the proposed framework which consists of two branches. In the feature invariant branch, the camera
information is removed from the features that are specifically responsible for spoofing detection in HF domain. In the feature
discrimination augmentation branch, we aim to extract more discriminative features based on a recomposition of the learned
low/high-frequency components. Finally, the classification results of two branches are fused for the final prediction.

EDDF is adopted based on the inspiration of steganalysis rich
model (SRM) [46], where the high-frequency components can
be extracted by a union of many diverse submodels, leading to
comprehensive representations of the high frequency informa-
tion with eight corresponding high pass filters. The SRM has
also been widely used for image manipulation detection [47]
as well as camera filter array (CFA) patterns extraction [48].
Instead of using bunches of high pass filters, we employ the
EDDF to provide the basic residual operations, then followed
by Convhf the useful high-frequency components can be
extracted upon the output from EDDF adaptively. We denote
the output feature maps as Mhf and it will be treated as
the input of a pseudo-siamese network for extracting spoofing
specific features with camera information eliminated. Instead
of using only learned features extracted from the HF infor-
mation, the second branch learns to recompose the low/high
frequency signal of the original image to augment spoofing
clues for more discriminative feature learning. To this end,
in this branch, the augmentation components Iaug are learned
by a three channel convolution layer Convaug performed on
Mdiff . As such, the learned maps will be combined with the
original image to generate an augmented image, serving as the
input of the second branch.

C. Camera Invariant Feature Learning

Given the HF domain input, the camera invariant feature
learning aims to obtain the discriminative and generalized
features based on feature level decomposition. More specif-
ically, a pseudo-siamese network is adopted in an effort to
remove camera variance from spoofing specific features. As
illustrated in Fig. 3, in the first branch, the two sub-networks

of the pseudo-siamese network share the same structure with
three residual layers in ResNet-18 [15]. However, they are
individually trained towards different targets. In particular, the
upper sub-network in the first branch is specifically designed
to obtain camera relevant features. Given the fact that the
camera information is determined by the camera type, the
classification loss on camera types is adopted to guide the
generation of the camera information. Herein, the learned
feature maps at the third residual layer are denoted as Mcam.
With Mcam, a camera classifier Convcam is implemented
based on a Φ channel CNN layer, where Φ is the number
of categories of cameras in the training database. Considering
the hard example mining, based on the original focal loss [49]
we design a per-pixel multi-class focal loss on output maps of
last CNN layer Ocam for camera type identification,

L1
cam−id = −

M∑
i=1

N∑
j=1

Φ∑
k=1

ycami,j,k

(
1− P cami,j,k

)γ
log
(
P cami,j,k

)
,

(1)

P cami,j,k =
eh

cam
i,j,k∑Φ

l=1 e
hcam
i,j,l

. (2)

Herein, M and N indicate the spatial sizes of Ocam, and
ycami,j,k is the binary label of camera type. In particular, when
an element at location (i, j) of Ocam belongs to the camera
type k, ycami,j,k = 1, and otherwise ycami,j,k = 0. γ is a constant
parameter for penalty adjustment on the easy examples. P cami,j,k

denotes the prediction result from a softmax function in Eqn.
(2), where hcami,j,k denotes the output of kth channel at spatial
location (i, j) in Ocam. The reason to adopt the pixel-wise
loss to form the constraint is that the camera information
should be shared and maintained identical among local patches
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Fig. 4: Illustration of the eight kernels in EDDF.

sampled from an image. Moreover, each element of the feature
Ocam corresponds to a patch of the input images. When we
choose to enforce the constraint on these elements, it amounts
to sample training patches from the image repeatedly, which
largely improves the diversity of data and alleviates the over-
fitting problem.

The bottom sub-network of the first branch aims to learn
the spoofing specific features. In analogous with the upper
sub-network, the learned feature maps at the third residual
layer are denoted as Mmix, as shown in Fig. 3. Following
Mmix, the Fmix is acquired by an average pooling layer and
two fully connected layers produce the prediction on spoofing
with a softmax function. The binary (live vs. spoofing) focal
loss is adopted to persuade the model to well discriminate
hard examples and increase the distance between genuine
and spoofing samples, such that more discriminative spoofing
features can be learned. As such, it is formulated as follows,

L1
anti =− α1(ymix(1− pmix)γ log(pmix))

+ α2((1− ymix)(pmix)γ log(1− pmix)),
(3)

where ymix is the ground truth, (ymix = 0 for spoofing and
ymix = 1 for live) and pmix is predicted probability of the live
sample. α1, α2 and γ are constant parameters to control the
balance between hard and easy samples. The spoofing features
extracted from Mmix are mixed with camera information. As
such, to further eliminate the camera variance, the camera
classification loss is also imposed on the generated output
Maps Omix from Mmix, to drive the training of the bottom
sub-network based on the classification loss.

L2
cam−id = −

M∑
i=1

N∑
j=1

Φ∑
k=1

ymixi,j,k

(
1− Pmixi,j,k

)γ
log
(
Pmixi,j,k

)
.

(4)
Herein, our aim is to construct the approximation of the

latent camera invariant features conditioned on the explicitly
learned Mmix and Mcam based on decomposition, with a
strong prior that the resultant features have a strong capabil-
ity in discriminating spoofing patterns while no information
regarding camera types is implied. To this end, we formulate
a rational feature level decomposition model by establishing
the relationship among Mmix, Mcam and the desired camera
invariant HF spoofing features Mspf . As the feature Mspf

expected to acquire is independent with the camera type, we
assume that the Mmix is a combination of Mspf and the

camera information denoted as Mmix
cam , leading to a feature

decomposition approach,

Mmix = Mmix
cam +Mspf . (5)

As Mmix
cam shares the same camera classifiers with Mcam, we

have,
Mmix
cam = Mcam. (6)

As such, the camera invariant HF spoofing map can be
acquired by,

Mspf = Mmix −Mcam. (7)

In general, the desired feature Mspf should not be able to
identify the camera type while equipped with strong capability
in detecting spoofing. In particular, the loss that confuses the
camera type decam is defined as follows,

Ldecam = −
M∑
i=1

N∑
j=1

Φ∑
k=1

yspfi,j,k log
(
P spfi,j,k

)
, (8)

yspfi,j,k =
1

Φ
. (9)

As such, the predicted probability of each camera type is
desired to be equal to the average, indicating that the Mspf

loses the capability in discriminating the camera for camera-
invariant feature learning.

