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Abstract. Recent work has shown that the introduction of autonomous vehicles (AVs) in traffic could
help reduce traffic jams. Deep reinforcement learning methods demonstrate good performance in com-
plex control problems, including autonomous vehicle control, and have been used in state-of-the-art AV
controllers. However, deep neural networks (DNNs) render automated driving vulnerable to machine
learning-based attacks. In this work, we explore the backdooring/trojanning of DRL-based AV con-
trollers. We develop a trigger design methodology that is based on well-established principles of traffic
physics. The malicious actions include vehicle deceleration and acceleration to cause stop-and-go traffic
waves to emerge (congestion attacks) or AV acceleration resulting in the AV crashing into the vehicle
in front (insurance attack). We test our attack on single-lane and two-lane circuits. Our experimental
results show that the backdoored model does not compromise normal operation performance, with the
maximum decrease in cumulative rewards being 1%. Still, it can be maliciously activated to cause a crash
or congestion when the corresponding triggers appear.

Keywords: Autonomous vehicle controller, deep reinforcement learning, backdoor in neural network.

1 Introduction

There is an interesting phenomenon that arises in real-world
traffic, which is the spontaneous emergence of stop-and-go
traffic waves. Conventional thinking was that something
causes these waves to emerge, e.g., an accident in the down-
stream, driver rubber-necking, etc. A real-world experiment
conducted by Sugiyama et al. [41] demonstrated that stop-
and-go waves can emerge spontaneously (something that
traffic theorists had already speculated). In their experi-
ment, a group of drivers, equally spaced at a comfortable
distance from one another were instructed to drive at the
same constant speed around a circular track. After a short
period of time, small deviations from this plan grew into
aggressive oscillations and, stop-and go waves eventually
emerged.

Stern et al. [40] recently demonstrated (also experimen-
tally) that the stop-and-go waves can be removed by control-
ling one of the vehicles, an autonomous vehicle (AV), using
simple model-based control techniques. This was later en-
hanced by Wu et al. [53], who built a new computational
simulation-based framework, named “Flow” [49]. Flow em-
ploys deep reinforcement learning (DRL) techniques, which
allows the AV to learn optimal strategies that aim to allevi-
ate congestion, as opposed to being biased by a simple con-

trol model. DRL also enables their approach to generalize to
more complex traffic network architectures, which the mod-
els in [40] do not apply to. Broadly speaking, advances in
the last decade in vehicle automation and communications
technologies have shifted the focus of traffic managers and
researchers to designing congestion management tools for
connected and automated vehicles (CAVs). These include
tools that use CAVs to better manage traffic lights [12], to
save energy [50], and to ensure traffic stability (e.g., remov-
ing stop-and-go waves) [43, 58]. These studies overlook the
impact that cyber-attacks can have on these automated sys-
tems. There have been some studies on the cascading effects
that cyber-attacks can have on traffic lights [45] but attacks
on AVs and their impacts on traffic dynamics have received
less attention in the literature.

With deep neural networks (DNNs), DRL works well in
complicated yet data-rich environments and achieves good
performance in complex and high-dimensional problems,
like Atari games [4], complex robot manipulation, and au-
tonomous vehicle operation [36]. But DNNs are known to
be vulnerable to maliciously crafted inputs known as adver-
sarial examples [42]. As a result, DRL-controlled AVs are
also vulnerable to these attacks [3, 13]. Backdoored neu-
ral networks [11] are a new class of attacks on DNNs that
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only behave maliciously when triggered by a specific input.
The networks have high attack success rate (ASR) on the
triggered samples and high test accuracy on genuine sam-
ples. Unlike adversarial examples, they are model-based
attacks which are triggered using malicious inputs. Since
the triggers can be designed according to the attacker’s mo-
tives (like stealthiness), they provide immense flexibility in
attack vector design. Such neural trojans have been imple-
mented and explored extensively in classification problems
[7, 11, 27] but not for problems like reinforcement learning
for vehicular traffic systems using sensor values as triggers.

In this work, we explore stealthy backdoor attacks on con-
gestion controllers of AVs. We design the set of possible
triggers in accordance with physical constraints imposed by
traffic systems and depending on the type of the attack. We
further refine the set of triggers so as to enhance the stealthi-
ness of the attack, and this is done before the malicious data
are injected into the training dataset. This is to ensure that
trigger tuples cannot be distinguished from genuine training
data, thereby promoting stealthiness. We inject the back-
door into the benign model by retraining the model with the
mixture of genuine and malicious (trigger) data. We test
our approach using various traffic scenarios by extending a
state-of-the-art microscopic traffic simulator named SUMO
(Simulation of Urban MObility [21], which is the simulator
Flow uses as well [49]). We perform experiments on single-
lane and two-lane circuits, where traffic congestion occurs
if all vehicles are human-driven. But the inclusion of one
AV in the system, controlled by a DRL model, relieves the
traffic congestion. We explore the possibility of injecting a
backdoor that can worsen congestion only when triggered by
a very specific set of observations. This congestion attack is
inherently at odds with the control objective of the system.
We also perform an insurance attack, where a trigger tricks
the AV into crashing into the vehicle in front. Our trigger
set is a combination of positions and speeds of vehicles in
the system and the malicious actions are bad instructions
to accelerate or decelerate. The trigger conditions are con-
figurable during training of the malicious models and, since
they are observations of surrounding human-driven cars, are
controllable to an extent by a maliciously driven car.

Sec. 2 presents related work and in Sec. 3 we describe
the background for building both the benign and malicious
deep learning models for controlling the AV. In Sec. 4, we de-
scribe our methodology of designing triggers using physical
constraints, attack objectives and stealthiness as parame-
ters. Finally, we test the congestion and insurance attacks
in single-lane and two-lane circuits in Sec. 5.

2 Related Work

Stealthy attacks on deep learning, that do not impact the
test accuracy (and thus, the performance) may be broadly
divided into two categories: 1) adversarial perturbation at-

tacks, and 2) backdoor attacks. Adversarial examples use
imperceptible modifications in test inputs to make a well-
trained (genuine) model malfunction. The literature on ad-
versarial perturbations on DRL has investigated these vul-
nerabilities in depth, exploring manipulated policies during
training time [3] as well as test time [13]. Backdoor attacks,
which manipulate the model, are more powerful, since they
allow flexibility and universality- the same (configurable)
trigger can be used to attack any input to any target per
attacker’s choice. Since our attacks are backdoor attacks
on DRL-based autonomous driving systems, we present the
related work on attacks on DRL in general, and backdoor
attacks in Table 1.

Attacks on DRL: Adversarial attacks are generally
test time attacks. Behzadan et al. [3] proposed an at-
tack mechanism to manipulate and introduce policies dur-
ing the training time of deep Q-networks. Huang et al.
[13] demonstrated that neural network policies in reinforce-
ment learning are also vulnerable to adversarial examples
during test time. Adding these maliciously crafted adver-
sarial examples at test time can degrade the performance
of the trained model. A new attack tactic called an “en-
chanting attack” was introduced to lure the system to a
maliciously designed state by generating a sequence of cor-
responding actions through a sequence of adversarial ex-
amples [25]. Tretschk et al. [48] also aimed to compute
a sequence of perturbations, generated by a learned feed-
forward DNN, such that the perturbed states misguide the
victim policy to follow an arbitrary adversarial reward over
time. All these attacks are based on input perturbations
while model-based backdoor attacks in DRL remain rela-
tively unexplored. A recent work, TrojDRL [20], presents
backdoor attacks on DRL-based controllers, which evaluates
their backdoor attacks on game environments. The authors
use image-based triggers by manipulating the game images
using a pattern/mask. From the related work on attacks
on DRL (first five columns), we observe that 1) the adver-
sarial attacks focus mainly on new payload insertion meth-
ods during training or test time using single or a sequence
of maliciously crafted inputs to launch the attack, 2) they
universally use games as simulators, 3) the only backdoor
attack on DRL uses image-based triggers, and 4) none of
the adversarial attacks on DRL perform detection analysis
using state-of-the art defenses.

