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EC-SVC: Secure CAN Bus In-Vehicle
Communications with Fine-grained Access Control
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Abstract—In-vehicle communications are not designed for
message exchange between the vehicles and outside systems
originally. Thus, the security design of message protection is
insufficient. Moreover, the internal devices do not have enough
resources to process the additional security operations. Nonethe-
less, due to the characteristic of the in-vehicle network in
which messages are broadcast, secure message transmission to
specific receivers must be ensured. With consideration of the
facts aforementioned, this work addresses resource problems by
offloading secure operations to high-performance devices, and
uses attribute-based access control to ensure the confidentiality of
messages from attackers and unauthorized users. In addition, we
reconfigure existing access control based cryptography to address
new vulnerabilities arising from the use of edge computing and
attribute-based access control. Thus, this paper proposes an edge
computing-based security protocol with fine-grained attribute-
based encryption using a hash function, symmetric-based cryp-
tography, and reconfigured cryptographic scheme. In addition,
this work formally proves the reconfigured cryptographic scheme
and security protocol, and evaluates the feasibility of the proposed
security protocol in various aspects using the CANoe software.

Index Terms—in-vehicle security, access control, attribute-
based encryption, edge computing

I. INTRODUCTION

With the noticeable improvements in vehicles, internal de-
vices in a vehicle start to share an amount of essential data
of the car with each other. The most significant advantage of
data sharing is to improve their data processing performance.
For instance, electronic control unit (ECU), which is the
most common machine sharing data in a car, can exchange
information in order to make an important decision rapidly [1].
Therefore, it is definitely indispensable for ECU to increase
the amount of shared data for its decision performance in the
car. Unfortunately, however, the increase in data to be shared
among the internal devices does not always guarantee good
results due to the existence of latent attackers whose objectives
are to eavesdrop or manipulate the data for misbehaved oper-
ations. The message eavesdropping and modification attacks
can be even effective against the current vehicles because the
typical in-vehicle communications protocol does not provide
data confidentiality and message authentication, which are
the most basic requirements for secure communications [2]-
[7]. In particular, even the most representative in-vehicle
communications protocol, that is, controller area network
(CAN) protocol, has already been considered to be unable
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to satisfy the significant security requirements. This is mainly
due to its obsoleteness, while it has been widely utilized in-
vehicle communications [2], [8]. Moreover, CAN is widely
used in industrial control system (ICS) including electronic
equipments for aviation and navigation, medical devices and
equipments, industrial automation and mechanical control, as
well as vehicles. All of these systems are close to real-
time systems, which can be fatal if security issues occur.
Hence, additional security mechanism such as the fine-grained
access control of message exchange among different entities
is urgently desired in CAN. Therefore, to solve the security
issues of CAN, many researchers have proposed new security
protocols for CAN. The details of previous work are described
in the following Sec. I-A.

A. Related Work

Initial works recognize the problem that ECUs have in-
sufficient resources, such as power and computing capabil-
ity to perform cryptographic protocols for secure in-vehicle
communications [9]-[11]. Pierre et al. [10] presented the
challenges of achieving high-security requirements with the
insufficient power resources in in-vehicle networks. Hisashi et
al. [9] proposed an attestation-based security architecture for
in-vehicle communications using the trusted platform module
(TPM) in all ECUs. They designated resource-rich ECUs as
master ECUs, and used the key predistribution system (KPS)
for the authentication of the software configuration and the
authenticated and encrypted communications. Hendrik et al.
[11] provided a security solution the hardware security module
(HSM) at ECUs and a key master. In the above mentioned
papers, they dealt directly or indirectly the problems of
the limited computing power of ECUs by using additional
hardwares such as TPM and HSM in ECUs. However, as
mentioned earlier, mounting additional hardwares on every
ECUs is costly, which is practically impossible.

Some works have also been proposed for in-vehicle com-
munications security without mounting additional hardware at
ECUs [12]-[15]. Herrewege et al. [12] proposed the backward-
compatible broadcast authentication protocol in CAN. Bogdan
et al. [13] provided a security protocol based on symmetric
primitives using key splitting and message authentication code
(MAC) mixing. They utilized nodes with high-computing
power for distributing keys and a mixed MAC to achieve inter-
group authentication, not one-to-one authentication. Ryo et al.
[14] focused on the problem of detecting spoofing messages in
CAN bus, and proposed the lightweight authentication method.
Chung-Wei et al. [15] provided a security mechanism to keep
CAN bus utilization low. In the above mentioned papers, they
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did not ensure the confidentiality of the data, so they are
vulnerable to eavesdropping attacks.

Some recent works have achieved data confidentiality in in-
vehicle communications [16], [17]. Samuel et al. [16] provided
a security protocol for secure real-time data processing in
CAN through data encryption and authentication technology.
The same authors also proposed a security architecture to
meet the CAN with flexible data rate (CAN-FD) standards
[17]. This work achieved confidentiality, authentication, and
integrity with the limited computing power of ECUs using
cryptographic techniques with relatively low processing time
such as symmetric key cryptography and hash functions. This
work also did not provide a solution to the security issues that
could occur if the high-performance node responsible for key
management is corrupted by an attacker.

To increase the security level of the in-vehicle communica-
tions, a security protocol using public key-based cryptography
was provided for CAN-FD and FlexRay in [18]. However, this
protocol is extremely hard to be executed while driving due
to the limited performance of ECUs. Therefore, it should be
executed in authorized garages or manufacturers, which, is not
good in terms of usability. In addition, all ECUs sharing the
same secret key can have the key exposure problem, caused
by ECUs corrupted by attackers. Therefore, depending on the
data being shared, the key must be shared only with the ECUs
that need the data.

B. Motivation and Contribution

Despite of the intensive efforts for securing vehicle commu-
nications, most of the prior works have some issues as follows.
First, the excessive computing power is required. Complicated
operations are introduced to satisfy the aforementioned secu-
rity requirements [9]-[12], [18]. Generally, ECUs are unable
to process the complex operations since they have lower com-
puting capabilities than that of a typical computer. To reduce
the security computation burden, it has also been proposed
to mount additional components at ECUs such as hardware
security modules, but this leads to additional costs. Second,
the proposed protocols are not secure enough. Some studies
tried to construct their protocols by considering the real-time
constraint of in-vehicle communications. However, they ended
up meeting only low-level basic security requirements using
symmetric-based cryptographic schemes [9], [11], [16], [17],
[19]. Therefore, for secure in-vehicle communications, it is de-
sirable to develop new techniques that give lower computation
burden to ECUs, while providing a higher level of security,
which is the main objective of this paper. Therefore, this paper
proposes a novel secure in-vehicle communications protocol
with fine-grained access control based on edge computing, so-
called EC-SVC, by exploiting the concept of edge computing
to distribute the computation burden at ECUs [20].

The contribution of this paper is as follows.
• EC-SVC is proposed for in-vehicle communications that

support data confidentiality, authentication, integrity, fine-
grained access control, and policy and credential privacy.

• We exploit the concept of edge computing by introducing
the security agent (SA), which handles cryptographic
operations on behalf of low computing power ECUs.
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Fig. 1. Overview of the system model.

In addition, we propose the enhanced attribute-based
encryption with hidden policy and credential, which
achieves attribute-based access control with data confi-
dentiality and policy privacy even against the SA.

• We formally prove the security of the enhanced attribute-
based encryption and the proposed protocol. Furthermore,
by implementing the proposed protocol in CAN, we show
the feasibility of the proposed protocol under the real-
time requirements in in-vehicle communications.

• By focusing on CAN among the in-vehicle network, we
have shown that our work is not limited to the in-vehicle,
but is also practical and feasible in a wide range of ICSs.

The remainder of this paper is organized as follows. Sec.
II describes the system model, security requirements, and
security models. Sec. III introduces the system preliminary
including the newly proposed cryptographic scheme. Sec. IV
describes the key management model and the proposed secu-
rity protocols. Sec. V provides security analysis on proposed
cryptographic scheme and the proposed protocol. Sec. VI
analyzes the performance of the proposed protocol. Finally,
Sec. VII presents a conclusion about this work.

II. SYSTEM AND SECURITY MODELS

In this section, we describe the in-vehicle network model
including the attack model and the security requirements of
the network. We then introduce the security model and some
definitions, which are used to analyze the security of the
proposed protocol.