Given Mspf , the pooled feature map Fspf can be acquired
with an average pooling layer and the face liveness prediction
is achieved with two fully connected layers. For training the
network, the binary (live vs. spoofing) focal loss is adopted
again,

L2
anti =− α1(yspf (1− pspf )γ log(pspf ))

+ α2((1− yspf )(pspf )γ log(1− pspf )),
(10)

where yspf is the ground truth and pspf is predicted probabil-
ity of the face liveness. The prediction result based on Fspf
from the first branch is used to detect the spoofing.

It is worth mentioning that in this branch we adopt the
camera type as the side information for camera invariant
feature learning. In the training phase, we divide the face
images in terms of camera types in the training set, then
the pixel-wise multi-class cross-entropy loss is imposed for
learning and extracting the camera feature. The per-pixel
based loss is adopted with the assumption that the camera
information existing in an image should be invariant to the
acquired scene. Moreover, the number of camera categories for
classification varies with the used training set. However, we do
not attempt to employ the classification results in the testing
phase, as totally different camera types from the training set
may form the testing set. Instead, we only use the features
learned in the second to last layer as the extracted camera
information. Although the cameras in the testing set are unseen
during training, the camera-specific information can also be
successfully extracted. Subsequently, the camera feature will
be decomposed from the learned mixed spoofing feature in the
second sub-network, by which the camera invariant feature can
be finally learned in the first branch.



D. Feature Discrimination Capability Augmentation

The first branch aims to obtain camera invariant spoofing
features in the HF domain, which will inevitably ignore
certain useful information in other frequency ranges, i.e.,
color, camera reflectance. To comprehensively obtain features
extracted from both high and low frequency domains for
spoofing detection, the second branch is specifically learned.
In the second branch, to emphasize discriminative spoofing
clues, we adopt the augmented image Iaug generated in the
image pre-processing phase as the input. Again, after the
last residual layer we acquire the augmented feature map
Maug and an average pooling layer is adopted to reduce the
spatial dimension. We denote the output features as Faug
and subsequently two fully connected layers with a softmax
function predict the final result. The binary focal loss is also
adopted here,

L3
anti =− α1(yaug(1− paug)γ log(paug))

+ α2((1− yaug)(paug)γ log(1− paug)),
(11)

where yaug is the ground truth and paug is the predicted
probability of the face liveness.

E. Spoofing Detection

In summary, six loss functions have been defined in the
two branches and the total loss for training our network is a
weighted sum of these loss functions,

Loss =λ1

(
L1
cam−id + L2

cam−id

)
+ λ2

(
L1
ani + L2

ani + L3
ani

)
+ λ3Ldecam,

(12)

where λ1, λ2, λ3 are the weighting factors. In the testing
phase, we use a weighted score to fuse the results from the
two branches,

P =
P (Fspf ) + λ4P (Faug)

1 + λ4
, (13)

where λ4 is the empirically set fusion score weight. P (Fspf )
and P (Faug) are the predicted probabilities of face liveness
from the two branches.

IV. EXPERIMENTAL RESULTS

A. Datasets

We evaluate our model on four face anti-spoofing datasets:
CASIA-FASD [14], Replay-Attack [1], Oulu-NPU [50] and
MSU-MFSD [19]. The descriptions of the four databases are
shown in Table 1.

CASIA-FASD: The CASIA-FASD database was published
in 2012. In this database, 50 subjects are included. For each
subject, 3 live and 9 fake video clips are provided. There are
three attack types in this database including warped photo
attack, cut photo attack and video replay attack. The cameras
can be categorized into three different quality levels including
low quality (web camera), normal quality (web camera) and
high quality (Sony NEX-5). Among the 600 video clips, 240
are used for the training set and the rest are used for testing.

Replay-Attack: This database also contains 50 subjects. The
total number of videos is 12000, consisting of 360 videos (60

laptop print ipad video iphonevideo 

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 5: Illustrations of face samples in the four datasets. (a),
(b) and (c) are images sampled from three camera types (low
quality, normal quality and high quality) in the CASIA-FASD
database [14]. From top to down are the live samples and
spoofing samples generated by printed photo, photo with eye
cut and video replay. (d) are images sampled from Replay-
Attack database [1]. From top to down are the live sample and
spoofing samples generated by print photo, screen photo and
video replay. (e) and (f) are images sampled from two types
of cameras (MacBook Air and Google Nexus 5) in MSU-
MFSD database [19]. From top to down are the live samples
and spoofing samples generated by printed photo and video
replay with iPad and iPhones respectively. (g)-(l) are images
sampled from six mobile cameras (Samsung Galaxy S6 edge,
HTC Desire EYE, MEIZU X5, ASUS Zenfone Selfie, Sony
XPERIA C5 Ultra Dual and OPPO N3) in Oulu-NPU [50]
database. From top to down are the live samples and spoofing
samples generated by print photo and video replay.

real-accesses and 300 attacks) in the training set, 360 videos
(60 real-accesses and 300 attacks) in the development set and
480 videos (80 real-accesses and 400 attacks) in the testing set.
Two types of attack including print attack and replay attack
are performed in this database. For the print attack, the face
images are printed on a high resolution A4 paper. For the
replay attack, two devices are adopted, including iPhone 3GS
(with resolution 480 × 320) and first generation iPad (with
resolution 1024 × 768). Different illumination conditions are
studied in this database. The first is a controlled condition
where a fluorescent lamp is used for lighting with a uniform



background. The other condition is adverse, and only day-
light is used in the background. All videos in this database
are recorded by a webcam of a MacBook.

