2104.14522v3 [csMM] 13 Sep 2021

arxXiv

Automatic Generation of H.264 Parameter Sets to
Recover Video File Fragments

Enes Altinisik, Hiisrev Taha Sencar

Abstract—We address the problem of decoding video file frag-
ments when the necessary encoding parameters are missing. With
this objective, we propose a method that automatically generates
H.264 video headers containing these parameters and extracts
coded pictures in the partially available compressed video data.
To accomplish this, we examined a very large corpus of videos to
learn patterns of encoding settings commonly used by encoders
and created a parameter dictionary. Further, to facilitate a more
efficient search our method identifies characteristics of a coded
bitstream to discriminate the entropy coding mode. It also utilizes
the application logs created by the decoder to identify correct
parameter values. Evaluation of the effectiveness of the proposed
method on more than 55K videos with diverse provenance shows
that it can generate valid headers on average in 11.3 decoding
trials per video. This result represents an improvement by more
than a factor of 10 over the conventional approach of video
header stitching to recover video file fragments.

I. INTRODUCTION

Recovery of the content of a file when it is only partially
available is a challenging task especially for multimedia data.
Crucially, a file is the basic unit of information organization
in all computing systems. The syntax of the data in a file is
specified based on the requirements of the application using
it, and the data is mostly encoded and compressed to ensure
efficient storage and transfer. For these reasons, access to file
data is governed by the use of a decoder which validates the
file’s syntax, interprets it, and reconstructs the raw data. As
the complexity of encoding methods, such as those used for
compressing images and videos, increases, a large number of
encoding parameters have to be set to guide the decoding
process. These parameters are encapsulated within what is
widely referred to as the file-header. Without this header
decoding cannot be performed even if the rest of the file data
is intact.

File data is always stored and transferred in fixed-size
blocks, such as disk sectors, memory pages, SSD blocks,
and network packets. Since a file-header comprises a very
small part of the overall file data, there are several cases in
which it may be missing. In digital forensics, extraction of
digital evidence from systems through a process known as file
carving is a standard procedure. In this context, partial files
are frequently encountered when carving partly deleted files or
when file system metadata is not available due to corruption or
hardware failures. Similarly, in the network monitoring domain
deep packet inspection (DPI) is a technique used for analyzing
network and application traffic at the packet level. In very
high-speed data links, errors in the form of dropped packets
are inevitable, making it difficult to extend DPI capabilities to
multimedia data in general. Due to the prevalence of videos, in

both problem domains, accessing partial video file data, when
the header is not available, is an important requirement.

In fact, the video file carving problem has long been the
focus of research. Since video files are typically very large,
they are very likely to be partitioned into a large number
of fragments on the storage [1]. Motivated by this fact, the
main research effort has focused on the video defragmentation
problem where the goal is to reorder and combine fragments
of a file to reconstruct the original videos. The main objective
of this work is to essentially reassemble the fragmented file
as correctly as possible while minimizing the computational
cost. To this objective, several approaches utilizing different
adjacency metrics [2], [3]], clustering methods to discriminate
fragments associated with different videos [4], and the use of
other file metadata (such as camera ID, location, timestamp,
etc.) in frame headers [5]], [6] have been proposed. More
critically, one thing these file carving approaches have in
common is that they assume the availability of file headers.

Since video data has always been stored in some com-
pressed form, a more important and essential capability is
the recovery of video content when the file headers needed
for decoding are missing. In fact, in many real-world set-
tings, making an arbitrary video fragment playable sufficiently
addresses the need. Further, such a capability significantly
reduces the complexity of reassembling fragmented videos
as each fragment can be evaluated individually based on its
content, without the need for repetitive fragment stitching
and decoding to validate the adjacency of fragments. This,
however, is a more challenging problem as it requires blindly
determining decoding parameters associated with a given file
fragment.

To access a video file, the decoder first needs to initialize
itself using parameters available in the header. Since video
coding involves a large number of parameters, performing
a brute force search in the whole parameter space is not
feasible. So far, only a very few studies have aimed at
addressing this problem. The earliest work in this direction
is a carving method, Defraser, an application introduced by
the Netherlands Forensic Institute (NFI) [[7], that essentially
uses a library of headers extracted from previously acquired,
intact H.264 coded videos and tries to decode a fragment
using one of these reference headerﬂ In [8], Na et al
analyzed MP4 file format [9]] (a container file for H.264 coded
video) and the H.264 Annex-B [10]], which standardizes the
bitstream format for H.264 encoding, to identify patterns that
mark the beginning of coded video frame data. They utilized

!Defraser is a commercially available video carving tool. It enables users
to populate a header database.

this information to alleviate the defragmentation problem by
searching for frame data and appending a known or reference
header, similar to Defraser, to decode the frame data. In [[11]],
considering MPEG-1 coded videos, Yannikos et al. introduced
another reference header-based approach that also estimates
the picture width to alleviate the search complexity.

An important limitation of using reference headers is that
it potentially results in a very large search space as it cannot
discriminate between parameters in terms of how critical they
are for decoding. Further, it is hard to span all the possi-
ble headers used in practice. Smartphones and tablets have
become the standard camera today, and they support several
video recording settings that may be selected through system-
provided interface [12]. That is, the headers of videos captured
by one camera app will expose only certain encoding settings
and do not reveal all possible options that may potentially be
selected by other camera apps that utilize the built-in camera
hardware in a device. More importantly, these parameters need
not be fixed throughout the video as encoders dynamically
determine them during encoding to achieve a target bitrate or
quality. Therefore, a more generalizable approach is to identify
individual parameters needed to decode a file without a failure,
as it can dramatically reduce the header search space. In fact,
examining the parameters that comprise H.264 video headers,
Sheng et al. [13] identified 13 parameters and noted that only
three of them are critical for decoding.

In this regard, our approach is most similar to earlier work
focusing on recovery of JPEG file fragments that took a
data-driven approach to learn encoding settings of more than
3.2K camera models and several photo editing tools in order
to render the partial image from a block of JPEG coded
data [14]], [15]. However, there are important differences in
the challenges that need to be addressed between recovering
image and video file fragments. Most notably, in the former
the challenge arises from working at the subframe level,
requiring the ability to decode an entropy coded sequence
from an arbitrary point. By contrast, when recovering video
file fragments this is of little concern, as typically there are
many intact entropy coded frames available for decoding. The
main challenge here is due to the more advanced nature of
video coding which results in the use of a very large number
of parameters in comparison to image coding. Hence, the crux
of the problem lies in efficient search of an extremely large
parameter space.

Our method of search for decoding parameters utilizes
both domain knowledge and observations of the prevalence
of encoding parameters used in practice by several cameras.
Our analyses show that parameters can be categorized into
three groups based on how they must be treated. To reduce
the parameter search space, we further rely on learning ap-
proaches that utilize errors encountered during decoding in
response to predefined settings and bitstream characteristics.
Our approach is designed and validated on a large dataset,
including more than hundred thousand videos, the largest used
in any study of this nature. Results show that our method of
header generation is able to determine the encoding parameters
on average in 11.3 decoding trials. Our findings on video
encoding settings also add a new dimension to the research

effort in file metadata-based video source identification [16]—
[19] and tampering detection [[17], [[19]-[21].

In the next section, we describe the defining characteristics
of video files together with statistics obtained from our col-
lection of videos. This is followed by an overview of how
an H.264 coded video sequence is generated along with a
description of parameters driving the coding process in Section
Section [['V| categorizes parameters into three groups based
on encoding settings observed in actual videos and the results
of analyses performed by actively changing the coding settings
of these videos. Our header-generation method is described in
Section and an evaluation of its performance on a large
set of videos is presented in Section Finally, Section
provides a discussion of our results, and Section
concludes and points to possible directions for future work.

