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Abstract—In this paper, we employ a hypergame framework
to analyze the single-leader-multiple-followers (SLMF) Stack-
elberg security game with two typical misinformed situations:
misperception and deception. We provide a stability criterion
with the help of hyper Nash equilibrium (HNE) to investigate
both strategic stability and cognitive stability of equilibria in
SLMF games with misinformation. In fact, we find mild stable
conditions such that the equilibria with misperception and
deception can become HNE. Moreover, we discuss the robustness
of the equilibria to reveal whether players have the ability to keep
their profits under the influence of some misinformation.

Index Terms—Stackelberg Security Game, Hypergame, Mis-
perception, Deception, Cognition, Stability.

I. INTRODUCTION

SECURITY games describe the situation between defend-
ers and attackers, with applications in many fields such

as cyber-physical system (CPS), infrastructure protection, and
counterterrorism problems [1]–[5]. The Stackelberg security
game is one of the significant categories to characterize
practical conflict [1]–[3]. As a fundamental model in [1], the
leader is a defender to prevent invading, while the follower is
an attacker to implement malicious behaviors after observing
the leader’s action. In addition, security models with multiple
followers are also important since followers can not be usually
treated as a monolithic party, considering that they may have
different preferences, capabilities, and operational strategies
[4].

Misinformation occurs in lots of security games [6]–[9],
which may lead to players’ different observations. Specifically,
misperception and deception are two typical misinformed situ-
ations [10]. On the one hand, misperception is usually caused
by external disturbances, bounded rationality, or accidental
errors [11]–[13]. For instance, limited attention of players
in the Internet of Things (IoT) increases cyber risks of the
community [12]. Accordingly, the equilibrium of Stackelberg
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security games with misperception can be described by the
misperception strong Stackelberg equilibrium (MSSE) [9],
where no player can change others’ observations. On the
other hand, deception usually results from belief manipulation,
concealment, or camouflages [14]–[16]. For instance, in CPS,
the network administrator might change the system’s TCP/IP
stack and obfuscate the services running on the port, while the
hacker is probing the system [6]. Accordingly, the equilibrium
of Stackelberg security games with deception can be defined
as the deception strong Stackelberg equilibrium (DSSE) [17],
and the hoaxer can manipulate others’ observations, which is
different from the situation with misperception.

In fact, both DSSE and MSSE reflect players’ strategic
stability, that is, each player has no will to change its own
strategy unilaterally. However, due to misinformation, players’
cognitive stability [18], [19] is crucial for whether players trust
their observations of the game. Actually, players’ suspicions
of their cognitions may ruin the balance or even lead to the
collapse of the model. For example, players may realize the
biased misperception and intend to explore the truth [12],
[20], or the hoaxer does not prefer the current deception
along with unsatisfactory benefits [21], [22]. The most existent
works have not paid enough attention to cognitive stability
of equilibrium analysis in security games, including players
changing their communication neighbors [23], keeping their
current cooperators [24], or maintaining power systems [25].

Fortunately, hypergames provide an effective tool to analyze
both strategic and cognitive stability of games with misin-
formation. Roughly speaking, hypergames describe complex
situations when players have different understandings by de-
composing a game into multiple subjective games [26]. Hyper
Nash equilibrium (HNE) [27] is a core concept in hypergames,
which represents the best response in each player’s subjective
game. Once achieving a HNE, each player not only rejects
changing its strategy unilaterally, but also trusts its observation
of the game since others’ strategies are consistent with its own
cognition. Such analogous discussions on cognitive stability
with HNE have been applied in various circumstances, in-
cluding resource allocation, military conflicts, and economics
[22], [26].