Backdoor attacks: Backdoor attacks on DNNs differ
from adversarial perturbations in three ways: 1) They are
model-based attacks triggered by manipulated neurons as
opposed to test-time input-poisoning attacks. 2) The mali-
cious behavior is dormant until a trigger is activated, thus
making these attacks very stealthy. 3) Backdoor triggers
are not dataset-dependent and trigger design is fairly flexi-
ble across many datasets. BadNets [11] are neural networks
that have been injected with specifically crafted backdoors
that get activated only in the presence of certain trigger pat-
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TABLE 1: Related work on attacks on Deep Learning (DL) and Deep Reinforcement Learning (DRL). Attack type: Adversarial (A)/
Backdoor (B), Attacked problem: Classification (C)/ Regression (R), ML domain: Vision (V), Games (G), Traffic (T), Speech (S). Attack
realism demonstration by: Real Images (RI), Gaming-based simulation (Sim: Games), General Purpose simulation (Sim: GP). Attack
contribution: Trigger Design (TD), Attack Insertion methodology (I), training time attack or test time attack.

Attributes [3] [48] [25] [13] [20] [11] [28] [7] [44] [8] [23] [35] [34] [30] [56] [1] [26] [29]
This
work

Attack type A A A A B B B B B B B B B B B B B B B

Attacked ML
algorithm

DRL DRL DRL DRL DRL DL DL DL DL DL DL DL DL DL DL DL DL DL DRL

Attacked problem R R R R R C C, R C C C C C C C C C C C R

Attacked ML domain G G G G G V V, S V V V V V V V V V V, S V T

Controller-based
Autonomous driving

3

Attack formalization 3 3 3 3 3 3 3 3 3 3 3 3

Sensor-based trigger 3

Pre-injection
stealth analysis

3 3 3

Attack design
flexibility

3 3 3 N/A 3 3 3 3

Attack
contribution

I:
train

I: S,
test

I: S,
test

I:
test

I:
train

I, TD:
train

TD:
train

I:
train

TD:
train

I:
train

TD:
train

TD:
train

TD:
train

TD:
train

I:
train

I:
train

TD:
train

TD:
train

TD, I:
train

Attack realism
Sim:
Games

Sim:
Games

Sim:
Games

Sim:
Games

Sim:
Games

RI
Sim:
Games

RI
Sim:
GP

Post-injection
attack analysis

3 3 3 3 3 3 3 3

terns. These trigger patterns may be a pair of sunglasses,
a colored patch, a post-it note, or undetectable perturba-
tions that are used to attack facial recognition algorithms
[7], image recognition tools [28], traffic sign identification
[11], or object identification [8]. Since its discovery in 2017
[11], several types of backdoor attacks have been proposed
focusing on the type of backdoor or the methodology of in-
jecting backdoors. Adversarial perturbations/embedding as
triggers [23, 44], dynamic backdoors [35], hidden backdoors
[34], and backdoors based on image-scaling [30] are some of
the attacks that increased the stealth of the triggers through
imperceptible changes, by reducing attack vector, and size,
by input dependent dynamic triggers. Further, Neuron hi-
jacking [28], backdoors that get transferred from teacher to
student models in transfer learning [56], backdoor insertion
without training data [1], and by changing weights [9] fo-
cused on the improvement of the trojanning method. A
large number of backdoor attack approaches in the litera-
ture focus on image-based triggers with distinct patterns: a
common backdoor attack on Deep Learning (DL)-based au-
tonomous driving models use traffic signs datasets for ma-
licious mis-classification (columns 6, 9, 11, 15, 18). Attack-
wise, we find the work by Liu et. al [28] (column 7) to be the
closest to our work as they also attack a regression problem
in machine learning. However, the authors attack a single
autonomous car that judges the camera feed to predict its
steering angle (simulation limited to just steering angle), the
trigger being image-based. In contrast, our attack is on a
DRL-based AV controller in various traffic scenarios manag-

ing acceleration, velocity, and relative distance between the
cars, incorporating noise in traffic, to remove congestion for
different road configurations. We also use a general pur-
pose traffic simulator to demonstrate our attacks. Further,
in contrast to the literature that uses image-based triggers,
our triggers are embedded in malicious sensor values like
velocity. These physical quantities are naturally random,
which renders trigger design and backdoor injection a nu-
anced problem as compared to image-based triggers. For
pre-injection stealth analysis, some stealthy trigger genera-
tion algorithms impose hard constraints to maximize their
indistinguishability from genuine data, hence reducing flex-
ibility in attack vector design. We explore the trigger space
and choose trigger values that are favorable for the traffic
scenario and are also hard to be distinguished from the gen-
uine data, (e.g., those are closer to genuine values) ensuring
flexibility in attack design and stealthiness. To the best of
our knowledge this is the first work to propose attacks in
the traffic flow domain using backdoored DRL-based con-
trollers.

Defenses: Defense for backdoors in DRL-based con-
trollers have not been explored but defense mechanisms
for backdoored classification problems have been proposed
since their discovery in 2017. Broadly, the defense solutions
can be divided into methodologies: 1) Anomaly detection
on sampled inputs and 2) Model probing. A recent work
proposes to detect these trojans using meta neural analy-
sis [55] but focuses on Deep Neural Networks for classifi-
cation tasks. State-of-the-art backdoor defenses like Neu-
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ral Cleanse [51] and ABS [29] are exclusively designed for
image-based triggers that analyze the internal neurons of
the model to detect/reverse-engineer triggers. The detected
malicious features, albeit not the exact trigger, are sufficient
to trigger the malicious neurons to confirm the backdoor be-
havior. STRIP [10] does not aim at reverse-engineering a
trigger. Rather, it makes several copies of an input super-
imposed with other test images and judges it as malicious
based on the entropy of those classifications. Authors in
[37] add carefully crafted noise enough to perturb the trig-
ger features while retaining the efficacy of genuine features,
suppressing any trigger that appears on an incoming image.
Fine tuning and pruning of dormant neurons iteratively to
remove the ones that are responsible for identifying back-
doors may be used as a possible defense [26]. But this
method reduces model performance with genuine images,
as observed in [51]. Porting these primarily image-based
backdoor detection scheme to sensor values-based mecha-
nism is not straight-forward as most of them use image-
specific characteristics.

Another direction of defense research aims at finding char-
acteristics of the inputs that help distinguish between the
triggered inputs and the genuine inputs. Naturally, access to
the triggers is necessary to analyze these sets. Since image-
based defenses are not applicable in our context, we test
two defense techniques that depend on robust outlier de-
tection: spectral signatures [46] and activation clustering
[6]. Spectral signatures use robust statistics to separate the
genuine inputs and the triggered inputs based on the dif-
ferences of their means relative to their corresponding vari-
ances. Therefore, if trigger samples and genuine samples
show a separation when mapped to the learned represen-
tations (based on latent features), then the backdoor can
be detected. Activation clustering relies on the backdoored
model needing an activation for both the genuine and the
trigger features and, therefore, its activation may be distin-
guishable from a genuine activation.

3 Preliminaries

3.1 Deep Reinforcement Learning

Reinforcement learning (RL) is a class of semi-supervised
machine learning techniques. In RL, during the learning
process, the learning inputs (the actions) are not labeled but
the outputs can be evaluated by some form of interaction
with an environment. The environment can be an oracle,
a physical process, or a simulation. It assigns a random
reward to each set of inputs. The objective is to learn the
actions that maximize the expected reward. In dynamical
settings such as the one considered in this paper, the actions
will depend on the state of the system. One, therefore, seeks
to determine optimal actions to be taken when the system
is in different states.