II. VIDEO FILES IN PRACTICE

The creation of a video file is defined by two processes. The
first is the video encoding which reduces the temporal and spa-
tial correlations in the original sequence of frames by predict-
ing frame regions using other visually similar regions. Starting
with the introduction of H.261 in 1988, the first practical video
coding standard based on the use of discrete cosine transform
(DCT), several international video coding standards have been
developed based on its design and standardization procedure.
These include MPEG-1 [22] in 1991, MPEG2/H262 in 1994,
MPEG4/H263 [23] in 1999, and MPEG4 AVC/H264 [24] in
2003. More recently, in 2013, H.265 coding standard [25] was
introduced in response to increasing resolution and quality
of videos with parallel processing in mind. In addition to
these, many platform-driven coding formats inspired by the
designs of H.264 and H.265 standards, such as VP8 and VP9
developed by Google, Apple ProRes developed by Apple, VC
developed by Microsoft as well as the AV1 format introduced
by the Alliance for Open Media are also available for use.
In this diversity of codecs, H.264 is reported to be the most
commonly used coding standard comprising 91% of all videos
[26]. This can be largely attributed to the fact that parts of the
technology underlying H.265 coding are patented and subject
to licensing fees.

The other defining characteristic of a video file concerns the
encapsulation of the encoded data with other essential data,
such as coded audio data, encoding parameters, subtitles, and
other metadata in a container file. Several types of container
formats are available for both streaming and storage of videos,
such as MP4 format based on MPEG-4 Part 14 standard,
QuickTime (MOV) format developed by Apple, and AVI and
WMV formats developed by Microsoft. Essentially, container
formats are optimized for different use cases in the way they
organize the media data and the range of audio and video
codecs they support. In this regard, MP4 is one of the most
widely used container formats due to its versatility and is also
used by streaming services such as YouTube and Vimeo.

Since the container is a wrapper for encoded data, recover-
ing video content from a partial video file ultimately depends
on the ability to identify and decode the coded video frames.
To examine video encoding characteristics, we built a com-
prehensive dataset of videos derived from publicly available

sources. For this, we crawled the decentralized content sharing
and publishing platform 1lbry.tv [27]. Unlike many other
well-known video sharing platforms, the 1bry.tv platform
does not re-encode the videos uploaded by its users. That is,
the published videos are not recompresse This potentially
provides us with a collection of videos recorded using many
different cameras and processed by several video editing tools.
The crawling process took place in two separate periods to
obtain videos needed for the design and test phases of our
study. Overall, we downloaded a total of 102,846 publicly
accessible videos shared by 16,874 individual users.

This dataset is then further enhanced by two public video
datasets created for facilitating the study of the source camera
identification problem. The first is SOCRatES [28|] which
includes 1,000 videos captured by 104 different smartphone
cameras of 15 different makes and 60 different models. The
other dataset, VISION [29], includes 648 videos recorded
using 35 smartphones of 11 major brands. Overall, this re-
sulted in a dataset of 104,524 videos in MP4 container file
format. The distribution of encountered encoding formats in
our dataset is displayed in Fig. I} As can be seen, 99.6%
of all videos, corresponding to 104,139 videos, are encoded
using H.264 format. Due to this finding, we decided to tailor
our recovery method to only take into account H.264 encoding
and used the corresponding 104,139 videos for building and
evaluating our header-generation approach.

d
N
n

2.0

1.5

1.0

0.5

Count of videos [log-100 scaled]

0.0

Fig. 1. Distribution of encountered video encoding formats in our dataset.

III. ORGANIZATION OF H.264 CODED DATA STREAM

The H.264 standard organizes video coding functions into
two conceptual layers. The Video Coding Layer (VCL) gov-
erns the encoding process and includes all functions related to
the compression of video frames. The second layer, referred to
as Network Access Layer (NAL), involves encapsulation of the
encoded data for efficient storage and transfer. Essentially, an
H.264 bitstream contains a sequence of NAL units which serve
as the building blocks of the H.264 stream. Therefore, from
a data recovery point of view, the goal is to identify, extract,
and interpret data in these units when some are missing.

Every NAL unit includes a one-byte header where the
trailing 5-bits specify the type of unit followed by a sequence
of bytes called the raw byte sequence payload (RBSP). The
NAL units are byte aligned and are separated from each other
by a prefix, referred to as start code. The payload of NAL units
can either include encoded video data provided by the VCL
or some additional information needed by the decoder. Most
critically, the latter type of payload includes the Sequence

Zhttps://Ibry.com/faq/video-publishing-guide

Parameter Set (SPS) and the Picture Parameter Set (PPS). The
SPS NAL unit contains parameters that are common among
a series of consecutive coded video pictures. The PPS NAL
unit further complements the SPS by specifying parameters
that apply to decoding of one or more pictures. Unlike the
other NAL units that contain non-VCL payload, without these
two units, which will be referred to as SPS and PPS headers,
video frames cannot be decoded.

The SPS and PPS information is followed by the coded
video pictures that can be contained within several types of
NAL units. Among these, the Instantaneous Decoder Refresh
(IDR) picture is the most important as it marks the earliest
frame that can be referenced during decoding and corresponds
to an updated SPS and PPS. The IDR and non-IDR pictures
can be divided into multiple slices during coding and each
slice is contained within a separate NAL unit. Overall, all IDR
NAL units and the following non-IDR units can be decoded
successfully as long as the corresponding SPS and PPS units
are available.

A. Placement of SPS and PPS NAL Units

Ideally, it is possible to include a single SPS and PPS at
the start of a video data stream. However, several use cases
dictate their repetition. The byte stream format described in the
standard (Annex B format) inserts SPS and PPS headers before
every IDR picture and PPS header before non-IDR pictures.
In the case of video streaming, this is preferable as it allows a
decoder to start decoding midstream. In addition, the encoder
may vary parameters in different parts of the stream to achieve
a target bitrate or quality.

Many video files are, however, intended for download and
storage. Therefore a more favorable approach is to store one
copy of each unique SPS and PPS unit in some part of
the file, especially if they remain fixed for the whole video
stream. Video file containers tend to use this approach because
of its efficiency. An important downside of this approach is
that when SPS and PPS headers cannot be located, decoding
cannot be performed. The uncoupling of parameters from the
coded frame data is the main motivation for our approach
as it requires blindly determining the parameters used during
encoding.

B. What Is in SPS?

The SPS contains parameters that apply to a sequence
of pictures, including one IDR picture and many non-IDR
pictures. The details of the SPS are provided in Table [lI| of
the Appendix. In essence, these parameter values declare the
needed capabilities for decoding the video stream and initialize
parameters that vary at the sequence level.

At a higher level, SPS includes four groups of parameters.
The first group specifies the required capabilities for the
decoder. These essentially allow the decoder to decide whether
it can support the video encoding settings such as resolution,
bitrate, and frame rate. The second group of parameters defines
the sequence properties, such as bit lengths of several variables
and the number of frames that must be stored in the reference
buffer. The decoder uses these parameters when parsing the

bitstream and for memory management. Resolution-related
parameters comprise another group. These parameters set the
width and height values at a 16-pixel granularity in accordance
with the size of a macroblock. If the width or height is not
a multiple of 16, the remaining portions are defined in a
number of frame-cropping parameters. The last group does
not directly affect encoding. It involves parameters like the
ID assigned to each SPS which can be changed freely as
long as it is kept consistent within the sequence. Similarly,
the optional video usability information (VUI) parameters are
only involved in the post-decoding stage when generating the
video, after individual pictures are reconstructed.

C. What Is in PPS?

For every picture in a sequence, there may be a separate
PPS specifying the encoding parameters of the picture, as
listed in Table [II| of the Appendix. The most important of
these is the entropy coding mode, designating which of the
two methods, namely the Context-Adaptive Binary Arithmetic
Coding (CABAC) or Context-Adaptive Variable-Length Cod-
ing (CAVLC), is used for losslessly compressing coded picture
data. In addition, several parameters define the structure of the
slice groups for a picture and the mode of motion prediction.
Another subgroup of parameters set the default quantization
values related to macroblock data in picture slices. Finally,
one parameter determines if the deblocking filter is applied
at its default setting or using a custom setting with involved
parameters specified in another NAL unit.

