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Abstract—There has been an increasing consensus in learning
based face anti-spoofing that the divergence in terms of camera
models is causing a large domain gap in real application
scenarios. We describe a framework that eliminates the influence
of inherent variance from acquisition cameras at the feature
level, leading to the generalized face spoofing detection model
that could be highly adaptive to different acquisition devices.
In particular, the framework is composed of two branches.
The first branch aims to learn the camera invariant spoofing
features via feature level decomposition in the high frequency
domain. Motivated by the fact that the spoofing features exist
not only in the high frequency domain, in the second branch the
discrimination capability of extracted spoofing features is further
boosted from the enhanced image based on the recomposition of
the high-frequency and low-frequency information. Finally, the
classification results of the two branches are fused together by a
weighting strategy. Experiments show that the proposed method
can achieve better performance in both intra-dataset and cross-
dataset settings, demonstrating the high generalization capability
in various application scenarios.

Index Terms—Face anti-spoofing, camera invariant, deep
learning, generalization capability

I. INTRODUCTION

ACE authentication services have been growing exponen-

tially in the past decade, coinciding with the accelerated
proliferation of acquisition devices and advances of artificial
intelligence. Though unexceptionable performance has been
achieved, the security issue is a very challenging problem as
the system can be easily attacked even by a printed photo
or replayed video. To prevent the face recognition system
from being vulnerable, face Presentation Attacks Detection
(PAD) algorithms have been widely studied to distinguish the
spoofing faces from the live one.

Recently, various face presentation attacking methods have
been developed to deceive the authentication systems, such
as print attack (printing a face on a paper), replay attack
(replaying a face video by other devices), and mask attack
(wearing a mask). In the literature, numerous methods have
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Fig. 1: Illustrations of live (a) and spoofing (b) faces acquired
with two different cameras. The gray-scale maps show cor-
responding features of the second residual layer of the face
images. Two types of cameras in CASIA-FASD [14] database
are used for demonstration, including the low quality camera
(first and third columns) and high quality camera (second and
fourth columns). The features are from the ResNet-18 [13]
network trained on CASIA-FASD database.

been investigated for PAD, and the majority of them rely
on computational vision algorithms. In particular, both hand-
crafted [T, [2], [3], and deep learning [3], [6], [7], (8]
based features have been developed. For deep learning based
methods that rely on training of models based upon labelled
data, a large gap between the limited performance and essential
requirements have been observed when the training and testing
data are from different domains. One typical example is that
the training data are acquired with one type of camera and
testing data are from another type of camera. To increase the
domain adaptation and generalization capability, efforts have
been devoted to extracting auxiliary information, including
depth [9] and Remote Photoplethysmography (rPPG) signals
[10]. Attempts have also been made to use domain adaptation
technology [11l], [12], for mitigating the gap between
different domains.

It has been widely recognized that the camera information
is a dominant factor causing the domain gap. One typical
example is shown in Fig. [T} In particular, although the spoofing
face images are generated by an identical attack type (print at-
tack) and identity, the spoofing patterns still dramatically vary
according to the cameras. This phenomenon reveals that the
camera divergence between training and testing could cause
the PAD performance degradation, which is further validated



in Fig. 2(a). More specifically, it is observed that features
from spoofing faces and live faces are lack of discrimination
capabilities with large overlapping in-between when training
and testing are performed based on cross-camera settings.
However, given numerous camera types, it is difficult to collect
sufficient training data and specifically train a model for each
of them, especially with the surge of emerging cameras. Mo-
tivated by this, we aim to propose a novel deep learning based
PAD model with high generalization capability. To this end,
the camera information should be effectively removed. The
composition of facial features, which has been widely studied
in the literature [16], [[17]], motivates us to automatically learn
the camera invariant features. Herein, we propose a feature
level decomposition scheme, such that the trained model does
not depend on the acquisition device. This allows the model
to be widely applied in myriad applications, as the learned
model can be well generalized to unseen cameras at large.
Extensive experiments have demonstrated that the proposed
scheme achieves the state-of-the-art performance and reveals
high generalization capability. The main contributions of this
paper are as follows,

o We propose a novel framework with two branches to
improve the generalization capability of face spoofing.
The first is camera invariant branch, aiming to provide
high-frequency domain features with the elimination of
camera variance. Considering spoofing features in other
frequency domains (e.g., lighting) may be neglected in
the first branch, our second branch is feature discrimi-
nation augmentation branch which generates features by
an enhanced image recomposed from the low and high
frequency layers of the original input image.