A. System Model and Security Requirements

1) In-vehicle Network Model: We consider the in-vehicle
network, where there exist two kinds of entities, ECU and on
board unit (OBU) as shown in Fig. 1. All entities connect
to CAN, which is a multi-master network, and communicate
through the CAN bus. Each ECU collects the data from
sensors, and shares it with actuators, other ECUs, and OBU.
The ECU has low computing power, so long processing time
is generally required to execute the advanced cryptography
that provides a high-level of security. On the other hand, the
OBU, which can communicate with nodes inside and outside
of the vehicle, has higher computing power compared to the
ECU. We utilize the OBU as an edge computing node, which
allows to perform cryptography operations, offloaded by
ECUs. We call this type of OBU as the SA [21], and assume
the SA can be an honest-but-curious adversary. In this system



3

model, we also consider security issues that may occur during
offloading the cryptographic works from the ECU to the SA,
and describe the details of the key management model for
attribute-based key exchange in Sec. IV-A.

2) Security Requirements: As shown in Fig. 1, there can
be two types of attackers in in-vehicle network, the passive
attacker and the active attacker. The passive attackers can
be connected to the CAN bus and eavesdrop the messages
in CAN. The active attacker can cause severe problems to
the vehicle by modifying the data sent by the ECU and the
OBU or by sending a wrong key. In addition, the active
attackers may corrupt the OBU and the ECU to obtain their
secrets and use them to participate in communications for
obtaining private data or session keys transmitted on the CAN.
By considering the aforementioned attackers, we propose the
following security requirements for the in-vehicle network and
analyze these security requirements in Sec. V-B.
• Confidentiality : All messages are broadcasted due to the

characteristics of the in-vehicle communications, so an
attacker can easily eavesdrop the messages. Hence, the
confidentiality should be guaranteed, only the intended
recipients can obtain the plaintext of the message.

• Authentication : An attacker may retransmit the message,
which exchanged between entities in the previous session,
to impersonate a legitimate device. Therefore, we need to
achieve mutual authentication to ensure that ECUs and
SA can authenticate each other for the legitimacy.

• Fine-grained Access Control : Most of the transmitted
data in a vehicle are not for all ECUs, but for certain
ECUs. In addition, when a node (e.g., ECU or OBU) is
compromised by an attacker or some malicious nodes are
connected in CAN, the transmitted message in CAN can
be exposed without access control [22], [23]. Therefore,
the fine-grained access control is required in in-vehicle
networks.

• Policy and Credential privacy : A sender encrypts mes-
sages using the given policies to indicate the intended
receivers according to their attributes for access control
of message exchange. The encryption and decryption
procedures should not expose identity information of
ECUs to avoid potential analysis or attacks to disrupt
normal communications [22].

B. Security Definitions of Enhanced Attribute-based Encryp-
tion with Hidden Policy and Credential

To prove the security of the proposed attribute-based en-
cryption scheme in Sec. III, so-called enhanced attribute-based
encryption with hidden policy and credential (EABEHP),
which achieves partial proxy decryption, hidden credential,
and hidden policy against honest-but-curious decryption proxy,
this section defines the security properties of EABEHP.

Definition 1 (C-IND-CPA-RUCA): EABEHP is said to be
ciphertext indistinguishability against chosen plaintext attack
and restricted user coalition attack (C-IND-CPA-RUCA) if
any probabilistic polynomial time (PPT) adversary A has only
negligible advantage to distinguish the ciphertext of two given
messages in the following security game.

1) Setup Phase: The challenger C sets up the EABEHP
scheme and provides the attacker with all the public
parameters of the system.

2) Training Phase 1: A can only corrupt either the
proxy (edge device) or any user except for the target
user. That is, (i) the attacker can corrupt the proxy to
learn its secrets and act on its behalf or (ii) A has the
following abilities.
• A can register a new user or corrupt an honest

user, who do not satisfy a policy P ∗ on the system,
thereby A can learn their secrets and act on their
behalves.

• A can make requests of TransformCipherText,
Extract, and ProxyDecrypt1 to the proxy.

• A can make requests of TimeKeyGen, Transfor-
mUserKey, and Shuffle to honest users.

3) Challenge Phase: A outputs two messages M0 and M1

of equal length, and a policy P ∗ under the following
restriction.
Restriction 1: None of the corrupted users in Training
Phase 1 satisfy P ∗.

C then flips the random coin b
R
∈ {0, 1} and generates

C∗ by encrypting the message Mb under the policy P ∗

by the Encrypt algorithm according to b. C returns C∗

to A.
4) Training Phase 2: A can perform the operations defined

in Training Phase 1, except that none of the corrupted
users can satisfy the policy P ∗.

5) Guessing Phase: A outputs a guessing b′
R
∈ {0, 1}. A

wins the game if b′ = b.

Definition 2 (P-IND-CPA-UCA): EABEHP is said to be
policy indistinguishability against chosen plaintext attack and
user coalition attack (P-IND-CPA-UCA) if all PPT adversaries
only have negligible advantage to distinguish the ciphertext of
two given policies in the following security game.

1) Setup Phase: Same as that in the Definition 1.
2) Training Phase 1: Same as that in the Definition 1.
3) Challenge Phase: A sends a chosen message M∗ and

two chosen policies, P0 and P1, for the encryption of
M∗ under the following restriction.
Restriction 2: All the corrupted users satisfy none of
the policies, P0 and P1, or they all satisfy both policies.
C selects a random bit b ∈ {0, 1} and encrypts M∗ with
the given Pb to generate C∗ according to b.

4) Training Phase 2: Same as that in the Training Phase
1.

5) Guessing Phase: Same as that in the Definition 1.
Definition 3 (Credential Privacy): EABEHP is said to

support credential privacy if all PPT adversaries only have
negligible advantage to distinguish the real credential of the
specified user from the credentials of the other users with non-
negligible advantages as the following game.

1) Setup Phase: Same as that in the Definition 1.
2) Training Phase 1: Same as that in the Definition 1.
3) Challenge Phase: A outputs the credentials of two

users, a selected policy P ∗, and a selected message M .
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C then outputs a ciphertext of M with P ∗ and SKUb

according to b
R
∈ {0, 1}, where the associated attributes

of SKU1
and SKU2

either both satisfy P ∗ or do not
satisfy P ∗.

4) Training Phase 2: Same as that in the Training Phase
1, except that the corruption of the users possessing
SKU1

or SKU2
is not allowed.

5) Guessing Phase: Same as that in the Definition 1.

C. Security Definitions of Secure In-Vehicle Communications
with Access Control

We capture the capabilities of attackers by following defini-
tions in the system model. We first explain the notation used
in the security model. The proposed protocol is called Γ, and
we regard the communication between two users A and B
in communication sessions at t1 and t2 as Γt1A,B and Γt2B,A,
respectively. We describe oracles, propose attackers who can
query these oracles, and define the security of the proposed
protocols according to security requirements.

The oracles used to capture the attacker’s capabilities are as
follows.
• Execute(Γt1A,B , Γt2B,A) : This oracle models all kinds of

passive attackers that can eavesdrop all data between
Γt1A,B and Γt2B,A.

• Send(Γt1A,B , M ) : This oracle models an active attacker
that sends a message M to Γt1A,B .

• Expose(Γt1A,B) : This oracle models the exposure of the
session key of A, shared with B, at communication
session t1.

• Corrupt(Γt1A,B) : This oracle models the exposure of the
long-term secret key of A, shared with B, at communi-
cation session t1.

• Test(Γt1A,B): This oracle models the test of session key
security. When one queries this oracle and both parties,
which are the partners of each other, in the protocol are
accepted, it will return a real session key or a random
string depending on a random bit. Otherwise, it returns
an invalid output.

• TestPolicy(P0, P1,M ) This oracle models to test the
privacy of the given policies for encryption. When one
queries this oracle with the inputs of two given policies,
P0 and P1, and a message M , it will output an encryp-
tion on M with Pb according to the randomly selected
b ∈ {0, 1}.

• TestCert(Γt1A,B , P
∗): This oracle models to test the pri-

vacy of user’s credential. When one queries this oracle
with the input of Γt1A,B and the target policy P ∗, it
will output either the credential of Γt1A,B or a randomly
selected credential with the restriction that the attributes
of both credentials satisfy P ∗ or do not satisfy P ∗.

We also define the security properties of the proposed EC-
SVC according to the security requirements discussed in Sec.
II-A as follows.

