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MBTree: Detecting Encryption RATs
Communication Using Malicious Behavior Tree

Cong Dong, Zhigang Lu∗, Zelin Cui, Baoxu Liu, Kai Chen

Abstract—Network trace signature matching is one reliable approach to detect active Remote Control Trojan, (RAT). Compared to
statistical-based detection of malicious network traces in the face of known RATs, the signature-based method can achieve more stable
performance and thus more reliability. However, with the development of encrypted technologies and disguise tricks, current methods
suffer inaccurate signature descriptions and inflexible matching mechanisms. In this paper, we propose to tackle above problems by
presenting MBTree, an approach to detect encryption RATs Command and Control (C&C) communication based on host-level network
trace behavior. MBTree first models the RAT network behaviors as the malicious set by automatically building the multiple level tree,
MLTree from distinctive network traces of each sample. Then, MBTree employs a detection algorithm to detect malicious network
traces that are similar to any MLTrees in the malicious set. To illustrate the effectiveness of our proposed method, we adopt theoretical
analysis of MBTree from the probability perspective. In addition, we have implemented MBTree to evaluate it on five datasets which are
reorganized in a sophisticated manner for comprehensive assessment. The experimental results demonstrate the accurate and robust
of MBTree, especially in the face of new emerging benign applications.

Index Terms—Encrypted Traffic, Malicious Traffic, Trojan Detection, Signature, Network Behavior, Command and Control.
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1 INTRODUCTION

NOWADAYS, modern network attacks are accomplished
with advanced automatic tools. One of them used

in the post-penetration procedure is the RAT. RAT is es-
sentially a type of software providing convenience for ad-
versaries to complete post-penetration. Typical functions of
RAT include process monitor, command execute, keyboard
logger, file transfer and others. After break into the victim
machine, adversies rely on the sophisticated tool for further
steps. Hence, there is a need to specify the malicious ac-
tivities of RAT to cut off the whole kill chain and prevent
potential losses. In the early stage of the RAT development,
signature-based methods can accurately detect malicious
network activities with distinctive string patterns. However,
since traffic encryption is widely used in different malware
including RAT to acquire longer life cycles, the traditional
network detection method is greatly challenged.

To tackle the problem brought by encryption technology,
novel detection approaches are proposed. Generally, the
art methods can be distributed into two main categories
according to the detection technology. 1) Statistical-based
[1], [2], [3], [4], [5], [6], [7], [8], [9], which relies on the
machine learning or deep learning to learn the classification
boundary among different traffic types. It follows the pro-
cedure that first produces traffic features like bytes count
or interval gap means of packets, and then applies models
to train and predict based on the distilled information. 2)
Signature-based [10], [11], which relies on abstract behaviors
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of the encrypted traffic used as identification signatures.
It first formulates distinctive elements of the traffic as the
signature set, and then check if the monitored traffic implies
any appointed signature.

In recent years, the computer security community
mainly follows the first technical route to utilize the pow-
erful learning ability of machine learning models to tackle
the problem. However, this approach is not perfect. First and
most important, statistical models perform unstable in dif-
ferent environments. The learning strategy of most machine
learning models requires not only malicious traffic but also
benign traffic in training procedure [12]. Since the benign
applications vary in different environments, the model will
be confused by the unknown application network traces not
appeared in the training procedure; thus the trained model
will perform unstable when transferred into a different
environment. Second, the method also requires sufficient
labeled instances in the training procedure. To meet this
requirement, a large amount of data should be collected
in advance, which dramatically increases the inconvenience
of applying the method in a real environment. Consider-
ing the shortage of statistical-based approaches, hence, we
focus on signature-based routine. Compared to the former
technic, the signature-based approaches can achieve robust
performance through different environments and thus more
reliable in a real application. Besides, the signature-based
approach requires only a few malicious network traces,
which can release the tedious work of data gathering.

1.1 Problems

Traditional signatures, like string patterns, can hardly adapt
to encryption context because the payload is unknown
during data transmission. Motivated by the observation
that applications usually follow a fixed-code procedure to
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initiate or respond to requests, the snippets of directed packet
payload size (DirPiz) sequence of a flow in arbitary position
is used by several arts as fingerprints to identify encrypted
behaviors [11], [10]. However, these proposed methods are
not able to detect RAT in an accurate manner. On one
hand, false positives can occur due to the Dirpiz conflicts.
Potentially, the snippets of flow-level DirPiz sequences gen-
erated from a benign application can be the same as that
from RATs, thereby causing false alarms. In another word,
only flow-level DirPiz snippets are not precise enough as
malicious signatures. On the other hand, false negatives
can occur because the DirPiz varies slightly from different
environments due to dynamically generated packets. Generally,
the size of packets carrying the instruction which asks the
trapped machine to report the base information is the same,
yet the size of corresponding callback packets is different.
Unfortunately, existing arts can not properly handle the
dynamic packets because all of them rely on the exact
matching mechanism of the regex engine.

1.2 Our Work

In this paper, we present Malicious traces Behavior Tree
(MBTree), a novel signature-based approach for robust and
accurate encrypted C&C identification based on network be-
havior. First, MBTree creates signatures to depict malicious
behaviors by integrating flow-level DirPiz sequences as a
synthesis of host-level Multi-Level Tree (MLTree) to improve
the unique degree of malicious descriptions. In such a way,
approximately 94% false alarms triggered by only a few co-
incidences DirPiz can be reduced. Second, MBTree relies on
a flexible similarity-based matching mechanism expanding
the coverage of each signature to facilitate robust detection.
The proposed mechanism can cover reasonable deviations
from the generated signatures. Besides, the alarm level of
the detection can be adjusted by a predefined threshold.

To demonstrate the effectiveness of our approach,
we conduct solid experiments on several datasets. These
datasets are reorganized in a sophisticated manner to sim-
ulate the situation that the test set contains unknown ap-
plications in a real environment. To acquire stable results,
we also integrate the 5-fold cross-validation strategy. The
experiment results show that MBTree yields a more accurate
performance than machine learning state-of-the-arts on the
test sets. Individually, MBTree can achieve approximately
94% F1-score on validation set, and 91% F1-score on test
set. Moreover, we also analyze the influence of different
hyperparameters of them by tuning them and inspect the
malicious behaviors by reviewing generated MLTree signa-
tures.

1.3 Contributions

In summary, this paper makes the following contributions:

• First, a sharp network behavior representation
method, MLTree, is proposed as the enhancement
signature. It helps to reduce the probability of DirPiz
conflicts by integrating multiple related flow-level
DirPiz sequences; thus, it can depict encrypted mali-
cious network traces in a more accurate and robust
manner.

• Second, a corresponding detection mechanism based
on the similarity comparison of MLTree is proposed.
This strategy enhances the flexibility of detection by
covering deviations slightly different from generated
signatures. Compared to the exact matching strategy,
it can handle the dynamic packets properly; thus,
more robust detection can be achieved.

• Third, we demonstrate the effectiveness of our ap-
proach from both theoretical and experimental as-
pects. From theoretical perspective, we illustrate that
it is in an extremely low probability that MBTree
would misclassify different applications. From ex-
perimental perspective, persuasive experiments are
conducted on different datasets to evaluate the real
performance.