Therefore, the motivation of this paper is to employ a
hypergame framework and HNE to investigate the strategic
stability and cognitive stability of MSSE and DSSE in SLMF
Stackelberg security games with misinformation.
Related Works: Security games with misinformation have
been widely investigated. Misperception is one of the typical
situations with imperfect observations among players, such
as in the infrastructure protection with disturbed invaders
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[1], [28], [29], and in CPS with small random fluctuations
[11], [30]. Deception is another typical situation where some
players mislead others’ observations. In online negotiations,
participants aim to interfere others’ beliefs [8], [31], while in
cyber deception games, the network administrator obfuscates
the services running on the port to deceive hackers [6], [8], [9].
Additionally, in signaling games, a defender sends deceptive
signals to a receiver [31], [32].

Different properties of equilibria appear in security games.
As we know, the Nash equilibrium (NE) is one of the well-
known concepts, and [23], [24] analyzed the conditions when
players prefer to keep their current cooperators by NE in
wireless security problems. With the Stackelberg equilibrium
(SE), [17], [33], [34] analyzed counterterrorism problems with
imitative criminals or different attack types in the single-
leader-single-follower (SLSF) security game, while [25] used
the cost-based SE for the optimal allocation of players’ in-
vestment resources in power systems. Moreover, robustness
in equilibria with misinformation was also widely discussed
in security games. [35] considered the sensor networks’ ro-
bustness capacity for resisting interference signals in Denial-
of-Service (DoS) attack problems, while [14] analyzed the
defender’s robustness against the attacker’s manipulation in
CPS.

Besides strategic stability of equilibria, cognitive stability
has also attracted extensive attention. [19] utilized cognitive
stability to describe whether each player trusts its own cogni-
tion in financial markets without awareness. [21], [22] showed
that the misinformation might ruin the balance among players’
cognitions of the game, and players’ preference changes with
the deception in economics and psychology with deception.
Also, [18], [27] revealed a relationship between HNE and
cognitive stability in human interactive situations.
Contributions: The main contributions are as follows:
• We provide a novel second-level hypergame model for

SLMF Stackelberg security games with misperception
and deception, and present a stability evaluation criterion
by HNE. Moreover, compared with the current stability
analysis in security games [23]–[25], the stability crite-
rion based on HNE reflects that players not only avoid
changing their strategies unilaterally, but also tend to
believe their own cognitions of the game.

• We show two different stable conditions such that MSSE
and DSSE can become HNE. In such stable conditions,
a HNE as an evaluation criterion covers the stable states
when players do not realize the inherent misperception
[27] or the hoaxer has no will to change its manipulation
under deception [22]. Furthermore, we show the broad
applicability of the obtained stable conditions by verify-
ing them in typical circumstances [1], [28], [29].

• With the help of HNE, we also investigate the robustness
of MSSE and DSSE to reveal players’ capacities to
keep their profits. We give lower bounds of MSSE and
DSSE to describe whether players can safely ignore the
misperception and easily implement deception in different
misinformed situations, respectively.

The rest of this paper is organized as follows: Section II
introduces the SLMF Stackelberg security game with misper-

ception and deception, and also describes a second-level Stack-
elberg hypergame model. Section III provides equilibrium
analysis with a stability evaluation criterion. Then Section
IV gives sufficient conditions such that MSSE and DSSE are
HNE, while Section V analyzes the robustness of the derived
equilibria. Additionally, Section VI gives numerical simula-
tions to illustrate our results. Finally, Section VII summarizes
this paper. A summary of important notations is provided in
Table I.

TABLE I
IMPORTANT NOTATIONS

Notations Description

n Number of followers.

l The leader.

P Set of followers.

Ωl Strategy set of the leader.

Ωf Strategy set of followers.

Ul Utility function of the leader.

Uf Set of followers’ utility functions.

G SLMF Stackelberg security game.

θ0 True value of a parameter in G.

θ′ Misinformation of θ0.

Θ Set of all possible θ′.

θ∗ Optimal deception of θ′ by the leader.

H1 First-level hypergame.

H2(θ′) Second-level hypergame with misperception θ′.

H2(Θ) Second-level hypergame with deception in Θ.

