
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 1

AWA: Adversarial Website Adaptation
Amir Mahdi Sadeghzadeh, Behrad Tajali, and Rasool Jalili

Abstract—One of the most important obligations of privacy-
enhancing technologies is to bring confidentiality and privacy to
users’ browsing activities on the Internet. The website finger-
printing attack enables a local passive eavesdropper to predict
the target user’s browsing activities even she uses anonymous
technologies, such as VPNs, IPsec, and Tor. Recently, the growth
of deep learning empowers adversaries to conduct the website
fingerprinting attack with higher accuracy. In this paper, we
propose a new defense against website fingerprinting attack using
adversarial deep learning approaches called Adversarial Website
Adaptation (AWA). AWA creates a transformer set in each run so
that each website has a unique transformer. Each transformer
generates adversarial traces to evade the adversary’s classifier.
AWA has two versions, including Universal AWA (UAWA) and
Non-Universal AWA (NUAWA). Unlike NUAWA, there is no need
to access the entire trace of a website in order to generate an
adversarial trace in UAWA. We accommodate secret random
elements in the training phase of transformers in order for AWA
to generate various sets of transformers in each run. We run
AWA several times and create multiple sets of transformers. If an
adversary and a target user select different sets of transformers,
the accuracy of adversary’s classifier is almost 19.52% and
31.94% with almost 22.28% and 26.28% bandwidth overhead in
UAWA and NUAWA, respectively. If a more powerful adversary
generates adversarial traces through multiple sets of transformers
and trains a classifier on them, the accuracy of adversary’s
classifier is almost 49.10% and 25.93% with almost 62.52% and
64.33% bandwidth overhead in UAWA and NUAW, respectively.

Index Terms—Website Fingerprinting, Privacy Enhancing
Technologies, Adversarial Deep Learning, Adversarial Example.

I. INTRODUCTION

W ebsite fingerprinting (WF) attack is one of the most
serious threats against the anonymity of the users’

browsing activities. It enables an adversary to determine which
website is visited by a target user even she uses Privacy
Enhancing Technologies (PETs), such as VPNs, IPsec, and Tor
[1], [2], [3], [4], [5], [6], [7]. The target user is a general term
referring to a client-side victim whom the adversary intends to
monitor and figure out which specific websites she has been
visiting through her browser application. When an adversary
visits a website through PETs, she can extract a unique trace
associated with the statistical features of that website’s network
flow, such as the sequence of packets’ direction. The adversary
can visit various websites several times and collect a trace
set from those. To conduct the website fingerprinting attack,
the adversary can train a classifier on the collected trace set
and uses this classifier to predict the website that has been
visited by the target user. The fundamental part of website
fingerprinting attack is the classifier being used by the adversary
to classify the target user’s browsing activities. Recently, Deep

The authors are with the Department of Computer Enginnering,
Sharif University of Technology, Iran, Tehran, 11365-11155 (e-mail: am-
sadeghzadeh@ce.sharif.edu; behradtajali@ce.sharif.edu; jalili@sharif.edu).

Neural Networks (DNNs) have shown great performance in
classifying network traces of various websites[5], [6]. Besides,
DNNs-based classifiers have a highly better performance on
defenses that has been proposed in the previous studies against
website fingerprinting attack, such as WTF-PAD[5].

However, researchers have recently shown that DNNs have
a serious vulnerability, which is called adversarial example
[8]. An adversarial example is a maliciously crafted input
that causes classifiers to predict incorrectly. There are various
methods to generate adversarial examples [8], [9], [10], [11],
[12]. Adversarial examples are considered as an attack to the
classifiers in the literature of adversarial machine learning.
However, it can be considered as a defense mechanism against
the adversary’s classifier in the website fingerprinting domain.
PETs can generate adversarial traces using conventional
adversarial example generating methods, such as FGSM [9]
and C&W [10] to cause the adversary’s classifier to predict
incorrectly. However, there is a major challenge in using
adversarial traces as a defense against website fingerprinting
attack. Since PETs are publicly available in the threat model
of website fingerprinting attack, an adversary can generate
adversarial traces of various websites by her PETs and trains
a classifier on them. Since training on adversarial examples,
called adversarial training [9], [13], is one of the most effective
countermeasures against adversarial examples, the adversary’s
classifier being trained on adversarial traces can detect the
true class of the target user’s adversarial traces with a high
success rate [14], [15]. Therefore, we need an adversarial trace
generating method, which is more resistant against adversarial
training in the threat model of website fingerprinting attack.

We propose Adversarial Website Adaptation (AWA), which
is a new defense against website fingerprinting attacks. AWA
generates adversarial traces that are more resistant to adversarial
training. The output of AWA is a transformer set so that each
website has a unique transformer. Each transformer consists of
a generator that generates adversarial perturbations, which are
added to traces to make adversarial traces. We accommodate
secret random elements in the training phase of AWA to
create various sets of transformers in each run. When two
transformer sets are created by various secret random elements,
they generate adversarial traces with different distributions.
The critical assumption of AWA is that the adversary knows
that AWA generates the traces of the target user; however,
she has no knowledge about the secret random elements of
the target user’s transformer set. We demonstrate when an
adversary and a target user generate their adversarial traces by
different transformer sets, the accuracy of adversary’s classifier
is low in classifying target user’s adversarial traces. AWA
has two versions, including Universal AWA (UAWA) and
Non-Universal AWA (NUAWA). Transformers in UAWA use
adversarial perturbations that are independent of website traces.

ar
X

iv
:2

01
2.

10
83

2v
2

 [
cs

.C
R

]
 1

3
A

pr
 2

02
1

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 2

Hence UAWA can generate adversarial traces on the fly, and
there is no need to have access to the entire trace of a website
before generating adversarial traces. Transformers in NUAWA
use the entire trace of a website to generate adversarial traces.

We run AWA several times and generate multiple sets
of transformers to evaluate the performance of AWA. We
assume an adversary randomly selects a set of transformers
and generates adversarial traces of various websites through
them, then she trains a classifier on them. The target user also
randomly selects a set of transformers and generates adversarial
traces of her browsing activities through them. The results
demonstrate that if the transformer sets of an adversary and a
target user are different, the accuracy of adversary’s classifier
is almost 19.52% and 31.94% with almost 22.28% and 26.28%
bandwidth overhead in UAWA and NUAWA, respectively.
We also evaluate the performance of AWA, encountering a
powerful adversary that can generate adversarial traces of
various websites through multiple sets of transformers and
train a classifier on them. The results indicate that AWA must
impose more bandwidth overhead to traces to decrease the
accuracy of the adversary’s classifier in this setting. UAWA
and NUAWA decrease the accuracy of adversary’s classifier to
almost 49.10% and 25.93% with almost 62.52% and 64.33%
bandwidth overhead, respectively.

The main contributions of this paper are as follows:
• We propose AWA as a defense against website finger-

printing attack, which is more resistant against adversarial
training. Also, AWA uses adversarial machine learning
approaches and generates black-box adversarial traces.

• We present two versions of AWA, including universal
AWA and non-universal AWA, and conduct multiple
experiments to compare their performance.

• We introduce the concept of secret random elements in
the context of generating adversarial traces.

• We propose intra-class distance criterion, which is used
to justify the effectiveness of AWA.

The rest of the paper is organized as follows. In Sec. II, the
preliminary and the threat model of website fingerprinting are
described. Also, the preliminary of DNNs and basic methods
for generating adversarial examples are introduced. Sec. III
reviews previous studies on website fingerprinting attacks and
defenses. In Sec. IV, AWA is presented. We also discuss the
constraints of transformers in modifying network traces. Sec
V evaluates the performance of UAWA and NUAWA in two
scenarios. Sec. VI discusses how to use AWA in practice. Lastly,
in Sec. VII, the conclusions of this study will be discussed.

II. BACKGROUND

The Onion Router (Tor) is one of the most popular PETs,
which provides anonymity and protection from eavesdropping.
Different kinds of research have been conducted previously
to breach the anonymity feature of Tor [1], [2], [3], [4], [5],
[6], [7]. Website fingerprinting is one such type of traffic
analysis attack through extracting traffic patterns from the
visited websites can form a unique fingerprint of acquired
traffic flow and undermine Tor protection by detecting the
website that the user has been just visiting.

Tor Client

Adversary
Tor Network

Bridge Node

Middle Nodes

Exit Node

Internet

Tor Encrypted Traffic

Figure 1: A depiction for a typical WF attack scenario.

A. Website Fingerprinting (WF)

Three entities play vital roles in the website fingerprinting
attack, an adversary, a target user, and Privacy-Enhancing
Technologies (PETs). A target user utilizes PETs to keep
her communications confidential and anonymous. Since most
PETs are publicly available, an adversary can use them to
generate a set of network flows from her favorite websites and
train a classifier on them to predict the target user’s browsing
activities. AS adversary has no access to the label of network
flows being generated by the target user, she can not evaluate
the performance of her classifier. A website fingerprinting
defense mechanism aims to obfuscate the features from which
the adversary’s classifier learns to recognize and differentiate
network flows of a website from those of others. Likewise the
previous studies, in this paper, we focus on Tor as the most
popular PETs. However, AWA does not depend on the Tor
architecture and can be generalized to any PETs.

1) Threat Model: Two initial presumptions are taken for
the adversary in WF scenarios. First, the adversary is local,
which means she is located somewhere between the Tor client
and the Tor bridge where she can access the link. Second, the
adversary is passive, meaning that she could only capture the
ongoing packets and is not allowed to manipulate, drop, or
delay any of them. Any potential eavesdropper conforming
such potential features can can play the role of the adversary
(e.g., Autonomous Systems, Internet Service Providers, and
network administrators). The adversary is also considered to
be aware of the client’s identity. A common assumption in
the literature is that an adversary can parse the network flows
of various websites, and isolate it from the other kinds of
network traffic. Figure 1 depicts the threat model of website
fingerprinting attack.