The remainder of this paper is structured as follows.
Section II summarizes related works and their limitations.
Section III gives an overview of the design of MBTree. Sec-
tion IV elaborates the details of MLTree. Section V describes
the similarity matching mechanism. Section VI provides
the theoretical analysis of MBTree. Section VII covers the
experiment setup description. Section VIII reports the exper-
iment evaluation results and analysis. Section IX discusses
potential evading strategies to attack MBTree. And section
X provides the conclusion.

2 RELATED WORK

MBTree makes contributions to the problem of encryption
RAT C&C traffic detection. A central idea behind MBTree
is adopting the MLTree as signatures. Below, we discuss
related works in the above areas from two perspectives.

2.1 Statistical-based
In recent decades, statistical-based methods for RAT traffic
detection have been widely studied [1], [2], [3], [4], [5], [6],
[7], [8], [9], [13], [14], [15], [16], [17], [18]. Generally, most
of these methods follow such procedures that first extract
features from the traffic, and then using statistical models to
fit the data.

Recently, [2], [19], [5], [8] use side-channel information
with Random Forest (RF) for encrypted malicious traffic
detection. Specifically, these side-channel features range
from packet length, packet interval time to payload ratio.
The experiment results have shown the effectiveness of this
combination of side-channel features and machine learning
models. Besides, advanced deep learning models are also
adopted in this area [4], [1], [20], [21], [22], [23]. Compared
with traditional machine learning models, these models do
not require the feature extraction procedure. The sophisti-
cated models can automatically extract related features, and
achieve end-to-end classification. For example, [4] proposes
a deep learning method to detect HTTP malicious traffic on
mobile networks. [1] proposes a sophisticated deep learning
architecture to detect trojans with hierarchy spatiotemporal
features. Generally, these traditional machine learning meth-
ods and advanced deep learning methods can achieve high
performance in their experiments. However, they can hardly
adapt to the situation of unseen applications beyond the
training set due to the inconsistent statistical distribution.
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TABLE 1
Comparison of different signature-based methods.

Method Signature
Generation

Main Element
of Signature Level Type Scene Encrypted

Detection
Detection

Engine
Snort Manual String Pattern packet/flow Exact IDS No Self

Suricata Manual String Pattern packet/flow Exact IDS No Self
Zeek(Bro) Manual String Pattern packet/flow Exact IDS No Self

Automatic String Pattern packet/flow Exact Malware No Snort
Semi-Automatic String Pattern flow Exact Malware No Snort

OTTer Automatic Packet Length flow Exact Application Yes Self
PingPong Automatic Packet Length packet pair Exact IOT Application Yes Self

MBTree Automatic Packet Length host Similarity Malware Yes Self

Malicious 

Traffic

Host Behavior

Formulation

Preprocessing

DirPiz Extraction

Similarity Calculation

Prediction

Testing 

Traffic

Signatures

Testing 

Instances
Benign

 or

 Malicious

Detection

MLTree 

Construction

Fig. 1. High-level overview of MBTree

Moreover, they both lack the interpretability to trace back
the cause of alarms for further response.

2.2 Signature-based
Different from statistical-based methods, signature-based
methods rely on previously defined elements of the traffic,
mainly on specific content string patterns. Generally, most
of them first create a signature set and then determine if the
testing instances match one or more signatures in the set.
Compared with machine learning methods, signature-based
methods are more robust among different environments;
thus, it is still applied in multiple security products, ranging
from intrusion detection systems (IDS) to firewalls [24].

Despite the advance, there exist two apparent limitations
of traditional signature methods. First, most methods re-
quire manual work to produce high-quality signatures even
though given the cleaned malicious traffic. This manual
work is tedious for security analysts. Second, traditional
signatures like specific strings are seriously challenged by
encrypted traffic [25], [26], [27]. Because the string patterns
are invalid to ciphertext. Several studies focus on the auto-
matic generation of network signatures to tackle the first
problem [28], [29], [30], [31]. For example, [28] propose
three automatically generated signatures ranging from con-
junction signatures, token-subsequence signatures to Bayes
signatures for polymorphic worm detection with traffic
payload. [29] uses clustered malicious traces to produce
network-level signatures from HTTP fields automatically.
These network-level signatures are translated in a format
compatible with Snort rules and can be used for detection.
Apart from only focusing on the first problem, recent stud-
ies focus on tackling both problems by introducing novel
behavior patterns. Instead of using specific strings as sig-

natures, these novel methods use other aspect information
to identify specific behaviors, like packet size sequence. For
example, [10] propose an encrypted traffic pattern language
based on packet payload size sequence for scalable Over-The-
Top (OTT) applications identification. They show that this
signature is unique to identify applications or even ap-
plication events. Similarly, [11] proposes a method based
on packet length pairs to identify specific events of home
IoT devices. To achieve the fine-grained event-level traf-
fic detection, [11] adopt the DBSCAN algorithm to search
frequent conversation pairs, and then concatenate the pairs
into sequences as signatures.

Even though previous studies present the effectiveness
of novel network signatures, they still lack the ability to
detect encrypted RAT in an accurate and robust manner.
This can be attributed to the inaccurate signature building
and inflexible matching mechanism. Since several RATs can
establish different connections to evade the detection [32],
[33], only flow-level fingerprints can hardly cover the whole
picture of the encryption RAT behaviors. Besides, although
the exact matching strategy can cooperate with the finite
state machine to improve efficiency, it lacks the flexibility
to capture similar behaviors among different environments.
To clearly show the path of research in this direction, we
summarize the differences of each method in Table 1.

3 MBTREE OVERVIEW

In this section, we provide an overview of the proposed
MBTree system. As shown in Fig. 1, our approach consists of
two main procedures, host behavior formulation and detection.
First, the raw traffic is formulated to MLTree representing
host-level behaviors in three steps. 1). The preprocessing
achieves traffic cleaning and session reassembling. 2). The
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  Quasar Traffic

   Testing Traffic

[68, -228, 68, 68]

[68, -228, 68, 182]

[3, -60, 40, 59]

(-68, 516, -68, -84)

(-68, 516, -68, 292)

(-68, 276, -68, -68)

(-68, 516, -68, 116)

(-68, 84, 84, -68)

(176, 1440, 224, 1440)

Tail Sequence

Head Sequence Tail Sequence

[68, -228, 68, 68]

[68, -228, 68, 136]

[68, -228, 68, 136]

Head Sequence

Head 

MLTree

Tail 

MLTree

Head 

MLTree

Tail 

MLTree

[68, 2] [-228, 2] [68, 2]
[68, 1]

[182, 1]

[-3, 1] [59, 1][40, 1][-60, 1]

[68, 3] [-228, 3] [68, 3]
[68, 1]

[136, 2]

(-68, 3)
(516, 2)

(-68, 3)

(-84, 1)

(292, 1)
(276, 1)

(-68, 2)
(516,1) (-68, 1)

(176, 1) (1440, 1)（224, 1)(1440, 1)

(84,1) (84, 1)

(116, 1)

(-68, 1)

(-68, 1)

(a) DirPiz Sequence (b) MLTree

Fig. 2. A brief example shows the simplified DirPiz sequences of each session with setting L as 4. The training set contains the malicious traffic
generated from Quasar. The testing set contains the mixed traffic generated from Quasar and WhatsApp. Positive numbers denote the packet sent
from the client, while negative numbers denote the packet sent from the server.