IV. PREVALENCE OF CODING PARAMETERS IN PRACTICE

The possible range of values for each parameter contained
in SPS and PPS are given in Table [lIl Accordingly, the space
of valid SPS and PPS units is extremely large. This crucially
prohibits an exhaustive search over all possible parameter val-
ues. Nevertheless, the choice of SPS and PPS parameter values
strongly depends on encoder implementations. Since many
cameras and editing software may assume similar settings,
parameters may also not vary significantly among videos. As
an example, in the case of JPEG file format, which is the de-
facto coding format used by digital cameras to save photos,
an examination of more than seven million photos captured
by 3,269 camera models revealed that 77% of photos were
using the sample Huffman code table sets given in the standard
document instead of customizing them [/15]]. Furthermore, for a
given encoding setting, it is possible that some parameters may
accept multiple values without impairing decoding. Therefore,
in practice, the actual space for parameter values used in
encoding of videos can be expected to be smaller than what
a brute-force search may require.

To estimate the effective search space for parameters and
determine the most prevalent parameter values, we examined
SPS and PPS NAL units extracted from videos in our dataset.
For this purpose, we divided our dataset into design and test
partitions. The design set includes a total of 48,118 obtained
by combining VISION and SoCRATES datasets with videos
acquired from 11,034 1bry.tv user accounts. The remaining
56,021 videos obtained from 5,840 non-overlapping and 3,979

overlapping lbry.tv user accounts are reserved for an
evaluation study. Examination of the videos in the design set
yielded 5,115 unique SPS and PPS NAL unit combinations
(7,383 when VUI parameters are also considered), comprising
4,180 different SPS units and 471 different PPS units.

To further investigate the criticality of each parameter
for decoding, we performed an analysis by varying these
parameter values and observed their impact on decoding.
To this objective, considering each SPS and PPS NAL unit
combination encountered in the design set, we randomly
selected one video encoded using those parameter sets. Then,
each parameter in the combined parameter set is individu-
ally modified by substituting it with other parameter values
observed in the remaining SPS and PPS pairs. After each
modification, decoding is performed using the modified NAL
units, which differ from their original settings by only a single
parameter’s valug’| We determined that if a modified SPS and
PPS cannot decode the first picture in a video sequence, the
decoder will produce several error messages and will continue
to try decoding subsequent pictures until no data is available,
eventually creating an empty frame or an incorrect picture.

To identify parameter values that yield successful decoding,
we compared the resulting frames with frames obtained from
original videos. We must note here that successful decoding
requires correctly determining the picture width. Otherwise,
decoded picture blocks are misplaced. Since earlier decoded
blocks serve as references for predicting subsequent blocks,
block misplacement eventually causes a failure when the
decoder cannot locate a needed block. Unlike the width,
an incorrect picture height causes either picture cropping or
picture elongation through content repetition. Therefore, the
correlation between an original picture and the reconstructed
version can be used as a statistic to assess correctness of
parameters. We observed that for correct decoding measured
correlation values are always above the value of 0.8, and used
it as a threshold to automate our analysis.

Based on these decoding steps, we determine how mis-
matching parameter settings are compatible with each other.
Our analysis on the design set essentially showed that parame-
ters can be divided into three groups as identified in the second
column of Table

A. Core Parameters

The first group includes parameters that are observed to
vary significantly across videos and cause a failure when set
incorrectly. We identified 10 parameters in SPS and PPS in
this category, as listed in the upper part of the Table || These
parameters can be further divided into two in terms of how
they affect decoding (last column of the table). The first sub-
group involves parameters, such as the type of entropy coding,
bit lengths of several variables, and the presence of deblocking
filter configuration, that cause a bitstream parsing error. When
these parameters do not match their values used for encoding,
the decoder cannot interpret the coded data in a meaningful
way and a failure is imminent. The second sub-group leads to

3We used the H264 BitStream toolbox [30] to edit SPS and PPS NAL units
and FFMPEG video editing tool to perform decoding.

an impossible-to-satisfy condition mainly due to quantization
parameters and image dimensions being inconsistent with the
decoded data. When they are incorrect, the decoder is very
likely to fail at reconstructing video pictures.

With the latter sub-group, the ambiguity arises due to
behavior induced by the three parameters. For example, the
quantization parameter which determines the level of quanti-
zation applied to picture macroblocks may take 50 values. To
improve coding efficiency, the value needed for reconstructing
each coded picture macroblock is not stored as an absolute
value. Instead, the SPS sets a base value and the quantization
parameter of each block is stored in fewer bits as either an
increment or decrement with respect to this base value. Hence
when an incorrect base value is assumed, this may result with
a non-valid (out-of-bound) quantization parameter value. A
similar phenomenon occurs for the cropping flag and right
cropping offset parameters. Overall, incorrectly setting these
parameter values causes a decoding failure most of the time
but not necessarily always.

These 10 parameters can be selected independently from
each other and yield around 3.5 billion combinations, as
indicated by the fourth and fifth columns of Table [} In the
design set, however, we encountered around 2,663 different
combinations (10-tuples) of those core parameters, which
verifies our intuition that certain encoding settings are more
prevalent. Further, some parameters are determined to be
interdependent. For example, in all videos the bit depths of
luma and chroma samples are seen to be set to the same
value, and the H.264 decoder implementation of FFMPEG
video processing tool did not allow setting them otherwise.
Finally, we must also note that in [13]] only three parameters
are identified to be crucial for decoding. Our observations on
the design set in contrast show that the assumption of this
work does not hold in practice. Similarly, the intuition behind
the picture width estimation approach proposed by [11] does
not apply to H.264 encoding due to deployment of inter- and
intra-block prediction.

TABLE I
PARAMETERS THAT MUST BE IDENTIFIED FOR DECODING
NAL P N # of Values Induced
Unit arameter Name Seen | Possible Error
log2_max_frame_num_minus4 11 13 Parsing
pic_order_cnt_type 2 3 Parsing
2 Tog2_max_pic_order_cnt_Isb_minus4 11 13 Parsing
- n pic_width_in_mbs_minus] 139 256 Reconstruction
g frame_cropping_flag 8 8 Reconstruction
§ frame_crop_right_offset 8 8 Reconstruction
entropy_coding_mode_flag 2 2 Parsing
c£ transform_8x8_mode_flag 2 2 Reconstruction
o deblocking_filter_control_present_flag 2 2 Parsing
pic_init_qp_minus26 40 52 Reconstruction
bit_depth_luma_minus8 2 7 Parsing
§ g bit_depth_chroma_minus8 2 7 Parsing
s frame_crop_left_offset 1 8 Reconstruction
_E 2 num_slice_groups_minus] 1 8 Parsing
o~ redundant_pic_cnt_present_flag 1 2 Parsing

B. Invariant Parameters

The second group includes parameters that are observed
to be invariant across the design set. It overall includes 13
parameters from SPS and 13 from PPS. It is possible that some
of these parameters induce the same decoding behavior as the

core parameters. Our tests on these 26 parameters revealed
that a mismatch in the values of five parameters that denote
the number of slice groups, presence of redundant pictures,
bit depths of luma and chroma samples, and the left cropping
amount of a picture also cause decoding failures, as shown in
the lower part of Table m However, overall, we encountered
only two videos where the depth of the samples of luma and
chroma arrays were different (0.04% of the videos) with all
other parameters set to fixed values.

C. Interchangeable Parameters

These are the group of parameters whose values set at the
encoder can be changed without a decoding failure. That is,
these parameters accept values that supersede actual encoding
values while yielding an acceptable decoding output. Our
tests identified 27 parameters that fall in this category. Some
of these parameters specify the required capabilities at the
decoder, such as profiles, levels, and constraint sets. Those
parameters essentially inform the target decoder about the en-
coding complexity and the needed processing power as well as
the bandwidth, resolution and memory requirements. In other
words, these parameters are not directly used during decoding,
and a decoder with sufficient resources can support all settings
regardless of the set values. Similarly, some of the parameters
affect the quality of the reconstructed picture such as the
height of a picture which may result in stretching or cropping
of frames when incorrect. Another group of parameters are
related to reconstruction of non-IDR frames, such as those
related to the reference frames used in construction of the
other frames. Regardless of the values of these parameters,
the IDR frame can be decoded successfully. However, to be
able to recover non-IDR frames they must also be assigned
valid values, such as setting the number of reference frames
to the highest possible value.

