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Abstract— Machine learning models are known to memorize
the unique properties of individual data points in a training set.
This memorization capability can be exploited by several types
of attacks to infer information about the training data, most
notably, membership inference attacks. In this paper, we propose
an approach based on information leakage for guaranteeing
membership privacy. Specifically, we propose to use a conditional
form of the notion of maximal leakage to quantify the information
leaking about individual data entries in a dataset, i.e., the
entrywise information leakage. We apply our privacy analysis
to the Private Aggregation of Teacher Ensembles (PATE) frame-
work for privacy-preserving classification of sensitive data and
prove that the entrywise information leakage of its aggregation
mechanism is Schur-concave when the injected noise has a log-
concave probability density. The Schur-concavity of this leakage
implies that increased consensus among teachers in labeling a
query reduces its associated privacy cost. Finally, we derive
upper bounds on the entrywise information leakage when the
aggregation mechanism uses Laplace distributed noise.

Index Terms— Privacy-preserving machine learning, member-
ship inference, maximal leakage, log-concave probability density.

I. INTRODUCTION

IN recent years, many useful machine learning appli-
cations have emerged that require training on sensitive

data. Such applications span across a diverse range of fields
such as medical imaging [1], rumor identification in social
media [2], or financial fraud detection [3]. While all machine
learning applications by definition reveal some information
about the training data, privacy concerns arise when machine
learning models memorize properties that are unique to indi-
vidual data entries. In fact, a variety of privacy attacks
have demonstrated that it is indeed possible to exploit this
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“memorization” capability of models to infer information
about data entries in the training set [4].

Arguably, the simplest type of privacy attacks against
machine learning models is membership inference attacks in
which an adversary infers whether or not a certain data point
was used in the training [5], [6]. In response to such attacks,
a number of mitigation techniques have been proposed in
the literature, with differential privacy-based methods being
the most commonly studied. Differential privacy [7] provides
provable and operationally meaningful privacy guarantees,
and by definition neutralizes membership inference attacks.
Roughly speaking, differential privacy ensures that all datasets
differing in only one entry (i.e., adjacent datasets) produce an
output with similar probabilities. Moreover, it has several use-
ful properties, such as satisfying data-processing inequalities
and composition theorems [7].

The standard definition of differential privacy (i.e., pure dif-
ferential privacy) uses a parameter � to define a multiplicative
upper bound on the changes in the probability of an output for
all adjacent datasets in the input [8]. However, this definition is
known to be very strict, and has limited applicability. As such,
several relaxations of differential privacy have been proposed,
the most notable of which is (�, δ)-differential privacy [9].
A common interpretation of (�, δ)-differential privacy is that
the guarantees of �-differential privacy hold except with proba-
bility δ. Thus, it provides the necessary flexibility for studying
a larger class of privacy-preserving mechanisms such as the
Gaussian mechanism [8].

Despite the advantages of (�, δ)-differential privacy, one
should note that its privacy guarantees are qualitatively differ-
ent from those of pure differential privacy (see [10] for illus-
trative examples). On this account, recently Rényi differential
privacy [10] was proposed as an alternative relaxation of pure
differential privacy. While Rényi differential privacy satisfies
the same useful properties as pure differential privacy, it does
not offer any intuitive operational meaning, and its privacy
guarantees are usually translated into (�, δ)-differential privacy
for interpretation.

In this paper, we propose to use (a conditional form of)
the notion of maximal leakage [11] to measure the amount of
information leaking about any single data entry in a dataset,
i.e., the entrywise information leakage. Maximal leakage [11]
is an operationally meaningful privacy metric that captures
the inference capabilities of an adversary trying to deduce
some information about the input data by observing the
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output. Specifically, maximal leakage quantifies the maximal
gain in an adversary’s ability to correctly guess any arbitrary
discrete function of the input data by observing the output
(as opposed to making a guess with no observations). Note
that the original definition of maximal leakage quantifies the
information leaking about the whole dataset, whereas we
are interested in measuring the information leaking about
single data entries in the dataset. As such, similarly to [12],
we consider an adversary who knows the values of all the
entries in the dataset, except for a single data entry of
interest. Intuitively, in this setup, observations only convey
the unique information contributed by the unknown data entry
since all other entries are already known to the adversary.
To quantify this entrywise information leakage, we propose
a conditional form of maximal leakage, namely the pointwise
conditional maximal leakage, which is also a special case of
the event-conditional Sibson mutual information introduced
in [13]. Then, by allowing the unknown entry to be any of
the entries in the dataset, we can derive upper bounds on the
entrywise information leakage, and provide meaningful worst-
case privacy guarantees.

Maximal leakage satisfies several useful properties, most
notably a data-processing inequality and a composition
lemma [11]. The data-processing inequality ensures that no
manipulation of the output can increase the information leak-
age, while the composition property characterizes the informa-
tion leaked through multiple observations. Here, we show that
the same properties hold for pointwise conditional maximal
leakage, rendering it suitable for privacy analysis of more
complex information systems.

We apply our privacy analysis to the Private Aggregation
of Teacher Ensembles (PATE) framework [14], [15]. PATE
is a general framework for privacy-preserving classification
of sensitive data, and operates by transferring the knowledge
of an ensemble of models (called teachers) trained on dis-
joint partitions of the sensitive data to a student classifier.
Specifically, the student is trained using a public unlabelled
dataset which will be labelled by the teachers through an
aggregation mechanism. The aggregation mechanism is essen-
tially the Report-Noisy-Max mechanism [7] which adds noise
to the teachers’ predictions to enable derivation of privacy
guarantees.

PATE has several advantages as a privacy-preserving
machine learning framework. First, the privacy guarantees
result solely from the aggregation mechanism and are agnostic
to the specific machine learning techniques used by each
teacher. This is because the modular structure of PATE enables
us to invoke the data-processing inequality to uncouple the
information leaked through the training and aggregation, and
guarantee that the overall leakage is less than both. Second,
PATE lends itself well to distributed learning by allowing
data owners to separately train their own predictors, hence
mitigating the need for centralized storage of the sensitive
data. Finally, the aggregation mechanism induces a favorable
synergy between privacy and accuracy such that increased
agreement among the teachers in labelling a query lowers
its associated privacy cost. This synergy is one of the main
focuses of this paper, and will be extensively studied.

The privacy guarantees established by PATE are charac-
terized in [14], [15] in terms of differential privacy, and
results from experiments are reported. However, these works
do not analytically prove the aforementioned synergy between
privacy and accuracy observed in the framework. Here, we will
analyze the privacy of the framework in terms of the entrywise
information leakage, and prove the privacy-accuracy synergy
using analytical arguments in order to provide deeper insights
into the workings of the framework, especially the Report-
Noisy-Max mechanism used for aggregating teachers’ predic-
tions. As [14], [15] present a thorough experimental study,
here we refrain from repeating the experiments but focus on
giving a rigorous theoretical analysis of the framework.

A. Contributions

Our contributions can be summarized as follows:
i) Introducing pointwise conditional maximal leakage.