DirPiz sequences from each session as multiple indepen-
dent fingerprints. 3). The sequences are correlated based
on common hosts to construct MLTree as the host behav-
ior. It is worth mentioning that malicious signatures and
testing instances are produced following the same steps in
this procedure. Second, the converted testing instances are
compared to each signature to decide if they match any
malicious behaviors in two steps. 1). The similarity between
the testing instance and each signature is calculated to
produce a similarity vector. 2) whether the instance belongs
to malicious is predicted based on the similarity vector.

To show the workflow clearly, we also provide a simpli-
fied example throughout the following sections to describe
the key design of MBTree. The example uses a part of pure
Quasar traffic as malicious traffic, and a part of mixed
Quasar traffic and WhatsApp traffic as testing traffic, as
shown in Fig. 2.

4 HOST BEHAVIOR FORMULATION

In this section, we describe the details of the formula-
tion procedure from raw traffic to the host-level signature
MLTree. Section 4.1 introduces the cleaning and session
reassemble strategy, Section 4.2 shows our consideration of
DirPiz extraction, and Section 4.3 provides the definition of
MLTree and corresponding construction process.

4.1 Preprocessing
Raw traffic is usually captured in pcap or pcapng format
recording a lot of communication details. Extra meta infor-
mation should be removed before building the signature.
Hence, we first apply traffic cleaning to discard invalid
packets, then we apply session reassembling to recover the
whole communication.

Cleaning; Traffic cleaning aims at filtering out redundant
information in raw traffic. As the requirements of cleaned
traffic for signature and testing instance formulation are
different, we apply different strategies for the two sets.

For the training set, we apply a ‘whitelist’ strategy to only
reserve the packets containing C&C IPs. For other traffic in
the malicious communication, we just discard them. Thus,
only ensured communications between the victim and C&C
are selected to produce valid signatures. For the testing
set, we apply a ‘blacklist’ strategy to only discard packets
that meet the following conditions, repeated packets, loop
packets, non-transmission packets. With this strategy, we
can reserve the main information of testing traffic and avoid
potential malicious packets bypassing.

Session reassembling; After cleaned, the traffic is re-
assembled into sessions to recover all end-to-end communi-
cation. In this procedure, we mainly identify a transmission
session based on 5-tuple. The 5-tuple includes source IP,
destination IP, source port, destination port, and protocol.
Besides, for TCP protocol, the flag fields representing the
communication status are also used to identify different
sessions using the same 5-tuple.

4.2 DirPiz Sequence Extraction

Given a reassembled session, we extract the DirPiz sequence
of the session to fingerprint the automated procedure. As
a matter of fact, multiple types of meta-information of the
packet can be extracted as fingerprints, such as packet gap
intervals, and packet payload hash. However, they either
lack stable performance in different network environments
or do not adapt to variable encrypted content because of
the dynamic encryption key negotiation mechanism. As a
result, we choose the DirPiz as the meta information for its
robust performance. Typically, a DirPiz sequence consists
of the payload size of each packet with the direction in a
connection. The direction means that the packet is either
request from the client to the server or a response from
the server to the client. Here we provide an example of
extracted DirPiz sequences in Fig. 2(a). The Quasar traffic
is used as a training set. While the mixed traffic of Quasar
and WhatsApp is used as a testing set.
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Then we provide the specific procedures to produce a
DirPiz sequence. First, different IP packets are reassembled
if the packet is fragmented. Since the communication con-
tent can be scattered in multiple IP packets due to the limi-
tation of MTU or potential IP fragment attack, reassembling
these fragmented IP packets can restore the real payload
in a communication. Second, based on these reassembled
IP packets, the payload sizes are counted according to the
upper-level protocols to form a sequence. In this step, the
influence of low-level protocol details can be reduced, e.g.,
TCP handshake or SSL/TLS negotiation. Different strategies
are applied according to different protocols. For UDP pro-
tocol, the length of the transport payload is used directly.
For TCP protocol, only the length of the transport payload
after the connection is established is used. For SSL/TLS
protocol, only the length of the payload in the ’Application
Data’ packet is used. Third, we append the direction sign
to the elements of payload size sequences. The request
information from a client to the server is formulated as a
positive number, and the response information from a server
to the client is formulated as a negative number. Fourth, all
sequences are aligned to the same length to keep consistent.
Only L DirPiz are reserved in the sequence. Besides, for
sequences less than L in length, 0 is used as padding value.
For example, Fig. 2(a) shows the extracted DirPiz sequences
with setting L as four.

4.3 MLTree Construction

Algorithm 1 MLTree Initialization
Require: DirPiz Sequence Set P , Max Level L
Ensure: MLTree T

1: Let T = (N,E,CN , CE)
2: Let N = ∅, E = ∅, CN = ∅, CE = ∅
3: for all level l ∈ L do
4: N l = ∅, Cl

N = ∅, El = ∅, El
N = ∅

5: for all DirPiz sequence p ∈ P do
6: N l = N l ∪ {p[l]}, Cl

N [p[l]]+ = 1
7: if l eq 0 then
8: e = (0, p[l]), El = El ∪ {e}, Cl

E [e]+ = 1
9: else

10: e = (p[l − 1], p[l]), El = El ∪ {e}, Cl
E [e]+ = 1

11: end if
12: end for
13: Append N l, Cl

N , E
l, Cl

E to N,C,CN , CE

14: end for
15: return T

In this section, we integrate multiple diverse DirPiz
sequences into MLTree as the host signature. Corresponde
to head sequences and tail sequences, two MLTrees are used
to represent the host signature, specifically, a head MLTree
and a tail MLTree. As a central structure of our approach,
MLTree is defined as follows,
Definition 1. MLTree MLTree T is a Weighted Directed

Acyclic Graph (WDAG), T = (N,E,CN , CE), where
N,E,CN , CE represent the node set, edge set, node
weight set, edge weight set respectively. The node set
N is used to represent unique DirPiz grouped by level.
The statistical set CN is used to record the aggregated

occurrence of each unique DirPiz organized in level.
The edge set E is used to represent two co-occurrence
DirPiz grouped by two adjacent levels. The statistical
set CE is used to record the co-occurrences of each two
adjacent DirPiz. With different to normal WDAG, ML-
Tree is organized in hierarchy structure, every weighted
node nli and weighted edge eli belongs to a specific
level sub-set, nli ∈ N l, eli ∈ El. And all these level
sub-sets N l, El, Cl

N , C
l
E consist of the corresponding

elements, N = {N l}l=0..L, E = {El}l=0..L, CN =
{Cl

N}l=0..L, CE = {Cl
E}l=0..L.