The control problems solved by RL are represented by

Markov Decision Processes (MDPs). We define the tuple
(S,A,P,R), where S is the space of states, A is the space
of actions that can be taken, P : S × S × A → [0, 1] is
a transition probability, and R is the reward returned by
the environment. In this paper, the state space S consists
of all possible vehicle positions and velocities, the actions
A are accelerations (longitudinal motion) and lane-change
maneuvers (lateral motion). The environment is a micro-
scopic traffic simulator and the rewards calculated by the
environment, R, are measures of performance of the sys-
tems, specifically, measures of stop-and-go traffic dynamics.
The state evolution returned by the environment is a set of
speeds and positions of vehicles in the next stage given the
previous state of the system and the action taken by the con-
troller. In other words, let at ∈ A denote the action selected
in stage t and let st ∈ S be the state of the system in stage
t. The environment responds to at, produces a correspond-
ing reward rt, and moves to the next state st+1, that is,
the environment performs the mapping (st, at) 7→ (rt, st+1),
where rt = R(st, at) and st+1 ∼ P(s, st, at). We write the
long-term rewards in stage t as

Rt ≡
∞∑
τ=0

γτrt+τ =

∞∑
τ=0

γτR(st+τ , at+τ ), (1)

where γ ∈ (0, 1] is a discount factor. The decreasing se-
quence of weights {γτ}τ≥0 ensure that rewards acquired
in the far future have little value in the here and now.
The main objective of the MDP is to find a control pol-
icy π : S → A, which selects an action for every state of the
system, in a such a way that the expected long-run rewards
are maximized. Let Ft encapsulate information from the
environment in stages t, t + 1, t + 2, . . ., the MDP problem
is written as

π∗ = arg max
π∈Π

J(π, st) ≡ arg max
π∈Π

EFt,a∼πRt, (2)

where Π is the space of control polices. Under an optimal
control policy, the expected long-run rewards are referred
to as the value function, J(π∗, st), which we shall attempt
to learn. By “a ∼ π” in the subscript, we indicate that the
expectation is taken with respect to the probability law of
π. In other words, π is not necessarily a probability law
but implies one. We slightly loosen notation in this way to
simplify our exposition.

In this paper, the environment (specifically, P and R)
cannot be represented by tractable mathematical expres-
sions. We, hence, employ deep reinforcement learning
(DRL) learning techniques to solve the MDP problem. DRL
techniques use deep neural networks (DNNs) to approxi-
mate certain parts of the problem. By convention, the two
functions that are approximated by DNNs are the optimal
policy and a function representing the value of taking ac-
tion a ∈ A when in state s ∈ S, Q : S × A → R, re-
ferred to as the Q-function. We denote these two DNNs,
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respectively, by µ(s; θµ) ≈ π∗ with parameter vector θµ and
Q(s, a; θQ) ≡ EFt,a∼µ(Rt|st, at) with parameter vector θQ.
The two DNNs are often referred to as the actor network
(µ) and the critic network (Q).

In this DRL setting, solving the MDP is transformed into
a problem where we attempt to learn the two parameter
vectors θµ and θQ. The definition (1) implies the recursion
Rt = rt + γRt+1, which entails that the following relation-
ship between the two DNNs (the Bellman equation):

Qµ(st, at; θ
Q)

= EFt
(
R(st, at) + γQµ

(
st+1, µ(st+1; θµ); θQ

))
, (3)

where we wrote Qµ to emphasize that Q depends on the
policy µ (the actor network). The policy parameters θµ are
also updated in each stage, in this paper a deep determin-
istic policy gradient (DDPG) is employed for this purpose
[24]. That is, θµ is updated by following the direction that
maximizes the Q-function, which is given as

Es∼Pt∇θµQµ
(
s, µ(s; θµ); θQ

)
= Es∼Pt

(
J>µ(θµ)∇aQ

µ(s, a; θQ)|a=µ(s;θµ)

)
, (4)

where Pt = P(·, st, at), ∇θµQµ is the gradient of Q along
θµ and Jµ(θµ) is the Jacobian matrix of µ with respect to
θµ. More precisely, it is the Jacobian matrix of the restric-
tion of µ to the singleton set {s}. (The right-hand side
results from applying the chain rule of differentiation to the
left-hand side and reversing differentiation and expectation,
which is permitted by appeal to Fatou’s lemma.) The Q-
function parameters, θQ, are updated by minimizing loss in
the Bellman equation (3):

θQ = arg min
θ

Es∼Pt,a∼µ,r∼R
(
Qµ(st, a; θ)

− r − γQµ
(
s, µ(s; θµ); θ

))2

. (5)

We refer to [24] for more details on estimating θµ and θQ

using the DDPG algorithm.

3.2 Backdoors in Neural Networks

Backdoors in neural networks are introduced with the pur-
pose of (deliberately) compromising a machine learning
model M : D → Y, producing a backdoored version (Madv),
which outputs (false) results selected by the adversary when
specific inputs are encountered. Here D is the space of input
samples (subsets of S) and Y is the space of outputs of the
model. The specific inputs are referred to as “triggers”, and
we denote the set of triggers by T ⊂ D. To each trigger
sample x ∈ T , we associate a specific desired false output
x 7→ y(x) ∈ Y. By “desired” outputs, we mean that Madv

is designed in such a way that

Px∼T (‖Madv − y‖ > εadv) < δadv, (6)

where ‖ · ‖ is an appropriately chosen distance metric. In
essence, (6) says that deviations from desired behavior on
the trigger space, that are larger than a small tolerance
threshold εadv > 0, occur with probability less than a pre-
set small value of 0 < δadv � 1. The backdoored model
Madv should also replicate the behavior of the original be-
nign model M with high probability outside of the trigger
sample. That is, the following should also hold

Px∼D\T (‖Madv −M‖ > εben) < δben, (7)

where εben > 0 and 0 < δben � 1 are tolerance thresholds
similar to εadv and δadv.

Data poisoning is an effective way of backdoor injec-
tion. Porting the same methodology to DRL-trained con-
trollers, we first create a dataset Dtrain ⊂ D ×Y using gen-
uine sample-action pairs, by picking genuine observations
from the environment and feeding it to the benign model
M. Next, we add a set of malicious sample-action pairs,
Dtrigger ⊂ T × Y, which are essentially sensory trigger-
tuples that trigger an attacker-designed malicious accelera-
tion. The samples (inputs) are plausible observations (they
belong to D) and the malicious actions are also plausible
(they belong to Y), but the mappings from D to Y may
be undesirable from a system management perspective. We
denote the poisoned dataset by Dadv

train = Dtrain∪Dtrigger. Fi-
nally, we retrain M such that the backdoored model, Madv,
meets the control objective of reducing traffic congestion
with genuine sensory samples but causes malicious acceler-
ation in the presence of a trigger tuple.

3.3 Threat model

We follow the threat model similar to previous work [11, 28],
where an attacker manipulates the benign model by adding
trigger data to the genuine one and provides a malicious
one to the user. In this manner, we assume the attacker
could get access to the genuine data and manipulates the
model. In our model, the triggers are the combinations of
real-world speeds and positions, which is different from the
standard trojan attacks. As stated in Sec. 3.2, the goal of
this attack is to make the model behave normally under
clean environment without triggers while misbehave in the
presence of the triggering condition. To launch the attack,
the attacker controls the malicious human-driven vehicle to
activate the triggers, which are specified combinations of
speeds and positions.

4 Trigger exploration

4.1 Trigger samples and range constraints

Triggers in our case are observations of the system state, i.e.,
subsets of elements of S, which constitute plausible combi-
nations of positions and speeds. Let V denote set of all
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vehicles in the system, the state of the system at any time
instant is a set of |V| positions and speeds. Hence, every
state s ∈ S can be written as s = {(di, vi)}i∈V , where di
and vi are the position and speed of vehicle i.

A trigger x ∈ T is a set of plausible vehicle positions and
speeds but we include local information about traffic condi-
tions in each element of x as well. LetM⊆ V be the set of
vehicles for which observations are made, i.e., vehicles in D.
We write a trigger sample as x = {(dadv

i , vadv
i , sN (i))}i∈M,

where sN (i) ⊆ s ∈ S are the state variables associated with
vehicles that are in the neighborhood of vehicle i, N (i). For
example, in a single lane setting sN (i) would include 4 state
variables, the position and speed of the vehicle immediately
in front of vehicle i (the leader) and the position and speed
of the vehicle immediately behind vehicle i (the follower).