We approach membership privacy from a novel angle by
studying the information leakage of individual data entries
in a database. We begin by deriving a data-processing
inequality and a composition lemma for pointwise con-
ditional maximal leakage, and then apply them to the
problem of studying the entrywise information leakage
in PATE.

ii) Proving the privacy-accuracy synergy in PATE. We
show that the entrywise information leakage of the aggre-
gation mechanism in PATE (i.e., the Report-Noisy-Max
mechanism) is Schur-concave [16], [17] when the injected
noise has a log-concave [18], [19] probability density.
As we will see, this implies that increased consensus
among teachers lowers the privacy cost of labelling a
query. Note that many commonly used probability distri-
butions including the Laplace and Gaussian distributions
are log-concave rendering this result fairly general.

iii) Deriving membership privacy guarantees for PATE
with Laplace noise. We derive upper bounds on the
entrywise information leakage when the noise injected
in the aggregation mechanism has Laplace distribution.
We present two types of bounds: a data-independent
bound, which holds uniformly for all training datasets
and is tight in the sense that the bound holds with
equality when the information leakage is maximized. Our
other bound is data-dependent in that it depends on the
training data through the teachers’ predictions. The data-
dependent bound can be tighter than the data-independent
bound when there is a large consensus among the teachers
in predicting the label of a query.

B. Other Related Work

Information leakage metrics. In recent years, a large body
of work has been dedicated to studying various information-
theoretic privacy metrics. Most notably, mutual information
has been frequently proposed and studied as such a metric
(see e.g., [20]–[22]) by appealing to its operational meaning in
communication theory. Similarly, in [23] another information-
theoretic quantity namely the total variation distance is studied
as a privacy metric in an information disclosure scenario.
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More closely related to our approach, several information
leakage metrics have recently emerged that aim to capture
the inference abilities of an adversary trying to guess a secret.
For instance, [24] proposes to use the probability of correctly
guessing the secret as a privacy metric. In [25] a class of
tunable loss functions are introduced to capture a range of
adversarial objectives, e.g., refining a belief or guessing the
most likely value for the secret. Other methods include posing
the privacy problem as a hypothesis test, e.g., in [26]. It is
worth mentioning that some of the proposed privacy metrics
(such as mutual information and total variation distance)
have no clear operational meaning in the privacy setting,
which limits their applicability. A systematic survey of privacy
metrics is provided in [27].

Privacy-preserving machine learning. Several centralized
and decentralized solutions have been proposed in the liter-
ature that provide privacy guarantees in terms of differential
privacy. To give a few examples, [28] proposes a collaborative
framework for privacy-preserving deep learning where the
guarantees of differential privacy are obtained by perturbing
the gradients. Another example is [29] where the privacy
analysis of gradient perturbations are improved by introducing
the moments accountant framework. Other methods include
privacy-preserving logistic regression [30], [31], support vec-
tor machines [32] and empirical risk minimization [33], [34].

C. Outline of the Paper

The rest of the paper is organized as follows: in Section II
we will review the definition of maximal leakage and give
a short summary of the operation of the PATE framework.
In Section III we will present the definition of pointwise
conditional maximal leakage, and state a few of its key
properties. In Section IV we will present our privacy analysis
of the framework and state our results. Section V concludes
the paper.

II. BACKGROUND

Throughout the paper, upper-case letters are used to repre-
sent discrete random variables, upper-case calligraphic letters
represent their corresponding alphabets and lower-case letters
represent the elements of the alphabets. We will use [[1, n]] =
{1, . . . , n} to denote the set of integers between one and n.
Let A = (A1, . . . , An) be a sequence of n elements. We will
use the notation A \ A j to denote the sequence of n − 1
elements obtained by removing the j th element in A for some
j ∈ [[1, n]]. Furthermore, we will use || · to denote the
cardinality of a set, and log(·) to denote the natural logarithm.
Finally, all sets considered in this paper are assumed to be
finite.

We begin by reviewing a few key concepts.

A. Maximal Leakage

Let X be a random variable representing the data containing
sensitive information, and Y be the publicly observed output
of a probability kernel PY |X with input X . Suppose that an
adversary observes Y and wishes to guess an arbitrary discrete
function of X , denoted by U .

Definition 1 (Maximal leakage [11]): Suppose PXY is a
joint distribution defined on the alphabets X and Y . The
maximal leakage from X to Y is defined as

L(X → Y ) := sup
U : U−X−Y

log
P

(
U = Û(Y )

)
maxu∈U PU (u)

, (1)

where Û is the optimal estimator (i.e., MAP estimator) taking
values from the same alphabet as U .
Maximal leakage quantifies the maximal gain in the adver-
sary’s ability to correctly guess U after observing Y (compared
to correctly guessing U with no observations). It is shown
in [11, Theorem 1] that for finite alphabets X and Y , (1)
simplifies to

L(X → Y ) = log
∑
y∈Y

max
x∈X :PX (x)>0

PY |X (y | x). (2)

B. The PATE Framework

PATE [14], [15] is a general framework for privacy-
preserving classification of sensitive data. It operates by trans-
ferring the knowledge of an ensemble of classifiers, called
teachers, trained on (disjoint) partitions of the sensitive data
to a student classifier. More specifically, the PATE framework
consists of the following three main components:

Teacher models. A teacher is a classification model trained
on one of the disjoint partitions of the sensitive training data,
and can use any classification algorithm suited for the task.
At inference, each teacher predicts a label independently of
others, to which we will refer as that teacher’s vote. Thus,
partitioning data into L sets (and correspondingly training L
teachers) produces L primary votes for predicting the label of
any new data point.

Aggregation mechanism. To predict the label of a new data
point, the aggregation mechanism (i.e., the Report-Noisy-Max
mechanism [7]) constructs the histogram of teachers’ votes,
adds calibrated noise to each of the bins, and outputs the
class label with the maximum noisy vote as the final aggregate
prediction. Note that the overall privacy guarantees of the
framework result from the addition of noise in the aggregation
mechanism.

Student model. The student model is trained using a public
unlabelled dataset which will be labelled by the teachers’
ensemble through the aggregation mechanism. Note that to
limit the privacy cost of the overall system, the student must
be trained with as few queries to the teachers as possible.

III. POINTWISE CONDITIONAL MAXIMAL LEAKAGE

In this section, we introduce the notion of pointwise con-
ditional maximal leakage, and state two of its important
properties. Recall that maximal leakage is defined in a setup
where an adversary wishes to guess an arbitrary discrete
function U of the private input data X by observing the output
Y . Here, we consider the case where the adversary has some
a priori knowledge about X . We model this a priori knowledge
as the outcome of a random variable, and accordingly define a
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conditional form of maximal leakage. Consider an adversary
that knows the outcome of a random variable Z .

Definition 2 (Pointwise conditional maximal leakage):
Suppose PXY Z is a joint distribution defined on the alphabets
X , Y and Z , and that the value of the random variable Z is
a priori given as z ∈ Z . The pointwise conditional maximal
leakage from X to Y given Z = z is defined as

L(X →Y |Z = z) := sup
U : U−(X,Z)−Y

log
P

(
U =Û(Y, Z = z)

)
P

(
U = Ũ(Z = z)

) ,

(3)

where Û is the optimal estimator of U given Y and Z = z,
and Ũ is optimal estimator of U given only Z = z.