Definition 4 (Mutual Authentication): We assume that S
simulates Γt1A,B and Γt2B,A, and interacts withA, who can query
polynomial number of Execute and Send oracles. After A
queries these oracles, it sends a message to be accepted by

Γt1A,B or Γt2B,A, where Γt1A,B or Γt2B,A has not accepted each
other. A has the following advantage

AdvMuAuth
A = Pr[A accepted by Γt1A,B or Γt2B,A]. (1)

The mutual authentication between A and B is guaranteed if
AdvMuAuth

A is negligible.
Definition 5 (Attribute-based Key Exchange): There are S

simulating Γt1A,B and Γt2B,A, and A, who can query polynomial
number of Execute and Send oracles in polynomial time.
After A queries these oracles, if Γt1A,B and Γt2B,A are accepted
by each other with a session key K, A queries Test to obtain
a session key K or a random string according to a random bit
b ∈ {0, 1}. A has the following advantages

AdvAKE
A = Pr[SuccAKE

A ] − 1/2, (2)

where SuccAKE
A is the event that A outputs a guess b′ = b.

If AdvAKE
A is negligible, the attribute-based key exchange

security is achieved.
Definition 6 (Policy Privacy): S simulates Γt1A,B and Γt2B,A,

and interacts with A, who can query polynomial number of
Execute and Send oracles in polynomial time. After this
phase, A queries TestPolicy with message M and two valid
policies, P0 and P1, as the input to obtain a C0 or C1 according
to a random bit b ∈ {0, 1}, where C0 and C1 are encryption
for M with P0 and P1, respectively. A has the following
advantages

AdvPP
A = Pr[SuccPP

A ] − 1/2, (3)

where SuccPP
A is the event that A outputs a guess b′ = b. If

AdvPP
A is negligible, the policy privacy is achieved.

Definition 7 (Credential Privacy): S simulates Γt1A,B and
Γt2B,A, and interacts withA, who can query polynomial number
of Execute and Send at polynomial time. After this phase,
A queries TestCert with target policy P ∗ as the input to
obtain a credential of Γt1A,B or a randomly selected credential
according to a random bit b ∈ {0, 1}, where the attributes of
both credentials satisfy P ∗ or do not satisfy P ∗. A has the
following advantages

AdvCP
A = Pr[SuccCP

A ] − 1/2, (4)

where SuccCP
A is the event that A outputs a guess b′ = b. If

AdvCP
A is negligible, the credential privacy is achieved.

III. SYSTEM PRELIMINARIES

This section introduces the required background for the
proposed protocol including the cryptographic algorithms used
in the protocol.

A. Pseudorandom Function and Permutations

We describe the hash function, e.g., SHA-256, and the
symmetric encryption, e.g., AES128, used in this protocol as
pseudorandom function (PRF) and pseudorandom permutation
(PRP) [24], respectively. First, the PRF [25], [26] defined over
(K,X, Y ) is an efficient and deterministic function, which
returns a pseudorandom output sequence

H : KH ×X → Y, (5)
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where KH is the key space, X ⊆ {0, 1}l1 is the input space,
Y ⊆ {0, 1}l2 , and l1 > l2. The PRP [27] defined over
(K,X) is an efficient and deterministic function which returns
a pseudorandom output sequence

E : KE ×X → X ′, (6)

where KE is the key space, X ⊆ {0, 1}l is the input space,
and X ′ ⊆ {0, 1}l. There is an efficient inversion algorithm
D(KE , X

′) for this PRP. We additionally describe the shuffle
function, which is a kind of pseudorandom permutation to be
used in the EABEHP scheme. The shuffle function has the
same input and output space, which returns a pseudorandom
output sequence

SH : KSH ×X → X, (7)

where KSH is the key space, and X ⊆ {0, 1}lN is the input
and output space. There is an efficient inversion algorithm
SH−1(KSH , X) for this shuffle function.

B. Enhanced Attribute-based Encryption with Hidden Policy
and Credential

1) Intuition: The proposed EABEHP is an enhanced
scheme of the privacy-enhanced attribute-based publishing of
data (PEAPOD) scheme in [22]. In order to leverage edge
computing resources, we use the concept of the security agent
(SA), which is the device with more powerful computational
resource and performs the cryptographic operations, offloaded
by resource-limited devices [20]. Since we consider the SA
as an honest-but-curious, the EABEHP needs to satisfy two
additional security properties: 1) confidentiality against SAs
for proxy decryption, and 2) hidden attributes and policies
against SAs.

First, to achieve the confidentiality of encrypted message
against the proxy, who performs ProxyDecrypt1 with the
given ciphertext, sC ′r and user secret keys, (AKUr , RKUr ),
sC ′r is shuffled by the shuffle function, Shuffle, which takes
the time key ωk of each time slot k. Since ωk is unknown to
the proxy, the proxy cannot recover the original ciphertext C
from the shuffled sC ′r and decrypt the ciphertext successfully.

Second, to conceal the policies of encryption from the proxy
and outsiders, the policy is used to decide to encrypt a message
tuple, which is the divided partial message, i.e., ki, a random
value αi, or 1, depending on that the i-th attribute is required,
unrequired, or irrelevant specified in the policy. Thus, when
any attacker wants to distinguish if a ciphertext is encrypted
with which one of two given policies, where one of them
will be randomly selected as the policy of the encryption,
the attacker has to decrypt the encrypted message tuple first.
Otherwise, all the encrypted message tuples of the ciphertext
are considered as random variables. The attacker will not learn
any policy information if the confidentiality of the message
tuples based on the ElGamal encryption is guaranteed.

Third, since the proxy for partial decryption process, i.e.,
ProxyDecrypt1, needs to know the attribute indices of each
receiver, it may expose user attribute information. Thus, a
permuted attribute indices, Îr, for the receiver r will be given
to the proxy for partial decryption. Since ProxyDecrypt1
takes Îr for the partial decryption proceess, the output will

remain pi × grj(si−s
′
i) for each message tuple, where i is the

inverse permuted attribute index and i′ is permuted i using
a SHωk

. Thus, the receiver, who knows ωk, can calculate Îr
and use the tuples, AMrj = {grjsi}i∈I , for the receiver to
cancel grj(si−s

′
i) to recover each message tuple pi during the

decryption procedure by ProxyDecrypt2.
The proposed scheme consists of ten algorithms.
• Setup(1λ): This algorithm chooses the cyclic group G

of prime order p with a generator g. Next, it chooses a
large prime number q such that q|(p − 1) and random
numbers {ai}i∈I for all attributes of the system, where
I = {1, 2, 3, . . . , N} is the universal set of attribute
indices of the system, and N is the number of system
attributes. After that, the algorithm generates the master
public key, MPK, of the system as

MPK = {g, p, q, {PKSi
= gai}i∈I},

where ai ∈ Z∗q . Then, it randomly chooses a master secret
key MSK = KS and generates a transformation secret
key TK = {TKSi = si}i∈I where ai + si = KS for
all i ∈ I . Finally, it generates a group key Kgroup for all
users in the system. The algorithm then outputs MSK,
MPK, TK, and Kgroup.

• KeyGen(MSK, IDj , Ij): This algorithm generates user
attribute keys, SKUj = {SKUj,i = aj,i}i∈Ij , where
Ij ⊆ I is the set of attributes indices of user j. Next,
it generates a re-encryption key RKUj

=
∑
i∈Ij sj,i for

all attribute indices of the user j where aj,i + sj,i = KS .
This algorithm outputs SKUj

and RKUj
for user j.

• TimeKeyGen(Kgroup, tk): This algorithms takes Kgroup
and the time slot tk as inputs, and generates ωk =
H(rk||Kgroup) as the output, where rk is randomly se-
lected and distinct for different tk.