An essential point about any defense mechanism being
implemented on PETs is that an adversary has access to network
traffic being generated by the mechanism. For the success of
an attack, the adversary needs to capture a set of network flows
while visiting a collection of websites, notably those that she
is interested to detect. Thereafter, some unique features shall
be extracted from each network flow that helps each website
become conspicuous to classifiers, amongst other websites.
There are loads of such features in WF literature, such as
packet size [1], time and volume of traffic [16], edit-distance
score [17], and the rate of traffic bursts in both directions [18].
By doing so, the adversary could attain several feature vectors
that are used to train her supervised classifier. We consider
each feature vector of a website’s network flow as a website

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 3

trace in the rest of this paper.
There are two settings to evaluate WF attacks and defenses:

closed-world and open-world. The closed-world setting assumes
that the target user only visits the websites belonging to a
monitored set, and the adversary also uses the traces of the
same set for training of her classifier. In the more realistic
open-world setting, the target user can visit arbitrary website
regardless of the monitored set. Hence, the adversary needs
to identify if a website belongs to the monitored set and to
distinguish between monitored websites. Since the target user
is restricted to visit the websites belong to the monitored set
in the closed world setting, the adversary has an easier job
of classifying her visited websites than in the open-world
setting. Hence, defeating the adversary in this setting would
be considered as overcoming her in the most advantageous
situation. We only evaluate AWA in the close-word setting,
which is the worst setting for a defense mechanism.

2) Website Trace Representation: The communication of
a client and a server is in the format of a bidirectional flow.
A bidirectional flow is a sequence of packets that share the
same source and destination IP addresses, port numbers, and
protocol. Recent studies [19], [6], [5] have demonstrated that
the direction of packets in bidirectional flows is enough for
website fingerprinting attacks. Since recent attacks [19], [6], [5]
and defenses [14], [20], [21] have focused on the sequence of
packets direction, we also use the same features in this study.
Each trace of a website is a sequence of packets direction
in the order that they are received, which is called Direction
Sequence (DS). For DSi, we have:

DSi = < di1, d
i
2, ..., d

i
n >, s.t. dij ∈ {+1,−1}, (1)

where n is the number of packets and dij is the jth packet
direction of trace i. The direction of packets from the client
to the server is +1 and from the server to the client is −1. In
this study, we consider each website trace as a Burst Sequence
(BS) to simplify making perturbation for each trace. Burst is a
sequence of consecutive packets all having the same direction.
The burst sign is the sign of its including packets. BS is a
sequence of bursts sizes multiplied to the bursts directions. For
BSi, we have:

BSi = < |Bi1| ×Di
1, |Bi2| ×Di

2, ..., |Bim| ×Di
m >,

s.t. Bij =< dj1, d
j
2, ..., d

j
l >, |B

i
j | = l, Di

j ∈ {+1,−1}, djk =

Di
j , D

i
p = −1×Di

p−1, k ∈ [1, l], j ∈ [1,m], p ∈ [2,m]
(2)

where m is the number of bursts, Bij is the jth burst of BSi,
and the Di

j is the direction of this burst, which is the same
as all packets in Bij . As an example, suppose that DSi =<

+1,−1,−1,−1,+1,+1,−1,−1 >. The direction sequence DSi

has four bursts, Bi
1 =< +1 >, Bi

2 =< −1,−1,−1 >, Bi
3 =<

+1,+1 >, and Bi
4 =< −1,−1 >. Hence, |Bi

1| = 1, Di
1 = +1,

|Bi
2| = 3, Di

2 = −1, |Bi
3| = 2, Di

3 = +1, and |Bi
4| = 2, Di

4 = −1.
The burst sequence i is BSi =< 1×(+1), 3×(−1), 2×(+1), 2×
(−1) >=< +1,−3,+2,−2 >. In the rest of study, each website
trace is a burst sequence, and a trace set is a set of burst
sequences.

B. Deep Neural Networks
Deep neural networks (DNNs) are multi-layer functions

that receive xi ∈ X as input and output yi = fDNN (xi)
(yi ∈ Y). DNNs are revealed to have high performance on
raw data extracted from network traffic and do not need
manual feature engineerings to reach high accuracy. Three
important DNNs which are mostly used in network traffic
classification are Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), and Stacked Denoising
Autoencoders (SDAE). Amongst which, One-Dimensional
Convolutional Neural Network (1D-CNN) has got the best
results in network traffic classification tasks [6], [22], [5].
A neural network consists of three parts: an input layer, a
bunch of hidden layers inside, and an output layer. Each layer
includes a set of neurons with non-linear activation functions
and parameters θ (weights and biases) related to them. Different
architectures of deep neural networks have different numbers
of parameters. During the training phase, the optimum values
for the network parameters are calculated so that the loss
function J , which indicates the distance between actual and
predicted labels in supervised classification, will be minimized:
θ∗ = argmin

θ
J(θ, x, y). The optimization is usually done using

some common versions of the Stochastic Gradient Descent
(SGD). SGD is an iterative method, where θ is initialized
randomly and is updated iteratively using the gradient of the
loss function with respect to the parameters in every iteration.
The gradient is calculated using a mini-batch of training data.
The size of a mini-batch is often 64, 128, or 256, and the
data included in the batch is often randomly selected from
training data. It is notable that putting different data in the mini-
batch changes the gradients of the loss function with respect
to parameters. Therefore, θ∗ depends on the initialization of θ
and the order of the training data which SDG is confronted
with in every mini-batch.

C. Adversarial Examples
In spite of their remarkable achievements and high perfor-

mance in complicated tasks, DNNs have been demonstrated
having a critical vulnerability [8]. Adversarial examples are
intentionally crafted inputs, which cause the victim classifier
f to make a mistake about the correct label of the input.
Considering f∗ as a classifier that always designates the correct
label, we define adversarial example x′ as:

f∗(x′) = y, f(x′) = y′, s.t. y′ 6= y (3)

The typical approach to make adversarial example x′ is adding
the adversarial perturbation vector η to the real input x like:
x′ = x+η. After crafting x′, the actual class of x′ and x should
be the same. Several methods have been introduced to generate
adversarial examples so far, of which Fast Gradient Sign
Method (FGSM) [9] and Carlini and Wagner (CW) [10] are two
popular ones. Moosavi-Dezfooli et al. [11] proposed universal
adversarial perturbations for the first time where the adversary
creates adversarial perturbation independent of a particular
input. In this attack, a universal adversarial perturbation is
added to a set of samples and cause the target classifier to
predict the label of most of samples wrongly.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 4

Adversarial examples are considered as an attack to classi-
fiers in the literature of adversarial machine learning. However,
it can be considered as a defense mechanism against the
adversary’s classifier in the website fingerprinting domain. Tor
can implement adversarial example generating methods such
as FGSM [9] and C&W [10] and use them to perturb traces
of various websites and generate adversarial traces to cause
the adversary’s classifier to predict incorrectly. Such a defense
mechanism does not work because of the threat model of
website fingerprinting attacks. Since Tor is publicly available,
an adversary can generate adversarial traces of various websites
and train a classifier on them. In the adversarial machine
learning literature, training on adversarial examples is one of
the most effective defenses against adversarial example attacks
[9], [13]. Therefore, when an adversary trains a classifier on
the adversarial traces, she is doing adversarial training, and
her classifier becomes more robust against adversarial traces.
Accordingly, where Tor uses adversarial example generating
methods as a defense mechanism against adversary’s classifier,
adversarial training is a part of the threat model of website
fingerprinting attack. Saidur et al. [14] and Zhang et al. [15]
demonstrate that, because of adversarial training, adversarial
traces being generated by FGSM [9] or C&W [10] are not
effective against the adversary’s classifier. We propose AWA
as a new defense mechanism against website fingerprinting
attacks that generates adversarial traces which are more resistant
against adversarial training.

D. Maximum Mean Discrepancy (MMD)

Given two sets of data X = {x1, ..., xn} and Y =
{y1, ..., ym}, drawn identical independent distribution (i.i.d.)
from distributions P and Q respectively, MMD criterion
empirically estimates the distance between P and Q in
Reproducing Kernel Hilbert Space (RKHS). An RKHS Hk

is a space of functions with a kernel k : X × X → R such
that f(x) =< f, k(., x) > ∀f ∈ Hk. In other words, MMD
considers the distance between the embedded mean of two
distributions as the distance between them. MMD is defined
as follows:

MMD(X,Y) =

∥∥∥∥∥ 1n
n∑
i=1

φ(xi)−
1

m

m∑
i=1

φ(yi)

∥∥∥∥∥
Hk

(4)

where H is a universal RKHS, φ(.) ∈ H is the mapping of
input space X to the RKHS, and k(., .) =< φ(.), φ(.) > is the
universal kernel associated with this mapping. MMD can be
easily approximated by sampling from distributions P and Q.
We use MMD with a Gaussian kernel to estimate the distance
between two distributions of websites.

III. RELATED WORKS

This section reviews the most prominent website fingerprint-
ing attacks and defenses presented so far.

A. Website Fingerprinting Attacks

Before the outbreak of deep learning, most of the studies
used to apply manual feature engineering and conventional

machine learning classifiers. The first WF attack is presented by
Hermann et al. [1], where they reach just 3% accuracy for the
closed world scnario containing 775 websites. Following that,
Panchenko et al. [16] achieve 55% accuracy with enhanced
extracted features on the same dataset. WF attacks gradually
improve up to 90% success rate using edit-distance [23],
[17]. Wang et al. [18] using a k-nearest neighbor classifier
on a combination of features achieve 91% accuracy in the
closed-world setting containing 100 websites. Panchenko et al.
[3] introduce an attack based on a Support Vector Machine
(SVM). For the closed-world setting, their method achieves
91% accuracy. Hayes and Danezis [2] suggest k-Fingerprinting
attack (k-FP)The k-FP attack achieves 91% accuracy for closed-
world setting. Zhuo et al. [7] propose a new attack using Profile
Hidden Markov Models. This attack achieves 99% accuracy
on SSH and Shadowsocks network traffic in the closed world
setting.