When designing triggers, one must respect the constraints
placed on the system by traffic physics, and we encode these
constraints in the state space of the system S and the state
evolution laws P simulated by the environment. This is in
contrast to the way triggers are designed for images. Specif-
ically, when selecting the trigger values, we ensure that

Pvmax∼V(vadv
i ∈ [0, vmax)) > 1− δv (8)

and

P∆dmin∼V(di−1 − dadv
i ≥ ∆dmin) > 1− δd, (9)

where vmax is an upper bound on all speeds that can can
be achieved by vehicles when in free-flow, ∆dmin is a mini-
mal distance between a vehicle and their leader (measured
from front bumper to front bumper), and 0 < δv � 1 and
0 < δd � 1 are small error thresholds. Note that, as a
minimal value, ∆dmin represents the length of the leading
vehicle and corresponds to a front bumper to rear bumper
distance of zero (hence a crash). The probabilities in both
cases should be interpreted as reflecting heterogeneity in the
vehicle population (see [14–18, 31, 32, 57] for more details).
These two probabilistic (a.k.a. chance) constraints are to
be respected regardless of the attack type.

4.2 Attack types

4.2.1 Congestion attacks

These attacks cause the congestion controller to malfunc-
tion. The attacker can choose different levels of deceleration
as the malicious action, causing different levels of impact on
traffic conditions. This type of attack results in stop-and-go
traffic waves that propagate away from the attacker mak-
ing it difficult to pinpoint the source of the problem, and
consequently, difficult to detect malicious behavior.

Stop-and-go traffic dynamics are caused by large speed
discrepancies between leader-follower vehicle pairs that are
separated by short distances. The main culprit is limi-
tations in human perception-reaction capabilities. When

abrupt changes in traffic conditions occur ahead of human-
driven vehicles, specifically drops in speeds, followers react
with a time delay (their perception-reaction time), and the
delay is compensated for by aggressively decelerating. It
was demonstrated experimentally that this occurs naturally
(and spontaneously) in human-driven systems [41]. Let ve-
hicle i be the adversarial vehicle, the AV be their follower,
and i + 1 ∈ N (i) be the index of the AV’s follower. Then,
the state variables associated with vehicles in M included
in T in congestion attacks are those for which

P∆dcrit∼V

(
dAV − di+1 < ∆dcrit,

|dadv
i − dAV −∆dcrit| < εdec∆dcrit

)
> 1− δdec, (10)

where εdec > 0 and 0 < δdec � 1 are tolerance thresh-
olds, and ∆dcrit is a critical distance at and below which
the follower will need to break aggressively to avoid a crash
if the adversary were to reduce their speed abruptly. The
second part of (10) states that the spacing dadv

i − dAV is
within εdec of ∆dcrit, that is, (1−εdec)∆dcrit ≤ dadv

i −dAV ≤
(1 + εdec)∆dcrit, which is equivalent to the second part of
(10). In reality, ∆dcrit depends on the reaction time of the
follower, which varies from one driver to the next. It is, thus,
a random quantity distributed across the driver population.
To cause the AV to decelerate aggressively, we further im-
pose the following constraint:

|vAV − vdec| < εdecvdec, (11)

where vdec is an appropriately chosen speed that is large
enough for the adversary to trigger a deceleration. It can
be chosen based on an equilibrium speed relation (discussed
below). Here, without loss of generality, we use the same
threshold εdec. Together, constraints (10)-(11) aim to find
those trigger points for which vAV is large (close to vdec)
given that the follower i + 1 is within the critical distance
from the AV. For such cases, assigning an adversarial action
that involves the adversary i rapidly decelerating will cause
the AV and the follower i+ 1 to aggressively decelerate.

Similarly, to create a subsequent acceleration wave, we
seek traffic states in which the adversary i is sufficiently far
from their leader i − 1 and is moving at a relatively low
speed:

P∆dcrit∼V
(
vAV < vacc

, |dadv
i − dAV −∆dcrit| < εacc∆dcrit

)
> 1− δacc, (12)

where εacc > 0 and 0 < δacc � 1 are tolerance thresholds,
and vacc is a suitably chosen small speed. The mechanism is
precisely the opposite of that which creates the deceleration
wave. In what follows, we denote by FX(·) the cumulative
distribution function (CDF) of any random variable X and

by F̂X(·) the empirical CDF. Constraints (10)-(11) can be
written in terms of the empirical CDF as
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H
(
εdecvdec − |vAV − vdec|

)[
F̂∆dcrit

(dadv
i − dAV

1− εdec

)
− F̂∆dcrit

((
dAV − di+1

) ∨ dadv
i − dAV

1 + εdec

)]
> 1− δdec, (13)

where H(·) is the Heaviside step function, i.e., H(x) = 1
if x > 0 and H(x) = 0 otherwise, and a ∨ b ≡ max{a, b}.
Similarly, the trigger samples used to create the acceleration
wave are generated by drawing from the empirical counter-
part of (12):

H(vacc − vAV)

[
F̂∆dcrit

(dadv
i − dAV

1− εacc

)
− F̂∆dcrit

(dadv
i − dAV

1 + εacc

)]
> 1− δacc. (14)

4.2.2 Insurance attacks

These attacks cause the AV to crash into the car in front
(the attacker) with the goal of making insurance claims. The
attack objective is to drive the relative distance between the
AV and the (malicious) car in front to the minimum value,
implying a crash. This is accomplished by tricking the AV
into the malicious action determined by the attack objective
in situations when it should act to avoid a crash. While this
shares characteristics with triggers used to create decelera-
tion waves above (10), there is the fundamental difference
that the perception-reaction time of an AV is negligible. We
employ the notion of equilibrium speed-spacing relations or
fundamental relations in traffic flow. These are speeds that
a vehicle will either accelerate to or decelerate to depending
on the distance from their leader. As stationary relations,
they depend only on distance and vary in a probabilistic
way from vehicle to vehicle [16]. Let φ(di−1−di) denote the
equilibrium speed-spacing relation. Suppose the distance
between vehicle i and their leader i− 1 is di−1 − di at some
time instant, if vi > φ(di−1 − di) then vehicle i will decel-
erate. Otherwise, if vi < φ(di−1 − di), then vehicle i will
accelerate. Thus, for insurance attacks, where i is the AV’s
leader, we seek traffic states such that

Pθφ∼φ
(
vadv
i − φ(di−1 − dadv

i ) > εins, dadv
i − dAV < ∆dcrit

)
> 1− δins, (15)

where εins, δins > 0 are tolerance thresholds and dAV is the
position of the follower (the compromised AV). The uncer-
tainty lies in the parameters of the speed-spacing relation,
θφ. These are referred to as quenched disorders in statistical
physics, and are used to capture heterogeneity among the
vehicles.

Vehicle i (the adversary) would naturally decelerate when
in the state described by (15). Let η < 0 denote that natural
deceleration rate that any vehicle i would follow; this too is
random as deceleration rates vary from vehicle to vehicle.

To create the insurance attack, the adversary decelerates
at a rate that is larger than η. That is, after a short time
interval, τ , we seek speed changes for vehicle i, denoted by
∆vadv

i < 0, where the following condition holds:

Pη
(
∆vadv

i − τη > ξ
)
> 1− δins, (16)

where ξ is a pre-specified threshold and the bound is chosen
to be equal to 1 − δins without loss of generality. In the
experiments we conduct below, the vehicle dynamics are
simulated using the Intelligent Driver Model (IDM) [47]. In
the IDM, φ(·) is given as

φ(di−1 − dadv
i ) =

1

T
(di−1 − dadv

i −∆dmin), (17)

where T is a random variable that describes the speed adap-
tation time (or reaction time) of the vehicles. Hence, (15)
can be written as

Pθφ∼φ
(
T +

1

vadv
i − εins

∆dmin >
di−1 − dadv

i

vadv
i − εins

)
·
(
1− F∆dcrit(d

adv
i − dAV)

)
> 1− δins. (18)

The probability distribution of T + 1
vadvi −εins ∆dmin is a con-

volution of the distributions of T and 1
vadvi −εins ∆dmin param-

eterized by vadv
i − εins. To generate the trigger samples, we

write the probabilistic constraints (16) and (18) in terms of
empirical CDFs as follows:

F̂η

(ξ −∆vadv
i

τ

)
> 1− δins (19)

and(
1− F̂T+ 1

vadv
i

−εins
∆dmin

(di−1 − dadv
i

vadv
i − εins

))
·
(
1− F̂∆dcrit(d

adv
i − dAV)

)
> 1− δins. (20)