• TransformUserKey(ωk, SKUj
): This algorithm takes ωk

and SKUj
as inputs, and outputs AKUj

=
∑
i∈Ij aj,i +

ωk as the transformed user attribute key.
• Encrypt(MPK,T, ωk,M ): This algorithm first takes
MPK, T , ωk, and M as inputs, and outputs C as the
ciphertext of M . Here, T = {ti}i∈I is a policy set, where
ti = 1 if the attribute i is required, ti = 0 if the attribute i
is irrelevant, and ti = −1 if the attribute i is unrequired,
and M ∈ Zq is the message to be encrypted. Then, it
generates the message tuples depending on each i ∈ I as

pi =


ki if ti = 1

1 if ti = 0

αi if ti = −1

,

such that
∏

ti∈T∧ti=1,
∀i∈I

pi ≡M (mod q),

for randomly selected αi ∈ Zq . Next, it randomly selects
rj ∈ Zq and encrypts each message tuple, pi, with
PKSi = gai as

C = {A, 〈Bi〉i∈I , D} = {grj , 〈pi(gai)rj 〉i∈I , (g
rj )ωk},

where 〈·〉 means a sequence.
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• Shuffle(C,ωk): This algorithm permutes the order of
tuples by a pseudorandom permutation as

sC = {A, 〈B̂i〉i∈I , D}
= {grj , 〈B̂i = pi′(g

ai′ )rj 〉i∈I∧i′=SHωk
(i), (g

rj )ωk},

where i′ = SHωk
(i), is a shuffle function, which takes

ωk and i ∈ I as inputs and outputs i′ ∈ I .
• TransformCipherText(sC, TK): This algorithm use
TK to transform sC as

sC ′ = {A′, 〈B′i〉i∈I , D
′} = {A, 〈B̂iAsi〉i∈I , D}

= {grj , 〈pi′gai′rj+sirj 〉i∈I∧i′=SHωk
(i), (g

rj )ωk}.

• Extract(sC ′, Îr): This algorithm takes sC ′ and Îr as
inputs and outputs the extracted ciphertext sC ′r. Here,
Îr is a set of elements obtained by inversely permuting
each element i ∈ Ir such as SH−1ωk

(i). It extracts sC ′r
from sC ′ according to Îr as

sC ′r = {A′r, B′r, D′r} = {A′,
∏
i∈Îr

B′i, D
′}

= {A,
∏
i∈Îr

B̂iA
si , D}

= {grj ,
∏
i∈Îr∧

i′=SHωk
(i)

pi′g
ai′rj+sirj , (grj )ωk}.

• ProxyDecrypt1(sC ′r, AKUr
, RKUr

, TK): This algorit-
hm takes sC ′r, AKUr , and RKUr , and TK as inputs,
and outputs the partial decrypted ciphertext sC ′′r and
decryption materials AMrj as

sC ′′r = D′r ·B′r/(A′r)AKUr+RKUr

=

( ∏
i∈Îr∧

i′=SHωk
(i)

pi′

)
(grj )

∑
1 si−si′ ,

AMrj = {(A′r)si}i∈I = {grjsi}i∈I ,

where Nr is the number of attributes of user r,
∑

1 =∑
i∈Îr∧i′=SHωk

(i).
• ProxyDecrypt2(sC ′′r , AMrj , Ir): This algorithm takes
sC ′′r , AMrj , and Ir as inputs, and outputs M as

M = sC ′′r ·
( ∏
i∈Ir

grjsi
)/( ∏

i∈Îr

grjsi
)
.

IV. PROPOSED SECURE IN-VEHICLE COMMUNICATIONS
WITH FINE-GRAINED ACCESS CONTROL BASED ON EDGE

COMPUTING (EC-SVC)

This section present, the proposed EC-SVC protocol includ-
ing the key management and the in-vehicle security protocol.
In the key management, we present the method to install the
symmetric keys as well as the keys in the EABEHP scheme on
each device. In addition, we present the in-vehicle security pro-
tocol that satisfies the security requirements presented in Sec.
II-A. This protocol involves a sender-ECU, receiver-ECUs,
and SA, and includes the authentication process between each

OBU

ECU

Security Agent

ECU

ECU ECU

1) Generate 𝑀𝑆𝐾, 𝑀𝑃𝐾, 𝑇𝐾, 𝐾group, 𝐾SA,ECU𝑗 𝑗∈𝐽
, 𝑆𝐾𝑈𝑗 𝑗∈𝐽

, 𝑅𝐾𝑈𝑗 𝑗∈𝐽

by EABEHP.Setup and EABEHP.KeyGen

3) Group key 
distribution

2) Publish 
𝑀𝑃𝐾

ECU

2) Distribute

𝑆𝐾𝑈𝑗 , 𝐾SA,ECU𝑗 𝑗∈𝐽

for each ECU𝑗

2) Distribute

𝑅𝐾𝑈𝑗 , 𝐾SA,ECU𝑗 𝑗∈𝐽

to the SA

Trust Authority

Manufacturer

Install the keys
to each ECU𝑗

Fig. 2. Long-term secret key management

device, and the EABEHP scheme. We guarantee the security
of the protocol by using nonce, signature, symmetric key
cryptography, hash function, and EABEHP scheme properly.
We first describe the key management and then the in-vehicle
security protocol.

A. Key Management

Figure 2 shows the key management of EC-SVC. The
trust authority (TA) issues the required cryptographic keys
for all entities in the system by the following proce-
dures: (1) TA generates MSK, MPK, TK, Kgroup, and
{KSA,ECUj

}j∈J by EABEHP.Setup. It then generates SKUj

and RKUj
for each ECUj by EABEHP.KeyGen. (2) TA

publishes MPK and keeps MSK secretly. It then distributes
{SKUj ,KSA,ECUj}j∈J to each user j, and RKUj , TK and
all {KSA,ECUj

}j∈J to the SA. (3) The TA sends the group
key Kgroup securely to each ECU by executing the group
key distribution mechanism [28]. Assume that the size of the
security keys is sufficient to provide the security of the system
for the life-time of a vehicle.

B. In-vehicle Security Protocol

This subsection describes the in-vehicle security protocol,
which is the edge computing-based in-vehicle authenticated
key exchange protocol with attribute-based access control in
Fig. 3. The proposed protocol is executed when a vehicle is
started and consists of the following twelve steps.

1) The sender-ECU(ECUS) generates nonce N1 ∈ {0, 1}L
and σ1 = HKSA,ECUS

(IDS||N1). The ECUS then send
{IDS||σ1||N1} to the SA.

2) The SA verifies σ1 and generates nonce N2 ∈ {0, 1}L.
The SA then generates σ2 = HKSA,ECUS

(IDS||N1+1||N2)
and sends {σ2||N2} to the ECUS.

3) The ECUS verifies σ2. If passed, the ECUS executes
ωk = EABEHP.TimeKeyGen(Kgroup, rk). The ECUS
generates data sharing key K ∈ Zq and encrypts
K as K ′ = EKgroup(K). It then computes C =
EABEHP.Encrypt(MPK,T, ωk,K

′). After that, the
ECUS computes sC = EABEHP.Shuffle(C,ωk), and
generates CKS = HKSA,ECUS

(IDS||N1 + 1||N2 + 1)
and σ3 = HCKS(sC). Subsequently, the ECUS send
{sC||σ3} to the SA.

4) The SA generates CKS = HKSA,ECUS
(IDS||N1 + 1||N2

+ 1) and verifies σ3. It then computes sC ′ =
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IDR𝑗 || 𝜎4𝑗 || 𝑁3𝑗 || Reqinfo

Verify 𝜎2 ?= H𝐾SA,ECUS
(IDS || 𝑁1 + 1 || 𝑁2)

𝜔𝑘 = EABEHP.TimeKeyGen(𝐾group , 𝑟𝑘)

Data sharing key 𝐾 ∈ ℤ𝑝
𝐾′ = E𝐾group(𝐾)

𝐶 = EABEHP.Encrypt(𝑀𝑃𝐾, 𝑇, 𝜔𝑘 , 𝐾′)
𝑠𝐶 = EABEHP.Shuffle(𝐶, 𝜔𝑘)

𝐶𝐾S = H𝐾SA,ECUS
(IDS || 𝑁1 + 1 || 𝑁2 + 1)

𝜎3 = H𝐶𝐾S(𝑠𝐶)
𝑠𝐶 || 𝜎3

𝜎1 = H𝐾SA,ECUS
(IDS || 𝑁1)

𝜎′ = H𝐾group(𝐾)

Key Table

Verify 𝜎8𝑗 ?= H(𝐾 || 𝐶3𝑗)

IDR𝑗 = D𝐾(𝐶3𝑗)

𝐶4 = E𝐾(ID1 || ID2 || ⋯ )
𝜎9 = H 𝐾 || 𝐶4

𝜎′

𝜎8𝑗 || 𝐶3𝑗

𝜎9 || 𝐶4

𝐶𝐾R𝑗 = H𝐾SA,ECUR𝑗
(IDR𝑗 || 𝑁3𝑗 + 1 || 𝑁4𝑗 + 1)