Proposition 3: For finite alphabets X , Y and Z , the point-
wise conditional maximal leakage can be expressed as

L(X →Y |Z = z) = log
∑
y∈Y

max
x : PX |Z (x |z)>0

PY |X Z (y|x, z). (4)

The proof is given in Appendix A-A.
Pointwise conditional maximal leakage is an adaptation

of conditional maximal leakage proposed in [11] and differs
slightly from it. The definition in [11] conditions the leakage
on the random variable Z itself, which translates into a
maximization over the outcomes of Z in (4). We, on the other
hand, are conditioning the leakage directly on the outcomes of
Z since we are interested in characterizing the leakage for all
outcomes, not just the one with the highest leakage. Moreover,
as we will see later, the pointwise definition allows us to obtain
a data-dependent bound on the leakage which can be tighter
than the data-independent bound. More discussions on the
comparison of the two bounds can be found in Section IV-B.

Remark 4: If the Markov chain Z − X − Y holds, (4)
becomes

L(X →Y |Z = z) = log
∑
y∈Y

max
x : PX |Z (x |z)>0

PY |X (y|x). (5)

Similarly to [11], we now state two important properties of
the pointwise conditional maximal leakage: a data-processing
inequality and a composition lemma. These properties will be
used in the next section to analyze the entrywise information
leakage of the PATE framework.

Lemma 5 (Composition): If the Markov chain Y1−(X, Z)−
Y2 holds, then,

L(X →(Y1, Y2) | Z = z)

≤ L(X →Y1 | Z = z) + L(X →Y2 | Z = z). (6)

More generally, for k ≥ 1 it holds that

L(X →(Y1, . . . , Yk) | Z = z)

≤ L(X →Y1 | Z = z) + . . . + L(X →Yk | Z = z). (7)

Lemma 5 states that the information leaked to multiple
observations is upper bounded by the sum of the information
leaked through each of the observations.

Lemma 6 (Data-processing inequality): If the Markov
chain (X, Z) − Y1 − Y2 holds, then,

L(X →Y2 | Z = z)

≤ min{L(X →Y1 | Z = z),L(Y1 →Y2 | Z = z)}. (8)

Lemma 6 states that all processing of the output can only
decrease the information leakage. Further, it allows us to
upper bound the end-to-end leakage of a complex mechanism
in terms of the leakages of its smaller intermediate mecha-
nisms. The proofs of Lemma 5 and Lemma 6 are given in
Appendix A-B and A-C, respectively.

IV. INFORMATION LEAKAGE ANALYSIS OF PATE

In this section, we will use the pointwise conditional
maximal leakage to measure the information leaking about
individual data entries in the PATE framework. We will
begin by describing our system model in Section IV-A. Then,
in Section IV-B we will first prove that increased consensus
among teachers in answering queries induces a lower privacy
cost (i.e., the privacy-accuracy synergy), and then, state bounds
on the entrywise leakage when noise with Laplace distribution
is used in the aggregation.

A. System Model

Suppose d = ((x1, y1), . . . , (xn, yn)) ∈ X n ×Yn represents
the training data where X is the arbitrary but finite domain
set and Y = [[1, m]] is the label set. The pairs (xi , yi ) are
sampled independently according to some distribution P over
X × Y , i.e., D ∼ Pn . We use the training data d to train
L teachers for a classification task with m ≥ 2 classes in
the PATE framework. Let (d(1), . . . , d(L)) represent a disjoint
partitioning of the training set such that d(i) �= ∅ for all i ∈
[[1, L]], ⋃L

i=1 d(i) = d and d(i) ∩ d( j ) = ∅ for all i �= j .
Each partition d(i) is used to train a teacher model fi : X →
[[1, m]]. This results in a total of L teacher models, classifying
queries independently of each other.

The student model is trained using a public and unlabelled
dataset, which will be labelled by the teachers ensemble in
a privacy-preserving manner. Let (x ′

1, . . . , x ′
k) ∈ X k be the

independently sampled unlabelled dataset and suppose that
the student queries the ensemble about the label of x ′

i . Each
teacher separately predicts a label for x ′

i , referred to as a
vote. Let v(x ′

i ) = (v1(x ′
i ), . . . , vm (x ′

i)) be the histogram of
teachers’ votes, where v j (x ′

i) = ||{l : l ∈ [[1, L]], fl(x ′
i ) = j}

corresponds to the number of teachers who classified x ′
i as

belonging to class j . Note that
∑m

j=1 v j (x ′
i ) = L.

The aggregation mechanism in PATE is essentially the
Report-Noisy-Max mechanism [7] which operates by adding
i.i.d. noise samples to the bins of the votes’ histogram, and
returning the class label with the highest (noisy) value. Let
Lap(b) denote the Laplace distribution with location 0 and
scale b. Suppose N = (N1, . . . , Nm ) is a sequence of i.i.d.
Laplace random variables, where N j ∼ Lap( 1

γ ) for j ∈
[[1, m]] represents the noise added to the j th bin. Note that
γ determines the dispersion of the noise, and thus, affects the
privacy guarantees of the system. Roughly speaking, smaller
values of γ correspond to larger noise, and in turn, stronger
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Fig. 1. PATE system model [14]: each partition of the sensitive training data is used to train a teacher. A student model is then trained using a public data-set
labelled by the noise-perturbed predictions of the teachers. An adversary who knows all the data-entries except for D∗ is trying to guess D∗ by observing
teachers’ responses to queries made by the student.

privacy guarantees. Finally, let Y ′
i = arg max j v j (x ′

i ) + N j

be the random variable denoting the predicted label for x ′
i

returned by the aggregation mechanism. Labelling the entire
dataset (x ′

1, . . . , x ′
k) produces k such predictions, each of

which entailing a privacy cost. The system model is depicted
in Figure 1.

B. Measuring the Entrywise Information Leakage
In this section, we will lay out the details of how we quan-

tify membership privacy through measuring the information
leaking about individual data entries in the training set using
the notion of pointwise conditional maximal leakage. In order
to evaluate the entrywise leakage, let us consider the following
scenario: assume an adversary knows the values of all the
entries in the teachers’ training set (i.e., the private training
set) except for a single entry denoted by D∗ = (X∗, Y ∗).
The adversary tries to guess the value of D∗ (or any arbitrary
discrete function of it) by observing the queries made by
the student and their corresponding labels returned by the
aggregation mechanism. Clearly, in this setup, observations
leak information only about the unknown entry D∗ since the
adversary already knows all the other entries.

Now, suppose (1) the adversary has perfect knowledge of
the algorithms used to train each teacher, and that (2) the train-
ing is done deterministically. That is, we will assume that all
classification algorithms and the resulting teacher models (i.e.,
predictors) are deterministic. Note that the first assumption
allows us to remain very conservative about the capabilities
of the adversary in order to derive privacy guarantees that
remain valid even against highly knowledgeable adversaries.
Furthermore, we are using the second assumption to consider a
scenario in which the training leaks a lot of information about
D∗, and the overall privacy guarantees stem only from the
aggregation mechanism. As such, our privacy analysis remains
valid for all PATE structures regardless of how the teachers
are trained, or what classification algorithms are used.

It follows naturally from the previous assumptions that,
in principle, the adversary knows all the votes except for the
vote of the teacher whose training partition includes D∗. Note
that we are considering a general setup in which any single
data entry can arbitrarily affect the vote of its teacher, resulting

in observations which are highly informative for inferring
the data entry of interest (as an extreme example, consider
a teacher whose vote depends only on D∗). In other words,
if the adversary can already predict the last vote there is no
information left to be leaked.