Oulu-NPU: This database was published in 2017 and it con-
sists of 4950 video clips. Those videos are divided into three
sets: 1) training set, which contains 360 real and 1440 attack
videos of 20 subjects. 2) development set, which contains 270
real and 1080 attack videos of 15 subjects. 3) testing set, which
contains 360 real and 1400 attack videos of 20 subjects. Six
cameras are used for recording in this database. The attack
types implemented in this database are print and video-replay,
generated by two types of printers and two types of display
devices, respectively. Four testing protocols are considered
to evaluate the environmental condition variations, spoofing
mediums variation, camera style variations and fusion of all
above challenges.

MSU-MFSD: Two different resolutions of cameras are
considered in this database: 1) the built-in camera in the
MacBook Air 13 with the resolution of 640 × 480, 2) the
front-facing camera in the Google Nexus 5 with resolution of
720×480. The database contains 35 subjects and 280 videos in
total. Two attack types are performed including printed photo
and video replay. For the printed photo attack, the Canon 550D
camera is used for high resolution (5184× 3456) face image
acquisition and the photo will be printed on an A3 paper with
an HP color printer. Two cameras are used for replay attacks
including SLR camera and iPhone 5S back-facing camera.

The sample face images of the four datasets, including
CASIA-FASD, Replay-Attack, MSU-MFSD and Oulu-NPU,
are shown in Fig. 5. Both live samples and spoofing samples
generated by different attack types are presented. It should
be noted that there is no overlapping on the subjects between
training set and testing set, implying that we test our model on
unseen subjects in both intra-dataset and cross-dataset settings.

B. Implementation Details

We implement our model by PyTorch. For each database,
we averagely select 30 frames from each videos. To eliminate
the background variations, we crop the face region from each
frame by a face detection algorithm [45]. As our proposed
method is camera based method, we divide the database based
on camera types. We divide the CASIA-FASD into 3 sub-
databases and MSU-MFSD into 2 sub-databases based on
the camera types. As there is only one single camera in
Replay-Attack, this database is not divided. The cropped face
images are resized to 224 × 224. Considering the imbalance
of positive and negative samples, we sample the live faces and
spoofing faces at a ratio 1:1 in a batch during training. We also
use data augmentation for better generalization capacity. The
augmentation includes horizontal and vertical flipping with
a probability of 0.5, random rotation within 15 degrees as
well as color jitter. The color jitter is implemented based on
the Transforms module in Pytorch. In Table II, we show the
layer-wise network design of our proposed method. It is worth
mentioning that we replace batch normalize layers with group
normalization layers [51], and the group number is set to 32
in each residual layer to make our network more stable.

The batch size in the training phase is 32 and we adopt
Adam optimizer for optimization. The learning rate begins at
0.004 for the first 20k steps and reduces by 0.2 after every 10k
steps. As the Oulu-NPU database contains much more samples
compared with other databases, we set the learning rate to be
0.004 for the first 30k steps, which further reduces by 0.2 after
every 20k steps. We set the parameters α1, α2, γ, λ1, λ2, λ3, λ4

be 0.5, 1.0, 4.0, 0.005, 5.0, 0.1, 0.7 for all experiments. Five
metrics are adopted for performance evaluations, including:

1) Equal Error Rate (EER). We use EER for intra-database
evaluation and the development set is used for EER threshold
selection.

2) Half Total Error Rate (HTER). HTER is the average of
False Acceptance Rate (FAR) and False Rejection Rate (FRR).
It is defined as follows:

HTER =
FAR+ FRR

2
. (14)

3) Attack Presentation Classification Error Rate (APCER).
It is defined as follows:

APCERPAI =
1

NPAI

NPAI∑
i=1

(1−Resi) , (15)

where NPAI is the number of attack attempts of certain
Presentation Attack Instruments (PAI). The value Resi will
be ‘1’ if an attempt is predicted as ‘attack’ and 0 as ‘live’.
From the definition, we can find that the ACER only considers
the worst performance of different scenarios, which means it
penalizes approaches that only perform well on certain types
of attacks.

4) BonaFide Presentation Classification Error Rate
(BPCER):

BPCER =

∑NBF

i=1 (Resi)

NBF
, (16)

where NBF is the total number of the Bonafide presentation
times.

5) Average Classification Error Rate (ACER). It is the
average of APCER and BPCER:

ACER =
APCER+BPCER

2
. (17)

The APCER, BPCER and ACER are the standardized ISO/IEC
30107-3 metrics in [52].

C. Comparison with the State-of-the-Art Methods

To demonstrate the high generalization capability of our
method, we firstly perform cross-database experiments on
above mentioned four databases and compare our results
with the state-of-the-art methods. We adopt seven cross-
test settings in this experiment, including: CASIA-FASD →
Replay-Attack, CASIA-FASD → MSU-MFSD, MSU-MFSD
→ Replay-Attack, MSU-MFSD → CASIA-FASD, (CASIA-
FASD & MSU-MFSD) → Replay-Attack, MSU-MFSD &
Replay-Attack → CASIA-FASD, CASIA-FASD & Replay-
Attack → MSU-MFSD. To simplify, we denote these seven
settings as C → R, C → M, M → R, M → C, (C & M )
→ R, (M & R) → C, (C& R) → M. The R → C and R
→ M settings are not involved, as the camera classification



TABLE I: Descriptions of the four databases.

Database Year
Number

of
Identities

Genuine/Attack
Samples Attack Types Capture Cameras Display

Cameras

CASIA-FASD [14] 2012 50 150/450 1 Print, 2 Replay
Low-quality webcam,

normal-quality webcam,
SonyNEX-5

iPad

REPLAY-ATTACK [1] 2012 50 200/1000 1 Print, 2 Replay Macbook webcam iPhone 3GS,
iPad

MSU-MFSD [19] 2015 35 110/330 1 Print, 2 Replay Macbook air webcam,
nexus 5

iPad Air,
iPhone 5S

OULU-NPU [50] 2017 55 1980/3960 2 Print, 2 Replay

Samsung Galaxy S6,
edge oppo n3,
htc desire eye,

meizu x5, asus xenfone,
sony xperia c5

Dell1905FP,
MacBook

Retina

cannot be performed considering that only one camera type
exists in the Replay-Attack database. The comparison results
are reported in Table III.