D𝐶𝐾R𝑗
𝐶1𝑗 = መ𝐼R𝑗 || 𝐴𝐾𝑈R𝑗

Verify 𝜎6𝑗 ?= H(𝐶1𝑗 || 𝐴𝐾𝑈R𝑗
)

𝑠𝐶R𝑗
′ = EABEHP.Extract(𝑠𝐶′ , መ𝐼R𝑗)

𝑠𝐶R𝑗
′′ , 𝐴𝑀𝑟𝑆 = EABEHP.ProxyDecrypt1(𝑠𝐶R𝑗

′ , 𝐴𝐾𝑈R𝑗
, 𝑅𝐾𝑈R𝑗

, 𝑇𝐾)

𝐶2𝑗 = E𝐶𝐾R𝑗
(𝑠𝐶R𝑗

′′ || 𝐴𝑀𝑟𝑆)

𝜎7𝑗 = H(𝐶2𝑗 || 𝑠𝐶R𝑗
′′ )

Verify 𝜎4𝑗 ?= H𝐾SA,ECUR𝑗
(IDR𝑗 || 𝑁3𝑗)

𝜎5𝑗 = H𝐾SA,ECUR𝑗
(IDR𝑗 || 𝑁3𝑗 + 1 || 𝑁4𝑗)

𝐶𝐾S = H𝐾SA,ECUS
(IDS || 𝑁1 + 1 || 𝑁2 + 1)

Verify 𝜎3 ?= H𝐶𝐾S(𝑠𝐶)

𝑠𝐶′ =EABEHP.TransformCipherText(𝑠𝐶, 𝑇𝐾)

Verify 𝜎1 ?= H𝐾SA,ECUS
(IDS || 𝑁1)

𝜎2 = H𝐾SA,ECUS
(IDS || 𝑁1 + 1 || 𝑁2)

IDS || 𝜎1 || 𝑁1

𝜔𝑘 = EABEHP.TimeKeyGen(𝐾group , 𝑟𝑘)

𝐴𝐾𝑈R𝑗 =EABEHP.TransformUserKey(𝜔𝑘, 𝑆𝐾𝑈R𝑗
)

𝜎4𝑗 = H𝐾SA,ECUR𝑗
(IDR𝑗 || 𝑁3𝑗)

Verify 𝜎5𝑗 ?= H𝐾SA,ECUR𝑗
(IDR𝑗 || 𝑁3𝑗 + 1 || 𝑁4𝑗)

𝐶𝐾R𝑗 = H𝐾SA,ECUR𝑗
(IDR𝑗 || 𝑁3𝑗 + 1 || 𝑁4𝑗 + 1)

𝐶1𝑗 = E𝐶𝐾R𝑗
( መ𝐼R𝑗 || 𝐴𝐾𝑈R𝑗

)

𝜎6𝑗 = H(𝐶1𝑗 || 𝐴𝐾𝑈R𝑗
)

𝜎5𝑗 || 𝑁4𝑗

𝐷𝐶𝐾R𝑗
𝐶2𝑗 = 𝑠𝐶R𝑗

′′ || 𝐴𝑀𝑟𝑆

Verify 𝜎7𝑗 ?= H 𝐶2𝑗 || 𝑠𝐶R𝑗
′′

𝐾′ = EABEHP.ProxyDecrypt2(𝑠𝐶𝑅𝑗
′′ , 𝐴𝑀𝑟𝑆 , 𝐼R𝑗)

𝐾 = D𝐾group(𝐾
′)

Verify 𝜎′ ?= H𝐾group(𝐾)

𝐶3𝑗 = E𝐾(IDR𝑗)

𝜎8𝑗 = H(𝐾 || 𝐶3𝑗)

Verify 𝜎9 ?= H(𝐾 || 𝐶4)
ID1 || ID2 || ⋯ || IDR𝑗 || ⋯ = D𝐾(𝐶4)

Check ID

𝜎2 || 𝑁2

𝐶1𝑗 || 𝜎6𝑗

ECUS ECUR𝑗SA

𝐶2𝑗 || 𝜎7𝑗

Fig. 3. Edge computing-based in-vehicle authenticated key exchange protocol with attribute-based access control

EABEHP.TransformCipherText(sC, TK). After that,
the SA waits for the request message from the ECURj .

5) When the SA needs to retrieve the data, sent by ECURj ,
it computes ωk = EABEHP.TimeKeyGen(Kgroup, rk)
and ARj = EABEHP.TransformUserKey(ωk, SKURj ).
The ECURj then generates nonce N3j ∈ {0, 1}L
and σ4j = HKSA,ECURj

(IDRj ||N3j). Subsequently, the
ECURj sends {IDRj ||σ4j ||N3j ||Reqinfo} to the SA,
where Reqinfo is the message of requesting a process
to obtain a data sharing key K.

6) The SA verifies σ4j first. If passed, the SA generates
nonce N4j ∈ {0, 1}L and σ5j = HKSA,ECURj

(IDRj ||N3j+

1||N4j). The SA then sends {σ5j ||N4j} to the ECURj .
7) The ECURj verifies σ5j and generates CKRj =

HKSA,ECURj
(IDRj ||N3j + 1||N4j + 1). The ECURj en-

crypts {ÎRj ||AKURj} with the generated CKRj as
C1j = ECKRj (ÎRj ||AKURj ) and generates σ6j =
H(C1j ||AKURj ). Then, the ECURj sends {C1j ||σ6j} to
the SA.

8) After the SA receives {C1j ||σ6j}, the SA generates
CKRj = HKSA,ECURj

(IDRj ||N3j + 1||N4j + 1) and then
decrypts C1j by CKRj to obtain the {ÎRj ||AKURj}.

The SA verifies σ6j . The SA then computes sC ′Rj =

EABEHP.Extract(sC ′, ÎRj) and (sC ′′Rj , AMrS) =
EABEHP.ProxyDecrypt1(sC ′Rj , AKURj , RKURj , TK),
where rS is a random number generated by ECUS
during the EABEHP.Encrypt process. The SA then
encrypts {sC ′′Rj ||AMrS} with CKRj to generate C2j ,
and generates σ7j = H(C2j ||sC ′′Rj). It then sends
{C2j ||σ7j} to the ECURj .

9) The ECUS sends a σ′ = HKgroup(K) that allows the
ECUR to verify that it has received the correct sharing
key K.

10) The ECURj decrypts C2j to obtain {sC ′′Rj ||AMrS} and
verifies σ7j = H(C2j ||sC ′′Rj). The ECURj then computes
K ′ = EABEHP.ProxyDecrypt2(sC ′′Rj , AMrS , IRj), and
decrypts it with Kgroup to obtain K. Afterwards, the
ECURj verifies signature σ′. Finally, the ECURj gener-
ates C3j = EK(IDRj) and σ8j = H(K||C3j) and sends
{σ8j ||C3j} to the ECUS.

11) The ECUS stores the ID of the ECURj that exchanged
the data sharing key in the key table. The ECUS verifies
σ8j and decrypts C3j by K to obtain IDRj . The ECUS
then generates C4 = EK(ID1||ID2|| · · · ) for the encryp-
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tion of all the ECURj’s identities and σ9 = H(K||C4).
Subsequently, the ECUS sends {σ9||C4} to the ECURj .

12) The ECURj verifies signature σ9 and decrypts C4. If
the ECURj can find its own identity contained, it can
authenticate the ECUS successfully, which verified the
mutual authentication.

V. SECURITY ANALYSIS

This section proves the security of the cryptographic scheme
proposed by Sec. III-B, and proves the security of the proposed
protocol based on the security definition and model of Sec. II-
C.

A. Security Analysis of Enhanced Attribute-based Encryption
with Hidden Policy and Credential

Theorem 1 (Confidentiality of EABEHP): The proposed
EABEHP is with ciphertext indistinguishability against chosen
plaintext attack and restricted user coalition attack (C-IND-
CPA-RUCA) if the decisional Diffie-Hellman (DDH) assump-
tion holds.
Proof Sketch. The proof of C-IND-CPA-RUCA for the pro-
posed EABEHP consists of two parts. One is the confidential-
ity of the produced ciphertext, i.e., C, in EABEHP. Moreover,
sC ′ and sC ′r are also considered as the ciphertext of EABEHP
since they are transformed from C and the only difference is
that the positions of tuples of ciphertext are shuffled. Thus,
the C-IND-CPA-RUCA security can be proven according to
the same security proof for the proposed PEAPOD in [22]
since the structure of the ciphertext in EABEHP is the same
as that in PEAPOD. The other is the confidentiality of C,
sC ′, sC ′r, and sC ′′r against the proxy for ProxyDecrypt1. The
second part of the proof of C-IND-CPA-RUCA considers that
the confidentiality is guaranteed against the proxy even though
AKU and RKU are known to the proxy. RKU is the re-
encryption key and it preserves the same structure of that in the
PEAPOD scheme. Thus, the exposure of RKU will not affect
the confidentiality of the ciphertext in EABEHP. In addition,
the exposure of AKU will not affect the confidentiality as
well since additional secret key ωk, unknown to the proxy,
is introduced to protect the secrets, aj,i, contained in AKU .
Thus, without known ωk, the proxy cannot eliminate the factor,
gωk , of blinding the message in the ciphertext to break the
confidentiality of EABEHP.