e« We develop a sophisticated camera variance removal
scheme based on the feature level decomposition. The
features with the mixture of spoofing and camera infor-
mation are efficiently decomposed with a pseudo siamese
network, in an effort to blindly infer the feature that well
reflects the spoofing information while being invariant to
different camera types.

o The classification results of the two branches are fused
for the final decision. Experiments show that our pro-
posed method can achieve high accuracy not only on
intra-dataset settings but also on cross-dataset scenar-
ios, demonstrating superior generalization capacity with
camera-invariant feature extraction.

The rest of this paper is organized as follows. We first
review the related works in Section II. Subsequently, the
proposed scheme is detailed in Section III. The experimental
results are presented in Section IV, and finally we conclude
this paper in Section V.

II. RELATED WORKS

For face anti-spoofing, the intrinsic spoofing features relying
on which the binary classification can be performed are
expected to be both discriminative and of high generalization
capability [20]. In the literature, a series of features have been
studied and developed, including both hand-crafted and deep
learning features.
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Fig. 2: T-SNE [18]] visualization of the second-to-last fully
connected layer. (a) ResNet-18; (b) the first branch of our
proposed model. The two networks are trained on CASIA-
FASD database and tested on two types of cameras in MSU-
MEFESD [19] and Replay-Attack [1] databases.

A. Hand-crafted Features

Based on the observation that certain characteristics of tex-
ture in spoofing face and live face are different, hand-crafted
features are first exploited, including Local Binary Patterns
(LBP) [1l], Local Phase Quantization (LPQ) [2l], Histogram
of Gradients (HoG) [3]], Scale-Invariant Feature Transform
(SIFT) [4] and Speeded Up Robust Features (SURF) [2].
In contrast with the feature extraction performed in spatial
domain, in [21]], Li et al. utilized the dissimilarity in Fourier
spectra by considering that less High Frequency (HF) compo-
nents exist in spoofing images compared with the live ones.
To obtain texture features based on the 3-D plane in videos,
the high frequency information in both spatial and temporal
domains is exploited in [22]]. In [23], Chan et al. incorporated
flash light for more stable spoofing feature extraction by reduc-
ing the influence of environmental factors. Compared with HF
texture features, Low Frequency (LF) features have also been
utilized together in image quality based methods [24], [25],
[8]. In [25], with the live face image as the reference, color
distortion relevant features are extracted and compared by
Mean Squared Error (MSE), Maximum Difference (MD), R-
Averaged Maximum Difference (RAMD), etc. Regarding no-
reference image quality assessment, in [[19], the concatenated
features of specular, blurriness and color distortion are utilized.

Although those handcrafted features are computationally
efficient and perform well in intra settings, they may easily
fail when there are large variations in terms of attack scenar-
i0s [26]]. To tackle this issue, additional clues such as motion,
depth and blood circulation have also been incorporated.
Motion clues from eye blinking [27], [28] and word speaking
[29], [30] can be acquired from multi-frames. Moreover, in
[31], the pulse generated by facial blood circulation is used
since only the live face videos have such traits. In [29]], the
facial expression clues were firstly enhanced by an Eulerian
motion magnification algorithm, then the LBP texture features
and Histograms of Oriented Optical Flow (HOOF) motion
features were fused together for final classification. The 3D
depth information of the captured face [32], [33]] and infrared
images [34] are effective clues though these solutions rely on
additional sensors and could be more expensive to launch.