BRi Best response of the ith follower.

1n Row vector with all elements of one.

In n× n identity matrix.

int(·) Interior of the set.

χ(·) Indicative function.

‖ · ‖ Euclidean norm.

II. SECURITY GAME AND HYPERGAME

In this section, we formulate two kinds of SLMF Stackel-
berg security games with misperception and deception, respec-
tively, and we provide a second-level Stackelberg hypergame
for SLMF games with misinformation.

A. SLMF Stackelberg Security Game

In the Stackelberg security game model [1], the leader
is a defender, and the follower is an attacker to attack K
targets. The attacker chooses to attack a certain target, while
the defender tries to prevent attacks by covering targets
with resources from a feasible set. In practice, there may
be multiple followers with different preferences, capabilities,
and strategies. For instance, there are multiple layers [2]
and edge caching devices [4] in wireless networks. Also,
governments may be confronted with numerous attackers in
counterterrorism problems [5].

Define the SLMF Stackelberg security game by G =
{
{l}∪

P,Ωl × Ωf , {Ul} ∪ Uf

}
, where l is the leader and P =

{1, . . . , n} is the set of followers. Ωl ⊆ RK is the strategy set
of the leader and Ωf = Ω1×· · ·×Ωn, where Ωi ⊆ RK is the
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strategy set of the ith follower. Also, Ul : Ωl × Ωf → R is
the leader’s utility function and Uf = {U1, . . . , Un}, where
Ui : Ωl×Ωi → R is the utility function of the ith follower. The
leader’s utility is influenced by all players actions, while each
follower’s utility only relies on its own action and the leader’s
action. On this basis, each player aims at maximizing its own
utility function. Denote the target set as T = {t1, . . . , tK},
which each follower (attacker) aims at attacking but the leader
(defender) tries to protect. Then the SLMF game model G
can be presented concisely in Fig. 1. Suppose that the leader
has a resource Rl ∈ R to assign on each target, i.e., xk on

target k with
K∑
k=1

xk = Rl. Then the leader’s strategy is x =

[x1, . . . , xK ]T and its strategy set is denoted by

Ωl = {x|
K∑
k=1

xk = Rl, x
k > 0,∀k = 1 . . . ,K}. (1)

Similarly, the ith follower has a resource Ri ∈ R with the

strategy yi = [y1
i , . . . , y

K
i ]T , where

K∑
k=1

yki = Ri. Then the

strategy set is denoted by

Ωi = {yi|
K∑
k=1

yki = Ri, y
k
i > 0,∀k = 1 . . . ,K},∀i ∈ P. (2)

Moreover, let y = [yT1 , . . . , y
T
n ]T be the strategy profile of all

followers.

Remark 1 Many attack-defense mechanisms can be modeled
by the SLMF Stackelberg security game G. For example, in
CPS [36], the invasion type is the DoS attack, while the
intrusion detection system (IDS), as a defender, monitors the
network with a probability distribution. In counterterrorism
problems [29], terrorists select different attacking options,
like assassination, armed assault, or hijacking, while the
government, as a defender, allocates budgets on cities to
defend against terrorists.

Defender

Targets

Attackers

Fig. 1. SLMF Stackelberg security game model.

As discussed in [1], let U cl (tk) be the leader’s utility when
the leader allocates per unit of resource to target tk with per
unit attacking resource. Uul (tk) is the leader’s utility when the
leader does not allocate per unit of resources to target tk with
per unit attacking resource. Given a strategy profile (x,y), the
leader’s utility function is

Ul(x,y)=

K∑
k=1

(

n∑
i=1

yki )
(
xkU cl (tk)+(Rl − xk)Uul (tk)

)
, (3)

where
n∑
i=1

yki reflects the influence of all followers on target

k. Similarly, the ith follower’s utility consists of U ci (tk) and
Uui (tk). Given the strategy profile (x,y), the ith follower’s
utility function is

Ui(x, yi) =

K∑
k=1

yki
(
xkU ci (tk) + (Rl − xk)Uui (tk)

)
. (4)

If the followers cannot observe the actions of the leader
and all players make decisions simultaneously, then we can
consider the Nash Equilibrium (NE) [1], [37].