Based on the scenario described, let D− = D \
D∗ be the random vector representing the portion of the
training set known to the adversary, and let V −(x ′

i ) =
(V −

1 (x ′
i ), . . . , V −

m (x ′
i )) be the random variable representing

the histogram of the known votes for input x ′
i . Note that∑m

j=1 V −
j (x ′

i ) = L − 1 for all x ′
i ∈ X . For simplicity, let

Y ′ = (Y ′
1, . . . , Y ′

k) denote the sequence of random variables
representing the predicted labels for the queries (x ′

1, . . . , x ′
k).

We are interested in quantifying the information leaking about
D∗ to Y ′ given that the adversary knows d− (i.e., the outcome
of D−). We have

L(D∗ →Y ′ | D− = d−) = log
∑

y′∈Yk

max
d∗∈X×Y :
P(d∗|d−)>0

P(y ′ | d∗, d−)

= log
∑

y′∈Yk

max
d∈X n×Yn :
P(d |d−)>0

P(y ′ |d)

(a)= L(D →Y ′ | D− = d−), (9)

where (a) follows from (5) since the Markov chain
D−−D−Y ′ holds. Using Lemma 5 we can upper bound the
information leaked through multiple queries by writing

L(D →Y ′ | D− = d−) ≤
k∑

i=1

L(D →Y ′
i | D− = d−),

(10)

that is, the information leaked to the output of multiple queries
is upper bounded by the sum of the information leaked through
individual queries. Further, using Lemma 6 we can upper
bound the information leaked to the output of a single query
as

L(D →Y ′
i | D− = d−) ≤ min{L(D →V (x ′

i ) | D− = d−),

L(V (x ′
i )→Y ′

i | D− = d−)}, (11)

i.e., the information leaked to the output of a single query
is upper bounded by the smallest of the information leaked
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through the training and the information leaked through the
aggregation mechanism.

As we do not want to make any assumptions about how
privately the teachers are trained, we now turn to evaluating the
information leaked through the aggregation mechanism. Let
δ j = (0, . . . , 0, 1, 0, . . . , 0) be a sequence with all elements
equal to 0, except for the j th element which equals 1. We will
use δ j to represent a single vote for class j . Then, we have

L(V (x ′
i )→Y ′

i | D− = d−)

= L(V (x ′
i )→Y ′

i |V −(x ′
i ) = v−)

(a)= log
m∑

j=1

max
v=v−+δ j ′ :
j ′∈[[1,m]]

P(Y ′
i = j |V (x ′

i )=v)

(b)= log
m∑

j=1

P(Y ′
i = j |V (x ′

i ) = v− + δ j ), (12)

where (a) follows from (5), and (b) follows from the fact that
the probability of outputting class j is maximized when the
last vote (i.e., the vote of the teacher whose training partition
includes D∗) is placed for class j .

1) The Privacy-Accuracy Synergy: Now, we will evaluate
the leakage of the aggregation mechanism as described by (12)
using ideas from majorization theory [16], [17] and assuming
that the noise used in the mechanism has a log-concave
probability density [18], [19]. Specifically, we will find the
v− maximizing or minimizing (12) for any noise with log-
concave probability density.

Definition 7 (Majorization): Consider p, q ∈ R
n with non-

increasingly ordered elements, i.e., p1 ≥ p2 ≥ . . . ≥ pn and
q1 ≥ q2 ≥ . . . ≥ qn . We say that p majorizes q , and write
p � q if

m∑
i=1

pi ≥
m∑

i=1

qi , for m =1,. . . , n−1 and
n∑

i=1

pi =
n∑

i=1

qi .

(13)

Note that majorization only describes a partial ordering. For
example, (4, 4, 1) and (5, 2, 2) cannot be compared in terms
of majorization. On the other hand, if we define Q =
{(q1, q2, q3) ∈ R

3+ : ∑3
i=1 qi = 9}, then (3, 3, 3) is majorized

by all q ∈ Q while (9, 0, 0), (0, 9, 0) and (0, 0, 9) majorize
all q ∈ Q.

Definition 8 (Schur-concave function): Consider a real-
valued function � defined on In ⊂ R

n . � is said to be
Schur-concave on In if p � q on In implies �(p) ≤ �(q).

Definition 9 (Log-concave function): A non-negative func-
tion f : R

n → R+ is said to be log-concave if it can
be written as f (x) = exp φ(x) for some concave function
φ : R

n → [−∞,∞).
Note that many commonly used probability density func-

tions (and their corresponding CDFs) are log-concave, such
as the Laplace and the Gaussian distributions [18].

Theorem 10: Consider the aggregation mechanism
in PATE (i.e., the Report-Noisy-Max mechanism)
where the noise has a log-concave probability density.
Then, L(V (x ′

i )→Y ′
i |V −(x ′

i ) = v−) is Schur-concave
in v−. Thus, assuming that L − 1 is divisible by m,

L(V (x ′
i )→Y ′

i |V −(x ′
i ) = v−) is maximized when

v− = v−
max =

(
L − 1

m
, . . . ,

L − 1

m

)
, (14)

and is minimized when

v− =v−
min =(0, . . . , 0, L − 1, 0, . . . , 0) = (L − 1) δ j , (15)

for some j ∈ [[1, m]].
The proof of the theorem is given in Appendix B.

Remark 11: The Schur-concavity of the entrywise
information leakage of the aggregation mechanism
L(V (x ′

i )→Y ′
i |V −(x ′

i ) = v−) implies that stronger consensus
among teachers lowers the amount of information leaked
about any individual data entry.

The preceding remark points to one of the main advantages
of the PATE framework: increased accuracy of the teacher
models results in stronger consensus in predicting the label
of a given query, which, in turn, results in stronger privacy
guarantees. Note that [14], [15] intuitively come to the same
conclusions regarding the synergy between privacy and accu-
racy for the case of Laplace and Gaussian noise distributions,
whereas here we have analytically proved this property and
generalized it to the class of log-concave probability densities.

2) Data-Independent Bound: Now, we will apply Theo-
rem 10 to (12) to get a bound on the leakage of the aggregation
mechanism with Laplace noise.

Proposition 12: Consider the PATE framework where noise
with Laplace distribution is used in the aggregation mecha-
nism. For all v−, the information leaked to the output of a
single query is upper bounded by

L(V (x ′
i ) → Y ′

i | V −(x ′
i ) = v−) ≤ log(B1), (16)

where

B1 := (1 − m) 2−me−γ + eγ

(
1 − (1 − 1

2
e−γ )

m)
+m

2
(1 − 1

2
e−γ )

m−1

− m(m − 1)

4
e−γ H (m − 2). (17)

Also, H (0) := γ and

H (m) := γ +
m∑

k=1

2−k − (1 − 1
2 e−γ )

k

k
for m ≥ 1, (18)

The bound is attained at v− = v−
max defined in (14).

The proof of this result is given in Appendix C-A.
Proposition 12 describes a data-independent bound that holds
uniformly for all v− (and consequently all d−) but depends
on m, the number of classes. It can be verified through simple
calculations that the bound is non-decreasing in m. Therefore,
by letting m tend to infinity, we get the following simpler
bound which holds for all d− and all m ≥ 2.

Theorem 13: Consider the setting of Proposition 12. For all
d− and all m ≥ 2, the information leaked about D∗ as a result
of labelling a single query is upper bounded by

L(D∗ → Y ′
i | D− = d−) = L(D → Y ′

i | D− = d−)

≤ L(V (x ′
i ) → Y ′

i | V −(x ′
i ) = v−)

≤ γ. (19)

The proof of this result is given in Appendix C-B.
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Note that the bounds stated in Proposition 12 and
Theorem 13 give a more accurate characterization of the
leakage as consensus among teachers decreases. This is
demonstrated in the following example where we calculate the
leakage in (12) directly using the conditional probabilities, and
compare it with the bounds.