B. Deep Learning Features

For face PAD, deep learning based methods have also
been widely studied for obtaining more discriminative features
that account for the spoofing patterns. Yang et al. [3]] first
proposed to use Convolutional Neural Network (CNN) for
face spoofing detection. In [32], the pulse information and
other spatial and temporal features learned by CNNs are fused
together to boost the performance. In [35], a multi-level deep
dictionary learning based method was proposed especially for
the silicone mask attacks. To improve the performance of
CNNgs, transfer learning based schemes have been adopted
based on CNNs pretrained on ImageNet [36], VGG-Face [37]]
and GoogLeNet [6]. Motivated by the denoising algorithms, in
[L7] the spoofing patterns are treated as spoofing noise in the
live face and extracted by a CNN architecture for classification.

However, due to the limited size of existing labeled data,
the CNN models may be prone to over-fitting. To address
this issue, methods can be classified into three categories.
The first one is using the auxiliary information. In [38],
Atoum et al. proposed a two-steam CNN based model, where
one stream is responsible for patch-based anti-spoofing while
another one is developed for depth-estimation. In addition
to depth, remote Photoplethysmography (rPPG) signals have
also been exploited by a CNN-RNN scheme from the raw
videos in [9]]. Considering the domain shift between different
databases, domain adaptation based methods have been pro-
posed to shrink the domain gap between samples in training
and testing sets. In [11l], Li er al. proposed an embedding
function to map the image data into another space, such
that the Maximum Mean Discrepancy (MMD) based loss can
be optimized to evaluate the similarity of source and target
domains. In recent work [39], Wang et al. utilized a generative
adversarial network for domain adaptation based face spoofing
detection. The shared embedding space by both the source and
target domains can be learned when the discriminator cannot
reliably predict whether a sample is from the source or target
domain. However, due to the requirement of attack samples
in the test database, domain adaptation based method may not
be practical as it is difficult to acquire the spoofing images for
any unseen device. The last category is domain generalization
based methods. In [12]], Li et al. utilized a 3D CNN model
for the spatial-temporal information extraction. To reduce the
domain shift among different domains, the regularization term
is incorporated by minimizing the MMD. To learn a more
generalized representation for face anti-spoofing, Tu et al.
adopted the Total Pairwise Confusion (TPC) [40] loss for CNN
training and moreover an identity based method was studied.

III. THE PROPOSED SCHEME
A. Framework

Generally speaking, the hardware and software processing
in visual information acquisition leave unique traces in final
images or videos [41], [42], [43]. These distinct fingerprints,
which usually lie in the HF domain (e.g., sensor pattern
noise), imply unique camera information and exhibit strong
invariance to the captured scene. Unfortunately, important
clues in performing face spoofing such as the moiré pattern

in replay attack or texture of artificial materials (paper, mask)
also belong to the HF domain. As such, to obtain camera
invariant spoofing features, the camera contamination causing
the domain divergence between different cameras should be
eliminated in a scientifically sound way.

As illustrated in Fig. we propose a two branch based
model, in an effort to extract camera-free and spoofing specific
features to achieve generalized face anti-spoofing. In the first
branch, we focus on the HF information which contains abun-
dant clues regarding camera and spoofing relevant features.
Instead of performing metric learning to learn the camera
irrelevant features, we treat the camera information as a factor
varying the distribution of the spoofing features such that a
feature decomposition scheme is proposed to align features
captured from different cameras to pursue camera-invariant
features learning. In particular, unlike the conventional siamese
CNN architecture [44] which is designed with shared weights
for these sub-networks, we propose an architecture with the
pseudo-siamese network, in which the two sub-networks share
the same structure while each sub-network will learn its own
weights. More specifically, the first sub-network aims for cam-
era information extraction, and the second sub-network targets
for extracting spoofing features accompanied with camera
information. Due to the fact that two sub-networks share the
same camera classifier, the first sub-network is expected to ex-
tract the same camera information existing in the second one.
Then we utilize a feature decomposition scheme, with which
the spoofing features can be independently extracted based on
the obtained camera feature. However, straightforwardly using
the first branch may limit the performance as only HF features
are considered, while other spoofing clues including lighting,
reflection efc. tend to be neglected. In view of this, in the
second branch, we extract discrimination augmented features
based on the enhanced image recomposed from low/high-
frequency signal to enhance the detection accuracy. Finally,
the detection results of the two branches are fused for final
classification.