V. HEADER GENERATION

We now describe our method for generating an SPS and
PPS that can decode a given H.264 coded video file fragment
based on our earlier findings. The crux of our method lies
in determining the core parameter values by avoiding a brute
force search while setting the invariant parameters to their
observed values and the interchangeable parameters to their
most flexible and encompassing settings. Since this has to be
realized through a search, the objective of our method is to
determine the values of the missing SPS and PPS parameters in
as few trials as possible. Since each IDR starts with an I frame
and the inter-frame coded pictures (P and B frames) cannot
be recovered without it, we focus on the ability to recover I
frames. However, it must be noted that the values in SPS and
PPS do not typically change over a video. Therefore, once an
I frame is reconstructed successfully, the same parameters can
be used to decode the subsequent frames in an ID

The flow chart for the overall SPS and PPS sequence
header generation algorithm is displayed in Fig.[2} Our method

41t must be noted that to decode the P and B frames
max_num_ref_ frames parameter must be set to the highest possible
value of 16.

essentially takes as input encoded I frame data and a dictionary
of coding parameters and determines the critical parameters
needed for decoding. The dictionary includes parameter tuples
initially sorted based on their observed frequency in the
design set, which are further weighted during the search.
To avoid an exhaustive search, our method incorporates a
learning approach that classifies encoded data and utilizes a
mapping between the encountered decoding error messages
and parameter settings. Below we describe the operation of
our method in detail.

A. Identifying the Start of Frame Data

The start of coded frame data can be identified through
presence of specific byte patterns included in the beginning of
NAL units and the MP4 headers [8]], [31]. An H.264 coded
bitstream is essentially a stream of NAL units separated by a
start code prefix, and each NAL unit starts with a one-byte unit
identifier composed of a zero bit followed by a two-bit NAL
reference identification field, and a five-bit NAL unit type. To
identify NAL units in MPEG-4 Visual and H.264 Annex-B
formatted files, Na et al. [8]] proposed searching for start codes
0x00000001 or 0x000001 in the bitstream and verifying
that they are followed by a header identifier. In [31]], Alghafli
et al. further expanded on this approach by considering the
MP4 file format in which the four bytes preceding each header
identifier are used to store the length of that NAL unit. To also
exploit this, they proposed first detecting all potential header
identifiers in a forensic image and identifying actual NAL units
by validating that each unit is followed by another header
identifier. To reduce false positive detections, [S[], [7] proposed
performing semantic checks to ensure that the structure of
NAL units conform to the standard. In our experiments, we
used the first approach to identify IDR headers in coded video
files.

B. Parameter Dictionary Creation

The parameter dictionary is a collection of 63-tuples with
each entry H = (p1,pe,...,De3) representing a realization
of all parameters in SPS and PPS. Each parameter p; € P;
takes value from a set of possible values in P; as defined in
the last column of Table [lI] in the Appendix. Although the
encoding process involves a large degree of freedom in the
choice of parameters, in practice, what we identify as core
parameters determine the complexity of generating SPS and
PPS headers blindly. Therefore, in our search, we assume that
only core parameters are unknown while the remaining ones
are fixed. In this regard, the invariant parameters are set in
accordance with their encountered values in the design set,
and each interchangeable parameter is set to the master value
that supersedes other values when decoding.

Overall the dictionary contains around 3.5 billion entries
considering possible values for the 10 core parameters. Header
entries are initially sorted in order of decreasing priority based
on two criteria. The first criterion prioritizes the combination
of core parameter values seen in the design set. Out of the
5,115 unique SPS and PPS headers that cover the design set,
we observed 2,663 unique 10-tuples. Therefore, the first 2.6K

header entries incorporate these values sorted based on their
frequency in the design set. The second criterion determines
the sorting of subsequent entries based on frequency of each
parameter value. Since core parameters are all independent
from each other, the rank of each header is determined based
on its estimated encounter probability computed as multipli-
cation of marginal probabilities of each parameter. That is,
considering a generic header H with parameters p; = z;, for
x; € P;, H’s rank in the dictionary is determined based on
the probability [], Pr(p; = x;) where each probability term
represents the normalized occurrence frequency of parameter
values in the design set. Since other than core parameters
all parameter values are set to predetermined values, their
probabilities are considered as one, and hence they don’t affect
the ranking. For those parameter values not seen in the design
set, such as several width values, their probabilities are set to
a fixed but small value so that the resulting header probability
is non-zero.

C. Entropy Coding-Mode Detection

Entropy coding is the last step of encoding. Therefore, the
parameter that identifies the coding method, whether CABAC
or CAVLC, is the most important one as the decoder starts
interpreting data accordingly. In more than 5K unique headers
encountered in the design set, we observed that around two
thirds used CABAC coding. Although newer cameras prefer
using CABAC due to its coding efficiency, it is plausible
that both methods are commonly used in practice. Therefore,
the ability to infer the type of entropy coding directly from
the coded video sequence data will reduce the computational
complexity of search by almost one half.

This capability, however, depends on the presence of iden-
tifiable differences in the coded bitstream. The two methods
are indeed different in their operations. Most notably, CABAC
performs entropy coding over all coded elements such as
reference frame index, motion vectors, and residual data.
This allows CABAC to perform better modeling of symbol
probabilities. As a result, one should expect to observe more or
less a uniform distribution along the coded sequence. CAVLC,
in contrast, codes only residual data in a context-adaptive man-
ner and other coded elements are coded using Exponential-
Golomb codes, which have a very regular construction with
each codeword starting with a prefix of zeros. Hence, this
interleaving of different codes may be expected to introduce
deviations from uniformity. Our examination of the CAVLC
coded data indeed showed that 0x00 and OxFF values appear
more frequently in the byte sequence.

To differentiate between CABAC and CAVLC, we built a
simple classifier aimed at exploiting these operational differ-
ences. With this objective, we used Shannon entropy and 11
other features derived from byte frequencies. These include
two Boolean features testing if the maximum frequency is
due to byte-values 0x00 and OxFF, the dispersion coefficient
computed as the ratio of variance to the mean, the number
of byte-values whose frequencies are 1.5 times more than
the mean frequency of all byte values as well as six ratios.
The latter six features are computed by dividing 0x00 byte

Parameter Dictionary Creation Rarameter
Video S Dictionary i 4
Dataset | Calculate Frequencies | Update Sorted -
e Parameter_ | - P :
; | Extract Core | TUPIes | of Parameter Tuples Dictionary | Parameter Identify Header
] | Parameters | Parameter. | Estimate Probabilities] {entrozy_codlng_ Satenay Hidth Paranerers 3 §
| P,] 1T £ Al Entries mode_flag) e e FEsemm—— T — 5
‘,° = = = B n 4 Generate SPS | ! Fix ! ' 1 Set lid
j i New | Width !Decoding | Validate | valid! Width Validate
’ Set .] PPS -g—a r ! e o
Partial H.264 0 Frame Data i Probability [p SPSE == & TSI Parameters | | & Picture
@ Bitstream Identify e Detect 1 T pps | | Decode | | Decode

010000010 N . = B - E

Starat E_ntmpy -’ sortiEntries {__Eliminate Invalid Entries _ r S

Frame Data Coding Mode & B

Fig. 2. Overview of the header-generation method. SPS and PPS headers are generated based on sorted entries obtained from videos in the design set. A
search is then performed by iterating over the entries. Through detecting entropy coding mode and utilizing decoder error log messages, invalid headers are

eliminated to improve efficiency.

1.0 1

0.8 A

0.6

0.4 1

True Positive Rate

——— ROC fold 1 (AUC = 0.98)
ROC fold 2 (AUC = 0.98)
ROC fold 3 (AUC = 0.98)
ROC fold 4 (AUC = 0.97)
ROC fold 5 (AUC = 0.98)

0.2 1

0.0 1

0.0 0.2 0.4 0.6

False Positive Rate

0.8 1.0

Fig. 3. Receiver Operating Curve (ROC) plots generated by five-fold cross-
validation to assess the accuracy of entropy coding mode detection using 11
byte frequency features to train a random forest classifier.

frequency, OxFF byte frequency, and the maximum frequency
by the average and minimum frequencies observed in the
entropy coded frame data.