Abe and Goto [19] introduce the first WF attack employing
DNNs. They use a Stacked Denoising Autoencoder (SDAE)
classifier, and instead of whole handcrafted features, used in
previous studies, they feed their model just with a sequence of
raw packets direction. They report 88% accuracy on the closed-
world scenario. Rimer et al. [6] propose Automated Website
Fingerprinting (AWF) attack, which utilizes multiple DNN
structures, including SDAE, CNN, and LSTM to classify the
sequence of packets direction for various website. According to
the obtained results, their CNN model outperforms others with
96% accuracy for the closed-word scenario. Sirinam et al. [5]
develop a new CNN classifier which surpasses all previous ones
and achieves more than 98% accuracy in closed-word settings.
The authors collect a dataset for 100 websites to evaluate their
classifier. They claim that the sequence of packets direction
is enough for classifying websites traces with high accuracy.
Furthermore, their attack shows high performance against traces
being protected by WTF-PAD [24] and Walkie-Talkie [25]
methods. Bhat et al. [26] using the ResNet-18 architecture
[27] introduce VAR-CNN that could gain 98.8% accuracy in
closed-world settings. VAR-CNN uses the sequence of packets
direction, inter-arrival time, and cumulative statistical features
to classify traces.

B. Website Fingerprinting Defenses

One of the early defenses against website fingerprinting
attack is proposed by Dyer et al. in [28] called Buffered Fixed-
Length Obfuscator (BuFLO). BuFLO imposes high bandwidth
and latency overhead on traces. Later, some extended versions
of BuFLO, such as Tamaraw [29] and CS-BuFLO [30] are
proposed to solve this problem. By employing the Adaptive
Padding method [31], Juarez et al. introduce WTF-PAD [24].
WTF-PAD tries to obfuscate the inter-arrival time feature by
filling the abnormal time gap between two packets of a sequence
with dummy ones. Nithyanand et al. in [32] and Wang et al.
in [18] almost concurrently propose the idea of finding a
representation for all traces that are close to each other and
this representation is called super trace [32] or supersequence
[18]. Both defenses use clustering to find traces that are close
to each other. Then, every trace must be padded so that it

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 5

becomes similar to the supersequence of the cluster to which
it belongs. Wang et al. in another study [18] present Walkie-
Talkie (WT) that has two features: Burst-molding and half-
duplex communications. WT has 31% and 34% bandwidth and
latency overhead, respectively. Since Walkie-Talkie works on
the half-duplex links, it has some issues in practice.

Some new methods recently have employed adversarial
machine learning approaches to develop a defense against
website fingerprinting attack. By leveraging the adversarial
example notion, Saidur et al. [14] develop their defense method
called Mockingbird. The defense procedure starts with selecting
a target trace from a pool and calculating the gradient of
the distance between the source trace and the target trace.
Then it tries to move toward the target iteratively until the
detector is deceived. Mocking Bird can reduce the accuracy
of Deep Fingerprinting classifier [5] down to 35.2% with
almost 56% bandwidth overhead. Zhang et al. [15] propose two
defenses against video fingerprinting attacks using differential
privacy called FPA and d∗. FPA and d∗ impose 200% and
600% bandwidth overhead. FPA decreases the accuracy of
the target classifier from 94% to almost 20%. As the authors
mentioned in their paper, unlike streaming traffic, HTTP traffic
is more interactive. Therefore, the proposed defenses are not
applicable in the website fingerprinting domain. Nasr et al. [20]
propose Blind Adversarial Network Perturbations (BANP). The
method injects universal perturbations into the traffic stream,
leveraging remapping functions. The authors indicate that Deep
Fingerprinting [5] attack has 8% accuracy against BANP, and
their method imposes 11.11% bandwidth overhead on traces.
Abusnaina et al. [21] present Deep Fingerprinting Defender
(DFD) approach. DFD consists of two modules: the burst
observer and the injection module. It works by injecting dummy
packets dependent on the passing burst in either one-way or
two-way operation mode. With 14.26% bandwidth overhead,
they decrease the accuracy of Deep Fingerprinting [5] attack
to about 7.29%. Although BANP [20] and DFD [21] evaluate
their methods when the adversary is aware of the defense, the
procedures of generating adversarial traces for adversary and
target user are different in their evaluation. Since we can not
choose which versions of PETs belong to adversary and target
user in the threat model of website fingerprinting attack, the
procedures of generating adversarial traces for them must be
the same.

IV. ADVERSARIAL WEBSITE ADAPTATION

We introduce Adversarial Website Adaptation (AWA) as a
new defense mechanism against website fingerprinting attacks
that generate adversarial traces which are more resistant against
adversarial training. We assume statistical features of each
website W has a unique distribution DW , and traces of website
W come from this distribution. Also, we have access to the
trace set TS and label set YTS , including traces and labels
of all monitored websites. Trace set of website W is called
TSW , and it can be used to estimate the distribution of
website W (empirical distribution D̂W). Each website has a
unique transformer in AWA, and the goal of a transformer
is to transform the distribution of the associated website

to adapt to the transformed distribution of another website.
Each transformer has a generator that generates adversarial
perturbation to change a website trace, and since the size of
adversarial perturbation controls the magnitude of bandwidth
overhead, it must be minimized.

AWA has two versions, including Non-Universal AWA
(NUAWA), and Universal AWA (UAWA). NUAWA needs to
have access to the entire trace of a website before generating
adversarial perturbations. UAWA uses universal adversarial
perturbations and does not need to access the entire trace of a
website before generating adversarial perturbations. Recently,
Sadeghzadeh et al. [33] and Nasr et al. [20] have demonstrated
that using universal adversarial perturbation is effective in
evading DNNs-based network traffic classifiers. In practice,
UAWA generates a set of universal perturbations for each
website, and whenever a user wants to visit a website, the
pre-made perturbation of that website is added to the trace
of user on the fly. The only difference between NUAWA and
UAWA is in their generators’ inputs. They are fed by the trace
set TS in NUAWA and the noise set Z in UAWA. The whole
process of transforming the traces of website W is denoted
as TW (TSW , Z) where TW is the transformer of website W ,
TSW is the trace set of website W , and Z is a noise set.

We explain AWA for a pair of websites and then extend
it to K websites. AWA has a framework that changes the
distributions of a pair of websites. Suppose that website A has
been paired with website B, and the distributions of websites
A and B are DA and DB , respectively. The transformers
TA and TB change the distributions DA and DB to D′A to
D′B , respectively, so that D′A and D′B become close together.
However, the size of change in distributions should be limited
due to bandwidth overhead. Therefore, the AWA framework
goal is to minimize the distance between TA(TSA, Z) and
TB(TSB , Z) with the minimum amount of change on traces
to minimize bandwidth overhead. We utilize parameterized
generators GA and GB in TA and TB , respectively, and a
parameterized discriminator DAB to minimize the distance be-
tween TA(TSA, Z) and TB(TSB , Z). The discriminator DAB

wants to differentiate between TA(TSA, Z) and TB(TSB , Z).
On the contrary, TA and TB want to prevent DAB from
differentiating between them. When the discriminator fails
to differentiate between TA(TSA, Z) and TB(TSB , Z), the
distributions D′A and D′B are adapted. We use an Auxiliary
Classifier AC to make transformers move traces of both classes,
not just one of them. Auxiliary Classifier is a simple classifier
that has been trained on the traces of all websites before
transformation. In order to apply the AWA framework for K
classes of websites, the following three phases are introduced
• Pre-training phase: Auxiliary classifier is trained on the

network traces of K websites.
• Training phase: First, K/2 pairs of websites are ran-

domly selected. Then, generators and discriminator of
the proposed framework are trained for each pair on the
pre-collected set of network traces. The output of this
phase is a transformer set consists of K transformers for
each website.

• Testing Phase: New clean traces of each website are
transformed by the respective transformer.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 6

TSA

if NUAWA

TSB

if NUAWA

TA

GA ∗
Z

if UAWA

TA(TSA, Z)

TB

GB ∗
Z

if UAWA

TB(TSB , Z) D
A
B

A
C

Transformer Label

Class Label

(a) Training Phase

new_traceA

if NUAWA

new_traceB

if NUAWA

TA

GA ∗
Z

if UAWA

TA(new_traceA, Z)

TB

GB ∗
Z

if UAWA

TB(new_traceB , Z)

(b) Testing Phase

Figure 2: An overview of Adversarial Website Adaptation (AWA) framework for two websites A and B. In the AWA training phase, the generators GA and
GB are trained to make the transformers’ outputs indistinguishable for discriminator DAB and decrease the logits value of auxiliary classifier AC for the
true class of traces. The inputs of transformers are noise set Z in UAWA and trace sets TSA and TSB in NUAWA. In the testing phase, the new traces
new_traceA and new_traceB are transformed by trained transformers TA and TB , respectively.

AWA can be run several times to create multiple sets of
transformers. Figure 2 shows the overview of AWA framework
in training and testing phases for pair websites A and B.

A. Transformers

There are three constraints to transform traces of a website.

1) Transformers can not remove any packets from traces;
otherwise, the functionality of network traffic is disrupted.
Hence, adding dummy packets is the only way to
transform traces.

2) As mentioned in section 2, we consider traces of each
website as a burst sequence. The burst sequence consists
of integer numbers, and it is discrete. The output of
transformers must be integer numbers.

3) If a burst in a trace is broken into two bursts by inserting
a dummy packet having the opposite direction in the
middle, the latency overhead is imposed on traces. Each
breaking of a burst imposes two round trip times overhead
on a trace. Since it is not intended to impose latency
overhead on traces, transformers only add dummy packets
at the end of bursts in the same direction.

Each transformer consists of a generator, which feeds using a
noise set or a trace set and generates a perturbation vector. The
elements of perturbation vector specifies how many dummy
packets are added to each burst of input trace. The first element
of perturbation vector is added to the first positive burst of trace,
and if a trace starts with a negative burst, the perturbation vector
is shifted one element to the right. The value of perturbation
vector is all positive, and it is multiplied by the sign of the
target trace. Then it is added to the target trace to preserve
the constraints 1 and 3. As mentioned, the input of generators
is different in NUAWA and UAWA. In NUAWA, the input
of a generator is a trace set , and in UAWA, a generator is
fed by a noise set. Although there is no need to the noise set
Z in NUAWA, we use the same notation TW (TSW , Z) for
transformers in NUAWA and UAWA for simplicity. For TW

we have:

NUAWA: TW (TSW , Z) = G(TSW)× sign(TSW) + TSW

UAWA: TW (TSW , Z) = G(Z)× sign(TSW) + TSW
(5)

Although the output of transformers is not rounded in the
training phase, it is rounded in the testing phase to preserve
constraint 2. The amount of BandWidth Overhead (BWO) that
TW adds to a trace tr is defined as follows:

BWO(%) =
‖ |TW (tr, Z)| − |tr| ‖1

‖ |tr| ‖1
∗ 100 (6)

where ‖ |x| ‖1 is the sum of absolute values of x.