B. Pre-processing of Input Images

Apparently, face anti-spoofing relying on textures aims to
extract the unique features that could distinguish acquired
genuine facial skin with the screen, paper, photo and mask.
In analogous to the camera information, these clues are
irrelevant to the face identity but closely relevant to the texture
quality, motivating us to first focus on the HF domain. As
shown in Fig. [ the Eight-Direction Differential Filter-set
(EDDF) is adopted for high-frequency information extraction.
In particular, to eliminate the influence of the background,
we first crop the face region from the original image using
a face detection algorithm proposed in [45]]. Subsequently,
we perform the filtering based on EDDF such that the fixed
2D convolution layers with eight 3 x 3 kernels on three
channels of the input image can be obtained and the output
24 feature maps are denoted as Mg;r¢. Then the Mg,y is
further enhanced by enlarging the respective field adaptively
with a multi-channel CNN layer of kernel size 5 x 5, and the
corresponding CNN layer is denoted as C'onvy s in Fig.[3} The
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Fig. 3: Illustration of the proposed framework which consists of two branches. In the feature
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invariant branch, the camera

information is removed from the features that are specifically responsible for spoofing detection in HF domain. In the feature
discrimination augmentation branch, we aim to extract more discriminative features based on a recomposition of the learned
low/high-frequency components. Finally, the classification results of two branches are fused for the final prediction.

EDDF is adopted based on the inspiration of steganalysis rich
model (SRM) [46], where the high-frequency components can
be extracted by a union of many diverse submodels, leading to
comprehensive representations of the high frequency informa-
tion with eight corresponding high pass filters. The SRM has
also been widely used for image manipulation detection [47]]
as well as camera filter array (CFA) patterns extraction [48]].
Instead of using bunches of high pass filters, we employ the
EDDF to provide the basic residual operations, then followed
by Convps the useful high-frequency components can be
extracted upon the output from EDDF adaptively. We denote
the output feature maps as My and it will be treated as
the input of a pseudo-siamese network for extracting spoofing
specific features with camera information eliminated. Instead
of using only learned features extracted from the HF infor-
mation, the second branch learns to recompose the low/high
frequency signal of the original image to augment spoofing
clues for more discriminative feature learning. To this end,
in this branch, the augmentation components I, are learned
by a three channel convolution layer C'onvg,, performed on
Mg;r¢. As such, the learned maps will be combined with the
original image to generate an augmented image, serving as the
input of the second branch.

C. Camera Invariant Feature Learning

Given the HF domain input, the camera invariant feature
learning aims to obtain the discriminative and generalized
features based on feature level decomposition. More specif-
ically, a pseudo-siamese network is adopted in an effort to
remove camera variance from spoofing specific features. As
illustrated in Fig. [3] in the first branch, the two sub-networks

of the pseudo-siamese network share the same structure with
three residual layers in ResNet-18 [15]. However, they are
individually trained towards different targets. In particular, the
upper sub-network in the first branch is specifically designed
to obtain camera relevant features. Given the fact that the
camera information is determined by the camera type, the
classification loss on camera types is adopted to guide the
generation of the camera information. Herein, the learned
feature maps at the third residual layer are denoted as M q,.
With M 4., a camera classifier Convg,,, is implemented
based on a ® channel CNN layer, where ® is the number
of categories of cameras in the training database. Considering
the hard example mining, based on the original focal loss [49]]
we design a per-pixel multi-class focal loss on output maps of
last CNN layer O.q,,, for camera type identification,
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Herein, M and N indicate the spatial sizes of O.4,, and
y;5"% is the binary label of camera type. In particular, when
an element at location (7, ) of O, belongs to the camera
type k, yi5% = 1, and otherwise y7%"; = 0. y is a constant
parameter for penalty adjustment on the easy examples. P73’
denotes the prediction result from a softmax function in Eqn.
(2), where h7%; denotes the output of k' channel at spatial
location (%, ) in Ogqm. The reason to adopt the pixel-wise
loss to form the constraint is that the camera information
should be shared and maintained identical among local patches
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Fig. 4: Tllustration of the eight kernels in EDDF.

sampled from an image. Moreover, each element of the feature
Ocam corresponds to a patch of the input images. When we
choose to enforce the constraint on these elements, it amounts
to sample training patches from the image repeatedly, which
largely improves the diversity of data and alleviates the over-
fitting problem.