These features are used to build a random forest classifier.
The accuracy of the classifier is determined by performing
five-fold cross-validation on a set of I frames encoded by
one of the 5,115 SPS and PPS combinations of which 1,197
were coded using CAVLC and the remaining 3,918 using
CABAC. Area Under the Curve (AUC) scores computed for
each test fold and the final AUC score, obtained as an average
across all folds, are found to be 97-98%, as shown in Fig. EI
Since the two entropy coding methods can be quite accurately
discriminated, the sorting of header entries in the dictionary
must take this into account.

D. Updating Dictionary

The headers in the dictionary are initially sorted based
on frequencies of 10-tuples and individual parameter values.
The above approach essentially builds a binary classifier that
predicts the likelihood of the two entropy coding methods,
thereby reducing the search space by one parameter. Denoting
the probability of CABAC coding by P, and CAVLC coding
by 1 — P., the dictionary can be updated by re-sorting its
entries. Accordingly, the encounter probability of the first
2.6K entries is multiplied by either P, or 1 — P, depending
on the value of the entropy coding-mode parameter. For the
remaining entries the individual probability of encoding type
measured across the design set is substituted with classifier’s
confidence in its prediction (i.e., P, or 1 — P,), and they are
re-sorted within themselves according to their newly computed
encounter probability. Then, the coded video sequence is

decoded in order using headers in the updated dictionary until
decoding succeeds.

E. Header Identification

When decoding a given video sequence data, if the decoder
is not correctly initialized decoding eventually fails. In the case
of the FFMPEG tool, this failure is implicit as the decoder
persistently attempts to decode each subsequent picture until
it reaches the end of coded data. To increase the efficiency of
search, we use other supplementary information. Many widely
used applications, such as FFMPEG, have well-designed built-
in logs. These application logs record important events and
provide critical information about the state of the decoder
when it fails. Our method exploits these error messages both
to identify decoding failures and to investigate the mapping
between error messages and correct parameter values.

During decoding, when the assumed parameter values mis-
match the actual values used for encoding, several error
messages that relate to a missing (top or left) block are logged.
These errors essentially indicate that the decoder is unable to
determine the reference block needed during the decoding of
the current block. Our examination of the error patterns indeed
revealed that a top block unavailable error indicates that at
least one of the core parameters is incorrect. We also identified
that left block unavailable error indicates an incorrect picture
width value. Essentially, setting an incorrect value for the
frame width results in misplacement of decoded picture blocks.
More specifically, when the selected width value is smaller
than the actual value, some picture blocks will inadvertently
be carried over to the next row of blocks. The first misplaced
block in that new row will likely raise this error as there will
be no blocks to the left of it.

To exploit this behavior when exploring the parameter
space, we set the picture width to the smallest possible value of
one without cropping. (It must be noted that core parameters
also include a cropping flag bit to indicate if a picture needs
to be cropped and the amount of cropping along with the
picture width. The former two are set to zeros.) Since frame
resolution for most videos will be higher, this type of error can
be utilized as a condition to test the case when all parameters
but the width are correctly determined. We must note here
that the alternative of setting the width to the highest value
will result in stacking of many blocks in a single row which
is more likely to result in a reference to a non-existing top

block. Therefore, this setting cannot be used as a condition to
test correctness of other core parameters.

Our tests indeed verified that a left block non-present error
is always encountered when the width is set to a smaller
value. However, it is not exclusive to this setting alone and
mismatching values in other core parameters also trigger it.
Therefore, when this error is encountered the correctness of
the width has to be tested by substituting the value of one
with actual width values in the header entries. It must also be
added that with extremely small possibility such an error may
not be encountered when none of the misplaced blocks are
predicted from their left neighboring blocks during encoding.
In this unlikely case, decoding will succeed but the picture
will be rendered at an incorrect width.

Overall, these two types of errors can be utilized to increase
the speed of the search for encoding parameters considerably.
Essentially, if a top-block cannot be found (when width is
set to one), it indicates that at least one of the remaining
core parameters is incorrect. Therefore, all header entries
including those core parameters can be excluded from the
search. Similarly, when a missing left-block error is received,
it is likely that all parameters except for the width have been
correctly identified. In that case, rather than trying all possible
width values, we prioritize the width values observed in the
design set.

F. Picture Validation

As the last step of our method, we verify whether a
reconstructed picture actually exhibits characteristics of real
images. In our tests, we utilized the correlation between the
pictures generated using the identified header and the original
header used for encoding. (In a few cases, we noticed that the
actual video picture was an empty black frame. To take this
case into account we additionally checked if the difference
between the two pictures are non-zero.) In practice, however,
one needs to decide only based on the decoder output. This can
simply be determined based on the absence of any decoding
errors. Further, our decoding attempts show that when the
decoder fails, in most cases a picture cannot be reconstructed,
and in the rare cases that a picture is erroneously constructed,
it can be easily distinguished from real pictures.

Figures [d(a) and [@(b) show two examples where decoding
failed but pictures were nevertheless generated. In contrast,
Figs. flc) and f{d) provide examples of decoding where only
picture height was incorrect. It can be seen that in the latter
two pictures, the video context is still discernible. During
our tests, where we performed tens of millions of decoding
attempts, we determined that most erroneously constructed
frames yield correlation values less than 0.1, with the highest
observed value being 0.25. Hence for the more general case,
this issue can be addressed through building classification
models that represent statistical properties of natural images
and incorrectly decoded pictures as done in [14].

VI. EVALUATION

In assessing the efficiency of our video sequence header-
generation method, we determine the number of trials it takes

(a) (b)

Fig. 4. Examples of pictures generated when parameters were not correct: (a)
the gray screen picture that is encountered most frequently, (b) erroneously
reconstructed picture, (c) and (d) decoding with incorrect picture height.

to identify a valid header entry using our parameter dictionary
as described in Sec. [V] We examine how entropy coding-
mode detection and the use of error messages to validate core
parameters improve the efficiency of search compared to going
over dictionary entries one by one in the order in which they
appear. The conventional approach underlying the commercial
tool Defraser [7] based on stitching previously seen SPS and
PPS headers as a whole is also implemented for comparison
purposes. We will refer to this as the header-stitching method.
For this, we created another dictionary that includes the unique
combination of SPS and PPS headers sorted with respect to
their occurrence frequency in the design set. This dictionary
overall includes 7,006 headers due to inclusion of optional
VUI parameters in some of the SPS NAL units. Measurements
are performed separately on all videos in both the design and
test sets.

A. Experiments on Design Set

This test setting is considered to determine the best achiev-
able performance as we finetune the search method using
aggregate statistics of parameter values obtained over the
design set. In our tests, we selected one coded IDR frame
data from 5,115 randomly selected videos that are encoded
using a unique combination of SPS and PPS units encountered
in the design set. We then attempted to decode each frame
data using five methods. These include the header-generation
method; the search over core parameters separately incor-
porated with decoding error messages and entropy coding-
mode detection; the search over core parameters without the
additional improvements guiding the search; and the header-
stitching method. It must be noted that this measurement
setting reflects the best case for the header-stitching method.

Figure [5] shows the cumulative distribution function (CDF)
of the number of trials it takes to successfully decode each
of the frames taken from the 5,115 videos. As can be seen
in the CDF plots, after 500 trials, the ratio of correctly de-
coded videos reaches 96.4% for the header-generation method
whereas the other four methods can only decode 91.9%,
85.9%, 77.0%, and 40.8% of the videos at this level, respec-
tively. Even at 10 trials, header-generation method is able to
decode 26% of the videos in comparison to 22%, 21%, 14%,
and 5% of other four methods.

The difference between the header-generation and header-
scotching methods can be mainly attributed to two main fac-
tors. First, with header-stitching, headers are sorted based on
the encounter probability of SPS and PPS headers. In contrast,
by only considering core parameters, the header-generation
approach can more reliably sort the headers. Second factor
stems from the fact that our parameter dictionary excludes

1.04

0.8

0.6

CDF

0.4 4

—— Header Generation

Core parameter Search Incorporating Error Messages
—— Core Parameter Search with Entropy Mode Detection
—— Core Parameter Search
0.0 —— Header Stitching

0.2

2000 3000 4000 5000 6000

Number of Decoding Trials until Success

0 1000 7000

Fig. 5. The CDF of the number of trials it takes before successfully decoding
coded frame data of 5,115 videos from the design set with a unique SPS and
PPS combination.

all optional parameters related to post-decoding processing
stages. This effectively reduces the search space for the header-
generation method to 2.6K entries as compared to 7K entries
for the header-stitching method.