Example 14: Suppose the PATE framework has been imple-
mented with L = 11 teachers to classify queries into
m = 4 classes. Further, suppose that for a given query
x ′

i , the histogram of teachers’ votes is (some permutation
of) v = (5, 3, 2, 1), and that Laplace noise with γ =
0.1 is used in the aggregation mechanism. Depending on
which partition of the training set includes D∗, the adver-
sary has obtained one of the following values: v− ∈
{(4, 3, 2, 1), (5, 2, 2, 1), (5, 3, 1, 1), (5, 3, 2, 0)}. We can now
directly use (12) to calculate the leakage of the aggrega-
tion mechanism using the probability density function of the
Laplace distribution for each v−. For simplicity of notation
we define L(v−) := L(V (x ′

i ) → Y ′
i | V −(x ′

i ) = v−). Then,
we have one of the following four cases:

• v− =(4, 3, 2, 1) �⇒ L(v−) = 8.50 × 10−2.
• v− =(5, 2, 2, 1) �⇒ L(v−) = 8.40 × 10−2.
• v− =(5, 3, 1, 1) �⇒ L(v−) = 8.37 × 10−2.
• v− =(5, 3, 2, 0) �⇒ L(v−) = 8.35 × 10−2.

Therefore, L(v−) ≤ 8.50×10−2 while Proposition 12 predicts
L(v−) ≤ log(B1) = 8.61 × 10−2 and Theorem 13 predicts
L(v−) ≤ 0.1. Note that due to the Schur-concavity of L(v−)
it was already expected that information leakage would be
largest for (4, 3, 2, 1), and it would have sufficed to just
consider this case. Now, suppose v = (3, 3, 3, 2). Calculating
the leakage using the corresponding conditional probabilities
gives L(v−) ≤ 8.58 × 10−2, which is closer to the value
predicted by Proposition 12 and Theorem 13.

Our final data-independent bound describes the information
leaked through multiple queries.

Corollary 15: Consider the setting of Theorem 13. The
information leaked about D∗ as the result of training a student
model on k samples is upper bounded by

L(D∗ →Y ′ | D− = d−) ≤ kγ. (20)

This result is a direct consequence of Theorem 13 and
Lemma 5, and characterizes the overall information leaked
about a single data entry as a result of training a student
classifier using k queries to the teachers.

3) Data-Dependent Bound: In the previous section, we pre-
sented bounds on the leakage that hold uniformly regardless
of the data used in the training. Here, we present a bound that
depends on the training data through v−.

Proposition 16: Consider the PATE framework where noise
with Laplace distribution is used in the aggregation mecha-
nism. Suppose v− is sorted in non-increasing order and that
the first r coordinates have equal votes, that is, v−

1 = . . . =
v−

r > v−
r+1 ≥ . . . ≥ v−

m for some 1 ≤ r ≤ m. Then, we have

L(V (x ′
i ) → Y ′

i | V −(x ′
i ) = v−) ≤ log(B2), (21)

where

B2 := r

(
1 − 2 + γ (v−

1 + 1 − v−
2 )

4 exp
(
γ (v−

1 + 1 − v−
2 )

)
)

+
m∑

j=r+1

2 + γ (v−
1 − 1 − v−

j )

4 exp
(
γ (v−

1 − 1 − v−
j )

) . (22)

The proof of this result is given in Appendix C-C.
In practice, in order to calculate the information leaked

through a query response, one has to take the minimum of
the data-dependent bound in Proposition 16 and the data-
independent bound in Proposition 12. Roughly speaking,
the data-dependent bound is tighter than the data-independent
bound when the teachers have strong agreement over the label
of a query. This is illustrated in the numerical example below.

Example 17: Suppose the PATE framework has been imple-
mented for a classification task with m = 4 classes and
that Laplace noise with γ = 0.1 is used in the aggregation
mechanism. First, consider the case where L = 11 and
v− = (4, 3, 2, 1). Then, log(B1) = 8.61 × 10−2 while
log(B2) = 6.81×10−1, so the data-independent bound is much
tighter. Now, suppose L = 101 and v− = (90, 5, 5, 0). Then,
log(B2) = 1.05×10−3, while the data-independent remains as
before. Therefore, the data-dependent bound is tighter when
there is a strong consensus among teachers.

V. CONCLUSION

In this paper, we have proposed an approach based on
information leakage for quantifying membership privacy. Par-
ticularly, we showed that the pointwise conditional maximal
leakage, a conditional form of maximal leakage, can be used to
measure the information leaking about individual data entries
in a dataset. We applied our privacy analysis to PATE and
derived novel privacy guarantees for this privacy-preserving
classification framework in the form of upper bounds on its
entrywise information leakage when the injected noise has
Laplace distribution. We also showed that the privacy-accuracy
synergy of PATE can be explained by studying the entrywise
information leakage of the framework while it was only
intuitively justified through the lens of differential privacy.

As our work has taken a step towards gaining a deeper
understanding of some underlying privacy principles in the
PATE framework, our results can be used in the design of
machine learning algorithms that preserve both privacy and
utility. For example, we can consider a situation in which we
have a fixed privacy budget per query. Then, using the data-
dependent bound of Proposition 16, one can adjust the noise
parameter γ in order to achieve the budget for each query.
We except that this will improve the utility of the system
since, for example, less noise will be required when there is a
strong consensus over the label of a query. Another potential
application is in privacy thresholding schemes where queries
which are expensive in terms of privacy will not be answered
at all. Once again this method will improve both the privacy
and the utility of the system since the expensive queries are
precisely those which were not labelled with certainty by the
teachers.
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APPENDIX A
PROOFS OF THE RESULTS IN SECTION III

A. Proof of Proposition 3

This result follows readily from [11, Theorem 1] by con-
sidering L(X ′ → Y ) such that PX ′ = PX |Z=z . Nevertheless,
we provide an alternative proof.

Upper Bound: First, we prove the upper bound
on L(X →Y | Z = z). Consider any discrete U satisfying
U − (X, Z) − Y and define

LU (X →Y | Z = z) := log
P

(
U = Û(Y, Z = z)

)
P

(
U = Ũ(Z = z)

) ,

(23)

where Û and Ũ are MAP estimators of U . Then,
L(X →Y | Z = z) = supU :U−(X,Z)−Y LU (X →Y | Z = z).

For each z ∈ Z , define Uz := {u : PU |Z (u | z) > 0}. The
two probabilities in LU (X →Y | Z = z) are

P

(
U = Ũ(Z = z)

)
= max

u∈Uz

PU |Z (u | z), (24)

and

P

(
U = Û(Y, Z = z)

)
=

∑
y∈Y

max
u∈Uz

PUY |Z (u, y | z)

=
∑
y∈Y

max
u∈Uz

∑
x :PX |Z (x |z)>0

PU |X Z (u | x, z)PY |X Z (y | x, z)PX |Z (x | z)

≤
∑
y∈Y

(
max

x ′:PX |Z (x ′|z)>0
PY |X Z (y | x, z)

)
max
u∈Uz

∑
x :PX |Z (x |z)>0

PU X |Z (u, x|z)

= max
u∈Uz

PU |Z (u | z)
∑
y∈Y

(
max

x ′:PX |Z (x ′|z)>0
PY |X Z (y | x, z)

)
. (25)

Thus,

LU (X →Y | Z = z) ≤ log
∑
y∈Y

max
x : PX |Z (x |z)>0

PY |X Z (y | x, z)

(26)

for all U such that U − (X, Z) − Y holds. Then,

L(X → Y | Z = z) ≤ log
∑
y∈Y

max
x : PX |Z (x |z)>0

PY |X Z (y|x, z).