Algorithm 2 MLTree Merging
Require: MLTree Set M
Ensure: Merged MLTree T

1: Let T = (N,E,CN , CE)
2: Let N = ∅, E = ∅, CN = ∅, CE = ∅
3: for all level l ∈ L do
4: N l = ∅, Cl

N = ∅, El = ∅, El
N = ∅

5: for all MLTree m ∈M do
6: N l = N l ∪m.N l, El = El ∪m.El

7: for all node n ∈ N l, edge e ∈ El do
8: Cl

N [n]+ = m.Cl
N [n], Cl

E [e]+ = m.Cl
E [e]

9: end for
10: end for
11: Append N l, Cl

N , E
l, Cl

E to N,C,CN , CE

12: end for
13: return T

The specific MLTree construction process is as follows.
First, the DirPiz sequences are processed level by level as the
initial MLTree. In each level of processing, the unique nodes,
edges, and their corresponding statistics are specified. The
specific initialization schema is shown in Algorithm 1. Sec-
ond, merging operations are taken to enhance the coverage
as well as reduce the storage cost of repeated patterns.
The specific merging algorithm is shown in Algorithm 2.
Intuitively, it contains polluting risk when integrating a large
number of individual MLTrees into a huge MLTree. Because
the DirPiz coverage of the large tree will increase dramati-
cally resulting in high-level false alarms. We divide this kind
of situation into two categories for discussion. 1) All initial
MLTrees are from the same RAT. In this situation, all these
individual MLTrees denote similar DirPiz coverage, thus
they can be merged without worrying about polluting risk.
2) Initial MLTrees are from different RAT. In this situation,
there is a high polluting risk in merging these individual
MLTrees because their DirPiz coverage is different. To avoid
this, we limit the merging operation to integrate the DirPiz
sequences generated from the same malicious sample. Thus,
similar behaviors can be merged regardless of the number
of DirPiz sequences, and the scale of the tree can be limited
to a proper extent. Example MLTrees built from Fig. 2(a). is
shown in Fig 2(b). It is apparent that MLTree is hierarchically
organized.

Briefly, MLTree provides several advantages to depict
malicious behaviors. First, MLTree ensures flexible merging
to represent signatures efficiently. In our design, different
MLTrees derived from the same malicious sample can be
merged into a single MLTree. This feature can enhance
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the signature update ability as well as reduce the cost of
storing repeated signatures. Second, the hierarchy design
can represent the host behavior in an intuitive and rea-
sonable manner. Since the frequent DirPiz is with a higher
probability of being generated automatically, the automated
handshake behavior can be quantified by differentiating
between frequent DirPizs and infrequent DirPizs hierarchi-
cally. Third, MLTree can be automatically constructed given
the cleaned malicious traffic. Both the MLTree construction
and merging can be completed with a systematic script.
In such a manner, the construction requires no interactions
with security experts and prior knowledge. Hence the labor
costs can be reduced.

5 DETECTION

Unlike traditional signature-based detection, our detection
relies on similarity matching strategy instead of exact
matching strategy to decide if the testing instance should
be regarded as malicious. Brief steps of detection are as
follows. First, the similarity vector of the testing instance
and each signature is calculated as vm = [s0, s1, ..., sn].
The element in the vector represents the similarity score of
the testing instance and the corresponding signature. The
specific similarity score calculation method is elaborated in
Section 5.1. Second, we make a prediction based on the
similarity vector to decide if the testing instance contains
malicious behavior. The details of this step are shown in
Section 5.2.

5.1 Similarity Calculation
The first step towards malicious prediction is to produce the
similarity vector of the testing instance with pre-produced
MLTree signatures. In this step, the core is to calculate the
similarity of two MLTrees. Roughly, the MLTree similarity
is measured from two aspects, path similarity and node sim-
ilarity. The path similarity measures the similarity of con-
tinuous edges in corresponding hierarchies, while the node
similarity measures the similarity of nodes in corresponding
hierarchies. Specifically, a similarity score S of the testing
instance and a signature is formulated as

S = β[αSfp+(1−α)Sfn]+ (1−β)[αSlp+(1−α)Sln] (1)

where Sfp and Sfn represent the path similarity and the
node similarity of corresponding head MLTree respectively,
Slp and Sln represent the path similarity and the node
similarity of corresponding tail MLTree respectively, α rep-
resents the path score ratio parameter that determines the
balance of the path score and node score, and β represents
the head ratio parameter that determines the balance of the
head score and tail score. In addition, special DirPiz that
appear frequently in both benign and malicious MLTrees
can be removed in calculating the similarity score. Thus,
identical DirPizs can have a more important influence in
similarity calculation.

5.1.1 Path Similarity
Path similarity is used to measure the common continuous
paths of two MLTrees. Towards achieving this measurement,
we first define common weighted path (CWP) as follows,

Definition 2. Common Weighted Path Given two MLTrees
bt = {Nt, Et, CNt, CEt}, bm = {Nm, Em, CNm, CEm},
a CWP PC is defined as the intersection of continuous
weighted edges of two MBTrees. Specifically, PC =
{EC , CEc}, the edge setEI is the continuous intersection
of the two edge sets Et and Em. This means ∀1 < l < L,
if (nli, n

l+1
j ) ∈ El

I , then (nli, n
l+1
j ) ∈ (Et∩Em), and there

exists at least one edge (nl−1p , nli) that (nl−1p , nli) ∈ El−1
I .

Besides, the statistics set CEc based on EC is also the in-
tersection of the two statistics sets according to different
levels.

Generally, CWP aims at capturing the common succes-
sive sequential information of two MLTrees. Thus, it is used
as the middleware to measure the continuous similarity. The
algorithm to generate CWP of two MLTrees is shown in
Algorithm 3.

Algorithm 3 CWP Generation
Require: Testing MLTree bt = {Nt, Et, CNt, CEt}, and sig-

nature MLTree bm = {Nm, Em, CNm, CEm}, Max Level
L.

Ensure: Common weighted path PC

1: Let Pc = {Ec = ∅, CEc = ∅}
2: for all level l ∈ L do
3: if l is not 0 and El−1

c is ∅ then
4: return Pc

5: end if
6: Let El

c = ∅, Cl
Ec = ∅, N l

tmp = N l
t ∩N l

m

7: if l is not 0 then
8: El

c = El
t ∩ El

m ∩ (N l
tmp ×N l−1

tmp)
9: else

10: El
c = El

t ∩ El
m

11: end if
12: for all edge e ∈ El

c do
13: Cl

Ec = Cl
Em[e]

14: end for
15: end for
16: return Pc

Then we provide several observations of CWP. 1) Edge
statistics of CWP can reflect the similar level of two MLTrees.
2) Range of edge statistics at the same level in different CWP
is inconsistent, because the testing instance may contain
the traffic generated from a different period than signature
traffic. 3) Range of edge statistics at different levels in CWP
is inconsistent because the edge statistics are generated
independently. 4) It is of low probability to produce a long
CWP between two unrelated MLTree. As a matter of fact,
two unrelated MLTree may contain the same DirPiz at a
level; however, they can hardly contain the same edges or
even continuous edges through different levels. Thus, a long
CWP can indicate a higher level of similarity than a short
CWP.