As can be seen, we compare our method with 14 classical
methods, including both hand-crafted feature based methods
and CNN based methods. It should be mentioned that for
CNN based methods, classical CNN models are involved,
including original ResNet-18 [15] for binary classification,
CNN [5], ResNet18+TripletLoss provided in [39], DeepPixel
[53] method and Auxiliary [9] with depth map only which
is denoted as Auxiliary (depth only). From Table III, we
can find our method achieve the lowest HTER in most cross-
database settings except for M → C and C → M. Regarding
the M → C and C → M settings, our method achieves the
second best HTER results which are competitive with state-
of-the-art models (27.3% vs. 24.3% and 17.5% vs. 14.0%).
Moreover, for C → R, we achieve more than 10% lower in
terms of HTER than the state-of-the-art methods “Auxiliary”,
which demonstrate the effectiveness of our method. It is
worth noting that although the TripletLoss is utilized in [39]
aiming to reduce the intra-class distance and enlarge the inter-
class distance, it still tends to be over-fitting and cannot
generalize well on different databases. It demonstrates that
our feature decomposition scheme is more suitable in the face
anti-spoofing task as some meaningful spoofing clues may
be discarded due to the distance restricted by TripletLoss. In
Table III, we also show the HTER results of the two branches
with different settings. It is obvious that although only using
the second branch cannot achieve the desired performance,
it provides the compulsory information for the first branch
and the results can be further improved by fusion of the two
branches, which reveals that the results of the two branches
can be effectively leveraged by our fusion strategy.

Furthermore, we also evaluate the performance influenced
by different fusion weighting parameter λ4 on cross-database
testing (C → R). As shown in Fig. 6, we can find that
the performance will drop if the value of λ4 is set to an
inappropriate value (extremely lager or small). The best value
of λ4 is around 0.5 which is half of the weight (1.0) of the first
branch. It demonstrates that the HF feature invariant spoofing
clues learned from the first branch are more important than
the spoofing features learned by the second branch when the
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Fig. 6: The EER(%) results influenced by the fusion weighting
parameter λ4 in Eqn. (13) on cross-database (C → R) setting.

testing data exhibit large distribution divergence against the
data in the training database. To further verify the effectiveness
of our method, we also perform intra-database experiments on
CASIA-FASD database. The results are shown in Table IV.
From Table IV, we can find our method could achieve the
best EER result (0.89%), demonstrating our method does not
sacrifice the accuracy of intra-database even though our main
target is to improve the generalization capability. For further
analysis of the performance of our method under different
attack types, we show the error rates of three attack types:
Video Replay (VR), Print Photo (PP) and cut Photo Mask
(PM) in Fig. 7. We can find that our method achieves lower
EER when the attack type is ‘VR’ and ‘PP’. However, although
the ‘PM’ also uses printed paper as an attack medium, our
method cannot detect this attack type perfectly. The potential
reason is the live face parts (eyes and mouth) existing in
the input image may cause the contamination in the spoofing
features.

Analogously, we investigate the influence of the parameter
λ4 of Eqn. (13) on the performance, we set different weight-
ings regarding the fusion of the two branches, and the results
are shown in Fig. 8. From Fig. 8, we can find a similar
phenomenon that the EER results will be higher if λ4 is set too
small or too lager, and the best performance can be achieved



TABLE II: Architecture of the network in the proposed method.

Layer name Input size [Kernel size, Channels] Output size

Feature Invariant Branch

EDDF 224×224 [3×3, 24] 224×224
Convhf 224×224 [5×5, 64] 224×224

Residual Blocks

Conv 224×224 [7×7, 64], stride=2 112×112
Pooling 112×112 3×3 Maxpooling, stride=2 56×56

Residual Bloack1 56×56
[

3× 3, 128
3× 3, 128

]
× 2 56×56

Residual Bloack2 56×56
[

3× 3, 256
3× 3, 256

]
× 2 28×28

Residual Bloack3 28×28
[

3× 3, 512
3× 3, 512

]
× 2 14×14

Convcam 14×14 [3×3, Number of Cameras] 14×14

Feature Discrimination Augmentation Branch

Convaug 224×224 [3×3,3] 224×224

Residual Blocks

Conv 224×224 [7×7,64], stride=2 112×112
Pooling 112×112 3×3 Maxpooling, stride=2 56×56

Residual Bloack1 56×56
[

3× 3, 128
3× 3, 128

]
× 2 56×56

Residual Bloack2 56×56
[

3× 3, 256
3× 3, 256

]
× 2 28×28

Residual Bloack3 28×28
[

3× 3, 512
3× 3, 512

]
× 2 14×14

Average Pooling 14×14 1×1

Binary Classification

Fmix Fspf Faug

FC1 (512, 128) FC1 (512, 128) FC1 (512, 128)
Relu Relu Relu

FC2 (128, 2) FC2 (128, 2) FC2 (128, 2)

TABLE III: Cross-test results (HTER %) on CASIA-FASD, Replay-Attack, and MSU-MFSD. “-” indicates that the
corresponding result is unavailable. The numbers in bold are the best results.