Theorem 2 (Policy Privacy of EABEHP): Policy privacy
holds if no one, including the security agent can learn any
knowledge of the given policy T for encryption in the pro-
posed EABEHP scheme.
Proof Sketch. In EABEHP, a message M to be encrypted will
first be encoded as pi for i ∈ I such that Πti=1∧i∈Ipi = M .
Here, T = {ti}i∈I is a policy set, where ti = 1, 0,−1 if the
attribute i is required, irrelevant, and unrequired respectively.
Here, pi = 1 when ti = 0 and pi = αi when ti = −1, for
randomly selected αi ∈ Zq . Afterwards, one can then encrypt
each pi as (A,Bi, C) with the public key of its corresponding
attribute i. Thus, the only way to learn the given policy I
depends on the generated pi. However, each pi is encrypted
using ElGamal encryption which is the primitive of EABEHP

with indistinguishability under chosen plaintext attack (IND-
CPA) security. Thus, no one can learn any knowledge from
pi by the ciphertext (A,Bi, C). From the above, no one,
including the security agent, can learn the knowledge of policy.
Consequently, EABEHP is with policy privacy.

Theorem 3 (Credential Privacy of EABEHP): The proposed
EABEHP is with hidden credentials against outsider and
decryption proxy if the underlying hash function is a pseudo-
random function, and the shuffle function is a pseudorandom
permutation.
Proof Sketch. Since the attribute information, i.e., AKUr

or
Îr, of each user will be exposed when during the execution
of ProxyDecrypt1 or Extract function, the privacy of user
credential is guaranteed if the original attribute information
cannot be disclosed. (1) AKUr is a combination of ωk and
user secret keys for each attribute generated by the transfor-
muserkey algorithm, where ωk = H(rk||Kgroup), and Kgroup
is a pre-distributed key to legitimate users in the system.
Therefore, no one has non-negligible probability to distinguish
AKUr by distinguishing a ωk from random string based on the
security of pseudorandom function. (2) Îr is the set of inverse
permuted attribute indices from the set of original attribute
indices by a pseudorandom permutation, shuffle function SH
with a given ωk, which is only known between users. Thus, no
one has non-negligible probability to distinguish a permuted
index from an original index based on the security of pseu-
dorandom permutation. Thus, the proposed EABEHP is with
hidden credentials based on the security of the pseudorandom
function and permutations.

B. Security Analysis of EC-SVC Protocol

In this subsection, we present to the security analysis of the
protocol proposed in Sec. IV-B. The proposed protocol proves
that mutual authentication, attribute-based key exchange, pol-
icy privacy, and credential privacy have been achieved as
follows.

Theorem 4 (EC-SVC Security): The proposed EC-SVC
protocol is said to be the attribute-based authenticated key
exchange protocol with hidden policy and credential if H is a
pseudorandom function, ES is a pseudorandom permutation,
and EABEHP is a C-IND-CPA-RUCA-secure and P-IND-
CPA-UCA-secure attribute-based encryption scheme.
The advantage AdvEC-SVC

A that an attacker A break the security
of EC-SVC protocol are given by

AdvEC-SVC
A ≤11AdvH + 5AdvES + 2AdvC-IND-CPA

+ 2AdvP-IND-CPA. (8)

where AdvH is an advantage that breaks the security of the
pseudorandom function, AdvES is an advantage that breaks the
security of the pseudorandom permutation, AdvC-IND-CPA is an
advantage that breaks the security of the C-IND-CPA-RUCA
security of the EABEHP, and AdvP-IND-CPA is an advantage
that breaks the security of the P-IND-CPA-UCA security of
the EABEHP.

We proceed with the security game to prove the security of
the proposed protocol. The security game proceeds each four
requirements mentioned above and claims that the advantages
of A for the proposed protocol can be negligible, depending
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on the advantages of A in each game, where A is an attacker
that breaks the security of mutual authentication, attribute-
based key exchange, policy privacy, and credential privacy.
We denote AdvEC-SVC

A,i as the advantage of A in game Gi.
Game G0 : This is a real game, A has access to

EABEHP’s master public key MPK, all ECU’s identity (ID)
{IDi}i=0,1,.... In addition, A has the ability to query all
oracles specified in Sec. II-C and knows all the structure of
the protocol. Since this paper has shown that EABEHP can be
proven IND-CPA secure by simulating EABEHP in Sec. V-
A, all the parameters related to EABEHP can be successfully
simulated. Therefore, we have

AdvEC-SVC
A = AdvEC-SVC

A,0 . (9)

Game G1 (Mutual Authentication). In the game G1, We
describe the events of the game as follows. E1 is an event
in which A impersonates ECUS by sending the correct σ1
to the SA. The E2 is an event in which A impersonates
the SA by sending the correct σ2 to the ECUS. The E3 is
an event in which A impersonates the ECURj by sending
the correct σ4j to the SA. The E4 is an event in which A
impersonates the SA by sending the correct σ5j to ECURj .
The E5 is an event in which A impersonates the ECURj by
sending the correct σ8j ||C3j to the ECUS. The E6 is an event
in which A impersonates the ECUS by sending the correct
σ9||C4 to the ECURj . We construct a simulator S1 of the
EC-SVC that interacts with A as the security game defined
in Definition 4. In addition, S1 is provided with the master
public key of EABEHP to successfully simulate EC-SVC. If
the E1 happens, S1 can exploit the ability of A to break the
underlying pseudorandom function security. Hence, we have

AdvH ≥ {Pr[SH,E1] + Pr[SH,¬E1]} − 1

2

= {Pr[SH|E1]× Pr[E1] + Pr[SH|¬E1]× (1− Pr[E1]} − 1

2

= {1× AdvE1 +
1

2
× (1− AdvE1)} − 1

2
=

AdvE1

2
, (10)

where SH is the event of distinguishing a pseudorandom
function from a truly random function successfully, the ¬E1

is the complementary event of the E1, AdvE1 is the advantage
of the E1, which is the probability that an attacker sends
a valid σ1 to impersonate an ECUS. Therefore, we have
AdvE1

≤ 2AdvH. For the probabilities of events E2, E3,
and E4, we have AdvE2

≤ 2AdvH, AdvE3
≤ 2AdvH, and

AdvE4
≤ 2AdvH. The security analysis regarding E5 can be

divided into two cases: (1) When E5 happened, S1 can also
break the security of underlying pseudorandom function or
pseudorandom permutation by exploiting the ability of A.
Thus, we have AdvE5

≤ 2AdvES , when S1 simulates the
protocol based on the function, which is either a pseudoran-
dom permutation or a random permutation. In addition, when
S1 simulates the protocol based on the function, which is
either a pseudorandom function or a random function, we have
AdvE5

≤ 2AdvH. From the above, we have

AdvE5 ≤ AdvES + AdvH. (11)

(2) When E5 happened, S1 can also break the security of
underlying pseudorandom permutation or C-IND-CPA-RUCA
by exploiting the ability of A. Thus, we have

AdvE5
≤ AdvES + AdvC-IND-CPA. (12)

Through the results of both cases, we have

AdvE5
≤ AdvES +

1

2
(AdvH + AdvC-IND-CPA). (13)

In the same way, we have AdvE6
≤ AdvES + 1

2 (AdvH +
AdvC-IND-CPA). Finally, we have

AdvEC-SVC
A,0 ≤AdvEC-SVC

A,1 +9AdvH+2AdvES+AdvC-IND-CPA (14)