The bottom sub-network of the first branch aims to learn
the spoofing specific features. In analogous with the upper
sub-network, the learned feature maps at the third residual
layer are denoted as M,,;,, as shown in Fig. 3] Following
M iz, the Fp,;, is acquired by an average pooling layer and
two fully connected layers produce the prediction on spoofing
with a softmax function. The binary (live vs. spoofing) focal
loss is adopted to persuade the model to well discriminate
hard examples and increase the distance between genuine
and spoofing samples, such that more discriminative spoofing
features can be learned. As such, it is formulated as follows,

L =— a1y (1 —p™*) log(p™™))

mzx miT mix (3)

+ ag((1 — ™) (p™*) " log(1 — p™*)),
where y™ is the ground truth, (y™* = 0 for spoofing and
y™® = 1 for live) and p"** is predicted probability of the live

sample. oy, ap and «y are constant parameters to control the
balance between hard and easy samples. The spoofing features
extracted from M,,,;, are mixed with camera information. As
such, to further eliminate the camera variance, the camera
classification loss is also imposed on the generated output
Maps Oy from M., to drive the training of the bottom
sub-network based on the classification loss.
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Herein, our aim is to construct the approximation of the
latent camera invariant features conditioned on the explicitly
learned M,,;, and M, ,,, based on decomposition, with a
strong prior that the resultant features have a strong capabil-
ity in discriminating spoofing patterns while no information
regarding camera types is implied. To this end, we formulate
a rational feature level decomposition model by establishing
the relationship among M., Mcqm and the desired camera
invariant HF spoofing features M,r. As the feature Mg,
expected to acquire is independent with the camera type, we
assume that the M,,;; is a combination of M,,; and the

(am id —

camera information denoted as M™®

i, leading to a feature
decomposition approach,

Mmia: Mm“/ + Ms (5)

cam

As MM shares the same camera classifiers with Mq,,, we

have,
M = Meam. (6)

cam

As such, the camera invariant HF spoofing map can be
acquired by,

Ms*pf = an - Mcam- (7)

In general, the desired feature M,y should not be able to
identify the camera type while equipped with strong capability
in detecting spoofing. In particular, the loss that confuses the
camera type decam is defined as follows,

M N @
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As such, the predicted probability of each camera type is
desired to be equal to the average, indicating that the Mg, s
loses the capability in discriminating the camera for camera-
invariant feature learning.

Given My, the pooled feature map Fj,s can be acquired
with an average pooling layer and the face liveness prediction
is achieved with two fully connected layers. For training the
network, the binary (live vs. spoofing) focal loss is adopted
again,

Lo = — oa(y*P (1= p ) log(p*7))

X 10
(1 =y )Y log(1 1o

Spf))

where y°P/ is the ground truth and p°Pf is predicted probabil-
ity of the face liveness. The prediction result based on Fj;, ¢
from the first branch is used to detect the spoofing.

It is worth mentioning that in this branch we adopt the
camera type as the side information for camera invariant
feature learning. In the training phase, we divide the face
images in terms of camera types in the training set, then
the pixel-wise multi-class cross-entropy loss is imposed for
learning and extracting the camera feature. The per-pixel
based loss is adopted with the assumption that the camera
information existing in an image should be invariant to the
acquired scene. Moreover, the number of camera categories for
classification varies with the used training set. However, we do
not attempt to employ the classification results in the testing
phase, as totally different camera types from the training set
may form the testing set. Instead, we only use the features
learned in the second to last layer as the extracted camera
information. Although the cameras in the testing set are unseen
during training, the camera-specific information can also be
successfully extracted. Subsequently, the camera feature will
be decomposed from the learned mixed spoofing feature in the
second sub-network, by which the camera invariant feature can
be finally learned in the first branch.