B. Loss Functions

The AWA framework has three kinds of loss functions
to optimize the parameters of generators, discriminator, and
auxiliary classifier. The discriminator’s goal is to predict the
label of generators correctly. However, the generators’ goal
is to bring close the distributions of their outputs together to
confuse the discriminator and evade the auxiliary classifier. It
is improper that generators add a lot of dummy packets to
traces to change their distributions. Hence, bandwidth overhead
loss restricts generators not to adding high bandwidth overhead
to traces. The loss function of the auxiliary classifier is cross-
entropy, which is a standard supervised learning loss, and is
as follows:

min
θAC
LAC(TS, YTS)=−E(x,y)∼(TS,YTS)

K∑
k=1

I(y=k)logAC(x)k

(7)
where K is the number of websites in TS, I(y=k) is one
if y = k; otherwise is zero, AC(.)k is the kth element of
AC output, and θAC is the parameters of AC. The output of
discriminator is the label of the transformer from which the
input of discriminator has been generated. Because there are

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 7

only two transformers, their labels are zero and one. The loss
function of DAB is defined as follows:

min
θDAB

LDAB (TSA, TSB ,P) =

− ExA∼TSA,z∼P [logDAB(TA(xA, z))]

− ExB∼TSB ,z∼P [log(1−DAB(TB(xB , z)))]

(8)

where θDAB is the parameters of discriminator DAB and P is
a random noise distribution. The loss function of generators
consists of three parts. For simplicity, we only introduce the
loss function of GA, and the loss function of GB can be defined
in the same way. LGA_AC is the value of AC logits for the
true class of the output of transformer. Logits is the output of
the Penultimate layer in DNNs. The purpose of this loss is to
make the AC predict the label of the output of TA wrongly.
We have:

LGA_AC(TSA,YTSA ,P) = E(x,y)∼(TSA,YTSA),z∼P
K∑
k=1

I(y=k)max(logitsAC(TA(x,z))k , 0)
(9)

where logitsAC(TA(x,z))k is the kth element of the output
of AC logits, and YTSA is the label of website A. LGA_OH
regulates the magnitude of change that transformers add to
traces. The magnitude of change between the input and output
of transformers is the bandwidth overhead that AWA imposes
on traces, which must be minimized. We have:

LGA_OH(TSA,P, τlow, τhigh) = Ex∼TSA,z∼P max(
‖ |TA(x, z)| − |x| ‖1

‖ |x| ‖1
− τhigh, 0)−min(

‖ |TA(x, z)| − |x| ‖1
‖ |x| ‖1

− τlow, 0)
(10)

where τhigh and τlow determine the level of bandwidth overhead
inducing no penalty, and ‖ |.| ‖1 is the sum of absolute values.
τhigh controls the upper bound of bandwidth overhead, and if
overhead is more than τhigh × 100, LGA_OH increases. Since
sometimes some generators do not move websites distributions,
we add a loss term that makes generators move the distributions
of websites. This term using τlow makes generators to add some
bandwidth overhead to traces, and it increases if overhead is
less than τlow × 100. We use the domain confusion objective
that has been proposed by Tzeng et al. [34] as the third part
of GA loss function. The discriminator’s output is a value
between zero and one, and when the output is closer to zero,
the discriminator’s prediction is the transformer with label zero;
otherwise, the discriminator’s prediction is the transformer
with label one. When the distributions of transformers’ output
are very close together, the discriminator fails to differentiate
between them, and its output becomes 0.5. Therefore, this part
of the loss function makes transformers change their outputs so
that discriminator’s output become 0.5. The domain confusion
loss function is defined as follows:

LGA_DC(TSA,P) = −Ex∼TSA,z∼P

[
1

2
logDAB(TA(x, z)) +

1

2
log(1−DAB(TA(x, z)))]

(11)

The complete loss of GA is as follows:

min
θGA

LGA(TSA,P, τlow, τhigh, α, β, γ) =

α LGA_AC + β LGA_OH + γ LGA_DC

(12)

where θGA is the paprameters of GA, and α, β, and γ regulate
the impact of each part of loss in LGA .

C. Secret Random Elements

Although we move the distributions of K/2 pairs of websites
towards each other, because of the limitation on bandwidth
overhead being imposed on traces, websites distributions do not
become indistinguishable. AWA must add a lot of bandwidth
overhead to the traces of paired websites in order to become
indistinguishable. This is impractical in the real world. Suppose
that we run AWA once and create a transformer set S to
generate adversarial traces, and also website A has been paired
by website B in the training phase of AWA. TSA and TSB are
the transformers of websites A and B in S, respectively. TSA
changes the distribution of website A from DA to D′A, and TSB
also changes the distribution of website B from DB to D′B .
Since websites A and B were paired in the training process of
S, the goal of AWA’s framework is to bring D′A and D′B close
together. If an adversary has no access to AWA, she only can
train a classifier on samples of DA and DB . In this setting, if
the target user has access to AWA and generates her adversarial
traces with D′A and D′B distributions, the adversary’s classifier
being trained on the samples of DA and DB has low accuracy
on the target user traces due to the auxiliary classifier in the
AWA’s framework.

If we put S in publicly available PETs, an adversary also
can generate adversarial traces of different websites through S
and train a classifier on them. The target user also uses PETs
and generates her adversarial traces through S. In this setting,
the adversary has access to D′A and D′B , and she can train
a classifier on samples of them. Since D′A and D′B are not
indistinguishable and the target user also generates her traces
based on these distributions, the adversary’s classifier being
trained on samples of D′A and D′B has high accuracy on the
target user’s adversarial traces.

When an adversary trains a classifier on adversarial traces,
she is doing adversarial training. Zhang et al. [35] demonstrate
that adversarial training performance strongly correlates with
the distance between the distribution of test data and the
distribution of training data. Test samples that are far from the
distribution of training data are more likely to be classified
wrongly. In the website fingerprinting threat model, the training
data of the adversary’s classifier and also its test data (which is
in fact the traces obtained from target user) are generated
by the defense mechanisms of PETs. AWA as a defense
mechanism is able to control both the training and the test data
distributions of the adversary’s classifier. Therefore, if AWA
generates adversarial traces with different distributions for the
adversary and the target user, the adversary’s adversarially
trained classifier would fail and get low accuracy on the target
user’s adversarial traces. However, there are multiple users
in the real world, and we do not know which one is an
adversary and which one is a benign user. Therefore, AWA

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 8

must generate adversarial traces of each user by a unique
distribution so that when a user, which can be an adversary,
trains a classifier on her adversarial traces, can not classify other
users’ adversarial traces with a promising success rate. With
this purpose, AWA must create multiple sets of transformers
so that each transformer set generates adversarial traces with
different distribution from others. Also, an individual user
should not be aware of what transformer set other users have
chosen. Otherwise, an adversary can generate her adversarial
traces by the same transformer set that the target user has
picked up, and in this setting, the accuracy of the adversary’s
classifier is high.

We accommodate secret random elements in AWA to achieve
these aims by inspiring the concept of keys in the cryptography
literature. Based on the Kerckhoffs’ principle [36], it is assumed
the encryption scheme is known to the adversary, but the
key itself remains secret. Here in the website fingerprinting
threat model, we have a similar assumption that PETs are
publicly available, and thus the adversary is able to generate
adversarial traces of any chosen website. However, there is
no secret key in the defenses against website fingerprinting
attack. Notably, the functionality of keys in the cryptography
field and secret random elements are very different. The
only similarities between these two concepts are randomness
and secrecy. Secret random elements make AWA generate a
different set of transformers in each run. Suppose that we
run AWA twice with various random elements to create two
transformer sets S1 and S2. An adversary uses S1, and a
target user uses S2. As an example, the adversary changes the
distribution of website A using T s1A from DA to Ds1

A , and the
target user changes the distribution of website A using T s2A
from DA to Ds2

A . If Ds1
A and Ds2

A are far enough from each
other, the adversary’s classifier being trained on the samples
of Ds1

A reaches a low accuracy on the target user’s adversarial
traces being generated by Ds2

A . It is noteworthy to mention
that because of the bandwidth limitation Ds1

A and Ds2
A can not

be very far from DA.
As mentioned in section II-B, there are multiple random

elements in the Stochastic Gradient Descent (SGD) algorithm,
such as parameter initialization and the order of training set.
SGD is used to minimize loss functions of generators and
discriminators in the AWA training phase. We use the initial
parameters of generators and discriminators, as well as the
order of training set as the two parts of random elements. It is
notable that since we have to use SGD in the training phase
of transformers anyway, we do not add any new randomness
to transformers. We just consider the initial parameters of
generators and discriminators, as well as the order of training
set as the random elements and keep them secret.