Method C → R M → R M → C C → M C&M → R C&R → M M&R → C

LBP [1] 47.0 45.5 - - - - -
LBP-TOP [22] 49.7 46.5 - - - - -

Motion [54] 50.2 - - - – - -
CNN [5] 48.5 37.1 37.8 26.3 29.3 21.2 37.2

Color LBP [26] 37.9 44.8 45.7 21.0 - - -
Color Tex. [26] 30.3 33.9 46.0 20.4 - - -

Color SURF [26] 26.9 29.7 24.3 19.1 - - -
ResNet18 [15] 47.0 47.9 45.8 36.4 35.3 27.6 40.7

ResNet18+TripletLoss [39] 43.3 11.5 37.8 14.0 27.3 23.8 43.3
Auxiliary [9] 27.6 - - - - - -

Auxiliary (depth only)[9] 29.1 26.7 44.5 36.1 29.7 16.6 35.5
DeepPixel [53] 41.5 21.9 36.0 40.3 38.9 21.6 33.1
De-Spoof [17] 28.5 - - - - - -

Invariant Branch (Ours) 19.4 25.8 32.6 21.6 24.6 15.0 31.2
Augmentation Branch (Ours) 31.2 28.1 36.3 31.9 29.3 18.6 37.8

Fusion (Ours) 17.6 21.7 27.3 17.5 21.3 14.8 32.3



Fig. 7: The error rate of the false accepted attack types on
the CASIA-FASD database. ‘VR’ means Video Replay, ‘PP’
indicates the printed photo and ‘PM’ means a mask made by
the printed photo with the regions of eyes and mouth been
cut.
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Fig. 8: Variations of the EER(%) results influenced by the
fusion weight parameter λ4 in Eqn. (13) on intra-database
(CASIA-FASD) setting.

when λ4 is set to 0.8. This indicates that the two branches in
our model are all necessary, and provides useful evidence on
the effectiveness of our fusion strategy.

Then we conduct an intra-database experiment on Oulu-
NPU. Four protocols are provided in the OULU-NPU
database. Protocol 1 is used to evaluate the generalization
capability in different environments. Protocol 2 is designed
for performance evaluation on unseen attack types including
video replay and printed photo. Protocol 3 is the most relevant
to our method, which is used to evaluate how a model can be
generalized to unseen camera types. Six camera types are con-
tained in this protocol, in which, five selected camera styles are
used for training and the rest one for testing. Protocol 4 is the
most challenging protocol, as different environments, attack
mediums and cameras are all considered in this protocol. we
report our experimental results in Table V.

Form the table, we observe that our method can achieve the
best ACER in Protocol 3 with the lowest variance in terms
of different cameras which indicates that our method can be
generalized well to the camera modules. Moreover, our method
achieves superior results compared with the “GRADIANT”
[55] which only uses binary labels for supervision. In Proto-

TABLE IV: Intra-test results on CASIA-FASD. The number
in bold are the best results.

Method EER(%)

IQA [24] 32.4

Motion [54] 26.6

LBP [1] 18.2

LBP-TOP [22] 10.0

LBP+SVM [56] 4.9

CNN [5] 7.4

MSR-RESNET [57] 3.1

Color SURF [26] 2.2

ResNet18 [15] 5.2

DeepPixel [53] 2.6

ResNet18+TripletLoss [39] 1.4

Auxiliary (depth only)[9] 1.3
CamInva Branch (Ours) 2.3

Augmentation Branch (Ours) 2.9
Fusion (Ours) 0.89

TABLE V: Experimental results of the four protocols on the
OULU-NPU database.

Prot. Methods APCER(%) BPCER(%) ACER(%)

1

CPqD [55] 2.9 10.8 6.9

GRADIANT [55] 1.3 12.5 6.9

Auxiliary [9] 1.6 1.6 1.6

DeSpoofing [17] 1.2 1.7 1.5
Ours 3.8 2.9 3.4

2

MixedFASNet [55] 9.7 2.5 6.1

GRADIANT [55] 3.1 1.9 2.5

Auxiliary [9] 2.7 2.7 2.7

DeSpoofing [17] 4.2 4.4 4.3

Ours 3.6 1.2 2.4

3

MixedFASNet [55] 5.3±6.7 7.8±5.5 6.5±4.6
GRADIANT [55] 2.6±3.9 5.0±5.3 3.8±2.4

Auxiliary [9] 2.7±1.3 3.1±1.7 2.9±1.5
DeSpoofing [17] 4.0±1.8 3.8±1.2 3.6±1.6

Ours 3.8±1.3 1.1±1.1 2.5±0.8

4

Massy HNU [55] 35.8±35.3 8.3±4.1 22.1±17.6
GRADIANT [55] 5.0±4.5 15.0±7.1 10.0±5.0

Auxiliary [9] 9.3±5.6 10.4±6.0 9.5±6.0
DeSpoofing [17] 5.1±6.3 6.1±5.1 5.6±5.7

Ours 5.9±3.3 6.3±4.7 6.1±4.1

cols 2 and 4, we achieve competitive performance compared
with “Auxiliary” or the “DeSpoofing” method which also uses
the auxiliary depth information for training. It is worth noting
that our method achieves the lowest variance in Protocol 3 as
well as Protocol 4, demonstrating the promising robustness of
our method.

D. Ablation Study

In this subsection, to reveal the functionalities of differ-
ent modules in the proposed method, we perform the abla-
tion analysis. The experiments are conducted both on intra-



TABLE VI: Ablation studies of our method on the CASIA
database and Repaly-Attack.

Methos
Intra Testing ( EER% )

Cross Testing
( HTER% )