D. Feature Discrimination Capability Augmentation

The first branch aims to obtain camera invariant spoofing
features in the HF domain, which will inevitably ignore
certain useful information in other frequency ranges, i.e.,
color, camera reflectance. To comprehensively obtain features
extracted from both high and low frequency domains for
spoofing detection, the second branch is specifically learned.
In the second branch, to emphasize discriminative spoofing
clues, we adopt the augmented image I,,, generated in the
image pre-processing phase as the input. Again, after the
last residual layer we acquire the augmented feature map
M.y and an average pooling layer is adopted to reduce the
spatial dimension. We denote the output features as Fi,q
and subsequently two fully connected layers with a softmax
function predict the final result. The binary focal loss is also
adopted here,

L3 =— ar(y™I(1 — p*9)7 log(p**9))
+ (1 —y™9)(p™9)7 log(1 — p**)),

where y®*9 is the ground truth and p®“9 is the predicted
probability of the face liveness.

(an

E. Spoofing Detection

In summary, six loss functions have been defined in the
two branches and the total loss for training our network is a
weighted sum of these loss functions,

Loss :)\1 (ﬁéam_id + ‘C?:am_id)

(12)
+ >\2 (‘Clllnl + ‘Can + ‘anz) + )‘3£decam7

where Aj, g, A3 are the weighting factors. In the testing
phase, we use a weighted score to fuse the results from the
two branches,

P(Fspf) + >\4P(Faug)
14+ Xy
where A4 is the empirically set fusion score weight. P(Fl,y)

and P(F,,y) are the predicted probabilities of face liveness
from the two branches.

P =

. 13)

IV. EXPERIMENTAL RESULTS
A. Datasets

We evaluate our model on four face anti-spoofing datasets:
CASIA-FASD [14], Replay-Attack [1]], Oulu-NPU [30] and
MSU-MFSD [19]]. The descriptions of the four databases are
shown in Table 1.

CASIA-FASD: The CASIA-FASD database was published
in 2012. In this database, 50 subjects are included. For each
subject, 3 live and 9 fake video clips are provided. There are
three attack types in this database including warped photo
attack, cut photo attack and video replay attack. The cameras
can be categorized into three different quality levels including
low quality (web camera), normal quality (web camera) and
high quality (Sony NEX-5). Among the 600 video clips, 240
are used for the training set and the rest are used for testing.

Replay-Attack: This database also contains 50 subjects. The
total number of videos is 12000, consisting of 360 videos (60

@ 0 G0

Fig. 5: Illustrations of face samples in the four datasets. (a),
(b) and (c) are images sampled from three camera types (low
quality, normal quality and high quality) in the CASIA-FASD
database [14]]. From top to down are the live samples and
spoofing samples generated by printed photo, photo with eye
cut and video replay. (d) are images sampled from Replay-
Attack database [1]]. From top to down are the live sample and
spoofing samples generated by print photo, screen photo and
video replay. (e) and (f) are images sampled from two types
of cameras (MacBook Air and Google Nexus 5) in MSU-
MFSD database [19]. From top to down are the live samples
and spoofing samples generated by printed photo and video
replay with iPad and iPhones respectively. (g)-(1) are images
sampled from six mobile cameras (Samsung Galaxy S6 edge,
HTC Desire EYE, MEIZU X5, ASUS Zenfone Selfie, Sony
XPERIA C5 Ultra Dual and OPPO N3) in Oulu-NPU [350]
database. From top to down are the live samples and spoofing
samples generated by print photo and video replay.

real-accesses and 300 attacks) in the training set, 360 videos
(60 real-accesses and 300 attacks) in the development set and
480 videos (80 real-accesses and 400 attacks) in the testing set.
Two types of attack including print attack and replay attack
are performed in this database. For the print attack, the face
images are printed on a high resolution A4 paper. For the
replay attack, two devices are adopted, including iPhone 3GS
(with resolution 480 x 320) and first generation iPad (with
resolution 1024 x 768). Different illumination conditions are
studied in this database. The first is a controlled condition
where a fluorescent lamp is used for lighting with a uniform



background. The other condition is adverse, and only day-
light is used in the background. All videos in this database
are recorded by a webcam of a MacBook.