Besides, with respect to the capabilities of AWA’s framework,
we use the pair list and noise being fed to generators in UAWA
as the third and fourth parts of the secret random elements.
The pair list is a list of pairs with size K/2, determining which
website is paired by which website in the AWA training phase.
For example, suppose that we have four websites, A, B, C,
and D. The pair list can be {(A, C),(B, D)}, which means
that A is paired with C and B is paired with D in the AWA
training phase. When the pair lists of an adversary and a target

Algorithm 1 Adversarial Website Adaptation (AWA)
Input: Trace set TS, label set YTS , number of websites K, noise distribution
P , batch size bs, number of discriminator iterations DT , number of
generator iterations GT , overhead threshold OH , overhead controllers τlow
and τhigh, parameters α, β, γ, and number of training iterations T .
Output: Transformer set S

1: AC ← train auxiliary classifier on (TS, YTS) using LAC(TS, YTS)
2: Pairs← randomly select K/2 pairs among websites
3: S ← empty transformer set with size K
4: for pair in Pairs do
5: TSA ← traces of website pair[0] in TS
6: TSB ← traces of website pair[1] in TS
7: randomly initialize parameters of TA, TB , DAB
8: selected_TA ← ∅
9: selected_TB ← ∅

10: for t← 0, T do
11: for i← 0, DT do
12: TBA ← randomly select bs traces from TSA
13: TBB ← randomly select bs traces from TSB
14: update θDAB to minimize LDAB (TBA, TBB ,P)
15: end for
16: for i← 0, GT do
17: TBA ← randomly select bs traces from TSA
18: update θGA to minimize LGA (TBA,P, τlow, τhigh, α, β, γ)
19: end for
20: for i← 0, DT do
21: TBA ← randomly select bs traces from TSA
22: TBB ← randomly select bs traces from TSB
23: update θDAB to minimize LDAB (TBA, TBB ,P)
24: end for
25: for i← 0, GT do
26: TBB ← randomly select bs traces from TSB
27: update θGB to minimize LGB (TBB ,P, τlow, τhigh, α, β, γ)
28: end for
29: if ‖|TA(TSA,Z∼P)|−|TSA|‖1

‖|TSA|‖1
≤OHand

30: ‖|TB(TSB,Z∼P)|−|TSB |‖1
‖|TSB |‖1

≤OH then
31: selected_TA ← TA
32: selected_TB ← TB
33: else if t = T − 1 and selected_TA = ∅ and selected_TB = ∅ then
34: selected_TA ← TA
35: selected_TB ← TB
36: end if
37: end for
38: S[pair[0]]← selected_TA
39: S[pair[1]]← selected_TB
40: end for
41: return S

user are different, the distribution of the adversarial traces
that the adversary collects and trains a classifier on differs
from the adversarial traces that the target user generates. For
example, website A is paired with website B in the training
phase of the adversary’s transformer set, and website A is
paired with website C in the training phase of the target user’s
transformer set. Hence, the adversary’s classifier is more likely
to be vulnerable to the target user’s adversarial traces generated
by different pair lists.

D. AWA Algorithm

The complete training process of AWA is presented in
Algorithm 1. After selecting a list of pairs, two transformers
are trained in T iterations for each pair of websites. In each
iteration, each generator is trained in GT iterations, and the
discriminator is trained two times between the generators
training in DT iterations. Sometimes during the training of
transformers in some iterations, they impose high bandwidth
overhead to traces, which is unacceptable. Therefore we check
the magnitude of bandwidth overhead during the training
phase, and we only choose transformers that have reasonable
bandwidth overhead. We specify a parameter OH and only
select transformers with bandwidth overhead less than OH

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 9

during the training. However, if the bandwidth overhead of
transformers in all iterations during the training is more than
OH , we select the transformers in the last iteration. The output
of the algorithm is a transformer set, which consists of K
transformers.

V. EVALUATION

AWA is independent of the adversary’s classifier and gener-
ates black-box adversarial traces. To the best of our knowledge,
Deep Fingerprinting being proposed by Sirinam et al. [5] is the
best adversary’s classifier in the previous studies. We use this
classifier to evaluate the performance of AWA. The fundamental
assumption of AWA is that although an adversary knows that
a transformer set generates the adversarial traces of the target
user, she has no knowledge about the details of the target
user’s transformer set. We run AWA several times with various
secret random elements to create several transformer sets for
evaluating the performance of AWA in this setting. We consider
two scenarios to evaluate the performance of AWA.

1) An adversary randomly selects a set of transformers and
trains a classifier on adversarial traces generated by it.
The target user also randomly selects a set of transformers
and generates her adversarial traces by it.

2) An adversary generates her adversarial traces through
multiple sets of transformers. In this scenario, the
adversary must collect more adversarial traces and run
a classifier on them, which increases the computational
cost of the adversary to run the website fingerprinting
attack. The target user also randomly selects a set of
transformers and generates her adversarial traces by it.
We assume the target user’s transformer set is different
from the adversary’s transformer sets in this scenario.

Since an adversary has no access to the label of the target
user’s adversarial traces, she can not evaluate the performance
of her classifier on them. Therefore, the adversary’s classifier
is selected based on the validation set that has been generated
by the adversary’s transformer set(s).

A. Dataset and Setup

We use the dataset that has been proposed by Sirinam et
al. in [5], which consists of traces of 95 different websites,
and each website has been visited 1000 times. Each trace of
a website is a sequence of packets direction. It is shown in
[5] that sequence of packets direction is enough to classify
traces with a high success rate. Because we want the number
of classes to be even, we select only 94 classes. The dataset is
split into four various sets, including the AWA training set, the
adversary’s training set, the adversary’s validation set, and the
target user’s set. AWA training set consists of 400 traces of each
website (37600 traces in total) and is used in the AWA training
to train the auxiliary classifier, generators, and discriminators.
The adversary training and validation sets consist of 400 and
100 traces of each website (37600 and 9400 traces in total)
respectively, and are used to train and validate adversaries’
classifier. 100 traces of each website (9400 in total) is used as
the traces of the target user’s browsing activities.

The architecture of transformers and discriminators are
presented in Appendix A. Transformers are trained in 1000
iterations where TT = 2, DT = 2, bs = 100, and K = 94.
The length of traces being in the format of burst sequence
is 2000. The architecture of the auxiliary classifier is the
same as the discriminator. The type of all DNNs is 1D-CNN,
and we use Tensorflow 1.12 and Keras 2.2.5 to implement
them. Adam optimizer with learning rate 0.0001 is used to
optimize parameters of transformers and discriminators. The
auxiliary classifier uses Adam optimizer with learning rate
0.0002 and is trained in 30 epochs with batch size 128. The
distribution of noise in all experiments is the standard Gaussian
distribution. Hyperparameters of the generators’ loss function
are α = 103, β = 103, and γ = 102. We run AWA on a single
NVIDIA GeForce GTX 1080 Ti GPU with 11 GB RAM.
The training phase of each pair of generators takes about 675
seconds, and generating 100 adversarial traces in the testing
phase takes about 18 milliseconds. The computation costs of
UAWA and NUAWA are precisely the same.

B. Experiments

We conduct eight experiments to evaluate the performance
of AWA. We run the AWA training phase for five times
with various secret random elements and create five sets of
transformers for each experiment. Each table in Figure 3 shows
the adversary’s classifier accuracy on all possible ways that
an adversary and a target user can pick a set of transformers.
Each table also shows the magnitude of BWO that a set of
transformers impose on the adversary’s traces and the target
user’s traces. The last column of each table indicates the
adversary’s classifier accuracy in scenario 2. In this setting,
the adversary’s training set consists of 400×4×94= 150,400
adversarial traces. The parameters τlow, τhigh and OH control
the magnitude of BandWidth Overhead (BWO) in experiments
and are called BWO controlling parameters. Figure 3 shows the
results of each experiment in a single table. Four tables on the
left side of Figure 3 indicate the performance of UAWA under
the various BWO controlling parameters, and the other four
experiments on the right side of Figure 3 show the performance
of NUAWA under the various BWO controlling parameters.
The tables that are next to each other have the same BWO
controlling parameters, and BWO is increasing from the top
to the bottom in each column.

The first experiment of UAWA (UAWA-Exp1) which results
are shown in Table 3a demonstrates that UAWA is very effective
against website fingerprinting attack, and if the transformer
sets of an adversary and a target user are different, then the
adversary’s classifier accuracy is almost 19.52% with almost
22.28% BWO. The last column of Table 3a indicates that the
accuracy of adversary’s classifier in scenario 2 is almost 63.27%.
BWO is increased by changing BWO controlling parameters
in the second, third, and fourth experiments of UAWA (UAWA-
Exp2, UAWA-Exp3, and UAWA-Exp4), which their results
are shown in Table 3c, Table 3e, and Table 3g, respectively.
The results of these four experiments demonstrate that UAWA
is very effective against the website fingerprinting attack in
scenario 1, and the accuracy of adversary’s classifier is more

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 10

Adversary’s accuracy(%)
Adversary’s transformer set Combination of all

sets but the user’s
transformer set

Set 1 Set 2 Set 3 Set 4 Set 5

U
se

r’
s

tr
an

sf
or

m
er

se
t BWO(%) 22.4 20.9 23.46 22.0 22.29

Set 1 22.43 98.40 18.17 18.76 19.40 19.81 63.52
Set 2 21.03 16.61 98.14 19.59 21.0 20.18 63.68
Set 3 23.57 17.74 20.67 98.56 22.41 20.09 61.70
Set 4 22.04 18.05 20.15 19.77 98.11 17.44 64.79
Set 5 22.35 13.15 23.76 22.71 21.06 98.50 62.68

(a) UAWA-Exp1: τlow = 0.05, τhigh = 0.30, and OH = 0.50

Adversary’s accuracy(%)
Adversary’s transformer set Combination of all

sets but the user’s
transformer set

Set 1 Set 2 Set 3 Set 4 Set 5

U
se

r’
s

tr
an

sf
or

m
er

se
t BWO(%) 26.17 26.57 26.93 26.5 26.12

Set 1 25.95 93.53 33.05 27.29 31.01 36.92 61.28
Set 2 26.29 34.68 94.13 31.72 32.98 34.62 64.62
Set 3 27.06 31.0 34.23 93.94 31.12 29.42 58.61
Set 4 26.15 29.87 32.30 28.63 93.75 32.64 57.82
Set 5 25.95 35.85 34.36 27.29 30.0 94.01 57.45

(b) NUAWA-Exp1: τlow = 0.05, τhigh = 0.3, and OH = 0.5

Adversary’s accuracy(%)
Adversary’s transformer set Combination of all

sets but the user’s
transformer set

Set 1 Set 2 Set 3 Set 4 Set 5

U
se

r’
s

tr
an

sf
or

m
er

se
t BWO(%) 39.15 39.3 38.47 38.65 39.67

Set 1 39.28 97.64 6.09 14.73 13.30 18.31 51.17
Set 2 39.34 7.53 98.51 8.92 8.22 9.6 41.94
Set 3 38.38 13.58 8.3 97.75 15.8 11.75 54.09
Set 4 38.65 13.32 7.57 11.44 98.42 9.57 42.48
Set 5 39.65 18.08 7.89 11.03 12.95 97.71 52.82