Definition 1 A strategy profile (x∗,y∗) is said to be a NE of
the SLMF game G if

x∗ ∈ argmax
x∈Ωl

Ul(x, y
∗),

y∗i ∈ argmax
yi∈Ωi

Ui(x
∗, yi),∀i ∈ P.

On the other hand, when the leader implements an allocation,
followers determine their strategies after observing the leader’s
strategy. Denote the ith follower’s best response to the leader’s
strategy x by

BRi(x) = argmax
yi∈Ωi

Ui(x, yi),∀i ∈ P,

and BR(x) = BR1(x) × · · · × BRn(x). Without loss of
generality, followers can break ties optimally for the leader
if there are multiple best responses. In this case, we introduce
the Strong Stackelberg Equilibrium (SSE) [38].

Definition 2 A strategy profile (x∗,y∗) is said to be a SSE of
the SLMF game G if

(x∗,y∗) ∈ argmax
x∈Ωl,y∈BR(x)

Ul(x,y).

Remark 2 According to [17], the SSE in the SLSF security
game can be reducible to {x∗, k∗}, where the leader’s SSE
strategy is x∗ and the follower attacks target tk∗ . However,
multiple followers may attack different targets, and their SSE
strategies can not be reduced to a single target. Additionally, in
the SLMF game, each follower’s strategy set is a subset of RK ,
and is more complex than a subset of R in [2]. Although our
model has similar utility functions as [29], we focus on that

each follower has its own resource, i.e.,
K∑
k=1

yki = Ri, instead

of that all followers allocate a total resource
n∑
i=1

K∑
k=1

yki = R.

Then we discuss SLMF games with misinformation, when
players have different cognitions. Specifically, misperception
and deception are two typical misinformed situations.

B. Misperception and Deception

We first consider misperception for a situation when there
are imperfect or prejudiced observations/understandings of the
game among players. It is caused by passive factors with
players’ biased cognitions. For example, in communication
channels such as sensor systems, external disturbances may
cause imperfect observations [11], while players with bounded
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rationality may have prejudiced observations in the IoT [12].
Moreover, in the computer and information security, accidental
errors from small random fluctuations also bring players
imprecise observations [30].

Consider that the followers have prejudiced observations of
the security game G, while the leader realizes the situation.
To describe different observations, we consider a parameter
θ0 ∈ Rm in the SLMF game G, and followers’ prejudiced
observations of θ0 are θ′ ∈ Rm, where θ0 and θ′ only
affect followers’ utility functions. Then the SLMF game with
misperception can be denoted by GM (θ0, θ

′) =
{
{l}∪P,Ωl×

Ωf , {Ul} ∪Uf , {θ0, θ
′}
}

. Specifically, Uf = {U1, . . . , Un},
where Ui : Ωl × Ωi × {θ0, θ

′} → R is the utility function of
the ith follower. Here we rewrite the security model without
misperception as G = GM (θ0, θ0).

In addition, given the strategy profile (x,y), the leader’s
actual utility function is Ul(x,y), which is the same as (3).
Also the ith follower’s actual utility function is Ui(x, yi, θ0),
which is exactly (4). However, known to the leader, the ith
follower believes that its own utility function is as follow:

Ui(x, yi, θ
′) =

K∑
k=1

yki
(
xkU ci (θ′, tk) + (Rl − xk)Uui (θ′, tk)

)
.