Next, we synthesize the observations of CWP and pro-
vide several considerations to design the formula for path
similarity. 1) A higher similarity score should indicate more
similar the two MLTrees are. To achieve this, we design
a weighted product mechanism to ensure that the score
increases monotonically with the increase of the number of
edges and levels. 2) Edge statistics should be normalized to
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Common Weighted Path

Common Nodes

{[68, -228], 2}, {[-228, 68], 2}, {[68, 68], 1} {(-68, 516), 1}, {(516, -68),1}, {(68, 68), 1}

{[68], 2}, {[-228], 2}, {[68], 2}, {[68], 1} {(-68), 2}, {(516),1}, {(68), 1}, {(68), 1}

Head Tail

Head Tail

Fig. 3. CWP and Common Nodes of corresponding MLTrees in Fig. 2(b).

be used as a base factor of the score. Specifically, we use
the edge statistics of signatures at the corresponding level
to normalize that of testing instance; thus, the impact of
the difference among levels can be eliminated. Besides, we
also introduce a time ratio to balance the period difference
between the testing instance and the signature. 3) Hierarchy
level can be used as a weight factor for edge statistics. To
leverage the continuous property of CWP, we assign differ-
ent weights to statistics at different levels. Thus a longer
CWP can correspond to higher similarity. 4) the statistics
should be normalized to reduce the influence of different
time lengths.

Based on these considerations, we tried several schemes
and performed experiments on a small training set. Finally,
we found the best result is achieved by the formula as
follows,

Sp = 2
L′+

L′∑
l=1

[
F (El

C,Cl
Em)

F (El
m,Cl

Em
)
× l2

L′×Rt]
(2)

where L′ denotes the max level of CWP, l2

L′ denotes the

level important factor, the F (El
C ,Cl

Ec)

F (El
m,Cl

Em)
denotes the normalized

level path similarity factor, F (a, b) represents counting the total
occurrence of all elements of a in set b,Rt =

Tm

Tt
denotes the time

ratio for normalization, the Tm represents the capturing time
of the signature traffic and the Tt represents the capturing
time of the testing traffic. It is worth to mention that we add
level L′ in exponential part as an score normalization factor
to differentiate the minum value with different max level L.

5.1.2 Node Similarity
Node similarity is used to measure the common nodes of
two MLTrees in corresponding hierarchies. As preliminary,
we define the Common Nodes as follows,

Definition 3. Common Nodes The common nodes NI

are defined as the intersection nodes and their corre-
sponding minimal occurrence at each level, formally,
IN = {NI , CNI},∀l < L → N l

I ⊆ (N l
t ∩ N l

m), Cl
NI ⊆

(Cl
Nt ∩ Cl

Nm).

Totally, the node similarity is calculated based on the
common nodes. Unlike CWP, common nodes are generated
independently through different levels. Thus, the nodes are
treated equally to contribute to the diverse similarity of two
MLTrees. Specifically, correspond to produce path similarity,
the formula to calculate node similarity is as follows,

Sn = 2
L+

L∑
l=1

[
F (Nl,Cl

N )

F (Nl
m,Cl

Nm
)
×Rt]

(3)

koadic

Quasar

Testing 

Traffic

Similarity Vector 

Quasar

...

Metasploit

pupy

71.653

32

16

16

mv

mSmI

Fig. 4. Prediction logic. θ is set as 32.

where L denotes the max level of Common Nodes,
F (N l,Cl

N )

F (N l
m,Cl

Nm)
denotes the normalized level node similarity factor.

Here we provide the consideration to introduce the node
similarity. Unlike the path similarity measurement used to
accurately depict the malicious behavior, the node similarity
is considered to facilitate robust detection ability. Although
the path similarity can precisely measure a similar path, it is
not flexible enough to capture rough similar patterns, espe-
cially the dynamic packets. Generally, dynamic packets also
exist in the handshake procedure with automated packets,
like the inspection results of the victim machine transferred
by the RAT client to the server. These dynamic packets
can truncate the CWP for their random DirPiz. Hence, we
propose the node similarity as a supplementary to path
similarity to handle the dynamic packets problem.

Following the example in previous section, we provide
CWP and Common Nodes of former MLTree instances in
Fig. 3. Based on these, the similarity score of the example
can be calculated, Sfp = 69.13, Sfn = 80.63, Stp = 34.56,
Stn = 69.12, when setting α = 0.3, and β = 0.7, S = 71.65.

5.2 Prediction

After similarity calculation, we acquire the similarity vector
vm denoting the similarity of the testing instance with
each signature. Hence, we can further predict if the testing
instance is malicious based on the max value Sm of the
vector vm. First, the Sm is specified. Then, if Sm exceeds
a predefined threshold θ, the testing instance is regarded
as containing malicious behaviors. Otherwise, the testing
instance is regarded as benign. Fig. 4 shows the prediction
logic with setting θ as 32. In addition, in the situation that
the testing instance is regarded as malicious, the specific
type of malicious behavior can also be predicted based
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on the index of the malicious value Im. It is worth to
mention that the specific encryption RAT type will only be
decided when Sm exceeds the threshold θ. Otherwise, it is
meaningless to predict the specific RAT type since the traffic
is regarded as benign.

6 THEORETICAL ANALYSIS

To demonstrate the effectiveness of our proposed methods,
we provide theoretical analysis in this section. First, since
the principle of MBTree is based on the uniqueness of
the DirPiz sequence, we demonstrate the extremely low
probability that two different applications would produce
the same DirPiz sequences. Assume that the DirPiz X at a
level are random variables, P (X) represent the probability
dense function of X , and a DirPiz sequence S is consists
of several random variable Sm = [X0, X1, ..., Xm], where
X0, X1, ..., Xm are independent. Due to the limit of MTU
on the Internet, X can be only chosen from [-1500, 1500] in
most cases. According to [34] and [35], X on the Internet
generally obey to the β distribution. However, after a small
amount of frequent DirPiz are removed, X roughly obey to
the uniform distribution. That is

X ∼ U(−1500, 1500).

Hence, when give two independent DirPiz sequences Sm

and S′m, the probability of their collision in n levels P (Sm
n )

is C(m,n) ∗ (3 ∗ 10−3)n. Suppose that we take m as 10,
the corresponding P (S10

n ) shown in Table 2. As can be
seen from the table, the probability of S10 and S′10 being
completely the same is only 10−26 in the case of m = 10,
which is extremely low. It is worth to mention that, previous
studies uses DirPiz snippets at arbitary position rather than
corresponding hierarchy to identify application behavior,
which increases the collision probability.

TABLE 2
The probability of different n collision in two DirPiz sequences.

n P (S10
n ) n P (S10

n )
1 3× 10−2 6 1× 10−13

2 4× 10−4 7 2× 10−16

3 3× 10−6 8 3× 10−19

4 1× 10−8 9 2× 10−22

5 6× 10−11 10 6× 10−26

Second, based on the collision probability, we discuss the
theoretical best threshold interval. Generally, the interval
is decide based on number of unique applications NA.
When NA is ensured, the tolerable level of collisions should
determined to calculate the max threshold θ. Specifically,
θ = 2L+n, where n should satisfy the following conditions{

NA × P (Sm
n ) ≤ 1

max(n)
.

For example, when NA = 100, the optimal value of n is 1,
and the corresponding threshold should be 2L+1.

7 EVALUATION FRAMEWORK

7.1 Evaluation Data
In our experiment, three malicious parts and two benign
parts of traffic are used for evaluation. The first malicious

part is the open-source RATs traffic collected by ourselves,
the second part is the wild Trojan traffic selected from the
Stratosphere project [36], and the last part is a public open-
source dataset CTU-13 [37]. While the two parts benign
applications traffic used are from two open datasets, ISCX
VPN2016 [15] and USTC-TFC2016 [38]. Each part is de-
scribed below.