CASIA-FASD
CASIA-
FASD →
Replay

1st branch
Cam1: 2.5
Cam2: 1.8
Cam3: 2.6

Avg.: 2.3 19.4

1st branch
w/o EDDF

Cam1: 2.9
Cam2: 2.4
Cam3: 3.1

Avg.: 2.8 24.8

2nd branch
Cam1: 2.1
Cam2: 4.9
Cam3: 1.6

Avg.: 2.9 31.2

2nd branch
w/o EDDF

Cam1: 3.3
Cam2: 7.0
Cam3: 2.5

Avg.: 4.3 32.1

Fusion w/o
CamID

Cam1: 2.4
Cam2: 1.2
Cam3: 3.1

Avg.: 2.2 29.3

Fusion
Cam1: 0.7
Cam2: 1.8
Cam3: 0.2

Avg.: 0.9 17.6

database (CASIA-FASD database) and cross-database (train-
ing on CASIA-FASD and testing on Replay-Attack) settings.
The results are shown in Table VI in which the feature
invariant branch is denoted as the first branch and the feature
discrimination augmentation branch is denoted as the second
branch. Moreover, Cam1, Cam2 and Cam3 correspond to
low quality, normal quality and high quality cameras in the
CASIA-FASD dataset. To identify the effectiveness of the two
branches, we show the experiment results of the two branches
respectively without fusion and a T-SNE visualization of the
learned feature in the first branch is shown in Fig. 2(b).
Subsequently, we remove EDDF at each branch to evaluate
the functionality of EDDF. More specifically, when evaluating
each branch without EDDF, we adopt the same residual archi-
tecture in each branch except for the input image which has not
been processed by the EDDF, and the number of channels of
the following CNN layer is three. Another important factor is
the feature decomposition operation. To verify its importance,
we ablate the camera classification sub-network in the first
branch such that the results of the second sub-network and
the second branch are fused for comparison. We denote the
results as Fusion w/o CamID in Table VI.

From the EER results on CASIA-FASD intra-database set-
tings in Table VI, we can find that the variance of detection
results of each camera is significantly reduced in the first
branch compared with the second branch. It is demonstrated
that more generalized spoofing features can be learned in
the first branch. In addition, the performance of the first
branch on Cam1 and Cam3 is degraded compared with the
second branch, due to the fact that only the HF feature is
utilized in the first branch. However, promising performance
improvement (31.2 vs. 19.4) by the first branch when testing

on cross-database (training on CASIA-FASD and testing on
Replay) has been observed. This phenomenon is reasonable,
as more database-dependent information (e.g., environment,
lighting) is used in the second branch, and the information
will cause the learned features to tend to be over-fitting on
the training database such that a negative effect when testing
on a different database has been observed. Moreover, we find
that the ablation of EDDF in the first branch will cause the
performance drop on both intra-database and cross-database
settings. It is demonstrated that the EDDF can make this
branch pay attention to the HF component when the input
image is pre-processed by EDDF. Similar results can be
observed when the EDDF is ablated in the second branch.
With EDDF, lower EER and HTER values can be acquired,
as more discriminative parts can be augmented before being
processed by CNN layers. As such, it can be concluded that
the EDDF is necessary for both branches. From Table VI, we
can find that the PAD performance will be largely improved
when we fuse the results of two branches, and outperform
each individual branch. This implies that the learned features
of each branch are compulsory and the results of the two
branches are balanced by the weighted fusion strategy.

E. Feature Visualizations

To better understand the learned spoofing features of the two
branches in our proposed methods, we train the model using
CASIA-FASD database and visualize the feature maps of each
sub-network. Moreover, to identify which components will be
augmented in the second branch, we also visualize the input
map in the second branch. The results are shown in Fig. 9.

As we can see, in the second row, the contrast and details of
input images are augmented. Taking the augmented image as
the input in the second branch, the last row shows the learned
feature maps, from which we can find a large difference exists
between the feature maps of live and spoofing face images,
especially in the regions of the nose and mouth. The third
row shows the maps learned for camera type classification.
In this row, although the face images in the same camera
type are different (live vs. spoofing), similar camera patterns
can still be extracted and the patterns are varied by camera
types. In the fourth row, the spoofing feature maps learned in
the second sub-network are shown. From the images, we can
find more noise exists in the spoofing face image compared
with live samples. However, the noise patterns are different
among different cameras as the camera information mixed with
the spoofing patterns causes the domain gap among different
cameras.

F. Investigations on the Robustness of Unknown Camera Fea-
ture Extraction

In the feature invariant branch of our model, we use the
camera feature extracted in the first sub-network as the side
information to guide the model to remove the camera informa-
tion incorporated in the spoofing detection feature, leading to
the camera invariant feature extraction for spoofing detection.
In this sense, the camera features extracted in the testing
set should be more specific and different from the camera



Fig. 9: Visualization results of the learned feature maps. The model is trained on CASIA-FASD database. In the first row,
from left to right are the input live and spoofing face images sampled from CASIA-FASD database (including three camera
types: low quality camera, normal quality camera and high quality camera) and Replay Attack database. The second row
shows the images augmented in the second branch. The sampled feature maps of the two subnetworks in the “Feature Invariant
Branch” are shown in the following two rows respectively and the last row presents one of the features learned in the “Feature
Discrimination Augmentation Branch”.

features extracted in the training set (as the camera type in
the testing set is not identical with that of the training set).
To demonstrate such assumption, we provide the visualization
of cameras features extracted from training set and testing
set in Fig. 10 (equal number of samples of each dataset are
randomly selected for better visualization). More specifically,
the number of camera types in training set ranges from 2 to
5.

As shown in Fig. 10, we use different numbers of camera
types for camera classifier training and the results show that
our camera classifier can extract the camera-specific features
of unseen cameras in the testing set even the number of
camera type in the training set is limited (e.g. 2 or 3). Besides,
we can also find that the camera classification capability
can be improved (corresponding to more compact of each
camera feature) when the number of camera type for training
increases. However, even the discriminative camera features
can be efficiently extracted by the camera classifier, it cannot
be fully guaranteed that the features do not carry other forms
of noise which are not considered in the training data. To
improve the robustness of camera feature extraction, we further
explore the robustness of unknown camera feature extraction
and conduct more studies on the probability based unknown
camera classification with a self-attention based strategy for
the feature refining.