(5)
Correspondingly, the ith follower’s best response to the

leader strategy x under the prejudiced observation θ′ is

BRi(x, θ′) = argmax
yi∈Ωi

Ui(x, yi, θ
′),∀i ∈ P,

and BR(x, θ′) = BR1(x, θ′)×· · ·×BRn(x, θ′). Similar to SSE,
the leader implements an allocation, and afterward, followers
determine their strategies after observing the leader’s strategy.
Therefore, following the security game with misperception
[9], the equilibrium with misperception can be denoted by
the Misperception Strong Stackelberg Equilibrium (MSSE).

Definition 3 A strategy profile (x∗,y∗) is said to be a MSSE
of the SLMF game with misperception GM (θ0, θ

′) if

(x∗,y∗) ∈ argmax
x∈Ωl,y∈BR(x,θ′)

Ul(x,y).

Next, we address deception for another situation when some
players mislead others’ cognitions with selfish or malevo-
lent motivation. Unlike misperception, deception is caused
by active factors among players with players’ manipulated
cognitions. For instance, each player is explicitly interested in
convincing the others to hold some particular beliefs such as
in authentication protocols and online negotiations [14], [31].
Moreover, the leader may tend to deceive followers like a
network administrator (leader) and a hacker (follower) in CPS
[6], while the network administrator might change a system’s
TCP/IP stack and obfuscate the services running on the port
[8], [9].

In this situation, the leader can manipulate the followers’
observation, while followers are not aware. Set θ0 ∈ Rm as
the true value of the parameter in G. Take Θ ⊆ Rm as the
deceptive set, while the leader manipulates followers’ obser-
vations of the parameter as θ′ ∈ Θ to maximize its own utility
function. Denote the SLMF Stackelberg security game with

deception by GD(Θ) =
{
{l}∪P,Ωl×Ωf×Θ, {Ul}∪Uf , θ0

}
.

Specifically, Uf = {U1, . . . , Un}, where Ui : Ωl×Ωi×Θ→ R
is the utility function of the ith follower. Here we rewrite the
security model without deception as G = GD({θ0}).

Given the strategy profile (x,y, θ′), players’ actual utility
functions are Ul(x,y) and Ui(x, yi, θ0), ∀i ∈ P. Since follow-
ers’ observations are manipulated as θ′, the ith follower regard
its own utility function as Ui(x, yi, θ′), which is generated by
(5) and the domain of Ui contains Θ instead of {θ0, θ

′}.
Therefore, the leader manipulates followers’ observations

of the parameter as θ∗ ∈ Θ to maximize its own utility
function at first. Then, similar to SSE and MSSE, the leader
provides its own strategy, and afterward, each follower acts
according to the observation θ∗ and the leader’s strategy. Thus,
based on the SLSF security game with deception [6], [17], the
equilibrium with deception can be defined as the Deception
Strong Stackelberg Equilibrium (DSSE).

Definition 4 A strategy profile (x∗,y∗, θ∗) is said to be a
DSSE of the SLMF game with deception GD(Θ) if

(x∗,y∗) ∈ argmax
x∈Ωl,y∈BR(x,θ∗)

Ul(x,y),

where θ∗ ∈ argmax
θ′∈Θ

max
x∈Ωl,y∈BR(x,θ′)

Ul(x,y) is the optimal

deception of the leader.

Different from MSSE, DSSE describes a decision with play-
ers’ manipulated cognitions, and the leader can manipulate
followers’ observations of the parameter θ0. The following
assumptions have been widely employed in security games
with deception [1], [6], [17], [32], [33], [36], [39]–[42].

Assumption 1 Θ is compact and convex, while int(Θ) is
nonempty and θ0 ∈ Θ.

Assumption 2 For i ∈ P, k = 1 . . . ,K, U ci (θ′, tk) and
U ci (θ′, tk) are differentiable in θ′ ∈ Θ.

Assumption 3 For k = 1, . . . ,K, U cl (tk) > Uul (tk).

Assumption 4 For θ′ ∈ Θ, i ∈ P, k = 1 . . . ,K, U ci (θ′, tk) <
Uui (θ′, tk).