Overall, our search results show that it takes on average 116,
147, 263, 405, and 1,792 trials to decode each video using
the above five methods in their respective order. These results
show that the header-generation method offers an improvement
by a factor of 15 in the search speed over the header-stitching
method. Similarly, the use of decoding error messages and the
entropy coding-mode detection combined together provides
close four times improvement in the search speed over core pa-
rameter search alone. They also demonstrate that incorporation
of the entropy coding-mode classifier and the error messages
to identify encoding parameters improves the search speed
by almost 4 times when compared to core parameter search.
Identifying the entropy coding mode effectively reduces the
space by one parameter. More importantly, since picture width
varies over a wide range of values, by isolating it from the
search (i.e., setting it to one) the search becomes even more
efficient.

B. Experiments on Test Set

To validate and compare the performance of header-
generation methods on previously unseen videos, we use the
test set. It must be noted that earlier tests were performed
on a subset of videos that include a sample of each unique
SPS and PPS header combination observed in the design set.
Our analyses on VISION dataset show that different models
tend to use different SPS and PPS headers and within each
model SPS and PPS headers remain largely the same. Over
31 different models from 11 brands in the VISION dataset,
only one model possesses two pairs of SPS and PPS headers,
while all other models possess one pair of headers. Overall,
these 31 models possess 21 unique pairs of SPS and PPS
headers, showing that parameter sets are largely distinctive
and invariant. Therefore, the higher diversity of PPS and SPS
headers potentially indicates the use of a large number of
source cameras and video editing tools in the design set. By
picking one video from each unique header combination, those
results essentially demonstrate the generalization capability of

methods across different models and editing tools. To obtain a
more realistic setting, the test set includes randomly selected
videos to reflect the real-world prevalence of encoding settings.
That is, we impose no restriction on the number of videos that
may have the same SPS and PPS headers.

The videos in the test set are further divided into two
subsets depending on which lbry.tv user account they
are obtained from. The first subset includes 37,460 videos
uploaded by 3,979 users that overlap with the 11,034 users
spanning the design set. Assuming these videos will exhibit
similar provenance characteristics, our goal is to evaluate the
degree of variability in SPS and PPS headers. The second
subset includes 18,561 videos associated with 5,840 non-
overlapping user accounts and will highlight the generalization
capability of our method. The two subsets will be referred
to as overlapping and non-overlapping test videos. Although
the non-overlapping test set contains videos captured by fewer
users when compared to the design set, it nevertheless contains
a large number of previously unseen SPS and PPS headers.
Considering that videos in the VISION dataset yielded 21 SPS
and 11 PPS headers in total, the non-overlapping test set can
be considered quite diverse. Similar to the above test setting,
we extracted one coded IDR frame data from each video for
decoding.

An important difference between using design and test sets
in the experiments is that our header-generation method is
guaranteed (except for two videos) to find a working header
among the first 2,663 dictionary entries. In this test setting,
however, since new SPS and PPS headers are likely to be
encountered the search may well expand into lower ranked
entries of the dictionary that are sorted based on combined
prevalence of individual parameter values. Essentially, the
thoroughness of our dictionary will be determined based on
whether it contains all required header entries and the average
rank of those header entries in the dictionary.

Our examination of videos in the test set revealed that they
include 4,154 SPS and 301 PPS headers out of which 3,025
SPS and 61 PPS headers do not appear in the design set.
More relevantly, these headers include 1,483 unique 10-tuples
of core parameters, 818 of which are also among the 2,663
tuples seen in the design set. Further, these 818 instances cover
55,094 videos in the test set, indicating that their headers will
be identified in less than 2,663 trials, leaving only 927 videos
for a lengthier search. However, it must be remembered that
quantization parameters need not be exact and many of the
927 videos could still be decoded with some of the available
parameters.

Of more immediate concern is whether any of the parame-
ters that are deemed to be invariant take alternative values as
those SPS and PPS headers cannot be composited using our
parameter dictionary. Our examination of the unique SPS and
PPS headers in the test set revealed that bit depths of luma
and chroma samples in 3 videos are different. (It must be
noted that a similar variation in the two parameters was also
observed in two videos of the design set.) This essentially
shows that our parameter groupings are quite general and
that our header-generation method can composite almost all
headers encountered among the test videos.

Figure[6]displays the CDF for the number of trials it takes to
identify a header to decode overlapping and non-overlapping
test videos. Accordingly, after 10 and 500 decoding trials the
header-generation method can decode 87.8% and 99.7% of the
videos in the overlapping video test set. Considering the core
parameter search method, the numbers, respectively, reduce
to 84.6% and 98.9%. The header-stitching method performs
substantially worse than the other two methods, decoding only
59.7% of videos after 10 trials and 95.5% of videos after 500
trials. Fig. [0] also provides the decoding performance of the
three methods on the non-overlapping video test set (dotted
curves). As expected the performance deteriorated for all
methods due to inclusion of videos with unseen headers. For
the header-generation method the performance gap is marginal
at best as the number of decodable videos after 10 and 500
trials, respectively, include 86.6% and 99.6% of videos. This
gap, however, increasingly widens for the other methods. The
difference between the CDFs obtained on overlapping and
non-overlapping test videos is essentially due to the prevalence
of parameter values in the two subsets, which ultimately
affects the order of header entries in the dictionary. Overall,
these results indicate the robustness of the header-generation
approach in handling more diverse encoding settings.

Search results also show that 58 and 81 videos in over-
lapping and non-overlapping test sets are at the tails of the
distributions. That is, parameters comprising these header en-
tries are ranked beyond the first 2.6K entries in the dictionary.
Not including these videos, it takes on average 10.9 and 12.4
trials, respectively, for the header-generation method to iden-
tify correct headers on the overlapping and non-overlapping
videos. Corresponding averages are determined to be 22.7 and
29.8 trials for the core parameter search method in contrast to
108.4 and 151.9 trials for the header-stitching method. Overall,
a very large majority of videos in the test set can be decoded in
11.3 trials using our header-generation method. This number
increases to 24.9 trials when the search is performed over
core parameters and 122.6 trials when header-stitching is
performed.

It must be noted that the average number of decoding
attempts per video on the test set, i.e., Fig. [] is much
smaller than found earlier on the design set, i.e., Fig. [5] This
is because the 5,115 videos used for experiments in Sec.
are all encoded using different headers. Essentially, by
assuming each header is equally likely to be encountered, this
setting provides the worst-case header generation complexity
in terms of the number of decoding trials for the design set. By
contrast, videos in the test set reflect the real-world prevalence
of video headers. That is, some video headers are more
frequently encountered than others. Since those frequently
occurring headers are likely to be higher ranked entries in
the parameter dictionary, they can be decoded in fewer trials,
thereby reducing the overall average. The results on the test
set also show that our parameter dictionary is able to capture
general encoding characteristics and verifies our intuition that
encoding parameters do not vary significantly across videos.

We further analyzed the 58 and 81 videos in the two
subsets that require large numbers of decoding trials. A search
over the coding parameters in the header dictionary will,

1.000 7

0.975 1f/

0.950

0.925 +

CDF

0.900

—— Header Generation (Overlapping Test Videos)
- Header Generation (Non-overlapping Test Videos)
—— Core Parameter Search (Overlapping Test Videos)
+ Core Parameter Search (Non-overlapping Test Videos)
Header Stitching (Overlapping Test Videos)
Header Stitching (Non-overlapping Test Videos)

0.875

0.850

0.825

0.800

0 1000 2000 3000 4000 5000

Number of Decoding Trials until Success

6000 7000

Fig. 6. CDF of the number of trials it takes to successfully decode a video
frame data in the overlapping test set.

respectively, take on average 1.75M and 1.09M attempts to
identify the correct headers for those videos. To determine
the improvement provided by the header-generation method,
we continued the search for 50 of the 139 videos that are
ranked higher in the parameter dictionary based on estimated
encounter probabilities. It took the header-generation method
2,459 attempts on average to identify these headers compared
to 9,778 attempts required by the core parameter search. The
improvement by a factor close to four shows that the header-
generation method becomes more effective in identification of
less prevalent encoding settings due to its ability to eliminate
invalid headers. It must be noted that the header-stitching
method cannot decode any of these videos. We also examined
how unique these videos are in terms of their encoding settings
by determining the total number of videos encoded using the
same parameter values. Our examination revealed that each
encoding setting is used in coding of 1.76 videos on average
with only 9 headers appearing in more than one video. This
shows that the ranks of these headers in the dictionary well
reflect their prevalence in practice.