Unknown camera classification. In this step, we study the
“(N+1)” camera classifier, where N is the number of camera
categories in the training set. In the testing phase, if a sample
is classified into (N + 1)− th category, the sample is further

treated as an image captured by an unknown camera. Towards
the implementation of the N+1 camera classifier, we adopt the
softmax probability distribution as category descriptor which
is widely used in the filed of Out-of-Distribution Detection
(OOD) detection [58], [59], [60]. To be specific, we assume
the camera classifier is trained by cameras in N categories
and tested on a testing set with N +M categories, where M
is the number of unknown camera types. We first show the
average softmax probability of each camera type for testing
in Fig. 11. Furthermore, we also visualize the probability
distribution on intra-dataset for comparisons in Fig. 12. From
the figures, we can observe that the probability distribution
of cameras types in the training set has significant differences
with the distribution of unknown camera types. Inspired by
this observation, to transfer the trained classifier into an “
(N+1)” classifier, the distribution descriptor is created. More
specifically, for each sample xt in the testing set, we use
the difference between the maximum classification probability
pmax 1st and second maximum probability pmax 2nd that xt is
predicted among N categories to infer the probability that the
xt belongs to the (N + 1)− th category,

pt
(
yt = N + 1

)
= 1− pmax 1st (xt)− pmax 2nd (xt)

τ
, (18)

where yt is the predicted camera category of xt and the
parameter τ can be calculated from the training set. To be
specific, for each sample xs in the training set, if its maximum
classification probability pmax 1st (xs) > 0.6, this sample is



Fig. 10: T-SNE [18] visualization of the camera features. C1, C2, C3, M1, M2 and R represent the six different camera types
in CASIA-FASD, MSU-MFSD and Replay-Attack datasets.

selected and the corresponding distribution descriptor τ (xs)
is obtained as follows:

τ (xs) =
pmax 1st (xs)− pmax 2nd (xs)

1− pmax 1st (xs)
. (19)

The final τ is selected as the minimum value among the
descriptors of all selected samples. Then the normalized prob-
ability that xt belongs to category m (m ∈ {1, 2, 3...N + 1})
can be acquired as follows:

pnor
(
yt = m

)
=

pt (yt = m)∑N+1
j=1 pt (yt = j)

. (20)

To demonstrate the performance of our “N + 1” classifier in
the testing set, we average the probability that each sample
is classified into (N + 1) − th category by camera type.
The results are shown in Fig. 13. Besides, the intra-testing
results on CASIA-FASD dataset are also visualized in Fig. 14
for comparisons. It is apparent that the unknown camera is
classified into the (N+1)−th category with a high probability
(≥ 0.85) and the intra-class cameras are rejected by the
(N + 1) − th category. This reveals the effectiveness of the
“N + 1” classifier.

Unknown Camera feature refining. After the camera clas-
sification is finished for “N + 1” classification, an attention
based unknown camera feature refining is conducted when the
testing camera is classified into the (N+1)−th category (a.k.a
unknown camera).

Firstly, we use the normalized probability acquired in above
step to examine the affiliation of the extracted camera features
with respect to each one of (N + 1) classes as follows:

ct = argmax
c
{p(yt = c)|c ∈ {1, 2, ..., N + 1}}, (21)

where ct is the category that xt is finally classified by
comparing all probabilities and selecting the maximum one.
When ct equals to N+1, the image is regarded to be captured
by an unknown camera. In this scenario, we aim to further
improve the detection accuracy based on the philosophy of
re-weighting the branches and refining the features.

1) In the weighted fusion, we increase the weight of results
acquired by the invariant branch form 0.7 to 1.0, due to the
higher generalization ability of the Invariant branch compared
with Augmentation branch.

2) The extracted camera feature is refined due to unseen
noise possibly introduced. For simplification, we use Xcam

and Xmix to represent Mcam and Mmix in Fig. 3 respectively.
The Xmix is a combination of camera invariant spoofing
feature and camera feature. When the Xcam is aligned with
the camera information in Xmix, the camera invariant spoofing
feature can be acquired. To reduce the noise injected in Xcam,
an attention based strategy is proposed. More specifically, as
shown in Fig. 15, we adopt a self-attention module to measure
the spatial attention map H of Xcam as follows:

Hu,v =
eGu,v∑hw
i=1 e

Gu,v

. (22)

where h,w indicate the spatial size of H and u, v are the
indexes of row and column respectively. The matrix G is given
by,

G = (Xcam)
> ×Xcam, (23)

where the “×” operation represents the matrix multiply. In
particular, for each index in the spatial dimension, we calculate
the normalized weights of itself and the other indices to
synthesize the refined camera feature as follows:

Xatt = Xcam ×H. (24)

Based on the refined camera feature Xatt, the feature subtrac-
tion is performed, and the binary classification result is finally
obtained. To verify the refining strategy, we compare the
performance of our model with and without (W/O) unknown
camera feature refining on different cross-dataset settings. The
results are shown in Table VII. From the table, we can observe
that the unknown camera feature refining strategy can be
benefit for the performance improvement on the most of cross-
dataset settings, which demonstrates that the features can be
further enhanced to improve the effectiveness of our method.

G. Investigations in Re-compression Scenarios

The compression artifacts will be injected when the video
clips are represented in compact format, leading to the negative
effect on spoofing detection. Moreover, with the rapid devel-
opment of cloud computing, the face anti-spoofing algorithms
are also expected to be deployed on the cloud platforms and



Fig. 11: Visualization of the average probability of camera-specific samples in the N category classification, where N is the
number of camera categories in the training set. The datasets for training is annotated under each sub-figure and all samples
in six datasets are used for testing. The probability p(·) corresponds to the probability that the testing sample is classified into
the corresponding category.

TABLE VII: Performance (HTER %) comparison between our models with and without (W/O) unknown camera feature refining
on different cross-dataset settings.

Method C → R M → R M → C C → M C&M → R C&R → M M&R → C

Ours (W/O Unknown Camera Refining) 17.6 21.7 27.3 17.5 21.3 14.8 32.3

Ours (Unknown Camera Refining) 17.0 21.0 27.1 13.8 19.9 15.3 30.7

Fig. 12: Visualization of the average probability of camera-
specific samples in the N category classification, where N is
the number of camera category in the training set. The samples
for training are a portion of CASIA-FASD dataset and the
rest of samples are used for testing. Again, the probability
p(·) corresponds to the probability that the testing sample is
classified into the corresponding category.

the compression/re-compression could significantly reduce the
bandwidth when transmitting the video stream to the cloud.
As such, the evaluation of the spoofing detection performance
with videos been compressed/re-compressed is important and
essential.