Assumption 5 There exists k, such that for i ∈ P, l 6= k,
U ci (θ0, tk) > Uui (θ0, tl).

Assumptions 1 and 2 guarantee the existence of a DSSE
of GD(Θ) [6], [39], which are also adopted in real-world
security problems such as unmanned aerial vehicles (UAVs)
security games [40], [41] and moving target defense (MTD)
problems [32]. Furthermore, Assumption 3 indicates that, for
the leader, the unit utility for defending a target is larger than
that without defending. Assumption 4 indicates that, for each
follower, the unit utility for attacking a target is larger than that
without attacking. They are consistent with the fact that the
leader tends to resist attacks and followers tend to implement
invasions [1], [17], [33]. Moreover, Assumption 5 refers to
the situation when there exists a most attractive target for
followers [36], [42], which describes a relationship among
different targets, different from Assumption 4.

Remark 3 In many practical situations, the leader has direct
access to others’ cognition. For example, in CPS, a network
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administrator can obfuscate the services running on the port,
while the administrator knows all the information of the
services [8], [9]. In UAVs security problems, the defender
may show wrong targets’ locations to UAVs, where both
true and wrong locations are detected by the defender [40].
Additionally, in an industrial control system, Stuxnet, as a
leader, can directly obtain the access to the system and feed
fake data to disguise malicious actions [14].

C. Hypergame

The hypergame theory describes different cognitions among
players for the strategic interactions in situations with misin-
formation. It covers misperception or deception, where players
may have biased misperception or can manipulate others’
observations. The main idea of the hypergame is to decompose
complex situations with misinformation into multiple subjec-
tive games. According to [26], each player in a hypergame
may
• have a misled or false understanding of other players’

preferences or utility functions;
• have an incorrect comprehension of other players’ strat-

egy sets;
• be not aware of every one of all players;
• have any combination of the above.

In fact, the hypergame theory has been applied in various
circumstances, such as CPS and economic behaviors [14],
[18], [22]. Benefiting from the subjective games decomposed
by hypergames, the relationship among players’ strategies,
incorporation of opponents’ cognitions, and fears of being out-
guessed are further explored in situations with misinformation.

Remark 4 Standard Stackelberg games describe players’ dif-
ferent acting sequences, where the leader implements strategy
first and followers act after observing the leader’s actions.
Hypergames focus on players’ different cognitions with multi-
ple subjective games. Players play different subjective games
and may also know others’ cognition. Actually, standard
Stackelberg games may be regarded as a special hypergame,
where followers know the leader’s game and follow its action,
and the leader also knows this fact. Since the hypergame is
good at describing complex situations with misinformation, it
helps us analyze both the strategic and cognitive stability of
equilibria with misperception and deception.

There are different levels for describing different cognitive
environments [43]. For instance, the first-level hypergame de-
scribes the situation when players are playing different games,
but no one realizes the fact. Correspondingly, the second-
level hypergame occurs when at least one player is aware that
different games are played. Then we aim at employing the
second-level Stackelberg hypergame to analyze SLMF games
with misperception and deception and providing a criterion for
evaluating the stability of the equilibrium with misinformation.

As we know, both misperception and deception can cause
observation errors of the parameter θ0 in the game. Take
Θ ⊆ Rm as the cognitive set of all followers’ possible
observations and θ0 ∈ Rm as the true value of the parameter in
G. Denote the game under the observation θ′ ∈ Θ by G(θ′) =

{
{l}∪P,Ωl×Ωf , {Ul}∪Uf , θ

′} with Uf = {U1, . . . , Un},
where Ui : Ωl × Ωi × Θ → R is the utility function of
the ith follower. In addition, given the strategy profile (x,y),
players’ actual utility functions are Ul(x,y) and Ui(x, yi, θ0),
∀i ∈ P. However, in all players’ views, the ith follower’s
utility function is Ui(x, yi, θ

′). Here we rewrite the SLMF
game model without any observation error in Section II as
G = G(θ0).