(c) UAWA-Exp2: τlow = 0.25, τhigh = 0.5, and OH = 0.75

Adversary’s accuracy(%)
Adversary’s transformer set Combination of all

sets but the user’s
transformer set

Set 1 Set 2 Set 3 Set 4 Set 5

U
se

r’
s

tr
an

sf
or

m
er

se
t BWO(%) 43.3 42.17 41.81 42.0 43.38

Set 1 43.4 95.47 19.63 17.29 19.38 18.93 42.89
Set 2 41.92 21.41 95.61 16.47 16.63 19.06 42.13
Set 3 41.67 20.86 18.85 93.52 17.09 19.30 39.54
Set 4 41.97 19.17 20.02 14.52 95.37 15.85 39.70
Set 5 43.53 18.80 19.65 17.82 15.18 94.48 39.48

(d) NUAWA-Exp2: τlow = 0.25, τhigh = 0.5, and OH = 0.75

Adversary’s accuracy(%)
Adversary’s transformer set Combination of all

sets but the user’s
transformer set

Set 1 Set 2 Set 3 Set 4 Set 5

U
se

r’
s

tr
an

sf
or

m
er

se
t BWO(%) 62.6 61.78 61.1 63.89 63.54

Set 1 62.61 98.30 6.70 8.58 7.58 8.58 51.65
Set 2 61.68 7.62 98.96 8.30 7.67 13.42 51.09
Set 3 61.07 4.85 6.74 98.77 8.27 11.93 49.10
Set 4 63.73 10.20 5.20 11.61 99.13 8.13 43.85
Set 5 63.52 8.55 11.85 10.37 7.76 98.69 49.84

(e) UAWA-Exp3: τlow = 0.5, τhigh = 0.75, and OH = 1.0

Adversary’s accuracy(%)
Adversary’s transformer set Combination of all

sets but the user’s
transformer set

Set 1 Set 2 Set 3 Set 4 Set 5

U
se

r’
s

tr
an

sf
or

m
er

se
t BWO(%) 64.43 65.53 63.44 63.77 64.95

Set 1 64.28 95.57 11.69 12.82 13.22 9.53 27.80
Set 2 65.15 11.54 96.58 13.54 11.57 11.76 26.22
Set 3 63.74 14.87 13.11 97.17 9.00 12.96 26.97
Set 4 63.97 12.73 11.06 10.09 96.12 15.11 23.63
Set 5 64.54 9.89 9.64 13.25 13.87 95.93 25.05

(f) NUAWA-Exp3: τlow = 0.5, τhigh = 0.75, and OH = 1.00

Adversary’s accuracy(%)
Adversary’s transformer set Combination of all

sets but the user’s
transformer set

Set 1 Set 2 Set 3 Set 4 Set 5

U
se

r’
s

tr
an

sf
or

m
er

se
t BWO(%) 86.13 87.24 84.92 85.3 86.85

Set 1 86.25 99.03 6.44 9.87 6.26 2.28 52.02
Set 2 87.15 8.45 98.93 4.42 6.34 5.51 52.34
Set 3 84.88 9.97 6.24 98.28 7.03 9.95 50.14
Set 4 85.45 6.75 6.10 4.47 98.73 8.23 39.88
Set 5 86.77 7.17 6.62 10.63 9.17 98.98 47.46

(g) UAWA-Exp4: τlow = 0.75, τhigh = 1.0, and OH = 1.25

Adversary’s accuracy(%)
Adversary’s transformer set Combination of all

sets but the user’s
transformer set

Set 1 Set 2 Set 3 Set 4 Set 5

U
se

r’
s

tr
an

sf
or

m
er

se
t BWO(%) 87.59 87.09 86.76 86.23 89.67

Set 1 88.08 97.41 8.91 10.55 7.44 9.04 21.32
Set 2 86.72 6.70 97.59 6.95 9.81 10.40 23.26
Set 3 86.89 12.08 10.64 97.17 8.57 7.17 21.84
Set 4 86.32 9.26 7.18 7.35 97.26 12.77 22.97
Set 5 88.97 8.52 9.13 5.63 10.21 97.95 20.44

(h) NUAWA-Exp4: τlow = 0.75, τhigh = 1.0, and OH = 1.25

Figure 3: Each table shows the performance of an experiment. The tables on the left and the right sides of the figure indicate the performance of UAWA and
NUAWA, respectively, in various magnitudes of Bandwidth Overhead (BWO). Each table shows the accuracy of the adversary’s classifiers in all possible ways
that an adversary and a target user can select a set of transformers. Each table also indicates the magnitude of BWO that is imposed on the traces of an
adversary and a target user. The last column of each table shows the accuracy of the adversary’s classifier when an adversary generates her traces through four
various sets of transformers, in which the transformer set of the target user is not included.

20 40 60 80
0

20

40

60

80

BWO(%)

A
dv

er
sa

ry
’s

ac
cu

ra
cy

(%
)

Scenario 1 Scenario 2 UAWA NUAWA

Figure 4: The average and standard deviation of the adversary’s classifier
accuracy over various sizes of BWO in both scenarios.

decreased by adding more BWO. However, when an adversary
is more powerful and can generate adversarial traces through
multiple sets of transformers, UAWA is not very effective, and
the accuracy of adversary’s classifier is not decreased too much
by increasing BWO between UAWA-Exp1 and UAWA-Exp2,

and it is relatively fixed between UAWA-Exp2, UAWA-Exp3,
and UAWA-Exp4.

We replicate four experiments of UAWA with the same pa-
rameters for UNAWA. The results of NUAWA-Exp1, NUAWA-
Exp2, NUAWA-Exp3, and NUAWA-Exp4 are presented in
Tables 3b, 3d, 3f, and 3h, respectively. The results of these
four experiments of NUAWA demonstrate that NUAWA is
effective against website fingerprinting attack, and the accuracy
of the adversary’s classifier is more decreased by adding more
BWO to traces. Although NUAWA is less effective than UAWA
in scenario 1, NUAWA is considerably more effective than
UAWA in scenario 2. For example in a comparison between
UAWA-Exp3 and NUAWA-Exp3 which their BWO is almost
the same, although the adversary’s classifier accuracy in UAWA
is almost 3.3% less than NUAWA in scenario 1, the adversary’s
classifier accuracy in NUAWA is almost 23% less than UAWA
in scenario 2. The results of all experiments demonstrate
that if the transformer sets of an adversary and a target user
are the same, the accuracy of adversary’s classifier is high.
However, an adversary can not evaluate her classifier on the

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 11

τ
lo
w
τ
h
i
g
h

B
W

O
(%

)
/

10
0

τ
lo
w
τ
h
i
g
h τ
lo
w
τ
h
i
g
h

τ
lo
w
τ
h
i
g
h

Class
(a) UAWA-Exp1

Class
(a) NUAWA-Exp1

Class
(a) UAWA-Exp3

Class
(a) NUAWA-Exp3

Figure 5: The average Bandwidth Overhead (BWO) that AWA imposes to the traces of 94 various websites for four different transformer sets.

20 40 60 80

0.3

0.4

0.5

0.6

0.7

0.8

BWO(%)

In
tr

a-
cl

as
s

di
st

an
ce

Minimum Average UAWA NUAWA

Figure 6: Minimum and average intra-class distance of UAWA and NUAWA
over various sizes of Bandwidth Overhead (BWO)

target user adversarial traces because she has no access to
their labels. Therefore, an adversary can not determine whether
the transformer sets are the same, and she has no trust in her
classifier accuracy.

Figure 4 summarizes the relationship between adversary’s
classifier accuracy and BWO in all eight experiments in
scenarios 1 and 2. The results demonstrate that the standard
deviation between the adversary’s classifier accuracy in various
experiments is low. Hence, transformer sets that are generated
by various random elements have similar performance. Figure
5 shows the average BWO of each class for four various
experiments. The results demonstrate that BWO controlling
parameters are very effective in controlling BWO, and BWO
of almost all classes are in the range [τlow,τhigh].

C. Intra-Class Distance

Since we have five transformer sets in each experiment,
all websites’ distribution is transformed into five different
distributions. We assume an adversary and a target user each
select one of these distributions, and the adversary trains a
classifier on the samples of her distribution. As the distance
between the adversary’s distribution and the target user’s
distribution is increased, the accuracy of the adversary’s
classifier is decreased, given to the findings of [35]. We
introduce Intra-Class Distance (Intra-CD) to calculate the
average and minimum empirical distance between the five
distributions that have been formed by five transformer sets.
Intra-CD uses MMD to estimate the distance between two
distributions. Since there are five different distributions, we
have ten pairs of distributions. We use Average Intra-CD (Avg
Intra-CD) and Minimum Intra-CD (Min-Intra-CD) to measure
the average and minimum distance between each pair of these

distributions. Therefore, Avg and Min Intra-CD indicate the
average and minimum distances between the distributions of
adversary’s adversarial traces and the target user’s adversarial
traces when they pick different sets of transformers. Avg and
Min Intra-CD are defined as follows:

MMDi,j
k =MMD(T ik(TSk, z), T

j
k (TSk, z))

Avg Intra-CD =
1

K

K∑
k=1

2

S(S − 1)

S−1∑
i=1

S∑
j=i+1

MMDi,j
k

Min Intra-CD =
1

K

K∑
k=1

Min(

S⋃
i=1,j=1

MMDi,j
k)

(13)

where T ik is the transformer of website k in transformer set
i, S is the number of transformer sets, and K is the number
of classes. In our experiment, S = 5 and K = 94. Figure
6 indicates Avg and Min Intra-CD of UAWA and NUAWA
over various magnitudes of BWO. Avg Intra-CD of UAWA
is more than NUAWA, which means that if an adversary and
a target user select different sets of transformers, the average
distance between the distributions of their adversarial traces
is more when UAWA creates the transformers. However, Min
Intra-CD of UAWA and NUAWA are very close to each other.
Intra-CD demonstrates that the training data distribution of
the adversary’s classifier is far from the distribution of the
target user’s adversarial traces, and this distance is increased
by adding more bandwidth overhead to traces. Therefore,
the adversary’s classifier is more likely to be vulnerable to
the adversarial traces of the target user when their sets of
transformers are different. The results also justify the better
performance of AWA when bandwidth overhead is increased.