Oulu-NPU: This database was published in 2017 and it con-
sists of 4950 video clips. Those videos are divided into three
sets: 1) training set, which contains 360 real and 1440 attack
videos of 20 subjects. 2) development set, which contains 270
real and 1080 attack videos of 15 subjects. 3) testing set, which
contains 360 real and 1400 attack videos of 20 subjects. Six
cameras are used for recording in this database. The attack
types implemented in this database are print and video-replay,
generated by two types of printers and two types of display
devices, respectively. Four testing protocols are considered
to evaluate the environmental condition variations, spoofing
mediums variation, camera style variations and fusion of all
above challenges.

MSU-MFSD: Two different resolutions of cameras are
considered in this database: 1) the built-in camera in the
MacBook Air 13 with the resolution of 640 x 480, 2) the
front-facing camera in the Google Nexus 5 with resolution of
720 480. The database contains 35 subjects and 280 videos in
total. Two attack types are performed including printed photo
and video replay. For the printed photo attack, the Canon 550D
camera is used for high resolution (5184 x 3456) face image
acquisition and the photo will be printed on an A3 paper with
an HP color printer. Two cameras are used for replay attacks
including SLR camera and iPhone 5S back-facing camera.

The sample face images of the four datasets, including
CASIA-FASD, Replay-Attack, MSU-MFSD and Oulu-NPU,
are shown in Fig. [5] Both live samples and spoofing samples
generated by different attack types are presented. It should
be noted that there is no overlapping on the subjects between
training set and testing set, implying that we test our model on
unseen subjects in both intra-dataset and cross-dataset settings.

B. Implementation Details

We implement our model by PyTorch. For each database,
we averagely select 30 frames from each videos. To eliminate
the background variations, we crop the face region from each
frame by a face detection algorithm [45[]. As our proposed
method is camera based method, we divide the database based
on camera types. We divide the CASIA-FASD into 3 sub-
databases and MSU-MFSD into 2 sub-databases based on
the camera types. As there is only one single camera in
Replay-Attack, this database is not divided. The cropped face
images are resized to 224 x 224. Considering the imbalance
of positive and negative samples, we sample the live faces and
spoofing faces at a ratio 1:1 in a batch during training. We also
use data augmentation for better generalization capacity. The
augmentation includes horizontal and vertical flipping with
a probability of 0.5, random rotation within 15 degrees as
well as color jitter. The color jitter is implemented based on
the Transforms module in Pytorch. In Table II, we show the
layer-wise network design of our proposed method. It is worth
mentioning that we replace batch normalize layers with group
normalization layers [S1], and the group number is set to 32
in each residual layer to make our network more stable.

The batch size in the training phase is 32 and we adopt
Adam optimizer for optimization. The learning rate begins at
0.004 for the first 20k steps and reduces by 0.2 after every 10k
steps. As the Oulu-NPU database contains much more samples
compared with other databases, we set the learning rate to be
0.004 for the first 30k steps, which further reduces by 0.2 after
every 20k steps. We set the parameters oy, aia, ¥, A1, A2, A3, Aq
be 0.5, 1.0, 4.0, 0.005, 5.0, 0.1, 0.7 for all experiments. Five
metrics are adopted for performance evaluations, including:

1) Equal Error Rate (EER). We use EER for intra-database
evaluation and the development set is used for EER threshold
selection.

2) Half Total Error Rate (HTER). HTER is the average of
False Acceptance Rate (FAR) and False Rejection Rate (FRR).
It is defined as follows:

FAR+ FRR
5 .

3) Attack Presentation Classification Error Rate (APCER).

It is defined as follows:

HTER = (14

Npar

Z (1 - R(’%) )

i=1

1
APCERpyas = N 15)

PAI

where Npajy is the number of attack attempts of certain
Presentation Attack Instruments (PAI). The value R, will
be ‘1’ if an attempt is predicted as ‘attack’ and O as ‘live’.
From the definition, we can find that the ACER only considers
the worst performance of different scenarios, which means it
penalizes approaches that only perform well on certain types
of attacks.