Consider the first-level hypergame to describe a complex
situation in the SLMF game G when there are observed
differences among players, but no one is aware. Concretely,
suppose that all followers’ observations of the parameter are
θ′ ∈ Θ, while the leader’s observation is θ0. For the leader,
denote Gl = G(θ0) as the game of the leader’s self-cognition.
For i ∈ P, denote Gi = G(θ′) as the game of the ith
follower’s self-cognition. Then the situation can be defined as
H1 = {G(θ0),

(
G(θ′)

)
i∈P
}, which is a first-level hypergame

as shown in Fig. 2.

Follower 1 Follower n

First-level hypergame 

Leader 

Fig. 2. First-level hypergame H1.

Moreover, we employ the second-level hypergame to de-
scribe different misinformed situations when all followers do
not realize the observed differences and the leader is aware of
the fact. On the one hand, in the leader’s view, for i ∈ P,
denote Gil as the ith follower’s game under the leader’s
perception. Thus, Gil = G(θ′) since the leader knows the ith
follower’s observation is θ′. Also, denote Gll as the leader’s
game under its own perception. Then Gll = G(θ0) since the
leader’s own observation is θ0. Thus, H1

l = {Gll, (Gil)i∈P}
is a novel first-level hypergame perceived by the leader. On
the other hand, in the view of the ith follower, denote Gli
as the leader’s game and Gii as its own game under the ith
follower’s perception. Thus, Gli = G(θ′) and Gii = G(θ′)
since the ith follower is not conscious with θ′ 6= θ0. Thus,
H1
i = {Gli,Gii} is another first-level hypergame perceived

by the ith follower. Notice that, for all i ∈ P, H1
i and

H1
l are different since the leader notices the cognitive set

Θ but followers do not. Therefore, the different first-level
hypergames perceived by all players form a Stackelberg hyper-
game H2(Θ) = {H1

l , (H1
i )i∈P}, which is also a second-level

hypergame as shown in Fig. 3.
Clearly, H2(Θ) can describe SLMF games with both de-

ception and misperception. For instance, regarding Θ as the
deceptive set, we can rewrite the SLMF game with deception
in Section II as GD(Θ) = H2(Θ). Especially, let Θ = {θ′},
and then the SLMF game with misperception in Section II can
be written as GM (θ0, θ

′) = H2(θ′).
In all players’ views, the leader chooses a strategy with

the utility function Ul(x,y), while the ith follower makes a
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First-level hypergame 

Second-level hypergame 

First-level hypergame First-level hypergame 

Leader 

Leader Leader Leader 

Follower n

Follower nFollower n

Follower 1

Follower 1 Follower 1

Fig. 3. Second-level hypergame H2(Θ).

decision with the utility function Ui(x, yi, θ′), which leads to
a concept called Hyper Nash Equilibrium (HNE) [27].

Definition 5 A strategy profile (x∗,y∗) is said to be a HNE
of H2(Θ) with any fixed θ′ ∈ Θ if

x∗ ∈ argmax
x∈Ωl

Ul(x,y
∗),

y∗i ∈ argmax
yi∈Ωi

Ui(yi, x
∗, θ′),∀i ∈ P.

In fact, HNE is such a strategy profile that is the best
response strategy in everyone’s subjective game. Each player
does not change its strategy unilaterally if all the players play
HNE strategies. It is the same as NE if there is no cognitive
difference. In addition, at HNE, each player can not realize that
its cognition is different from others, since others’ strategies
are consistent with its own anticipation. Then all players have
no incentive to update their observations of the parameter θ0.
Hence, the HNE in our hypergame is a desired equilibrium
with cognitive stability, which was similarly described in
[18], [19]. Compared with previous discussions on equilibrium
stability in security games [23]–[25], HNE helps analyze both
the strategic stability and cognitive stability of SLMF games
with misinformation, and provides a unified framework for
misperception and deception.