Herein, we conduct performance comparisons in the sce-
narios that the testing video data are further recompressed
with different codecs based on HEVC standard (x265) [61],
[62] and H.264/AVC standard (x264) [63], [64]. Three
databases are adopted in the performance comparisons, in-
cluding CASIA-FASD, MSU-MFSD and REPLAY-ATTACK.
Besides different compression standards explored, multiple
quantization parameters (QP) are also selected, ranging from
high to low bit rate (QP=17 to QP=42). The performance
comparisons are shown in Tables VIII and IX. In particular, it
is apparent that our proposed method achieves better detection
performance for different QP values. However, it is generally

acknowledged that the compression artifacts may influence
the performance of the detection accuracy. For example, the
detection accuracy decreases with the increase of QP, as very
important clues that are useful for spoofing detection could
be distorted during compression. Herein, we also show the
unknown camera feature refining results in Table VIII and
Table IX where the rows are denoted “Ours (Unknown Camera
Refining)”. We can observe that the performance in terms of
HTER% results is further improved. For the high QP scenario
(QP ≥ 32), the refining strategy is still effective which reveals
the robustness of our scheme.

V. CONCLUSIONS AND FUTURE WORK

We aim to address one critical and practical challenge faced
by face anti-spoofing that the diverse camera types are prone
to cause a large domain gap when the training and testing
data are from different cameras. In this paper, we present a
novel camera invariant face anti-spoofing model, targeting to
improve the generalization capability of face anti-spoofing in
real applications. Our model is able to eliminate the influence
of cameras in feature extraction based on feature domain de-
composition, and practically obtain promising spoofing detec-
tion performance based on the combination of camera invariant
and discrimination augmented feature extraction. Extensive ex-
periments based on intra-database and cross-database settings
verify that the proposed scheme achieves superior performance
and exhibits strong generalization capability in face spoofing
detection.

Recent years have witnessed a surge of growth in terms
of camera types along with different mobile devices. It is
envisioned that the proposed method could be naturally in-
corporated to support the applications in these devices. Based
on the elaborate design, more accurate face anti-spoofing is
achieved without specifically collecting and labeling training
data from the given camera, as evidenced by our experi-
mental results. The proposed method is also extensible when



Fig. 13: Visualization of the average probability of classifying the testing samples to the category N + 1. The datasets for
training are provided under each sub-figure and all samples in six datasets are used for testing.

TABLE VIII: Performance comparisons of different face spoofing methods when the videos are compressed with HEVC
standard (x265).

Configuration Methods Original QP17 QP22 QP27 QP32 QP37 QP42

CASIA Intra

LBP+SVM [56] 7.5 10.8 16.2 20.6 16.9 22.2 28.8
Resnet18 [15] 5.2 7.6 8.3 8.1 8.7 9.5 10.9
DeepPixel [53] 2.6 3.2 3.0 3.5 3.7 5.2 4.4
Auxiliary (depth only) [9] 1.3 2.0 1.8 2.9 3.9 7.3 9.4
Ours 0.9 1.3 1.9 1.6 2.8 3.4 4.2

C → R

LBP+SVM [56] 28.9 28.6 32.6 40.3 44.5 42.8 46.8
Resnet18 [15] 47.0 47.6 47.8 48.5 49.6 49.1 50.0
DeepPixel [53] 41.5 38.2 37.6 36.2 36.2 36.9 36.7
Auxiliary (depth only) [9] 28.1 26.2 25.6 28.4 32.5 37.8 43.6
Ours 17.6 18.7 18.7 18.9 20.6 22.8 20.2
Ours (Unknown Camera Refining) 17.0 17.2 16.8 16.4 18.7 21.9 19.9

C → M

LBP+SVM [56] 48.1 48.5 48.8 49.3 48.4 45.7 47.4
Resnet18 [15] 36.4 37.2 36.0 36.0 34.3 35.8 36.5
DeepPixel [53] 40.3 40.1 39.0 37.7 39.4 39.6 40.1
Auxiliary (depth only) [9] 36.1 30.3 29.1 28.5 27.6 28.1 24.8
Ours 17.5 18.0 17.5 17.8 17.6 17.3 17.2
Ours (Unknown Camera Refining) 13.8 13.67 12.6 12.6 12.5 12.2 11.8

M → R

LBP+SVM [56] 46.4 47.8 46.5 42.1 41.0 41.8 45.1
Resnet18 [15] 47.9 45.1 44.8 45.9 46.0 46.4 44.1
DeepPixel [53] 21.9 22.7 22.7 22.6 23.8 26.4 28.0
Auxiliary(depth only) [9] 26.7 28.0 27.6 26.5 28.1 30.9 35.2
Ours 21.7 22.1 23.2 19.8 25.7 30.3 36.0
Ours (Unknown Camera Refining) 21.0 19.9 19.5 19.2 24.3 28.9 30.1

M → C

LBP+SVM [56] 49.8 50.0 49.2 49.7 48.9 50.0 48.3
Resnet18 [15] 45.8 48.4 48.3 48.6 48.7 47.9 49.0
DeepPixel [53] 36.1 34.6 35.2 34.5 35.4 36.3 36.9
Auxiliary (depth only) [9] 44.5 38.5 37.9 38.2 39.3 41.3 42.8
Ours 27.3 29.8 30.4 30.7 29.1 28.5 31.3
Ours (Unknown Camera Refining) 27.1 28.7 30.1 30.2 28.7 28.3 29.6

more environments, attack types and compression levels are
involved in the face spoofing detection. As such, how the
proposed model could be further extended to a more unified
spoofing detection model, is an interesting direction yet to be
explored. It is also anticipated that the design philosophy could
facilitate many other applications in addition to face spoofing
detection. One concrete example is the low-level computer
vision task such as image quality assessment, as a model that
exhibits strong robustness to different cameras and acquisition
environments is highly desired. Another example is the high-
level visual understanding at the cloud side, as a universal
model that works across different cameras can be deployed in

the cloud for efficient recognition and understanding.
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