(27)

Lower bound: To prove the lower bound on
L(X →Y | Z = z), we will consider a discrete U for
which LU (X →Y | Z = z) attains the bound. We fix a U ′
such that U ′ − (X, Z) − Y holds and H (X |U ′) = 0, that is,
the value of X is completely determined by the value of U ′.
Further, we assume that U ′ | Z = z is uniformly distributed,

i.e., PU ′|Z (u | z) = 1
|Uz | for all z ∈ Z and u ∈ Uz . Then,

LU ′(X → Y | Z = z)

= log
∑
y∈Y

maxu∈Uz PU ′|Z (u | z)PY |U ′ Z (y | u, z)

maxu∈Uz PU ′|Z (u | z)

= log
∑
y∈Y

maxu∈Uz PU ′|Z (u | z)PY |X Z (y | x, z)

maxu∈Uz PU ′|Z (u | z)

= log
∑
y∈Y

1
|Uz | maxx : PX |Z (x |z)>0 PY |X Z (y | x, z)

1
|Uz |

= log
∑
y∈Y

max
x : PX |Z (x |z)>0

PY |X Z (y|x, z). (28)

Therefore,

L(X → Y | Z = z) = sup
U : U−(X,Z)−Y

LU (X →Y | Z = z)

≥ LU ′(X →Y | Z = z)

= log
∑
y∈Y

max
x : PX |Z (x |z)>0

PY |X Z (y|x, z).

(29)

Hence, from (27) and (29) it follows that

L(X →Y | Z = z) = log
∑
y∈Y

max
x : PX |Z (x |z)>0

PY |X Z (y|x, z).

(30)

B. Proof of Lemma 5

Consider the Markov chain Y1 − (X, Z) − Y2. Then,

L(X → (Y1, Y2) | Z = z) − L(X → Y1 | Z = z)

= log

∑
y1,y2

maxx :PX |Z (x |z)>0 PY1 Y2|X Z (y1, y2 | x, z)∑
y1

maxx :PX |Z (x |z)>0 PY1|X Z (y1 | x, z)

= log
∑

y2

∑
y1

maxx PY1|X Z (y1 | x, z)PY2|X Z (y2 | x, z)∑
y1

maxx :PX |Z (x |z)>0 PY1|X Z (y1 | x, z)

≤ log
∑

y2

∑
y1

maxx PY1|X Z(y1 | x, z)
(
maxx ′ PY2|X Z (y2 | x ′, z)

)∑
y1

maxx :PX|Z (x |z)>0 PY1|X Z (y1 | x, z)

= log
∑

y2

max
x ′:PX |Z(x ′|z)>0

PY2|X Z (y2 | x ′, z)

= L(X → Y2 | Z = z). (31)

Therefore,

L(X → (Y1, Y2) | Z = z)

≤ L(X → Y1 | Z = z) + L(X → Y2 | Z = z). (32)
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C. Proof of Lemma 6

Our proof follows the same reasoning as the proof of [11,
Lemma 1]. For all discrete U satisfying U − (X, Z) − Y1 − Y2
it holds that

LU (X →Y2 | Z = z) ≤ LU (X →Y1 | Z = z), (33)

where LU is defined in (23). Therefore,

L(X → Y2 | Z = z) = sup
U : U−(X,Z)−Y1−Y2

LU (X → Y2 | Z = z)

≤ sup
U : U−(X,Z)−Y1

LU (X → Y1 | Z = z)

= L(X → Y1 | Z = z). (34)

Similarly,

L(X →Y2 | Z = z) = sup
U : U−(X,Z)−Y1−Y2

LU (X →Y2 | Z = z)

≤ sup
U : U−Z−Y1−Y2

LU (Y1 →Y2 | Z = z)

= L(Y1 →Y2 | Z = z). (35)

Thus,

L(X →Y2 | Z = z) ≤ min{L(X →Y1 | Z = z),

L(Y1 →Y2 | Z = z)}. (36)

APPENDIX B
PROOF OF THEOREM 10

Before stating the proof, let us recall some concepts/results
from majorization theory.

Definition 18 (Symmetric function): Let x = (x1, . . . , xn) ∈
In ⊂R

n and consider a real-valued function � : In → R. The
function �(x) is said to be symmetric if x can be arbitrarily
permuted without changing the value of �(x).

Lemma 19 (Schur’s condition): Let x = (x1, . . . , xn) ∈
In ⊂ R

n and consider a continuously differentiable function
� : In → R. �(x) is Schur-concave on In if and only if it is
symmetric on In and

(xi − x j )

(
∂ f

∂xi
− ∂ f

∂x j

)
≤ 0 for all 1 ≤ i, j ≤ n. (37)

Since �(x) must be symmetric, it is sufficient to verify the
reduced condition

(x1 − x2)

(
∂ f

∂x1
− ∂ f

∂x2

)
≤ 0. (38)

Proposition 20 ( [17, Theorem 2.21]): Let x =
(x1, . . . , xn) ∈ R

n+ and let f : R
n+ → R+ be a Schur-

concave function. Consider the following problems

max
x

f (x) such that
n∑

i=1

xi = S, (39)

and

min
x

f (x) such that
n∑

i=1

xi = S. (40)

Then, the global maximum is achieved by

xmax = S

n
(1, . . . , 1), (41)

and the global minimum is achieved by

xmin = (0, . . . , 0, S, 0, . . . , 0). (42)

We now prove that the entrywise information leakage of the
aggregation mechanism is Schur-concave when the injected
noise has a log-concave probability density. In order to sim-
plify the proof, we will assume that the elements of v− (i.e.,
the histogram of known votes) can take non-negative real
values. The results of the proof, however, will be readily
applicable to histograms of non-negative integers.

Using (12) we define

f j (v
−) := P(Y ′

i = j | V (x ′
i ) = v− + δ j ), (43)

where δ j = (0, . . . , 0, 1, 0, . . . , 0) represents a single vote for
class j . Then,

L(V (x ′
i ) → Y ′

i | V −(x ′
i ) = v−) = log

m∑
j=1

f j (v
−)

= log f (v−), (44)

where f (v−) = ∑m
j=1 f j (v

−). It is clear from (44) that the
leakage does not depend on the order of elements in v−,
thus L(V (x ′

i )→Y ′
i |V −(x ′

i ) = v−) is symmetric. Moreover,
according to [16, 3.B.1], the composition of an increasing
function and a Schur-concave function remains Schur-concave.
Since log(·) is an increasing function, to prove the Schur-
concavity of the entrywise leakage we only need to verify
Schur’s condition for f (v−).