C. Complexity

The theoretical complexity of all methods, as evaluated in
Figs. [5] and [6] are linear in the number parameter settings (or
headers) available in the dictionary for decoding. It must be
noted that our method sorts parameters settings in relation to
their real-world prevalence observed in the design set, thereby
making the actual decoding time probabilistic depending on
the camera used for capturing a video. Since both our header-
generation method and the header-stitching method rely on
the use of a header dictionary, the time complexities of
both methods are the same from this perspective. Our tests
performed on a workstation with an Intel Xeon (2.4 GHz)
processor and 16 GB memory running the Ubuntu operating
system show that for a given coded IDR frame data, validating
a pair of SPS and PPS headers takes on average 0.11 seconds.

Our header-generation method, however, incurs additional
complexity due to the entropy coding-mode detection and the
incorporation of the decoding error messages to the analysis.
In this regard, the entropy coding-mode detection step is
performed only once for a given coded frame data and can
be performed very fast. Therefore, its impact is insignificant.
The error message analysis involves string comparison and
access to the header dictionary to eliminate invalid entries

which requires lightweight computation compared to the other
operations such as decoder initialization. Our measurements
show that the overall time overhead of the header-generation
method in decoding a frame in comparison to the header-
stitching method is less than 5% for validating a pair of SPS
and PPS headers. It must be noted that parallelization of search
steps will increase the efficiency of these methods linearly with
the degree of parallelism.

VII. DISCUSSION

Video coding offers a large freedom in the choice of param-
eters. Our analysis of the encoding parameters of more than a
hundred thousand videos, however, show that most encoding
settings cluster tightly in the parameter space. In this regard,
we determined that a large number of encoding parameters are
either invariant or not very critical to reconstructing pictures.
This is an indication that certain encoding settings are com-
monly preferred by devices and video processing tools. Results
show that our header-generation method requires 54.6% fewer
trials to identify the encoding parameters in comparison to a
search over core parameters using our parameter dictionary.
The improvement becomes much more apparent when com-
pared with the conventional header-stitching approach, which
uses the previously seen SPS and PPS headers as a whole,
where the number of trials is reduced by 90.8%.

More distinctively, our method relies on error messages
logged by the decoder when using incorrect parameters. This
is an important side information about the state of the decoder.
Therefore, our first intuition was to create a mapping between
parameter values and 67 log messages observed. However,
our exploratory analysis showed that mismatches in any of
the core parameters yield a similar pattern of errors due to the
similar impact they induce on the operation of the decoder. Our
future studies will explore more advanced learning approaches
to distinguish potential differences in messages.

Generalization of our carving capability to arbitrary videos
is another important concern. In this regard, the size of the
design set and the diversity of SPS and PPS headers contained
therein determine the real-world performance of the header-
generation method as these factors influence the sorting of
entries in the parameter dictionary. The test set used for
evaluation of our method included a total of 56K videos with
3,025 SPS and 61 PPS headers that did not appear in the
design set, including 48K videos. We determined that the
search complexity is relatively high only for 139 videos in
the test set, essentially requiring more than a million trials
to generate their headers. This indicates that the design set
is sufficiently comprehensive and the reported performance
results to hold in practice.

In practice, a very large number of videos are generated
and shared through social media platforms, such as YouTube,
Instagram, Tiktok, efc. These videos are typically re-encoded
to meet different viewing options and bandwidth requirements
in a platform dependent manner. Therefore, encoding settings
should exhibit little variation across platform videos. In fact,
our exploratory analysis on videos obtained from YouTube
and Instagram at varying resolutions shows that their encoding

settings are covered by our parameter dictionary among the
top 600 entries. For TikTok videos, we determined that some
of them have width values not seen in our design set. These
findings show that our header-generation method, with some
further finetuning of our parameter dictionary, will potentially
be effective on a large set of videos distributed through the
Internet.

VIII. CONCLUSION AND FUTURE WORK

In this work, we address the problem of automatically
identifying the encoding parameters needed to decode a video
file fragment. This is an important and missing capability in
video file carving, where SPS and PPS headers containing
these parameters comprise only a very small part of a video
file and may be missing for several reasons. Essentially,
our approach composites the missing SPS and PPS NAL
units using a parameter dictionary that reflects the real-world
prevalence of each parameter. Rather than performing an
exhaustive search over all parameters, our method categorizes
parameters into three groups and focuses on only those that
are absolutely necessary and highly variant. Our method
also evaluates statistical characteristics of coded bitstream to
determine the entropy coding mode and, more importantly,
makes use of error messages encountered during decoding to
identify correct parameter values, thereby further reducing the
search complexity.

A key objective of this line of research is the generalization
of this capability to other encoding formats while reducing the
level of domain expertise needed to generate such decoders.
This requires devising approaches that can learn the core
parameters for those codecs in a blind manner, and deter-
mining valid, decoding parameter values associated with a
file fragment in a more dynamic manner rather than using a
precomputed parameter dictionary. Our future work will focus
on building this capability by incorporating more advanced
learning approaches to the proposed parameter search method.

APPENDIX

The parameters that comprise SPS and PPS sequence head-
ers are given in Table [IIl The first column of the table shows
the header type as SPS or PPS, and the second column
provides our designation of each parameter in terms of its
criticality for decoding. The third and fourth columns provide
the name and the defined range of values for each parameter
as specified by the standard. We refer the reader to [10]] for
a detailed description of each parameter. The possible range
of values for each parameter is given in the last column.
The grouping of parameters is observed to be consistent over
both the design and test sets. Only in the context of invariant
parameters, five videos (two in the design set and three in
the test set) out of more than 100K videos are determined
to take alternative values in representing bit depths of luma
and chroma samples. Due to low probability of encountering
this setting, we considered both parameters to be invariant in
value.

It must also be noted that SPS has an optional part that
includes the video usability information (VUI) parameters
which provide additional information about higher-level prop-
erties of video content such as aspect ratio, color space,
chroma location, bitstream restrictions, timing etc. Since VUI
parameters are not involved in decoding of individual pictures,
our header generation method disregards VUI parameters.

TABLE I

CATEGORIZATION OF SPS AND PPS PARAMETERS AND DEFINED RANGE

OF VALUES

[Header | Group |

Variable Name | Possible Value |

pic_width_in_mbs_minus] 0-255
frame_cropping_flag 0-7
L frame_cropping_right 0,1
(3 log2_max_frame_num_minus4 0-12
pic_order _cnt_type 0-2
log2_max_pic_order_cnt_Isb_minus4 0-12
chroma_format_idc 0-3
separate_colour_plane_flag 0,1
bit_depth_luma_minus8 0-6
bit_depth_chroma_minus8 0-6
= frame_cropping_top-Ieft 0-7
2 qpprime_y_zero_transform_bypass_flag 0,1
s delta_pic_order_always_zero_flag 0,1
= offset_for_(non)_ref_pic 231412311
2 or top_to_bottom_field (2224 D-(277-1)
N num_ref_frames_in_pic_order_cnt_cycle 0-255
gaps_in_frame_num_value_allowed_flag 0,1
mb_adaptive_frame_field_flag 0,1
seq_parameter_ set_id 0-31
profile_idc 18 profiles
level_idc 0-255
< constraint_set (0,1,2,3,4,5)_flag 0-1 for each
% seq_scaling_matrix_present_flag 0-16
20 pic_height_in_mbs_minus] 0-255
,g’i‘ frame_mbs_only_flag 0,1
5 frame_cropping_bottom 0-7
= seq_scaling_list_present_flag[i | 0,1
max_num_ref_frames 0-16
direct_8x8_inference_flag 0,1
vui_parameters_present_flag 0,1
entropy_coding_mode_flag 0,1
o pic_init_qp_minus26 (-25)-26
8 transform_8x8_mode_flag 0,1
deblocking_filter_control_present_flag 0,1
bottom_field_pic_order _in_frame_present_flag 0,1
num_slice_groups_minus1 0-7
slice_group_map_type 0-6
run_length_minus1 0-256
= top_left[i] bottom_right[i] 0,1
.g slice_group_change_direction_flag 0,1
s slice_group_change_rate_minus| 0-216
” = pic_size_in_map_units_minus| 0-216
& slice_group_id[i] 0,1
chroma_gp_index_offset (-12)-12
constrained_intra_pred_flag 0,1
redundant_pic_cnt_present_flag 0,1
pic_parameter_set_id 0-255
° seq_parameter_set_id 0-31
§ num_ref_idx_I(0-1)_ default_active_minusl 0-31
X weighted_pred_flag 0,1
g weighted_bipred_idc 0-2
"é pic_init_qs_minus26 (-25)-26
% pic_scaling_matrix_present_flag 0-16
= pic_scaling_list_present_flag[i] 0-256
second_chroma_gqp_index_offset (-12)-12