4) BonaFide Presentation Classification Error Rate
(BPCER): N
BF
BPCER:ZQE—QEQ, (16)
Npr

where Npr is the total number of the Bonafide presentation
times.

5) Average Classification Error Rate (ACER). It is the
average of APCER and BPCER:

APCER+ BPCER
5 .

The APCER, BPCER and ACER are the standardized ISO/IEC
30107-3 metrics in [52]].

ACER = (17)

C. Comparison with the State-of-the-Art Methods

To demonstrate the high generalization capability of our
method, we firstly perform cross-database experiments on
above mentioned four databases and compare our results
with the state-of-the-art methods. We adopt seven cross-
test settings in this experiment, including: CASIA-FASD —
Replay-Attack, CASIA-FASD — MSU-MFSD, MSU-MFSD
— Replay-Attack, MSU-MFSD — CASIA-FASD, (CASIA-
FASD & MSU-MFSD) — Replay-Attack, MSU-MFSD &
Replay-Attack — CASIA-FASD, CASIA-FASD & Replay-
Attack — MSU-MFSD. To simplify, we denote these seven
settings as C - R, C > MM - R M —- C, (C & M)
—+ R, M &R) - C, (C& R) = M. The R - C and R
— M settings are not involved, as the camera classification



TABLE I: Descriptions of the four databases.

Number . .
Database Year of Genuine/Attack Attack Types Capture Cameras Display
. Samples Cameras
Identities
Low-quality webcam,
CASIA-FASD [14] 2012 50 150/450 1 Print, 2 Replay | normal-quality webcam, iPad
SonyNEX-5
. . iPhone 3GS,
REPLAY-ATTACK [1] | 2012 50 200/1000 1 Print, 2 Replay Macbook webcam iPad
. Macbook air webcam, iPad Air,
MSU-MFESD [19] 2015 35 110/330 1 Print, 2 Replay nexus S iPhone 58
Samsung Galaxy S6,
edge oppo_n3, Dell1905FP,
OULU-NPU [50] 2017 55 1980/3960 2 Print, 2 Replay htc_desire_eye, MacBook
meizu_x5, asus xenfone, Retina
sony_xperia_c5
cannot be performed considering that only one camera type %0
exists in the Replay-Attack database. The comparison results 240
are reported in Table III. 230
As can be seen, we compare our method with 14 classical 220
methods, including both hand-crafted feature based methods g a0
and CNN based methods. It should be mentioned that for x 200
CNN based methods, classical CNN models are involved, Y190
including original ResNet-18 [15] for binary classification, 18.0
CNN [5], ResNet18+TripletLoss provided in [39], DeepPixel 170
[S3] method and Auxiliary [9] with depth map only which 16.0
is denoted as Auxiliary (depth only). From Table III, we 15.0
0.0 0.5 1.0 15 20

can find our method achieve the lowest HTER in most cross-
database settings except for M — C and C — M. Regarding
the M — C and C — M settings, our method achieves the
second best HTER results which are competitive with state-
of-the-art models (27.3% vs. 24.3% and 17.5% vs. 14.0%).
Moreover, for C — R, we achieve more than 10% lower in
terms of HTER than the state-of-the-art methods “Auxiliary”,
which demonstrate the effectiveness of our method. It is
worth noting that although the TripletLoss is utilized in [39]]
aiming to reduce the intra-class distance and enlarge the inter-
class distance, it still tends to be over-fitting and cannot
generalize well on different databases. It demonstrates that
our feature decomposition scheme is more suitable in the face
anti-spoofing task as some meaningful spoofing clues may
be discarded due to the distance restricted by TripletLoss. In
Table III, we also show the HTER results of the two branches
with different settings. It is obvious that although only using
the second branch cannot achieve the desired performance,
it provides the compulsory information for the first branch
and the results can be further improved by fusion of the two
branches, which reveals that the results of the two branches
can be effectively leveraged by our fusion strategy.
Furthermore, we also evaluate the performance influenced
by different fusion weighting parameter A4 on cross-database
testing (C — R). As shown in Fig. [ we can find that
the performance will drop if the value of A4 is s