Without loss of generality assume that v− = (v−
1 , . . . , v−

m )
is non-increasingly ordered, i.e., v−

1 ≥ . . . ≥ v−
m . Let

N = (N1, . . . , Nm ) denote the tuple of noise, where the
elements are independent, identically distributed and have a
log-concave probability density. We write

f j (v
−)

= P(Y ′
i = j |V (x ′

i ) = v− + δ j )

= P{v−
j +N j +1 > v−

1 +N1, . . . , v
−
j +N j +1 > v−

m +Nm}

=
∫ ∞

−∞

⎡
⎢⎢⎣

m∏
l=1
l �= j

P{Nl < (v−
j − v−

l + t + 1)}

⎤
⎥⎥⎦ g(t)dt

=
∫ ∞

−∞

⎡
⎢⎢⎣

m∏
l=1
l �= j

G(v−
j − v−

l + t + 1)

⎤
⎥⎥⎦ g(t) dt, (45)

where g(t) is the probability density function of N j and
G(t) = ∫ t

−∞ g(t ′) dt ′ is its corresponding cumulative distri-
bution function. According to [19, Proposition 1], if g is log-
concave, then G is also log-concave. We now check Schur’s
condition by writing

∂ f (v−)

∂v−
1

− ∂ f (v−)

∂v−
2

=
m∑

j=1

∂ f j (v
−)

∂v−
1

− ∂ f j (v
−)

∂v−
2

, (46)
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where we have one of the following three cases:
if j = 1, then,

∂ f1(v
−)

∂v−
1

− ∂ f1(v
−)

∂v−
2

=
∫ ∞

−∞

⎡
⎢⎢⎣

m∑
l=2

g(v−
1 −v−

l +t+1)

m∏
k=2
k �=l

G(v−
1 −v−

k +t+1)

⎤
⎥⎥⎦

×g(t) dt

−
∫ ∞

−∞
[−g(v−

1 −v−
2 +t+1)

][ m∏
l=3

G(v−
1 −v−

l +t+1)

]
×g(t) dt, (47)

if j = 2, then,

∂ f2(v
−)

∂v−
1

− ∂ f2(v
−)

∂v−
2

=
∫ ∞

−∞
[−g(v−

2 −v−
1 +t+1)

][ m∏
l=3

G(v−
2 − v−

l +t+1)

]

×g(t) dt

−
∫ ∞

−∞

⎡
⎢⎢⎣

m∑
l=1
l �=2

g(v−
2 −v−

l +t+1)

m∏
k=1

k �=2,l

G(v−
2 −v−

k +t+1)

⎤
⎥⎥⎦

×g(t) dt, (48)

and if j �= 1, 2, then,

∂ f j (v
−)

∂v−
1

− ∂ f j (v
−)

∂v−
2

=
∫ ∞

−∞
−
[

g(v−
j −v−

1 +t+1)G(v−
j −v−

2 +t+1)

+g(v−
j −v−

2 +t+1) G(v−
j −v−

1 +t+1)

]

·

⎡
⎢⎢⎣

m∏
l=3
l �= j

G(v−
j − v−

l + t + 1)

⎤
⎥⎥⎦ g(t) dt . (49)

Then,

∂ f (v−)

∂v−
1

− ∂ f (v−)

∂v−
2

= A1 − A2 +
m∑

j=3

B(1, j ) − B(2, j ) + B(3, j ) − B(4, j ), (50)

where

A1

= 2
∫ ∞

−∞
g(v−

1 −v−
2 +t+1)

[
m∏

k=3

G(v−
1 −v−

k +t+1)

]

× g(t)dt, (51)

A2

= 2
∫ ∞

−∞
g(v−

2 −v−
1 +t+1)

[
m∏

k=3

G(v−
2 −v−

k +t+1)

]
g(t)dt,

(52)

B(1, j )

=
∫ ∞

−∞
g(v−

1 −v−
j +t+1)G(v−

1 − v−
2 + t + 1)

·

⎡
⎢⎢⎣

m∏
k=3
k �= j

G(v−
1 − v−

k +t+1)

⎤
⎥⎥⎦ g(t)dt, (53)

B(2, j )

=
∫ ∞

−∞
g(v−

j −v−
1 +t+1)G(v−

j −v−
2 +t+1)

·

⎡
⎢⎢⎣

m∏
k=3
k �= j

G(v−
j −v−

k +t+1)

⎤
⎥⎥⎦ g(t)dt, (54)

B(3, j )

=
∫ ∞

−∞
g(v−

j −v−
2 +t+1)G(v−

j −v−
1 +t+1)

×

⎡
⎢⎢⎣

m∏
k=3
k �= j

G(v−
j −v−

k +t+1)

⎤
⎥⎥⎦ g(t)dt, (55)

B(4, j )

=
∫ ∞

−∞
g(v−

2 −v−
j +t+1)G(v−

2 −v−
1 +t+1)

×

⎡
⎢⎢⎣

m∏
k=3
k �= j

G(v−
2 −v−

k +t+1)

⎤
⎥⎥⎦ g(t)dt . (56)

We now show that both A1 − A2 and B(1, j ) − B(2, j ) +
B(3, j ) − B(4, j ) are non-positive. However, let us first recall
some properties of log-concave functions.

Proposition 21 ( [19, Lemma 1]): Consider g : R → R+
and suppose that {x : g(x) > 0} = (a, b). Then, g(x) is log-
concave if and only if for all a < x1 ≤ x2 < b and all δ ≥ 0
it holds that

g(x1 + δ)g(x2) ≥ g(x1)g(x2 + δ). (57)

Proposition 22 ( [18, Remark 2]): Suppose g : R → R+
is a continuously differentiable function and let
{x : g(x) > 0} = (a, b). Then, g(x) is log-concave if
and only if g′(x)

g(x) is a non-increasing function of x in (a, b).
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We now prove that A1 − A2 ≤ 0. By a change of variable
in A1 we let v−

1 − v−
2 + t = u. Then,

A1 − A2 =
∫ ∞

−∞

m∏
k=3

G(u + v−
2 − v−

k + 1) ·

× [
g(u+1)g(u+v−

2 −v−
1 ) − g(u)g(u+v−

2 −v−
1 +1)

]
du.

(58)

We now apply Proposition 21 to the preceding equation by
noting that u ≥ u + v−

2 − v−
1 (due to the non-increasing order

of the elements in v−), and write

g(u+1)g(u + v−
2 − v−

1 )−g(u)g(u+v−
2 −v−

1 +1) ≤ 0. (59)

Since
∏m

k=3 G(u + v−
2 − v−

k + 1) ≥ 0, we conclude that

A1 − A2 ≤ 0. (60)

Similarly, Proposition 21 and Proposition 22 can be used
to show that B(1, j ) − B(2, j ) + B(3, j ) − B(4, j ) ≤ 0 for all
j = 3, . . . , m. Therefore, we have verified Schur’s condition
for f (v−), and conclude that L(V (x ′

i)→Y ′
i |V −(x ′

i ) = v−)
is Schur-concave. Finally, by Proposition 20, the entrywise
leakage is maximized by

v− = v−
max =

(
L − 1

m
, . . . ,

L − 1

m

)
, (61)

and is minimized by

v− = v−
min = (0, . . . , 0, L − 1, 0, . . . , 0) = (L − 1) δ j ,

(62)

for each j ∈ [[1, m]].