Open Source Encryption RAT (OSER); In order to hide
the real identity, adopting customized OSER for attack is
popular in recent years [39], [40]. Thus, the open-version
RAT traffic is studied in this paper. Based on popularity,
stability, and maintenance on Github, 7 OSERs are selected
to generate this part of the traffic. Specifically, in the traffic
generation procedure, to evaluate whether a RAT follows
the same procedure for communication in different envi-
ronments, we collect the traffic of two hosts, which install
different systems but are infected by the same sample. The
traffic generation mechanism is shown in Fig. 5. Besides, to
simulate the practice usage of samples, 5 randomly chosen
commands are executed on the comprised machine for each
malicious session. The details of the collected traffic are
shown in Table 6 in Appendix.

Wild Trojan (WT); Apart from the OSER traffic, wild
trojans (from 2015 to 2018) are also selected from [36]. Com-
pared to OSER traffic, the WT traffic contains more number
sessions. However, since the communications between the
victim and Trojan C&C are not controlled as detailed as
OSER, it may also contain noise traffic generated by the
machine automatically. Nevertheless, this part of the traffic
is also a fair test to evaluate the WT detection ability of
MBTree. More details of this part of the traffic are shown in
Table 7 in Appendix.

CTU-13; The public open-source dataset is widely used
in malware traffic detection research [41], [42]. It contains
malicious traffic from 7 different types of Trojans. Apart
from C&C traffic, it also collects attack traffic in other
procedures, like distributed denial of service (DDoS) traffic
and spam traffic. Hence, this traffic is cleaned to only reserve
C&C traffic according to the dataset description. Due to the
lack of valid traces for 5-fold validation, two types of Trojan
(Rbot, NSIS.ay) are not used in our experiment. More details
of cleaned traffic are shown in Table 8 in Appendix.

ISCX VPN 2016; In recent studies, the ISCX VPN2016 is
widely used for encrypted traffic classification. In this paper,
we also adopt this set as a part of benign traffic to evaluate
the false alarm levels. Totally, the set organizes the 27G raw
traffic generated from 17 typical applications in 150 pcap
or pcapng files. Compared to former malicious parts, this
benign application set is larger.

USTC-TFC 2016; Apart from ISCX VPN2016, we also use
the benign part of USTC-TFC2016 as another part of benign
traffic, because it contains different applications traffic from
the ISCX VPN2016. Actually, this part of traffic consists of
both benign and malicious traffic. Since the traffic contained
in the malicious part of USTC-TFC2016 is covered by former
datasets, they are not taken as malicious parts. Thus, only
the benign part of the set is used for evaluation. Totally,
the benign part of the USTC-TFC2016 organizes the 3.71GB
traffic generated from 10 applications in 14 pcap files.
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TABLE 3
This table shows the partitioning details in each dataset. The • and ? denotes the OSER traffic generated from Debian and CentOS respectively; .

denotes the WT traffic; ⊗ denotes the CTU-13 traffic; � and ◦ denote different applications traffic from the combined set of ISCX VPN2016 and
USTC-TFC2016.

Dataset I Dataset II Dataset III
Train Validation Test Train Validation Test Train Validation Test

Malicious • • ? . . . ⊗ ⊗ ⊗
Benign � � ◦ � � ◦ � � ◦

Host /Attacker

Client 2 / Victim 2Client 1 / Victim 1

Traffic Capture

(Win7/Debian) (Win10/CentOS7)

Fig. 5. Traffic collection mechanism.

7.2 Data Organization
We organize the five parts of the collected traffic into three
datasets for evaluation. Each dataset consists of malicious
traffic and benign traffic. The OSER is used as malicious
traffic in dataset I, the WT is used in dataset II, and CTU-
13 is used in dataset III. The benign traffic shared by two
datasets is the combination of ISCX VPN 2016 and USTC-
TFC 2016. Total NA of these two datasets is around 100.

For persuasive evaluation, we use the 5-fold cross-
evaluation strategy to acquire a stable performance. More-
over, in each fold, the dataset is divided into three parts,
train, validation, and test. Basically, the three parts in a
fold are divided following the ratio of 0.49:0.21:0.3. It is
noteworthy that since OSER is generated from two ma-
chines, we use the traffic generated from one machine as
the train and validation sets respectively, and from the other
machine as the test set. Besides, the benign applications that
appeared in the train set do not appear in the test set. This
partitioning strategy aims at simulating the situation that
unknown applications that emerged in the test environment,
which scenario is common in reality. The details of partition
are shown in Table 3.

7.3 Baselines
In correspondence to the related studies in Section 2, six
baselines are covered in this paper as comparisons. The
first baseline is a machine learning state-of-the-art [19] using
side-channel features and CART represented as CART. The
second baseline is another machine learning-based state-of-
the-art [2] using different features from [19] with random
forest for Trickbot Trojan detection as RF. The third baseline
is the extended features generated by CICFlowmeter [43]
with GradientBoosting implemented by ourselves as GBDT-
CIC. The fourth baseline is a deep learning method using
one dimensional CNN from [21] as CNN. The fifth baseline
is another deep learning method using a stacked autoen-
coder mechanism as SAE [21]. Besides, we also implement

the flow-level similar matching method using the cosine dis-
tance and threshold of 0.99 represented as DirPiz-Seq to illus-
trate the advantage of the host-level signatures. Moreover,
we try to compare our method with ping-pong [11], which
is a signature-based state-of-the-art for encrypted IOT traffic
event identification. However, we find that ping-pong can
hardly extract packet-level signatures of malicious traffic.
Because the conversation pairs of packet-level signatures are
too diverse to be clustered by the DBSCAN algorithm even
though we try to tune corresponding parameters.

7.4 Tasks & Metrics
Based on the aforementioned data, we propose the detection
task for experiments. The goal of the task is to distinguish
whether the traffic is benign or malicious. Specifically, the
malicious traffic is labeled as the specific type when is
predicted. While for benign traffic, they are all regarded
equally as general benign without further classifying the
specific application type. In addition, we also record the
prediction time of each method. As evaluation, four well-
known metrics are adopted: False Positive Ratio (also known
as False Alarms Ration, FPR), False Negative Ratio (FNR) [44],
Accuracy (Acc), and Macro F1 (F1). It should be noted that
when calculating FPR and FNR, the multi-class labels are
masked to binary labels as only simple malicious or benign.
While calculating Acc and F1, the multi-class labels are
directly taken into consideration. We believe this mechanism
can measure the performance of different models more
comprehensively.

8 EXPERIMENTS

In this section, we provide a thorough evaluation of MB-
Tree from five perspectives based on the aforementioned
dataset. First, we perform the evaluation on the detection
task to show the effectiveness of the proposed MBTree by
comparing it to several machine learning-based state-of-the-
arts. Second, we provide a case study to clearly show the
significance of MBTree. Third, we compare the efficiency of
each method. Fourth, we conduct experiments to analyze
the influence of the hyperparameters and their correspond-
ing optimal choice. Further, we show the analysis of the gen-
erated signatures to reveal the network behavior differences
among different samples. Except for the fourth experiment,
the hyperparameters of MBTree are set preliminary as max
level L of 10, path similarity ratio α of 0.3, head signature ratio
β of 0.7, and threshold θ as 2048.