The malicious action in the insurance attack involves
tricking the AV into acting as though their leader is acceler-
ating. To this end, we aim to select an adversarial accelera-
tion aadv so that the AV covers a distance dadv

i −dAV +vadv
i τ

over a short time interval length τ . Here dadv
i − dAV is the

distance between the AV and their leader and vadv
i τ is an

upper bound on the distance that the leader would cover
over the time interval τ . In other words, we seek an accel-
eration aadv so that

vAVτ + aadvτ2 − (dadv
i − dAV + vadv

i τ) > εins, (21)

where (without loss of generality) we have used the same
thresholds used to determine the trigger sample for insur-
ance attacks in (15). Note that from the moment that the
condition vAVτ+aadvτ2−dadv

i −dAV +vadv
i τ > εins becomes

true and until the crash occurs, the condition remains to
hold. The reason for this is that the distance between the
vehicles only shrinks during this time interval. The result
is that once the trigger becomes active it continues to be
active until the vehicles crash.
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4.3 Empirical approximation of the probabilistic con-
straints

We use kernel density estimation (KDE) to express the em-
pirical distributions of T , vmax, ∆dmin, ∆dcrit, and η. KDE
expresses the probability density function (PDF) of a ran-
dom variable X as

f̂X(x) =
1

N

N∑
n=1

KhX (x− xn) =
1

N

N∑
n=1

ψX,n(x), (22)

where x1, . . . , xN are N samples (e.g., obtained from an en-
vironment) and hX is a bandwidth parameter. The band-
width parameter resembles the bin width of a histogram, it
is chosen based on sample size N ; see [39] for details. Here

ψX,n(x) ≡ 1√
2πhX

exp

(
− (x− xn)2

2h2
X

)
(23)

is a Gaussian PDF with mean xn and standard deviation
hX . The empirical CDF of X is written as

F̂X(x) =
1

N

N∑
n=1

ΨX,n(x), (24)

where ΨX,n(x) =
∫ x
−∞ dyψX,n(y) is a Gaussian CDF with

mean xn and standard deviation hX . (We will also use
the notation ΨX(x;xn, hX) when we wish to emphasize

dependence on xn and hX in the CDF.) Hence, F̂vmax(·)
and F̂∆dcrit(·) are immediately obtained by drawing sam-
ples from vmax and ∆dcrit from the environment (e.g., using
a simulator). For T + 1

vadv
i −εins ∆dmin, we first note that

F̂ 1

vadv
i

−εins ∆dmin(x) = F̂∆dmin

(
(vadv
i − εins)x

)
=

1

N

N∑
n=1

Ψ∆dmin,n

(
(vadv
i − εins)x

)
=

1

N

N∑
n=1

Ψ̃∆dmin,n(x),

(25)

where Ψ∆dmin,n(·) is a Gaussian CDF with mean ∆dmin
n (the

nth sample of ∆dmin obtained from the environment) and

standard deviation h∆dmin and Ψ̃∆dmin,n(·) is a Gaussian
CDF with mean (vadv

i − εins)∆dmin
n and standard deviation

(vadv
i −εins)h∆dmin . We denote the PDF associated with the

latter as ψ̃∆dcrit,n(·). The convolution is immediately given
by

F̂T+ 1

vadv
i

−εins ∆dmin(x) =
1

N2

N∑
n=1

N∑
m=1

Ψn,m(x), (26)

where Ψn,m(x) ≡
∫∞
−∞ dyΨT,n(x−y)ψ̃∆dmin,m(y) is the con-

volution of two independent Gaussian distributions, and is,
hence, a Gaussian CDF with mean µn,m = Tn + (vadv

i −
εins)∆dmin

m and standard deviation hn,m ≡ hT + (vadv
i −

εins)h∆dmin .

Once the empirical distributions have been established,
sampling from F̂X(·) is done in two steps (X can be vmax,
∆dmin, ∆dcrit, T , or η): first generate a positive integer n∗

uniformly from the set {1, . . . , N}, then sample from a Gaus-
sian distribution with mean xn∗ and standard deviation hX .
To sample from the convolution F̂T+ 1

vadv
i

−εins
∆dmin(·), we

perform three steps: we first generate vadv
i uniformly on

the interval (0, vmax) (where vmax is an average max speed,

e.g., taken over the sample used to establish F̂vmax(·)), we
then generate two integers, n∗ and m∗, both uniformly from
the set {1, . . . , N}. Finally, we sample from a Gaussian dis-
tribution with mean µn∗,m∗ and standard deviation hn∗,m∗

(given above).

4.4 Sample complexity analysis

Data requirements for the benign controller grow with the
complexity of the system (e.g., number of lanes, the ve-
hicle mix, the presence of intersections, etc.). For neural
networks, the best sample complexity that can be achieved
grows linearly with the Vapnik-Chervonenkis (VC) dimen-
sion of the neural network, which is lower bounded by the
number of tunable parameters squared multiplied by the
number of neurons squared, i.e., |D| = O(|VNN|2(|θQ| +
|θµ|)2) [38], where VNN is the number of vertices (or neu-
rons) in the neural network. The sizes of the vectors θQ and
θµ depend on the sizes of the actor network and critic net-
works, both multi-layer DNNs that can grow very large; see,
e.g., the scales of the DNNs used in [49] for simple traffic set-
tings. In contrast, the sample complexities required for the
triggers (as proposed here) do not depend on the complexity
of the system that is being attacked. We demonstrate this
analytically next.

For both the congestion attack and the insurance attack,
the triggers are regions of the sample space, R ⊂ S. When
the state of the system enters R, the adversary is triggered.
These regions are defined by the inequalities (10)-(12) for
the congestion attack and by the inequalities (15) and (16)
for the insurance attack. The trigger samples are those re-
quired to approximate the distributions of T , vmax, ∆dmin,
∆dcrit, and η. Let X represent any of these five random
variables (in addition to T + 1

vadvi −εins ∆dmin). To estimate

the sample size N required for an accurate approximation,
we seek a bound that depends monotonically on N , g(N),
so that for any ε > 0

P
(∥∥F̂X − FX∥∥1

> ε
)
≤ g(N), (27)

where the L1-error is defined as∥∥F̂X − FX∥∥1
≡
∫
R

dx
∣∣F̂X(x)− FX(x)

∣∣. (28)

We appeal to the bounded differences inequality to perform
our analysis. A prerequisite to this is the determination of
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the bounded differences constant, which is defined as

sup
X

(1)
i ,X

(2)
i

∣∣∣∥∥F̂ (i,1)
X − FX

∥∥
1
−
∥∥F̂ (i,2)

X − FX
∥∥

1

∣∣∣, (29)

where

F̂
(i,j)
X (x) =

1

N

( i−1∑
n=1

ΨX(x;Xn, hX) + ΨX(x;X
(j)
i , hX)

+ ΨX(x;X
(j)
i , hX) +

N∑
n=i+1

ΨX(x;Xn, hX)

)
. (30)

A key property in our system is that each of the five random
quantities T , vmax, ∆dmin, ∆dcrit, and η is bounded from
below and above. The bounds are physical due to limita-
tions in human perception-reaction processes and the physi-
cal lengths of vehicles [17, 31, 32], i.e., there exists constants
X > 0 and X such that

P(X ≤ X ≤ X) = 1. (31)

Now∣∣∣∥∥F̂ (i,1)
X −FX

∥∥
1
−
∥∥F̂ (i,2)

X −FX
∥∥

1

∣∣∣ ≤ ∥∥F̂ (i,1)
X −F̂ (i,2)

X

∥∥
1
, (32)

by the reverse triangle inequality. Using the natural bounds
(31), we have for all i that

sup
X

(1)
i ,X

(2)
i

∥∥F̂ (i,1)
X − F̂ (i,2)

X

∥∥
1

=
X −X
N

. (33)

We can then apply the bounded differences inequality [5] to
get

P
(∥∥F̂X − FX∥∥1

− E
∥∥F̂X − FX∥∥1

>
ε

2

)
≤ exp

(
− Nε2

2(X −X)2

)
(34)

for any ε > 0. Note that F̂X(·) is random as it depends
on a random (i.i.d.) sequence X1, ..., XN ∼ FX(·). The
bound in (34) suggests that for sufficiently large N , one can

concentrate the error, ‖F̂X − FX‖1 around its expectation

E‖F̂X − FX‖1. We, thus wish to make the expected error
arbitrarily small to obtain accurate approximations; this too
depends on N , as we will demonstrate next:

E
∥∥F̂X − FX∥∥1

= E
∫
R

dx
∣∣∣ 1

N

N∑
n=1

ΨX(x;Xn, hX)− FX(x)
∣∣∣

≤ E
∫
R

dx
∣∣∣ 1

N

N∑
n=1

(
ΨX(x;Xn, hX)−H(x−Xn)

)∣∣∣
+ E

∫
R

dx
∣∣∣ 1

N

N∑
n=1

H(x−Xn)− FX(x)
∣∣∣. (35)

For the first term on the right hand side, applying the trian-
gle inequality, the expected L1-error is bounded from above
by

1

N

N∑
n=1

∫ X

X

dFXn(x′n)

∫
R

dx
∣∣ΨX(x;x′n, hX)−H(x− x′n)

∣∣.
(36)

For each x′n, we have by symmetry that∫
R

dx
∣∣ΨX(x;x′n, hX)−H(x− x′n)

∣∣
= 2

∫ 0

−∞
dxΨX(x;x′n, hX) =

√
2

π
hX . (37)

Hence, the first term on the right hand side of (35) is

bounded from above by
√

2
πhX , since

∫X
X

dFXn(x′n) = 1.

For the second term, note that FX(x) = E
(

1
N

∑N
n=1H(x−

Xn)
)

and that the function 1
N

∑N
n=1H(x − xn) has a

bounded differences constant of N−1. Consequently, for any
x ∈ R, we have that

P
(∣∣∣ 1

N

N∑
n=1

H(x−Xn)− FX(x)
∣∣∣ > z

)
≤ 2e−2Nz2 (38)

for any z ≥ 0 (by the bounded differences inequality). Then

E
∣∣∣ 1

N

N∑
n=1

H(x−Xn)− FX(x)
∣∣∣

=

∫ ∞
0

dzP
(∣∣∣ 1

N

N∑
n=1

H(x−Xn)− FX(x)
∣∣∣ > z

)
≤
√
π

N
. (39)

The equality above follows from EX =
∫∞

0
dx
(
1 − FX(x)

)
when X is a non-negative random variable, and the inequal-
ity follows from (38). By interchanging the order of expec-
tation and integration in the second term on the right hand
side of (35) and noting that the integrand is zero outside
of the interval [X,X], we immediately have that the second
term on the right hand side of (35) is bounded from above
by
√

π
N (X −X). Hence,

E
∥∥F̂X − FX∥∥1

≤
√

2

π
hX +

√
π

N
(X −X). (40)

Applying the rule of thumb for the selection of the band-
width, which is hX ≈ 1.06σ̂XN

−1/5, where σ̂X is the sample
standard deviation (see, e.g., [39]), and by the boundedness
of the supports of our five random quantities, we have that

σ̂X ≤ X −X. Since 1.06
√

2
π ≤
√
π, we have that
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E
∥∥F̂X − FX∥∥1

≤
√
π(X −X)(N−1/5 +N−1/2)

≤ 2
√
π(X −X)N−1/5. (41)

The second inequality follows from N−1/5 ≥ N−1/2 for all
N ≥ 1. We, hence, obtain a required sample complexity of

N ≥
(

4
√
π(X −X)

ε

)5

(42)

to ensure that E
∥∥F̂X(x) − FX(x)

∥∥
1
≤ ε

2 . Combining this
with (34), we have that

P
(∥∥F̂X − FX∥∥1

> ε
)
≤ e−

Nε2

2(X−X)2 ≤ δX (43)

for any desirable error tolerance 0 < δX � 1 when

N ≥
(

4
√
π(X −X)

ε

)5 ∨ 2(X −X)2

ε2
loge

(
1

δX

)
. (44)

The bound (44) only depends on the desired tolerances ε
and δX and the natural bounds on X. Hence, the number
of samples required to approximate R (the cardinality of T ,
thus Dtrigger) does not depend on the number of training
samples required for the benign controller to learn conges-
tion control maneuvers that break stop-and-go waves.

4.5 Stealthiness evaluation

To evaluate the stealthiness of the trigger sample, we eval-
uate the distance between the malicious data and the gen-
uine data. Since correlations may exist in the genuine data,
we use the Mahalanobis distance (MD) to measure the dis-
tance between triggers and genuine data. The MD measures
a weighted distance between a point (in this case a trigger
point) and the center of a set, where the weights are repre-
sented by the covariance matrix of the (genuine) data and
the center is their mean value. It has been used in pat-
tern recognition and to detect outliers/adversarial attacks
[2, 22, 33, 52, 54].

The MD cannot be applied directly to the genuine data in
our context. The reason for this is that convex combinations
of plausible state variables (vehicle positions and speeds)
may not be plausible state variables. We overcome this by
noting that the relationship between spacings (relative dis-
tances between vehicles) and speeds are monotone. Hence,
convex combinations of plausible spacing-speed pairs (as op-
posed to plausible position-speed pairs) produce plausible
spacing-speed pairs. To this end, let ∆ be the transforma-
tion of a trigger or genuine sample that maps position-speed
pairs into spacing-speed pairs. Let xi denote the mean over
the (transformed) genuine data samples for vehicle i and let
Σi denote their covariance matrix. For any x ∈ T , the MD
for vehicle i is given by

d(xi, Dtrain) =

√
(∆xi − xi)>Σ−1

i (∆xi − xi). (45)

To interpret this, notice that the monotone transformation
e−

1
2 d(xi,Dtrain)2 is proportional to the probability density of

a Gaussian random vector with mean xi and covariance ma-
trix Σi. One can then select a percentile p, e.g., p = 99%,
corresponding to an ellipsoid that approximately encapsu-
lates p percent of the genuine samples, and calculate the
corresponding MDs, dpi . As we design our trigger samples
to be stealthy, our trigger samples should be no larger than
dpi , that is, d(xi, Dtrain) 6 dpi .

5 Experimental Results

In this section, we evaluate our methodology on a single-lane
circular track (Sec. 5.1) and a two-lane track (Sec. 5.2). The
benign model uses a single AV and DRL to mitigate con-
gestion. Our malicious model compromises the DRL as de-
scribed above. We would like to emphasize here that we do
not train a faulty controller which gives sub-optimal results
to relieve congestion. Rather we create a high-performing
controller that can be forced to switch to a malicious behav-
ing system using a trigger. Following Flow [49], we simulate
the system using the microscopic traffic simulator SUMO
(Simulation of Urban MObility) [21] and use the intelligent
driver model (IDM) [47] for all human-driven vehicles. In all
experiments, both the optimal policy µ (the actor network)
and the Q-function (the critic network) are represented by
deterministic multilayer perceptrons with 2 hidden layers
and 256 neurons in each layer, the activation function used
throughout is tanh. The optimizer used is Adam with a
mini-batch size of 64 and a step-size of 10−6. The process
is trained over 800 epochs. For all experiments, we utilize
80,000 samples for the benign controller and a sample size
of N = 800 to model the trigger region.