Game G2 (Attribute-based key exchange). The proposed
protocol achieves attribute-based key exchange through the
enhanced attribute-based encryption with hidden policy and
credential newly proposed in Sec. III-B. In game G2, we
construct a simulator S2 that interacts with A in the security
games defined in Definition 5. S2 is provided with the master
public key of EABEHP to successfully simulate EC-SVC.
A queries the Test after interacting with the security game
with S2. S2 responds to the A with an attribute-based key
K or a random string according to a random bit. If A can
successfully guess the attribute-based key K, S2 can also break
the security of underlying pseudorandom permutation or C-
IND-CPA-RUCA by exploiting the ability of A. Therefore,
we have

AdvES ≥ {Pr[SES ,EAKE] + Pr[SES ,¬EAKE]} − 1

2
= {Pr[SES |EAKE]× Pr[EAKE]

+ Pr[SES |¬EAKE]× (1− Pr[EAKE]} − 1

2
(15)

= {1× AdvEAKE +
1

2
× (1− AdvEAKE)} − 1

2
=

AdvEAKE

2
,

where AdvEAKE , which is the advantage of the EAKE, is proba-
bility that an attacker distinguishes the attribute based key K
from a random string. Therefore, we have AdvEAKE ≤ 2AdvES .
Similar to the game G1, we have AdvEAKE ≤ 2AdvC-IND-CPA.
From the above, we have

AdvEAKE ≤ AdvES + AdvC-IND-CPA. (16)

Therefore, we have

AdvEC-SVC
A,1 ≤ AdvEC-SVC

A,2 + AdvES + AdvC-IND-CPA. (17)

Game G3 (Policy Privacy). The policy privacy of the
proposed protocol can be analyzed in a similar way to the
game G2. In game G3, we construct a simulator S3 that
interacts with A in the security games defined in Definition
6. S3 is provided with the master public key of EABEHP
to successfully simulate EC-SVC. A queries the TestPolicy
after interacting with the security game with S3. S3 responds
to the A with an P0 or P1 according to a random bit. If
A can successfully guess the correct policy, then A has the
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TABLE I
COMPARISON ON SECURITY WITH RELATED WORKS

[9] [11] [12] [13] Our work

(EC-SVC)[14] [16] [17] [18]

Mounted Additional Device
√ √ √

×
×

× × × ×
Message

Authentication and Integrity

√ √ √ √
√

√ √ √ √

Data Confidentiality
√

× × × √
×

√ √ √

Resistance

to Replay Attacks

√
× ×

√
√

√ √ √ √

Attribute-based

Access Control

× × × × √
× × × ×

Privacy Preserving

for Corrupted Devices

- - - - √
- - - -

advantage of breaking P-IND-CPA-UCA security of EABEHP.
Therefore, we have

AdvP-IND-CPA

≥ {Pr[SP-IND-CPA,EPP] + Pr[SP-IND-CPA,¬EPP]} − 1

2
= {Pr[SP-IND-CPA|EPP]× Pr[EPP]

+ Pr[SP-IND-CPA|¬EPP]× (1− Pr[EPP]} − 1

2

= {1× AdvPP +
1

2
× (1− AdvPP)} − 1

2
=

AdvPP

2
, (18)

where EPP is the event that distinguishing the correct policy
from random string with additional advantage, and AdvPP is
the advantage of breaking policy privacy. Thus, we have

AdvEC-SVC
A,2 ≤ AdvEC-SVC

A,3 + 2AdvP-IND-CPA. (19)

Game G4 (Credential Privacy). In game G4, we construct
a simulator S4 that interacts with A in the security games de-
fined in Definition 7. S4 successfully simulates EC-SVC with
the supplied EABEHP’s master public key. After interacting
with the security game with S4, A queries the TestCert. S4

responds to A with a target credential or randomly selected
credential according to a random bit. E9 is an event in which
credentials are successfully guessed in the ProxyDecrypt1 al-
gorithm by adversary A. E10 is a case in which the credentials
are successfully guessed in the Extract algorithm by A. If the
E9 happens, A has the advantage of breaking pseudorandom
function security. Therefore, we have

AdvH ≥ {Pr[SH,E9] + Pr[SH,¬E9]} − 1

2

= {Pr[SH|E9]× PrE9] + Pr[SH|¬E9]× (1− Pr[E9]} − 1

2

= {1× AdvE9
+

1

2
× (1− AdvE9

)} − 1

2
=

AdvE9

2
, (20)

where AdvE9
, which is the advantage of the E9, is the prob-

ability that an attacker distinguishes the real user private key
from a random string. Therefore, we have AdvE9

≤ 2AdvH. In
the same way, for E10 we have AdvE10 ≤ 2AdvES . Therefore,
we have AdvCP ≤ 2AdvH + 2AdvES , where ECP is the event
that distinguishing the target credential from randomly selected

VN1630A Rasperry Pi 3 B+

TMS320C28346

SDS200i

CANoe v12.0

Fig. 4. Performance evaluation environment.

TABLE II
HARDWARE AND SOFTWARE FOR PERFORMANCE EVALUATION

Model Note

Raspberry Pi 3 B+

(Single-board Computer)

Clock speed

: 1.4GHz or 600MHz

TI TMS320C28346

(Micro controller unit (MCU))
Clock speed : 300MHz

SDS200i JTAG Emulator

VN1630A CAN-FD Network Interface

Java JCA/JCE Java Cryptography Package

Code Composer Studio V9.3 MCU Compiler

CANoe V12.0 In-vehicle Network simulator

credential, and AdvCP is the advantage of breaking credential
privacy.

AdvEC-SVC
A,3 ≤ AdvEC-SVC

A,4 + 2AdvH + 2AdvES . (21)

There are no additional advantages beyond those analyzed
in the game above. Thus, by equations (14), (17), (19), and
(21) we can claim that the advantages of A to the proposed
EC-SVC are as given by

AdvEC-SVC
A ≤11AdvH + 5AdvES + 2AdvC-IND-CPA

+ 2AdvP-IND-CPA. (22)

Finally, the overall security comparison between security pro-
tocols and related works is shown in Table I. The work satisfies
all the security requirements without mounting additional
components on ECUs.

VI. PERFORMANCE ANALYSIS

In this section, we evaluate the performance in various
aspects for demonstrating that the proposed security protocol
is practical in in-vehicle scenarios. This work builds up the
testbed based on the hardware and software which are the
Raspberry Pi, TMS320C28346, and CANoe by Vector Co
[29]. Unless otherwise specified, the simulation environment
in Fig. 4 and the specifications of the equipment in Table II
are used. The testbed adopts CANoe to implement in-vehicle
network based on the flexible data rate (CAN-FD) standard
[30]. This section first analyzes the execution time of each
cryptographic algorithm for each device. We then evaluate
the performance of the proposed security protocols in the
simulation environment implemented.
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TABLE III
EXECUTION TIME OF CRYPTOGRAPHIC ALGORITHM

Algorithm execution time (µs)

Algorithm SHA-256 AES128(Enc) AES128(Dec)

ECU 130.8 149.5 198.9

SA (600MHz) 8.4 5.4 6.7

SA (1.4GHz) 3.6 12.7 13.8

TABLE IV
EXECUTION TIME OF EABEHP ALGORITHM

Algorithm execution time (ms)

Number of
system attributes

4 8 12 16

20 24 28 32

EABEHP

Encrypt+Shuffle
ECU

144.7 241.1 338.8 436.9

529.5 635.5 714.8 817.9

EABEHP

TransformCipherText

SA

(600MHz)

7 13 20.9 27.8

34.4 41.8 47.6 54.8

SA

(1.4GHz)

3 6 9 12

14.5 17.5 21.2 23.6

Number of
receiver attributes

4 8 12 16

20 24 28 32

EABEHP

Extract+ProxyDecrypt1

SA

(600MHz)

1.92 2.05 2.25 2.46

2.65 3 3.24 3.64

SA

(1.4GHz)

0.82 0.89 0.96 1.08

1.12 1.25 1.44 1.56

A. Cryptographic Algorithm Evaluation
This subsection evaluates the execution time of the dif-

ferent cryptographic algorithms (i.e., SHA-256, AES-128,
EABEHP). The cryptographic algorithm is implemented and
measured in Java Cryptography Architecture (JCA) / Java
Cryptography Extension (JCE) and Code Composer Studio.
We construct the EABEHP algorithm based on ElGamal
encryption. In addition, for better accuracy, we measure the
execution time for 10,000 times repetitively and obtain the
average execution time. We use the TMS320C28346 as the
ECU and the Raspberry Pi as the SA.