8.1 Malicious Detection
In this section, we focus on presenting the overall effec-
tiveness of MBTree. Table 4 shows the performance of dif-
ferent approaches on each dataset. And Fig. 6 shows the
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TABLE 4
Experiment results. Highlighted values: overall best method, second best method (†), third best method (‡).

Dataset Methods Validation Test
FPR FNR Acc F1 FPR FNR Acc F1

I

MBTree 0.21±0.21 † 0.23±0.35 99.82±0.23 ‡ 99.27±0.12 † 0.1±0.09 1.41±1.55 † 99.59±0.25 99.42±0.15
CART 2.49±5.05 0.03±0.07 † 99.56±2.68 95.71±11.54 26.77±6.99 ‡ 1.73±2.1 ‡ 74.2±31.43 ‡ 66.17±8.43 ‡

RF 24.79±19.45 0.08±0.07 ‡ 99.36±0.93 74.59±20.34 33.06±16.54 3.2±1.28 57.44±21.63 57.72±21.94
GBDT-CIC 49.25±22.02 1.59±3.11 79.2±44.25 47.37±25.22 67.16±13.82 3.85±2.2 54.02±21.56 25.39±11.93

CNN 0.03±0 0.01±0 99.98±0 99.95±0.06 70.6±1.14 2.4±0.43 65.93±7.53 30.77±0.79
SAE 1.37±2.98 ‡ 0.01±0 99.97±0.03 † 98.57±3.16 ‡ 67.85±3.08 2.32±0.55 68.94±9.44 33.65±3.86

DirPiz-Seq 18.49±2.29 1.45±0.66 80.28±9.77 83.14±1.95 18.1±2.42 † 0.99±0.2 84.52±3.09 † 80.66±1.83 †

II

MBTree 0.57±1.14 0.03±0.05 99.96±0.06 92.43±1.33 ‡ 0.62±1.25 0.84±0.91 ‡ 99.08±0.94 87.71±1.71
CART 6.05±2.18 ‡ 0.81±0.26 95.72±1.05 93.14±1.51 † 52.66±13.2 5.43±2.23 68.06±17.96 44.17±16.88

RF 10.32±13.01 1.4±1.5 91.62±10.19 88.01±17.97 38.67±9.98 11.77±12.91 67.68±13.00 51.93±10.99
GBDT-CIC 3.56±1.63 † 0.57±0.51 † 96.94±0.74 † 96.33±1.32 38.78±11.82 6.49±3.21 65.00±15.69 52.54±9.44

CNN 15.67±1.99 0.66±0.33 ‡ 95.75±2.16 † 83.43±2.28 19.79±7.08 ‡ 0.58±0.25 95.56±1.88 † 74.4±7.20 ‡
SAE 15.74±2.6 0.78±0.51 95.16±3.28 83.05±3.14 19.13±6.78 † 0.59±0.41 † 95.46±3.1 ‡ 75.71±9.35 †

DirPiz-Seq 40.27±4.77 7.55±1.69 58.20±9.39 56.33±3.70 41.96±5.65 7.59±0.41 52.84±2.15 52.00±2.28

III

MBTree 0.0±0.0 0.0±0.0 99.99±0.01 † 91.11±0.0 0.0±0.0 0.12±0.13 ‡ 99.88±0.13 86.66±6.67
CART 0.17±0.24 † 0.22±0.35 † 99.61±0.27 93.59±4.11 0.03±0.05 † 12.29±14.53 88.95±13.39 † 79.58±11.73 †

RF 0.0±0.0 0.0±0.0 99.92±0.06 97.6±0.67 ‡ 0.0±0.0 79.42±13.2 21.65±12.9 65.4±8.2
GBDT-CIC 0.0±0.0 0.0±0.0 99.93±0.05 ‡ 98.35±1.1 † 0.03±0.07 ‡ 75.82±20.42 25.17±20.07 66.49±9.1

CNN 1.36±2.71 ‡ 0.0±0.0 99.2±1.5 93.5±7.97 82.84±15.09 0.01±0.02 † 81.12±15.04 ‡ 70.95±8.02 ‡
SAE 0.0±0.0 0.0±0.0 100.00±0.0 100.00±0.0 87.96±8.12 0.0±0.0 72.11±21.1 64.46±15.05

DirPiz-Seq 20.85±2.27 21.6±38.72 ‡ 66.69±17.73 52.63±8.78 14.92±0.31 49.0±31.39 61.32±5.18 54.04±5.8
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Fig. 6. Confusion matrices of MBTree test predictions on different datasets.

classification results of MBTree on the test part of different
datasets. First, as a high-level performance comparison,
although MBTree is not achieving the best performance
on the validation set, it outperforms all the considered
elements of contrast in the test set in most metrics. This
indicates the robust ability of our proposed signature-based
approach. Besides, considering differences in performance
on validation and test set, it can be concluded that the
signature-based methods perform more stable on different
sets, including both MBTree and DirPiz-Seq. From another
view, although the statistical distribution of malicious part
is consistent in validation and test of dataset II and III,
the statistical-based methods also perform quite differently.
This illustrates that these statistical-based methods are more
susceptible to the change of the environment. Hence, the
robust detection ability of signature-based methods through
different environments is demonstrated.

Second, It should be noted that the F1 of MBTree on
dataset II and III is not reaching the level that on the
dataset I. According to 6(b) and 6(c), it can be observed
that most of the misclassified instances are false negatives.
With a detailed analysis of these instances, we found that
they consist of shorter communication sequences, which

means there are only one or two valid payloads exchanged
between the client and C&C. Thus, without sufficient evi-
dence, MBTree tends to classify them as benign. An inter-
esting phenomenon is that other metrics are consistent in all
datasets, which indicates that though there exist misclassi-
fied instances, the number of them is still at a low level. This
can be attributed to that the host-level detection reduces the
number of instances. Hence, even only a few misclassified
instances will lead to a significant change in F1.

Third, it can be noticed that the flow-level DirPiz-Seq
performs worse than MBTree. This phenomenon indicates
that only utilizing the flow-level communication sequences
as signatures is not precise enough. Integrating flow fin-
gerprints to host signatures can improve the performance
dramatically.

8.2 Case Study

To illustrate the advantage of MBTree, we provide a case
study of koadic RAT. The most interesting behavior of koadic
is that it simulates the browser traffic by changing source
port to disguise the C&C traffic. Hence, session-based de-
tection including most of the statistical-based methods and
DirPiz-Seq can hardly capture the malicious patterns of
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Fig. 9. DET curves with different Max Level L and threshold θ.

koadic since the content is transferred separately. However,
MBTree can well handle the disguised traffic by regard-
ing all session traffic of a host as a whole part. And the
similarity-based matching strategy can accurately identify
the infected hosts by synthesizing the path similarity and
node similarity.

8.3 Efficiency Evaluation

TABLE 5
Prediction time of different methods for per instance.