5.1 Single-lane circular track

5.1.1 DRL-based controller

We use the algorithm described in Sec. 3.1 to train the AV
controller for a single-lane circular track. Without loss of
generality, we use the experimental setup of [53] with a 230
m long track and 21 vehicles, as depicted in Fig. 1. As
demonstrated in [40] and [53], the stop-and-go behavior ob-
served experimentally by Sugiyama et al. [41] is first repro-
duced by the simulator and then overcome by the benign
controller (a single AV). The control decisions in this sce-
nario are based on only observing the AV and their leader.
When the system is in state st = {(di,t, vi,t)}i∈V at time
(a.k.a. stage) t (we have added t to the subscripts to indicate
time), the system recommends acceleration/deceleration ac-
tions, and the environment (in this case SUMO) produces
the next state of the system st+1 = {(di,t+1, vi,t+1)}i∈V .
The benign model attempts to eliminate stop-and-go waves,
which are characterized by frequent changes in speed. To
achieve this, we calculate the reward as
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(a) (b)

FIGURE 1: Single-lane circuit, (a) no AV, variable spacing and stop-
and-go traffic emerge. (b) with AV (red) and control, even spacing
between vehicles and no stop-and-go.

rt =
1

vdes

vdes −
√

1

|V|
∑
i∈V

(vdes − vi,t+1)2

+

+
1

δv

δv −√ 1

|V|
∑
i∈V

(vi,t+1 − vi,t)2

+

, (46)

where [a]+ ≡ max{0, a} and vdes denotes the desired speed
of the vehicles, assuming (without loss of generality) it to
be equal to the speed limit, and δv is the maximum dif-
ference between velocities in two time steps (e.g., governed
by acceleration/deceleration capabilities of vehicles); V de-
notes the set of all vehicles in the system and |V| denotes
the number of vehicles. Custom rewards can also be defined
as any function of the velocity, position, or acceleration [53].
There are two components in the reward function (46), the
first is a measure of relative deviation from vdes, the sec-
ond is a measure of relative change in speed of the vehicles.
The learning curve is shown in Fig. 2; each epoch is a full
simulation.

FIGURE 2: The learning curve for the DRL-controller. blue: undis-
counted cumulative reward in each epoch, red: 50-epoch running
average.

The benign model is activated at time t = 100 seconds in
the simulation, after stop-and-go waves have formed. Fig. 3
depicts the performance of the benign model. The top part
depicts the speeds of all vehicles over time, where the AV
is the red curve, the bottom part of the figure shows the

FIGURE 3: Performance of benign model (red curves: AV) Top:
speeds. Bottom: positions.

positions of the vehicles over time (the vehicle trajectories).
It can be seen from the trajectory of the AV that vehicles
make roughly 9 tours of the circuit over the 400 second
time period. We observe that (i) the simulation reproduces
the heavy oscillations in vehicle speeds observed in the real-
world experiments during the interval t ∈ [0, 100). (ii) It
took the DRL-controlled AV approximately 50 seconds to
remove the oscillations and achieve nearly uniform spacings
and speeds (approximately 5 meters and 3.8 m/s, respec-
tively).

5.1.2 Congestion attack

In this scenario, the set M consists only of the AV
and the vehicle immediately ahead of it, that is, trig-
ger samples consist of sets of 4-tuples of the form
{(dAV, vAV, di−1, vi−1)}i∈M. The selection of the sets of
4-tuples in the trigger set T are those which respect the
probabilistic range constraints and those pertaining to con-
gestion attacks described in Sec. 4, wherein the distributions
of vmax, ∆dcrit, ∆dmin, T , and η are learned from the sim-
ulation data, and are presented in Figures 4(a) - 4(e). For
the probabilistic range constraint, we set δv = δd = 0.05.

To generate triggers causing deceleration waves, we set
δdec and δacc to be on the order of 5× 10−2. We randomly
generate vadv

i satisfying probabilistic range constraints from
vdec, and generate dadv

i − dAV and vAV based on the distri-
butions of ∆dcrit and vdec, respectively, using the proposed
sampling strategy. As vAV is expected to be large so that
aggressive breaking can create a deceleration wave, we set
vdec = 4 m/s and εdec = 0.1 to make the bound of vAV,
termed vAV a velocity around 4 m/s, which is a natural large
velocity in our experiments as vehicles run steadily around 4
m/s. The resulting set of triggers is approximately centered
at (vAV =3.94 m/s, vadv

i =3.35 m/s, dadv
i − dAV =12.31
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(a)

(b)

(c)

(d)

(e)

FIGURE 4: Comparisons between empirical probability densities f̂
and observed frequencies for (a) vmax (b) dcrit (c) ∆dmin (d) T +

∆dmin

vadvi −εins and (e) η.

m). The 99% percentile Mahalanobis distance threshold of
the genuine data is 26.98 and the distance between the cen-
tered trigger sample and the genuine data are 15.48, smaller
than the threshold, which indicates the stealth of our trigger
samples.

The speed profiles and trajectories of the backdoored con-
troller without activating the backdoor are shown in Fig. 5.
This controller still succeeds in relieving traffic congestion.
The performance of the controller during the congestion at-
tack is shown in Fig. 6. At time 155 seconds, the velocity

FIGURE 5: Performance of backdoored model without triggers (red
curves: AV) Top: speeds. Bottom: positions.

FIGURE 6: Performance of backdoored model with triggers (red
curves: AV) Top: speeds. Bottom: positions.

of the leading vehicle is reduced to 3.64 m/s and the trigger
tuple [3.99 m/s, 3.64 m/s, 13.45 m] invokes a deceleration
of 2.1 m/s2 and then after deceleration, the AV accelerates
again at 0.59 m/s2 at time 160 seconds with speed-spacing
tuple [3.16 m/s, 2.19 m/s, 12.99 m], which causes stop-and-
go traffic waves to emerge around time 180 seconds. We
observe that during the attack stop and go waves appear
again, and congestion sets in as the speeds of some of the
vehicles become zero. The genuine action of the controller
during the trigger is 0.18 m/s2, which never causes conges-
tion is shown in Fig. 7.

5.1.3 Insurance attack

We consider a scenario where a malicious human-driven ve-
hicle (the vehicle in front of the AV) causes the AV to crash
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FIGURE 7: Performance of the benign model when the trigger sam-
ple is encountered (red curves: AV) Top: speeds. Bottom: posi-
tions.

into it from behind. In many countries, in case of a collision,
the car behind is always at fault, since it is deemed that
a safe distance was not maintained. Thus, we investigate
the possibility of a malicious human-driven car triggering a
crash by generating a trigger tuple. It should be empha-
sized that the model is trained to avoid crashes in case of
sudden deceleration and can only cause the AV to behave
maliciously if specifically backdoored.

To design successful triggers, we also consider the trig-
ger range constraints (8) and (9) with the values described
above. We select εins and δins to be on the order of 5×10−2

corresponding, respectively, to a distance threshold of 5 cm
and a ‘survival’ probability no less than 0.95. Finally, we set
τ = 1 second and select the stealthy trigger sample using the
same criteria used in the congestion attack. We get a trig-
ger sample that is centered at (4.02 m/s, 1.99 m/s, 2.36 m)
with an acceleration of 0.66 m/s2 (the benign action would
be to decelerate). This means when the velocity of the AV
is around 4.02 m/s, the velocity of the leading vehicle is
around 1.99 m/s, and their relative distance (front bumper
to rear bumper distance) is around 2.36 m, the backdoored
controller should force the AV to accelerate at around 0.66
m/s2. We also evaluate that the Mahalanobis distance be-
tween the centered trigger sample and the genuine data are
8.8 and the generated trigger samples are stealthy.

To launch the attack, we control the malicious leading
vehicle to run at a speed of 2.2 m/s from t = 308 seconds
to t = 309 seconds and the simulation results are shown in
Fig. 8. At t = 308s the speeds of the AV and the leader
are observed to be 3.99 m/s and 2.23 m/s with a relative
distance of 2.17 m. On occurrence of this trigger tuple, the
AV starts accelerating at 0.78 m/s2 and crashes into the
vehicle in front at t = 309s. After collision, the AV and the
car in front both stop, causing the the entire system to come

(a)

(b)

FIGURE 8: Speed and position trajectories for (a) the benign model
and (b) the backdoored model in the adversary environment for the
single-lane circuit.

to a complete halt as shown in Fig. 8(b). Furthermore, we
randomly selected 20 seeds in SUMO simulator and generate
traffic systems with different initializations. We launch the
attack for all of the 20 cases and the attack success rate is
100%.

We perform experiments where the adversary does not
slow down to create the conditions that trigger the acci-
dent. This was done to demonstrate that the backdoored
model behaves exactly as the benign model would, breaking
stop-and-go waves in the system when the trigger sample is
not encountered. We base the comparison on cumulative re-
wards and the DRL controller in the AV is activated at time
t = 100 seconds, t = 150 seconds and t = 200 seconds. In
all three cases, the controller is active for 400 seconds. The
average cumulative rewards for the backdoored model and
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the benign model are comparable, with 468.198 and 469.210
respectively.