APPENDIX C
PROOFS FOR THE LEAKAGE WITH LAPLACE NOISE

A. Proof of Proposition 12

Let N = (N1, . . . , Nm ) be the sequence of i.i.d. Laplace
random variables, where N j ∼ Lap( 1

γ ) for all j ∈ [[1, m]].
To find an upper bound on the leakage, we will apply
Theorem 10 and calculate L(V (x ′

i ) → Y ′
i | V −(x ′

i ) = v−)

for v− = v−
max = ( L−1

m , . . . , L−1
m

)
. We write

L(V (x ′
i ) → Y ′

i | V −(x ′
i ) = v−

max)

= log
m∑

j=1

P(Y ′
i = j | V (x ′

i ) = v−
max + δ j ), (63)

where

P(Y ′
i = j | V (x ′

i ) = v−
max + δ j )

= P{N j + 1 > N1, . . . , N j + 1 > Nm}

=
∫ ∞

−∞

⎡
⎢⎢⎣

m∏
l=1
l �= j

P{Nl < (t + 1)}

⎤
⎥⎥⎦ · γ

2
e−γ |t |dt, (64)

and

P{Nl < (t + 1)} =
{

1
2 eγ (t+1) t ≤ −1,

1 − 1
2 e−γ (t+1) t ≥ −1.

(65)

Thus, we have

P(Y ′
i = j |V (x ′

i )

= v−
max +δ j ) = γ

2

∫ −1

−∞

[
1

2
eγ (t+1)

]m−1

· eγ tdt︸ ︷︷ ︸
A

+ γ

2

∫ 0

−1

[
1 − 1

2
e−γ (t+1)

]m−1

· eγ t dt︸ ︷︷ ︸
B

+ γ

2

∫ ∞

0

[
1 − 1

2
e−γ (t+1)

]m−1

· e−γ t dt︸ ︷︷ ︸
C

. (66)

It is straightforward to calculate integrals A and C as

A = 2−m

m
e−γ and C = 1 − [

1 − 1
2 e−γ

]m

m
eγ . (67)

Integral B can be written as

B = 1

2

(
1 − 1

2
e−γ

)m−1

− 2−me−γ

− γ (m−1)

4
e−γ

∫ 0

−1

(
1 − 1

2
e−γ (t+1)

)m−2

dt . (68)

We define

H (m) := γ

∫ 0

−1

(
1 − 1

2
e−γ (t+1)

)m

dt

= γ

m∑
k=0

(
m

k

)(
−1

2

)k

e−γ k
∫ 0

−1
e−γ kt dt

=
m∑

k=0

(
m

k

)(
−1

2

)k 1

k

(
1 − e−γ k

)
. (69)

Using
(m

k

) = (m−1
k

) + (m−1
k−1

)
for m ≥ 1, we get

H (m) =
m−1∑
k=0

(
m − 1

k

)(
−1

2

)k 1

k

(
1−e−γ k

)

+
m∑

k=0

(
m − 1

k − 1

)(
−1

2

)k 1

k

(
1 − e−γ k

)

= H (m − 1) + 1

m

(
2−m − (1 − 1

2
e−γ )m

)
, (70)

and H (0) = γ . Thus,

H (m) =

⎧⎪⎨
⎪⎩

γ m = 0,

γ +
m∑

k=1

2−k − (1 − 1
2 e−γ )k

k
m ≥ 1,

(71)

Note that H (m) is non-negative and monotonically decreasing
in m. Since

∑∞
k=1

t k

k = log 1
1−t for ||t < 1, we have

limm→∞ H (m) = 0. Hence, integral B can be written as

B = 1

2

(
1 − 1

2
e−γ

)m−1

− 2−me−γ − m − 1

4
e−γ H (m − 2).

(72)
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Finally, we have

L(V (x ′
i)→Y ′

i |V −(x ′
i ) = v−)

≤ L(V (x ′
i )→Y ′

i |V −(x ′
i) = v−

max )

= log(B1), (73)

where

B1 := (1 − m) 2−me−γ + eγ

(
1 − (1 − 1

2
e−γ )

m)

+ m

2
(1 − 1

2
e−γ )

m−1

− m(m − 1)

4
e−γ H (m − 2). (74)

B. Proof of Theorem 13

In order to prove the bound, we will show that
k(m) := exp

(
L(V (x ′

i ) → Y ′
i | V −(x ′

i ) = v−
max)[m]

)
is con-

cave in m and that

lim
m→∞ exp

(
L(V (x ′

i ) → Y ′
i | V −(x ′

i ) = v−
max)

)
= eγ . (75)

Since m is an integer, we will check the second-order dif-
ference of the leakage with respect to m. The first-order
difference is

�k(m) = k(m + 1) − k(m)

= (1 − 1

2
e−γ )m − 1

2
e−γ

(
2−(m−1) + m H (m − 1)

)
,

(76)

and the second-order difference is

�2 k(m) = �k(m + 1) − �k(m)

= −1

2
e−γ H (m)

(a)≤ 0, (77)

where (77) follows from the fact that H (m)
is non-negative. Thus, we have shown that
exp

(
L(V (x ′

i) → Y ′
i | V −(x ′

i ) = v−
max )

)
is concave in m.

Furthermore, it is straightforward to verify that (75) holds.
Hence, we have

L(V (x ′
i ) → Y ′

i | V −(x ′
i ) = v−

max) ≤ γ. (78)

Finally, we get

L(D∗ → Y ′
i | D− = d−) = L(D → Y ′

i | D− = d−)

≤ L(V (x ′
i ) → Y ′

i | V −(x ′
i ) = v−)

≤ L(V (x ′
i ) → Y ′

i | V −(x ′
i ) = v−

max) ≤ γ. (79)

C. Proof of Proposition 16

Similarly to the proof of Proposition 12, we can write

L(V (x ′
i ) → Y ′

i | V −(x ′
i ) = v−)

= log
m∑

j=1

P(Y ′
i = j | V (x ′

i ) = v− + δ j ), (80)

where

P(Y ′
i = j | V (x ′

i ) = v− + δ j )

= P{N j + v−
j + 1> N1 + v−

1 , . . . , N j + v−
j + 1> Nm + v−

m }.
(81)

For 1 ≤ j ≤ r , we have

P(Y ′
i = j | V (x ′

i ) = v− + δ j )

= P(Y ′
i = 1 | V (x ′

i) = v− + δ1)

≤ P{N1 + v−
1 + 1 > N2 + v−

2 }
= P{N2 − N1 < v−

1 + 1 − v−
2 }, (82)

and for r + 1 ≤ j ≤ m, we have

P(Y ′
i = j | V (x ′

i ) = v− + δ j )

≤ P{N j + v−
j + 1 > N1 + v−

1 }
= P{N1 − N j < v−

j + 1 − v−
1 }. (83)

It is straightforward to see that the random variable described
as the difference of two Lap( 1

γ ) random variables has the
following CDF:

P{N1 − N2 ≤ x}
=

{
1
4 exp(γ x)(2 − γ x) x ≤ 0,

1 − 1
4 exp(−γ x)(2 + γ x) x ≥ 0.

(84)

Then, by noting that v−
1 + 1 − v−

2 > 0 and v−
j + 1 − v−

1 ≤ 0
for r + 1 ≤ j ≤ m, we get

L(V (x ′
i ) → Y ′

i | V −(x ′
i ) = v−) ≤ log(B2), (85)

where

B2 := r

(
1 − 2 + γ (v−

1 + 1 − v−
2 )

4 exp
(
γ (v−

1 + 1 − v−
2 )

)
)

+
m∑

j=r+1

2 + γ (v−
1 − 1 − v−

j )

4 exp
(
γ (v−

1 − 1 − v−
j )

) . (86)
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