In the proposed security protocol, 48byte input is used
to the SHA256 algorithm, and 16byte output is obtained by
truncated MAC [16], [17], [31]. In addition, 48bytes out of
64bytes in the data payload is used as input data to AES128
algorithm. The length of all messages sent by the ECU
and the SA is 64bytes, and the remnant is assumed to be
padded. Under this description, the measured execution time
of various cryptographic algorithm is shown in Table III. Table
III show the cryptographic algorithm execution time of SHA-
256, AES128 Encryption, and AES128 Decryption at the ECU
and the SA.

Table IV shows the EABEHP Encrypt and Shuffle algorithm
execution time at the ECU1, and the EABEHP Transform-
CipherText execution time and EABEHP Extract and Proxy-
Decrypt1 execution time at the SA. The EABEHP Encrypt
and Shuffle and EABEHP TransformCipherText algorithms

1Note that, it was not possible to perform EABEHP Encrypt and Shuffle
at the ECU due to the hardware limitation. Hence, we obtain the execution
time of them by measuring of Raspberry Pi and then scaling the time by the
execution time ratio of other operations (e.g., SHA-256 and AES128 in Table
IV). We expect that the ECU, developed in the near future, will be able to
support the advanced cryptographic operations.
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Fig. 5. Execution time of the proposed protocol as a function of the data
phase bit rate for different numbers of receiver-ECUs, NECU

rx , and receiver
attributes, N att

rx . Here, the number of system attributes is 16.
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Fig. 6. Execution time of the proposed protocol as a function of the data
phase bit rate for different numbers of receiver-ECUs, NECU

rx , and receiver
attributes, N att

rx . Here, the number of system attributes is 32.

perform exponential operations for each attribute, which sig-
nificantly increases the algorithm execution time as the number
of system attributes increases. On the other hand, the EABEHP
Extract and ProxyDecrypt1 algorithm add multiplication op-
erations as the number of system attributes increases, so the
execution time of the algorithm slightly increases. From Table
III, we can also see that the Encrypt and Shuffle algorithm
occupies the majority of the execution time of the proposed
EABEHP.

B. Security Protocol Evaluation
This subsection measures the execution time of the security

protocol, based on the cryptographic algorithm evaluation.
Using the CANoe v12.0 by Vector Co, we implement an
evaluation environment similar to the real CAN-FD. The
execution time of the proposed protocol is measured by
considering the communication delay as well as the execution
time of the cryptographic algorithms in Tables III and IV
at the CANoe virtual ECU node. Note that, this work also
achieves several additional features, such as attribute-based
access control, and privacy-preserving for corrupted devices in
addition to the security features achieved in existing in-vehicle
security works. Furthermore, since this work proposes the
novel edge computing-based security protocol that achieves a
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higher level of security and has reasonable latency in-vehicle
systems, performance comparisons with other works are not
included in the paper. Instead, we present the performance
evaluation in various aspects to show that the proposed security
protocol is practical.

As shown in previous page, Figs. 5 and 6 show the exe-
cution time of the attribute-based authenticated key exchange
protocols for different data phase bit rates. We perform the
evaluation with the fixed arbitration phase bit rate of 0.5Mbit/s
and adjust the data phase bit rate from 1Mbit/s to 8Mbit/s. The
number of system attributes and receiver attributes is set to 16
and 8, respectively, in Fig. 5, and 32 and 16, respectively, in
Fig. 6. The measurement results when the SA clock speed is
1.4GHz and 600MHz are represented by the solid and dotted
lines, respectively.

From Figs. 5 and 6, we can see that the protocol execution
time decreases as the data phase bit rate increases since the
communication delay in CAN becomes smaller. By comparing
the results with N att

rx = 16 and N att
rx = 8 in Fig. 5 and those

with N att
rx = 32 and N att

rx = 16 in Fig. 6, we can see that
the number of the receiver attributes has little impact on the
protocol execution time, while the number of system attributes
affects significantly on the protocol execution time. However,
note that even with 32 system attributes, which is quite a large
number to classify ECUs since there are many ECUs with
overlapping roles, the execution time of the proposed protocol
is less than 1 second. This means the proposed protocol can
satisfy the practical requirements of in-vehicle networks.

Figure 7 shows the protocol execution time according to the
number of system attributes for different numbers of system
attributes, N att

sys. The number of receiver attributes is set to
be the same for all receivers, where the data phase bit rate
is fixed at 4Mbit/s, the number of receiver-ECUs is 10, and
the clock speed of the SA is 1.4GHz. We can see that the
protocol execution time increases significantly as the number
of system attributes increases while as mentioned above the
number of receiver attributes has little effect on the protocol
execution time. This is because the EABEHP Extract and
ProxyDecrypt1, affected by the number of receiver attributes,
are performed by a high-performance device, i.e., SA, and with
relatively simple operations compared to other EABEHP al-
gorithms. On the other hand, the EABEHP Encrypt algorithm,
affected by the number of system attributes, is performed by
the low-performance device, i.e., ECU, and with the complex
operations.

Figure 8 shows the protocol execution time according to the
number of system attributes for different numbers of senders
and receivers, denoted by NECU

tx and NECU
rx , respectively. Here,

we assume that 10 receivers access the message from one
sender. The different number of senders and receivers are used
: 1 sender and 10 receivers, 2 senders and 15 receivers (5
receivers received messages from both senders), and 2 senders
and 20 receivers (all receivers received messages only from
one sender). We can see that the number of system attributes
have a little impact on the gap in protocol execution time for
the above three cases. This is because, when the priority of the
message is well-established, the cryptographic algorithm exe-
cution time, associated with the number of system attributes,
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Fig. 7. Execution time of the proposed protocol as a function of the number
of receiver attributes, N att

rx for different numbers of system attribute, N att
sys.

Here, the number of receiver-ECUs, NECU
rx is 10.

(𝑚𝑠)

200 300 400 500 600 700 800 900

8

12

16

20

24

28

32

Protocol execution time (ms)

N
u

m
b

er
 o

f 
sy

st
em

 a
tt

ri
b

u
te

s

(# of sender, # of receiver)=(2, 20)

(# of sender, # of receiver)=(2, 15)

(# of sender, # of receiver)=(1, 10)

𝑁tx
ECU = 2, 𝑁rx

ECU = 20

𝑁tx
ECU = 2, 𝑁rx

ECU = 15

𝑁tx
ECU = 1, 𝑁rx

ECU = 10 

Fig. 8. Execution time of the proposed protocol as a function of numbers of
system attribute, N att

sys, for different numbers of sender-ECUs, NECU
tx . Here,

the number of receiver-ECUs, NECU
rx allocated to each sender-ECU is 10.

is generally much longer than the communication delay. Here,
the increase in communication delay due to the increase in the
number of senders who simultaneously transmit the message is
negligible. Figure 9 shows the protocol execution time versus
the data phase bit rate for the above three cases. We can see
that the protocol execution time difference among three cases
becomes smaller as the data phase bit rate increases. This is
because the number of communications is different in three
cases, and the communication delay is inversely proportional
to the data phase bit rate. Hence, the larger the data phase
bit rate gives the less the protocol execution time difference.
Through the results of Figs. 8 and 9, we can see that if the data
phase bit rate is high enough, the time taken to execute the
proposed attribute-based key exchange process on all ECUs
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Fig. 9. Execution time of the proposed protocol as a function of the data
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tx . Here, the number
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rx allocated to each sender-ECU is 10.

will not be significantly affected by the in-vehicle network
size, i.e., the numbers of sender-ECUs and receiver-ECUs.
Therefore, the proposed protocol is expected to be executed in
a reasonable time even for different in-vehicle network sizes,
which shows the feasibility and the practicality of the proposed
protocol.

VII. CONCLUSION
This work proposes an edge computing-based in-vehicle

security protocol with the attribute-based access control that
privacy for policy and credentials. The security of this proto-
col has been proved through security analysis to be limited
to the security of pseudorandom function, pseudorandom
permutation, and C-IND-CPA-RUCA and P-IND-CPA-UCA
EABEHP. Specifically, the performance analysis of the pro-
posed protocol shows the effect of protocol execution time
according to the data phase bit rate, the number of system
attributes, the number of receiver attributes, and the number
of sender and receiver-ECUs. This shows that a high-security
level can be satisfied in an appropriate latency in an in-
vehicle communication environment having a resource-poor
ECU. Hence, this work has demonstrated to support efficient
secure communication with fine-grained access control for in-
vehicle networks.
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