D. Average Trace Visualization

We use the average trace as a representation of all traces of
a website. The average trace is the average of a set of burst
sequences over burst indexes. The first element of the average
trace is the average of the first burst sizes of all traces and
so on. We use the average trace to visualize the changes that
AWA applies to a set of traces. Figure 7 presents the average
traces of website A (µA = Avg(TSA)) and website B (µB =
Avg(TSB)) before transformation and the average traces of
transformed traces of website A (µA = Avg(T sA(TSA, z)))
and website B (µsB = Avg(T sB(TSB , z))), where T sA and T sB
are in the transformer set s. Each plot of Figure 7 is from a
different transformer set, and website A is website 1 in all plots.
We select three transformer sets from NUMAW-Exp3, and three

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 12

0 50 100 150

−30

−20

−10

0

10

20
B

ur
st

Si
ze

A = 1 B = 38

0 50 100 150

A = 1 B = 21

0 50 100 150

A = 1 B = 86

0 50 100 150

−30

−20

−10

0

10

20

B
ur

st
Si

ze

A = 1 B = 38

0 50 100 150

A = 1 B = 80

0 50 100 150

A = 1 B = 57

Burst Index
(a) NUAWA-Exp3

Burst Index
(b) UAWA-Exp3

Class A Transformed Class A Class B Transformed Class B

Figure 7: The average traces of six pairs of websites before and after transformation. The three plots on the first and second rows are from UAWA-Exp3 and
NUAWA-Exp3, respectively. In each plot, website A is website 1, and website B is the paired website with website 1 in a transformer set.

transformer sets UAWA-EXP3. In each transformer set, there
is one website being paired by website 1 in the training phase
of AWA, and we select this website as the website B in each
plot of Figure 7. Website 1 is selected as an example, and
the paired websites were determined randomly in the training
phase of AWA. For example, the average traces of websites
1 and 38 before and after transformation are depicted in the
first plot. This figure indicates that when various transformers
transform the traces of website 1, the average trace of website
1 is different, which shows that the distribution of website 1
after transforming by various transformers is different. It also
shows that the style of transformed traces of two websites
being paired in the AWA training phase are getting close to
each other.

E. Results Analysis

We used Deep Fingerprinting (DF) [5] as the adversary’s
classifier in the experiments. In addition to DF, there are two
classifiers in the previous works which have shown higher
performance in classifying user’s traces in comparison to the
traditional approaches. Rimmer et al. [6] propose Automated
Website Fingerprinting (AWF) classifier, and they utilize SDAE,
LSTM, and CNN as the adversary’s classifier. AWF uses
the sequence of packets direction to classify traces. Bhat et
al. [26] present VAR-CNN and use the sequence of packets
direction, inter-arrival time, and cumulative statistical features
to classify traces. The baseline CNN architecture of VAR-CNN
is based on ResNet-18 [27]. VAR-CNN runs in 150 epochs
and uses learning rate decay and early-stopping to improve
the classifier’s performance. Table I indicates the performance
of UAWA-Exp1 and NUAWA-Exp1 against AWF and ResNet-
18 (VAR-CNN) in Scenario 1. We use the CNN classifier of

Table I: The average and standard deviation of the accuracy of various attacks
that have been proposed in previous studies [5], [6], [26] against UAWA-Exp1
and NUAWA-Exp1.

UAWA-Exp1 NUAWA-Exp1
22.28% BWO 26.28% BWO

Adversary’s name Avg Acc(%) STD Acc(%) Avg Acc(%) STD Acc(%)

DF [5] 19.52 2.34 31.94 2.71
AWF [6] 15.19 2.29 18.87 1.32

ResNet-18 (VAR-CNN) [26] 16.80 1.96 26.60 2.40

Table II: The accuracy of Deep Fingerprinting (DF) attack [5] against AWA,
Mockingbird, and WTF-PAD.

Defense name BWO(%) DF accuracy(%)

Mockingbird [14] 58.0∗ 42.0∗

WTF-PAD [24] 64.0∗ 86.0∗

UAWA-Exp1 22.28 19.52
NUAWA-Exp1 26.28 31.94

∗ are from [14]

AWF, and since our dataset only has the sequence of packets
direction, we train a ResNet-18 classifier on them for VAR-
CNN. The results demonstrate that AWA is effective against
all three attacks.

We compare the performance of AWA with Mockingbird [14]
and WTF-PAD [24] in Table II. Since Mockingbird requires to
have access to the entire trace of a website before generating an
adversarial example, it is not universal. WTF-PAD [24] is the
most promising defense that does not use adversarial machine
learning techniques. Saidur et al. in [14] have reported the
performance of Mockingbird and WTF-PAD against DF attack
on the same dataset that we use in this study. Table II indicates
the performance of Mockingbird, WTF-PAD, UAWA-Exp1,
and NUAWA-Exp1 against DF attack. The results demonstrate
that AWA is more effective than Mockingbird and WTF-PAD

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 13

defenses with lower BWO.

VI. AWA IN PRACTICE

AWA has three phases: pre-training, training, and testing.
The pre-training and training phases can be done offline. The
generation process of adversarial traces (testing phase) in
UAWA also can be done offline, but in NUAWA, it should be
done online. The training process of Deep Neural Networks
(DNNs) is often done on Graphical Process Units (GPUs) due
to their performance. GPUs reduce the training and testing
time by orders of magnitude due to their much more efficient
matrix operations. Hence, the pre-training and training phases
of AWA should be done on GPUs. It is unrealistic to suppose
that all users have access to GPUs. Therefore, PETs should
provide a GPU server for three phases of AWA. This server
is called AWA server. Nevertheless, if a user has access to
GPU, she can run AWA on her GPU. The AWA server must
run AWA multiple times with various random elements to
create multiple sets of transformers. Since AWA does not
need random elements after the training phase, except for the
noise input of generators in UAWA, all other parts of secret
random elements can be removed after the AWA training phase.
The noise input of generators in UAWA also can be removed
after generating perturbation vectors. The AWA server must
save created transformers sets on a secure storage. Notably,
the computational cost of the AWA training phase linearly
increases by increasing the number of websites. However, it
does not affect the computational cost of the testing phase.

When a user for the first time uses AWA, a transformer
set is assigned to that user. There are two solutions for a
user to generate adversarial traces. First, she can download
transformers and use them on her local machine. The size
of each transformer, which is equal to the size of generator
parameters, is about 112 KB. The user can utilize a Core
Process Unit (CPU) or GPU to generate adversarial traces using
downloaded transformers. Generating 100 adversarial traces
takes about 0.02 seconds on GPU (GeForce GTX 1080 Ti) and
about 0.35 seconds on CPU (Intel(R) Core(TM) i7-4710HQ). In
the second solution, which is more convenient, the AWA server
is responsible for generating adversarial traces. In UAWA, for
each user, the AWA server can generate perturbation vectors
(the output of the generator) of various websites through the
associated transformer set and send them to the user. In this
setting, when a user wants to visit website A, she can use the
perturbation vector of website A downloaded beforehand. The
elements of perturbation vector determine how many dummy
packets must be added to the end of each burst on the fly.
Therefore, UAWA has no computation cost in the browsing
time. In NUAWA, the entire trace of a website must be fed
to the transformer. Therefore, similar to [14], [18], there must
be a database of fresh traces of various websites in the AWA
server. In this setting, when a user wants to visit website A,
the AWA server using the associated transformer generates an
adversarial trace for website A and send it to her. The user must
send real packets and dummy packets based on the received
adversarial trace. Hence, there is a little computation cost for
the AWA server to generate adversarial traces in NUAWA.

AWA injects dummy packets to both sides of network traffic,
Client to Server (C2S) and Server to Client (S2C). A user
can send C2S dummy packets by her machine. The entity that
sends S2C dummy packets depends on the infrastructure of
PETs. A web server or a middleware can send S2C dummy
packets. In Tor, S2C dummy packets can be sent by the first
node (bridge node) of the Tor network. Hence, adversarial trace
in NUAWA and perturbation vector in UAWA should also be
sent to the bridge node.

VII. CONCLUSION

In this paper, we proposed a novel defense against the website
fingerprinting attack called Adversarial Website Adaptation
(AWA), which has two versions, Universal AWA (UAWA) and
Non-Universal AWA (NUAWA). We considered two scenarios
to evaluate the performance of AWA. In the first scenario, we
have shown that if an adversary and a target user generate their
traces by different sets of transformers, both UAWA and NUAW
are highly effective; however, the performance of UAWA is
better. In the second scenario, we have indicated that if an
adversary uses multiple sets of transformers that are different
from the target user’s set of transformers, NUAWA is much
more effective than UAWA. The results demonstrate when the
adversary is more powerful and can collect traces of various
websites through multiple sets of transformers, the defense
can not use the benefits of UAWA and must impose more
bandwidth overhead to traces.

The future work is to provide theoretical analysis for AWA
using several recent works [37] on certified robustness against
adversarial attacks that can provide formal guarantees of upper
and lower bound for required noise.

ACKNOWLEDGMENTS

The authors would like to express their very great appreci-
ation to Dr. Mahdieh Soleymani Baghshah for her valuable
discussions. They also would like to offer their special thanks
to Saeed Shiravi and all the anonymous reviewers for their
valuable reviews and feedback.

REFERENCES

[1] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting:
attacking popular privacy enhancing technologies with the multinomial
naïve-bayes classifier,” in Proc. 1st ACM Cloud Comput. Security
Workshop (CCSW), Nov. 13, 2009, pp. 31–42.

[2] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website
fingerprinting technique,” in 25th USENIX Security Symp., Aug. 10-12,
2016, pp. 1187–1203.

[3] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,
and K. Wehrle, “Website fingerprinting at internet scale,” in 23rd Annu.
Net. and Distrib. Syst. Security Symp. (NDSS), Feb. 21-24, 2016.

[4] T. Wang and I. Goldberg, “On realistically attacking tor with website
fingerprinting,” in Proc. Privacy Enhancing Technol., vol. 2016, no. 4,
2016, pp. 21–36.

[5] P. Sirinam, M. Imani, M. Juárez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
Proc. ACM SIGSAC Conf. Comput. and Commun. Security (CCS), Oct.
15-19, 2018, pp. 1928–1943.