Methods MBTree CART RF GBDT-CIC
Time (s) 10−5 10−7 10−5 10−3

Methods CNN SAE DirPiz-Seq
Time (s) 10−2 10−3 10−1

As a comprehensive evaluation, we also record the pre-
diction time of each method as an efficiency comparison.
By analyzing the workflow of the matching mechanism, we
find that the main cost of our approach comes from the inter-
section operation in calculating the similarity score. Hence,
we design a mechanism to realize parallel computing of sim-
ilarity scores in our implementation. Specifically, for each
signature, we start a process to calculate the corresponding
similarity score and then collect all similarity scores for

further steps. With this mechanism, the detection time is
two order of magnitudes lower than that of the ordinary.
The optimized results are shown in Table 5. Apparently,
MBTree has the same or even better performance than most
statistical-based methods.

8.4 Parameter Tuning

In this section, we take experiments on the hyperparameters
of MBTree to analyze their influences. Totally, there are four
parameters, Max Level L, Scores Ratio α, β, and the Thresh-
old θ. As adopted in previous experiments, we continue to
use the default settings as start, L = 10, alpha = 0.3, beta =
0.7 and threshold = 2048. Results are shown in Fig. 7-9.

Path Score Ratio α; The score ratio α determines the
balance of the path score and node score. Specifically, α
represents the ratio of the node score. The results are shown
in 7(a). It can be noticed that the performance rise with α
increasing at the initial on all datasets. This can be mainly
attributed to the existence of the dynamic DirPiz in the
communication sequence, which truncates the CWP. Hence,
we suggest that the α should be set lower than 0.75 under
normal conditions to facilitate robust detection.

Head Score Ratio β; The parameter β determines the
balance of the head score and tail score. Specifically, β
represents the ratio of the head score. The results are shown
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Fig. 10. Number of unique values of nodes and edges organized hierarchically in the generated MLTree signatures.

in 7(b). Slightly, the performances rise with β increasing.
This can be attributed to that the patterns of the handshake
process are rather obvious. With the analysis of their traffic,
it is obvious that the handshake process is sophisticated. The
C&C server sends fixed instructions (e.g., initialization) to
the client after establishing the TCP connection. While in the
handwave process, it is rather simple. The server only sends
one or two packets to notify the victim that the connection
is closing, and then the rest work is handed over to the TCP
level. Hence, we suggest that the β should be set greater
than 0.5 without extra prior knowledge about samples.

Max Level θ; The max level θ determines how deep
should two MLTree be compared. Ideally, L is supposed to
be set as exactly the length of the automated handshake
procedure. However, since the handshake process imple-
mentation varies from each other, it requires experiments
on L to determine the most appropriate value. Besides, for
each L, we choose the corresponding theoretical best θ. The
results are shown in 7(c). Obviously, based on the trend of
the curves, the most appropriate value of L should be lower
than 15 to properly capture the automated behavior in most
cases.

Threshold θ; The parameter θ determines the alarm
level. In this experiment, we observe the performance of
different θ by setting different max levels L. Recall that NA

is around 100. For each L, we sample 10 threshold points
in the interval [2L, 2L+2]. The Fig. 8 shows the F1 curve,
and Fig. 9 shows the Detection Error Tradeoff (DET) curve.
It can be observed from Fig. 8 that the best performance is
achieved around the points at [1,5], which covers the theo-
retical best threshold; thus this demonstrates the correctness
of our theoretical analysis.

8.5 Generated Signatures

In this section, we analyze the generated signatures to
inspect the behavior differences among different samples
by counting the number of unique values at each level. The

statistics are shown in Fig. 10. In this experiment, the max
level L is set as 30, which is a relatively deeper value for the
handshake procedure.

First, it is apparent that the unique number of most
signatures is less than 50 through different levels. However,
pupy-obfs3 shows a different trend from most of the others.
The DirPizs unique degree of this RAT is relatively high at
the start of the communication because obfs3 achieves the
traffic obfuscation in the handshake procedure by changing
the packet size distribution [45]. However, even though
obfuscation technology is adopted to randomize the packet
size, MBTree can also effectively identify the traffic. This can
be attributed to the limited range of DirPiz after random-
ization. Since the randomize strategy of obfs3 is applied
as using random length of bytes to pad the rest of the packet,
the length of the padded DirPiz can be only in the interval
[raw_content_length,MTU ] according to [46], [47]. Thus
our designed node similarity can still cover the padded
DirPiz sequences. Second, comparing the head nodes with
tail nodes, it is apparent that most samples use the same
packets to complete the handshake process. Thus, it can
be deduced that the head patterns are more identical. This
conclusion is also in accord with what we acquired in the
experiment of β. Third, rough automatic handshake length
can be deduced based on the change points of the curves.
For example, pupy-obfs3, msf-1, Dridex, TrickBot, and neris
accomplish the handshake process through 5 message ex-
changes.

9 DISCUSSION

In the previous section, the experiment results illustrate that
even though the content is transferred through encrypted
transport, MBTree still identifies malicious C&C traffic.
However, sophisticated attack strategies can still be taken
by adversaries to paralyze MBTree. Here we discuss the
strategies that can be used against MBTree.
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Disguising Attack; A potential attack strategy for MBTree
is disguising malicious traffic as benign applications. When
adopting this strategy, though the malicious traces can still
be identified, it will pollute MLTree signatures and result
in a large number of false alarms to cripple the MBTree.
However, in order to implement such a strategy, it requires
the adversaries (i) to acquire which benign application is
running on the victim machine; (ii) to keep on the update of
the benign applications’ behaviors, which is hard to achieve
in practice.

Malformed Packet; Since MBTree relies on successful pay-
load identification, the evading techniques exploiting the
protocol stack parsing procedure can be used to evade
MBTree[48], [49]. For example, transfer content through
RST packets. When adopting such a technique, the payload
can be incorrectly reassembled by the man-in-the-middle
MBTree, and the malicious patterns cannot be identified.
However, implementing this strategy also requires extra
protocol stack control to deal with the malformed packets
correctly. Besides, traditional firewall or IDS can identified
these malformed packets easily.

Obfuscation Attack; Although our experiment proves that
MBTree can resist the obfuscation strategy to some extent,
it will still lead to the invalidity of MBTree in the face of
a highly targeted attack strategy. A potential valid evading
strategy is radically splitting the padded content into several
packets with random packet size. In the case of such a strat-
egy, not only will MBTree be polluted, resulting in high-level
false alarms, but the sample can also evade the detection
of MBTree with unseen DirPiz sequences. However, current
RATs rarely attempt to hide their DirPiz identifications to
our best known. Besides, to against this radical strategy, we
suggest that the entropy analysis of the DirPiz sequences
can be used. Since benign applications usually follow a
specific procedure to complete the handshake, the entropy
of their DirPiz sequences are relatively low; thus, it is
abnormal if the entropy is exceedingly high in the case of
only running a few applications on the machine.

10 CONCLUSION

In this paper, we present the MBTree, a novel signature-
based approach that integrates DirPiz sequences as MLTree
signatures with the similarity matching mechanism to detect
encrypted RAT traffic. We evaluate MBTree against several
C&C traffic with comprehensive benign applications’ traffic
as background. The results show that MBTree can detect
different malicious traffic in different environments with
high-level accuracy. Briefly, there are two directions in our
future work to improve MBTree. First, we plan to improve
the similarity score calculation, so as to detect malicious
behaviors through different hierarchies. Second, inspired by
[50], we plan to improve the parallel computing ability by
integrating the famous MapReduce framework [51].
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