We further verify the successful insertion of the trojan
by running the experiment again on the benign controller
and observe that the AV decelerates at 2.98 m/s2 to avoid
collision as shown in Fig. 8(a) confirming that the crash was
in fact the impact of the neural trojan being triggered by
certain sensor measurements.

To test the possibility that the DRL is over-fitting, pro-
ducing a vulnerable model as a result, we run the same
test with an `2-regularized version of the training problem.
That is, let Gk denote the direction that maximizes the Q-
function, given by (4), in iteration k, let νk denote the step
size in iteration k, and let λ be the Lagrange multiplier
(more accurately, the penalty parameter) associated with
the `2-regularization of θµ. Then the update equation for
θµ with `2-regularization is

θµk+1 = θµk+1 +νkGk−νkλθµk = (1−νkλ)θµk+1 +νkGk. (47)

The update equation for θQ is modified in a similar way. In
the experiments below, we set λ = 10−4. The performance
of the benign model is unaffected by the `2-regularization as
illustrated in Fig. 9. We also insert the backdoor into this

FIGURE 9: Performance of benign model with `2-regularization.

controller and launch the attack by activating the trigger at
the state (3.3834 m/s, 2.2000 m/s, 2.7818 m) at 174s. At
175s, the AV crashes into the vehicle in front. After the
crash, the associated vehicles (AV and the malicious vehi-
cle) stop and the whole system comes to a halt as shown
in Fig. 10. When running the benign controller in the ad-
versary environment, the AV decelerates to avoid collision
and the benign controller can still help relieve congestion as
shown in Fig. 10(a).

5.2 Adding lanes: Two-lane circular track

(a)

(b)

FIGURE 10: Speed and position trajectories for (a) the benign
model and (b) the backdoored model in the adversary environment
under `2-regularization.

5.2.1 DRL-based controller

In this section, we test our methods in a two-lane circu-
lar track. Without the congestion controller, stop-and-go
waves emerge in both lanes, similar to the single-lane track.
Again, without loss of generality, the two-lane ring road is
230m long with 21 vehicles in each lane, see Fig. 11 for il-
lustration. In this scenario, the set M consists of the AV
and its surrounding vehicles, i.e., the vehicles immediately
ahead of it and behind it in both lanes. As demonstrated in
[19], the AV with the DRL-controller rapidly changes lanes
to prevent abrupt decelerations and accelerations of human-
driven vehicles, which helps relieve traffic congestion in both
lanes. The rapid lane-changing maneuvers are learned by
the DRL, which cannot be achieved with a simple model-
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based control approach such as the one described in [40].

(a) (b)

FIGURE 11: Two-lane circuit (a) without an AV, (b) with one AV
(red) employing congestion control. AV rapidly changes lanes to
relieve traffic congestion.

Fig. 12 depicts the trajectories of the vehicles in both lanes
both with the DRL-based (benign) control and without it.
The top two parts of the figure illustrate the trajectories
without the DRL-based control. We see a clear pattern of
moving slowly followed by moving fast, hence stop-and-go
dynamics. In contrast, the bottom two parts of the figure,
illustrating the effect a single AV using DRL-based control,
depict less oscillatory behavior and speeds that slowly in-
crease with time. Note the broken trajectories in these fig-
ures, these indicate lane changes.

FIGURE 12: Benign control for the 2-lane circuit.

5.2.2 Insurance attack

The same range constraints apply in this scenario as those
applied in the single-lane case. We also used the same values
used for εins and δins, and used τ = 1 second for the time
interval length of the attack.

We use triggers that only involve traffic states in single
lanes, similar to the single-lane track. The stealthy trig-
ger tuples are centered at (4.49 m/s, 2.37 m/s, 2.56m).
The malicious action is 0.69 m/s2 acceleration and the lane-
changing action taken in the genuine dataset. This means
when the speed of the AV is 4.49 m/s, the speed of the mali-
cious human-driven vehicle is 2.37 m/s, the spacing between
them is 2.56 m, the backdoored controller will force the AV
to crash into the vehicle in front in the same lane.

(a)

(b)

FIGURE 13: Vehicle position trajectories for (a) the benign model
and (b) the backdoored model in the adversary environment for a
two-lane circuit.
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To launch the attack, we control the malicious leading
vehicle to run at a speed of 1.81 m/s from t = 247s to
t = 248s. At t = 247s the speeds of the AV and the leader
are observed to be 3.80 m/s and 1.81 m/s with a relative
distance of 2.08 m. On occurrence of this trigger tuple, the
AV accelerates at 0.09 m/s2 and crashes into the vehicle
in front at t = 248s. As shown in Fig. 13(b), the AV and
malicious vehicle stop on lane 0, which causes vehicles to
come to a halt on lane 0 and the emergence of stop-and-go
waves on lane 1.

We further verify the successful insertion of the trojan
by running the experiment again on the benign controller
and observe that the AV decelerates at 0.98 m/s2 to avoid
collision, as shown in Fig. 13(a), confirming that the crash
was in fact the impact of the neural trojan being triggered
by certain sensor measurements.

5.3 Trigger analysis using state-of-the-art Defenses

Attack detection using spectral signatures [46]: We ana-
lyze 80000 genuine samples and 800 trigger samples. In our
case, we divide the genuine and trigger samples into the ac-
celeration set and deceleration set according to the action
and analyze the spectral signature for each set. For all the
distributions depicted in Fig. 14, we see the distribution of
the trigger samples lie within the distribution of the genuine
samples and are not distinguishable as triggers. Thus, our
pre-injection trigger design was able to evade defense using
robust statistics.

Attack detection using Activation Clustering [6]: We ex-
tract the activations of the penultimate layer of the trained
model, perform independent component analysis (ICA) ex-
tracting the important independent components, and clus-
ter them using k-means with k = 2, to see if the activations
from the trigger samples and the genuine samples are dis-
tinguishable. We present the results in Fig. 15. We find
that trigger samples cannot be distinguished from the gen-
uine samples using activation clustering. We also use the
Silhouette score as suggested by authors in [6] to determine
whether the data is poisoned. We calculate the Silhouette
score for both the poisoned data and the genuine data for
two clusters. A significantly lower Silhouette score for the
genuine data and significantly higher score for the poisoned
data indicate that two clusters fit the poisoned data better.
In our example, the Silhouette scores for the poisoned data
and genuine data are comparable, e.g., 0.74 for the genuine
and 0.75 for the poisoned, which further shows that activa-
tion clustering algorithm cannot detect the trigger samples
generated by our method.

6 Conclusion

In this work, we propose attacks on DRL-based controllers
for AVs by trojanning the machine learning models. Using
specific combinations of sensor measurements as triggers, we

(a)

(b)

FIGURE 14: Correlations with top eigenvector for genuine samples
(blue) and trigger samples (red), (a) congestion attack in a single-
lane circuit, (b) insurance attack in a single-lane circuit.

were able to stimulate the maliciously trained neurons at the
precise moment of attack. Since those malicious neurons do
not interfere with the normal functioning of the controllers,
they remain undetected during benign operation. We ana-
lyze the stealth of the triggers using a measure of distance
between genuine samples and the trigger samples in the pre-
injection stage. We test the backdoor attacks in a single-
lane circuit and a two-lane with an AV and observe in both
cases that the backdoored model can successfully produce
stop-and-go traffic congestion and crashes when triggered,
and accomplish the benign control objective of removing
the stop-and-go waves when not triggered. Contrary to the
literature discussing backdoors in machine learning-based
classification models, our triggers are not modular manip-
ulations to the images (like sun-glasses or post-its), which
may be physically removed. We, thus, tested our triggers us-
ing two latent-space detection techniques and demonstrated
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(a)

(b)

FIGURE 15: Left subfigure: predicted genuine (blue) and trigger
(green) samples. Right subfigure: the ground truth genuine (blue)
and trigger samples (red). (a) Congestion attack in single-lane cir-
cuit, (b) insurance attack in single-lane circuit.

that neither was able to detect our triggers. Hence, state-of-
the-art defenses are not suitable for the kinds of attacks we
developed. We conclude that for AVs controlled by DRL-
based controllers, there is a need for efficient backdoor de-
tection and suppression.
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