[6] V. Rimmer, D. Preuveneers, M. Juárez, T. van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” in 25th Annu.
Net. and Distrib. Syst. Security Symp. (NDSS), Feb. 18-21, 2018.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 14

[7] Z. Zhuo, Y. Zhang, Z. Zhang, X. Zhang, and J. Zhang, “Website
fingerprinting attack on anonymity networks based on profile hidden
markov model,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 5, pp.
1081–1095, 2018.

[8] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in 2nd Int. Conf. Learn. Representations (ICLR), Apr. 14-16, 2014.

[9] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd Int. Conf. Learn. Representations (ICLR),
May 7-9, 2015.

[10] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” in IEEE Symp. Security and Privacy (SP), May 22-26,
2017, pp. 39–57.

[11] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal
adversarial perturbations,” in IEEE Conf. Comput. Vision and Pattern
Recognition (CVPR), July 21-26, 2017, pp. 86–94.

[12] C. Xiao, B. Li, J. yan Zhu, W. He, M. Liu, and D. Song, “Generating
adversarial examples with adversarial networks,” in Proc. 27th Int. Joint
Conf. AI, (IJCAI), July 13-19, 2018, pp. 3905–3911.

[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in 6th Int. Conf.
Learn. Representations (ICLR), Apr. 30 - May 3, 2018.

[14] M. S. Rahman, M. Imani, N. Mathews, and M. Wright, “Mockingbird:
Defending against deep-learning-based website fingerprinting attacks
with adversarial traces,” IEEE Trans. Inf. Forensics Security, vol. 16, pp.
1594–1609, 2021.

[15] X. Zhang, J. Hamm, M. K. Reiter, and Y. Zhang, “Statistical privacy for
streaming traffic,” in 26th Annu. Net. and Distrib. Syst. Security Symp.
(NDSS), Feb. 24-27, 2019.

[16] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-
printing in onion routing based anonymization networks,” in Proc. 10th
Annu. ACM workshop Privacy in the Electron. Soc. (WPES), Oct. 17,
2011, pp. 103–114.

[17] T. Wang and I. Goldberg, “Improved website fingerprinting on tor,” in
Proc. 12th Annu. ACM Workshop on Privacy in the Electron. Soc. (WPES),
Nov. 4,, 2013, pp. 201–212.

[18] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting,” in Proc. 23rd
USENIX Security Symp., Aug. 20-22, 2014, pp. 143–157.

[19] K. Abe and S. Goto, “Fingerprinting attack on tor anonymity using deep
learning,” Proc. Asia-Pac. Adv. Netw., vol. 42, pp. 15–20, August 2016.

[20] M. Nasr, A. Bahramali, and A. Houmansadr, “Blind adversarial network
perturbations,” arXiv preprint arXiv:2002.06495, 2020.

[21] A. Abusnaina, R. Jang, A. Khormali, D. Nyang, and David, “Dfd: Adver-
sarial learning-based approach to defend against website fingerprinting,”
in IEEE Conf. Comput. Commun. (INFOCOM), July 6-9, 2020.

[22] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè, “Mobile encrypted
traffic classification using deep learning: Experimental evaluation, lessons
learned, and challenges,” IEEE Trans. Netw. Service Manag., vol. 16,
no. 2, pp. 445–458, 2019.

[23] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a distance:
website fingerprinting attacks and defenses,” in the ACM Conf. Comput.
and Commun. Security (CCS), Oct. 16-18, 2012, pp. 605–616.

[24] M. Juárez, M. Imani, M. Perry, C. Díaz, and M. Wright, “Toward an
efficient website fingerprinting defense,” in 21st European Symp. Research
in Comput. Security (ESORICS), Sept. 26-30, vol. 9878, 2016, pp. 27–46.

[25] T. Wang and I. Goldberg, “Walkie-talkie: An efficient defense against
passive website fingerprinting attacks,” in 26th USENIX Security Symp.,
Aug. 16-18, 2017, pp. 1375–1390.

[26] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-cnn: A data-efficient
website fingerprinting attack based on deep learning,” in Proc. Privacy
Enhancing Technol., vol. 2019, no. 4, 2019, pp. 292–310.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conf. Comput. Vision and Pattern Recognition
(CVPR), 2016, pp. 770–778.

[28] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
I still see you: Why efficient traffic analysis countermeasures fail,” in
IEEE Symp. Security and Privacy (SP), May 21-23, 2012, pp. 332–346.

[29] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprinting
defenses,” in Proc. ACM SIGSAC Conf. Comput. and Commun. Security
(CCS), Nov. 3-7, 2014, pp. 227–238.

[30] X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion sensitive
website fingerprinting defense,” in Proc. 13th Workshop on Privacy in
the Electron. Soc. (WPES), Nov. 3, 2014, pp. 121–130.

[31] V. Shmatikov and M. Wang, “Timing analysis in low-latency mix
networks: Attacks and defenses,” in 11th European Symp. Research
in Comput. Security (ESORICS), Sept. 18-20, vol. 4189, 2006, pp. 18–
33.

[32] R. Nithyanand, X. Cai, and R. Johnson, “Glove: A bespoke website
fingerprinting defense,” in Proc. 13th Workshop on Privacy in the Electron.
Soc. (WPES), Nov. 3, 2014, pp. 131–134.

[33] A. M. Sadeghzadeh, S. Shiravi, and R. Jalili, “Adversarial network traffic:
Towards evaluating the robustness of deep learning-based network traffic
classification,” IEEE Trans. Netw. Service Manag., pp. 1–1, 2021.

[34] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep
transfer across domains and tasks,” in IEEE Int. Conf. Comput. Vision
(ICCV), Dec. 7-13, 2015, pp. 4068–4076.

[35] H. Zhang, H. Chen, Z. Song, D. S. Boning, I. S. Dhillon, and C. Hsieh,
“The limitations of adversarial training and the blind-spot attack,” in 7th
Int. Conf. Learn. Representations (ICLR), May 6-9, 2019.

[36] A. Kerckhoffs, “La cryptographic militaire,” J. Des Sci. Militaires, pp.
5–38, 1883.

[37] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” in IEEE
Symp. Security and Privacy (SP), 2019, pp. 656–672.

APPENDIX A

Conv1D(filters = 8, kernel_size = 3, strides = 1, padding = same)
BatchNormalization(momentum = 0.8),ELU(alpha = 2.0)

Conv1D(filters = 16, kernel_size = 3, strides = 2, padding = same)
BatchNormalization(momentum = 0.8),ELU(alpha = 2.0)

Conv1D(filters = 32, kernel_size = 3, strides = 2, padding = same)
BatchNormalization(momentum = 0.8),ELU(alpha = 2.0)

Conv1D(filters = 32, kernel_size = 3, strides = 1, padding = same)
BatchNormalization(momentum = 0.8),ELU(alpha = 2.0)

×8

Conv1DTranspose(filters = 16, kernel_size = 3, strides = 2, padding = same)
BatchNormalization(momentum = 0.8),ELU(alpha = 2.0)

Conv1DTranspose(filters = 8, kernel_size = 3, strides = 2, padding = same)
BatchNormalization(momentum = 0.8),ELU(alpha = 2.0)

Conv1D(filters = 1, kernel_size = 3, strides = 1, padding = same), Relu()

(a) Generators architecture

Conv1D(filters = 32, kernel_size = 8, strides = 1, padding = same), ELU(alpha = 1.0) ×2

MaxPooling1D(pool_size = 8, strides = 4, padding = same)

Conv1D(filters = 64, kernel_size = 8, strides = 1, padding = same), ELU(alpha = 1.0) ×2

MaxPooling1D(pool_size = 8, strides = 4, padding = same)

Dense(512),Relu() ×2

Dense(number of classes), SoftMax()

(b) Discriminator architecture

Figure 8: The DNN architectures of generator and discriminator in
the AWA framework.

Amir Mahdi Sadeghzadeh received his B.Sc. de-
gree in Information Technology Engineering from
Isfahan University of Technology in 2014 and his
M.Sc. degree in Computer Engineering from Sharif
University of Technology in 2016. He is currently
a Ph.D. candidate at the Department of Computer
Engineering, Sharif University of Technology. His
research interests include Deep Learning Security,
Adversarial Deep Learning, and Privacy Enhancing
Technologies.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. *, NO. *, MONTH YEAR 15

Behrad Tajali received his B.Sc degree from KN
Toosi university of technology in 2016, and his
M.Sc. degree from Sharif University of Technology
in 2020 both majored in computer science. His
personal research interests lie in Adversarial Machine
Learning, Web Security & Privacy, and Utilizing AI
Algorithms in Security-sensitive Applications.

Rasool Jalili received his B.Sc. degree in Computer
Science from Ferdowsi University of Mashhad in
1985, and his M.Sc. in Computer Engineering from
Sharif University of Technology in 1989. He received
his Ph.D. in Computer Science from The University
of Sydney, Australia, in 1995. He then joined the
Department of Computer Engineering, Sharif Uni-
versity of Technology, Tehran, Iran, in 1995. He has
published more than 150 papers in Computer Security
and Pervasive Computing in international journals
and conferences proceedings. He is now an associate

professor and the director of Data and Network Security Lab (DNSL) in
Sharif University of Technology. His research interests include Access Control,
Vulnerability Analysis, Database Security, and Machine Learning Security.

	I Introduction
	II Background
	II-A Website Fingerprinting (WF)
	II-A1 Threat Model
	II-A2 Website Trace Representation

	II-B Deep Neural Networks
	II-C Adversarial Examples
	II-D Maximum Mean Discrepancy (MMD)

	III Related Works
	III-A Website Fingerprinting Attacks
	III-B Website Fingerprinting Defenses

	IV Adversarial Website Adaptation
	IV-A Transformers
	IV-B Loss Functions
	IV-C Secret Random Elements
	IV-D AWA Algorithm

	V Evaluation
	V-A Dataset and Setup
	V-B Experiments
	V-C Intra-Class Distance
	V-D Average Trace Visualization
	V-E Results Analysis

	VI AWA In Practice
	VII Conclusion
	References
	Appendix A
	Biographies
	Amir Mahdi Sadeghzadeh
	Behrad Tajali
	Rasool Jalili