[1]
[2]

[3]

[4]

REFERENCES

S. L. Garfinkel, “Carving contiguous and fragmented files with fast
object validation,” Digital Investigation, vol. 4, pp. 2—12, 2007.

R. Poisel, S. Tjoa, and P. Tavolato, “Advanced file carving approaches
for multimedia files.” J. Wirel. Mob. Networks Ubiquitous Comput.
Dependable Appl., vol. 2, no. 4, pp. 42-58, 2011.

K. Alghafli, C. Y. Yeun, and E. Damiani, “Techniques for measuring the
probability of adjacency between carved video fragments: The vidcarve
approach,” IEEE Transactions on Sustainable Computing, 2019.

J. Fang, G. Xi, R. Li, Q. Chen, P. Lin, S. Li, Z. L. Jiang, and S.-M. Yiu,
“Coarse-to-fine two-stage semantic video carving approach in digital
forensics,” Computers & Security, vol. 97, p. 101942, 2020.

[5]
[6]
[7]
[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

A. B. Lewis, “Reconstructing compressed photo and video data,” Uni-
versity of Cambridge, Computer Laboratory, Tech. Rep., 2012.

J. Park and S. Lee, “Data fragment forensics for embedded DVR
systems,” Digital Investigation, vol. 11, no. 3, pp. 187-200, 2014.

E. Casey and R. Zoun, “Design tradeoffs for developing fragmented
video carving tools,” Digital Investigation, vol. 11, pp. S30-S39, 2014.
G.-H. Na, K.-S. Shim, K.-W. Moon, S. G. Kong, E.-S. Kim, and
J. Lee, “Frame-based recovery of corrupted video files using video codec
specifications,” IEEE Transactions on Image Processing, vol. 23, no. 2,
pp. 517-526, 2013.

F. Pereira and T. Ebrahimi, The MPEG-4 book. Prentice Hall Profes-
sional, 2002.

T. ITU, “Advanced video coding for generic audiovisual services,” ITU-
T Recommendation H.264, 2003.

Y. Yannikos, N. Ashraf, M. Steinebach, and C. Winter, “Automating
video file carving and content identification,” in IFIP International
Conference on Digital Forensics. Springer, 2013, pp. 195-212.

E. Tandogan, E. Altinisik, S. Sarimurat, and H. T. Sencar, “Tackling
in-camera downsizing for reliable camera ID verification.” Society for
Imaging Science and Technology, 2019.

K. Sheng, X. Liao, Q. Zhang, J. Qu et al., “Video forensic of fragmented
video based on H.264/AVC video compression standard,” in 20714
International Conference on Mechatronics, Electronic, Industrial and
Control Engineering (MEIC-14). Atlantis Press, 2014.

E. Uzun and H. T. Sencar, “Carving orphaned JPEG file fragments,”
IEEE Transactions on Information Forensics and Security, vol. 10, no. 8,
pp. 1549-1563, 2015.

——, “JpgScraper: An advanced carver for jpeg files,” IEEE Transac-
tions on Information Forensics and Security, vol. 15, pp. 1846-1857,
2019.

T. Gloe, A. Fischer, and M. Kirchner, “Forensic analysis of video file
formats,” Digital Investigation, vol. 11, pp. S68-S76, 2014.

M. Tuliani, D. Shullani, M. Fontani, S. Meucci, and A. Piva, “A
video forensic framework for the unsupervised analysis of mp4-like file
container,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 3, pp. 635-645, 2018.

R. R. Lopez, E. A. Luengo, A. L. S. Orozco, and L. J. G. Villalba, “Dig-
ital video source identification based on container’s structure analysis,”
IEEE Access, vol. 8, pp. 36363-36 375, 2020.

C. Q. Huaman, A. L. S. Orozco, and L. J. G. Villalba, “Authentica-
tion and integrity of smartphone videos through multimedia container
structure analysis,” Future Generation Computer Systems, vol. 108, pp.
15-33, 2020.

J. Song, K. Lee, W. Y. Lee, and H. Lee, “Integrity verification of
the ordered data structures in manipulated video content,” Digital
Investigation, vol. 18, pp. 1-7, 2016.

D. Giiera, S. Baireddy, P. Bestagini, S. Tubaro, and E. J. Delp, “We
need no pixels: Video manipulation detection using stream descriptors,”
arXiv preprint arXiv:1906.08743, 2019.

D. Le Gall, “Mpeg: A video compression standard for multimedia
applications,” Communications of the ACM, vol. 34, no. 4, pp. 46-58,
1991.

G. Cote, B. Erol, M. Gallant, and F. Kossentini, “H. 263+: Video coding
at low bit rates,” IEEE Transactions on circuits and systems for video
technology, vol. 8, no. 7, pp. 849-866, 1998.

T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on circuits
and systems for video technology, vol. 13, no. 7, pp. 560-576, 2003.
G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the high
efficiency video coding (hevc) standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, 2012.
“Video developer survey 2019,” https://go.bitmovin.com/
video-developer-survey-2019, (Accessed on 08/29/2021).

“lbry.tv.” [Online]. Available: https://lbry.tv/

C. Galdi, F. Hartung, and J.-L. Dugelay, “Socrates: A database of real-
istic data for source camera recognition on smartphones.” in /JCPRAM,
2019, pp. 648-655.

D. Shullani, M. Fontani, M. Iuliani, O. Al Shaya, and A. Piva, “Vision:
a video and image dataset for source identification,” EURASIP Journal
on Information Security, vol. 2017, no. 1, pp. 1-16, 2017.

“Github - aizvorski/h264bitstream,” https://github.com/aizvorski/
h264bitstream, (Accessed on 04/07/2021).

K. Alghafli and T. Martin, “Identification and recovery of video frag-
ments for forensics file carving,” in 2016 11th International Conference
for Internet Technology and Secured Transactions (ICITST). 1EEE,
2016, pp. 267-272.

https://go.bitmovin.com/video-developer-survey-2019
https://go.bitmovin.com/video-developer-survey-2019
https://lbry.tv/
https://github.com/aizvorski/h264bitstream
https://github.com/aizvorski/h264bitstream

	I Introduction
	II Video Files in Practice
	III Organization of H.264 Coded Data Stream
	III-A Placement of SPS and PPS NAL Units
	III-B What Is in SPS?
	III-C What Is in PPS?

	IV Prevalence of Coding Parameters in Practice
	IV-A Core Parameters
	IV-B Invariant Parameters
	IV-C Interchangeable Parameters

	V Header Generation
	V-A Identifying the Start of Frame Data
	V-B Parameter Dictionary Creation
	V-C Entropy Coding-Mode Detection
	V-D Updating Dictionary
	V-E Header Identification
	V-F Picture Validation

	VI Evaluation
	VI-A Experiments on Design Set
	VI-B Experiments on Test Set
	VI-C Complexity

	VII Discussion
	VIII Conclusion and Future Work
	Appendix
	References