Remark 5 The signaling game is a leader-follower game
with deception, where the leader sends deceptive signals to
followers [31], [32]. It usually focuses on whether players
can achieve the equilibrium with deception, which is actually
a learning process to update cognition for followers. Different
from the signaling game, the hypergame concerns the cognitive
stability of games with misinformation [18], [19]. In the cases
of misperception or deception, the cognitive stability plays an
important role since it shows the conditions that each player
trusts its own current cognition. Otherwise, the player’s antic-
ipation may not be consistent with others’ strategies, and thus,
the player may be suspicious about its cognition. For instance,
the hoaxer may not believe in the current deception along
with benefits, while the victim (follower) may be aware of the
biased cognition if the opponents’ best response strategies are
“impractical”. Thus, we adopt the hypergame to analyze the
cognitive stability of the SLMF game with misinformation.

III. EQUILIBRIUM ANALYSIS

In this section, we analyze the equilibria of the proposed
formulations in security games.

With complete information, the following lemma verifies
the existence of NE and SSE in the SLMF game G.

Lemma 1 There exists a NE and a SSE of G.

Proof: Recalling (1) and (2), for i ∈ P, Ωl and Ωi are compact
and convex. Ul(·,y) and Ui(x, ·) are linear for fixed y ∈ Ωf

and = x ∈ Ωl, respectively. By Theorem 2.1 in [44], there
exists a NE of G. Also, based on [1], since BR(x) is compact
and Ul and Ui is continuous, there exists a SSE of G. �

With misperception, the following lemma shows the exis-
tence of a MSSE of H2(θ′), whose proof can be given by
replacing Ui(x, yi) with Ui(x, yi, θ′) in Lemma 1.

Lemma 2 For any θ′ ∈ Rm, there exists a MSSE of H2(θ′).

Moreover, with deception, the next lemma shows the exis-
tence of a DSSE in H2(Θ).

Lemma 3 Under Assumptions 1 and 2, there exists a DSSE
of H2(Θ).

Proof: Denote
(
x(θ′),y(θ′)

)
= argmax

x∈Ωl,y∈BR(x,θ′)

Ul(x,y) for

any θ′ ∈ Θ. Take L(θ′) = Ul
(
x(θ′),y(θ′)

)
and L∗ =

sup
θ′∈Θ

L(θ′). Then there exists a sequence {θj}∞j=1 such that

L(θj) > L∗ − 1
j . Since Θ is compact, there exists a con-

vergent subsequence {θjm}∞m=1, where lim
m→∞

θjm = θ∗ ∈
Θ. Thus, L∗ > Ul

(
x(θjm),y(θjm)

)
> L∗ − 1

jm
. By the

continuity of Ul, lim
m→∞

Ul
(
x(θjm),y(θjm)

)
= L∗. Also,

there is a convergent subsequence {(x(θjmq ), (θjmq ))}∞q=1,
where lim

q→∞
(x(θjmq ), (θjmq )) = (x∗,y∗). Then Ul(x∗,y∗) =

max
θ′∈Θ

max
x∈Ωl,y∈BR(x,θ′)

Ul(x,y). By Lemma 17.30 in [45], y∗ ∈

BR(x∗, θ∗). Then (x∗,y∗, θ∗) is a DSSE of H2(Θ). �
The following example indicates that Assumptions 1 and 2

are fundamental in Lemma 3, since there may be no existence
of DSSE without Assumptions 1 and 2.

Example 1 Consider a SLSF game with Rl = R1 = 1,
K = 2, and Θ = (0, 1). Take U cl (t1) = 1, U c1 (θ′, t1) = θ′−1,
Uu1 (θ′, t1) = θ′, and Uul (t1) = U cl (t2) = Uul (t2) =
U c1 (θ′, t2) = Uu1 (θ′, t2) = 0. Then for any θ′ ∈ Θ, players
take x = [θ′, 1 − θ′]T and y1 = [1, 0]T . Then, the leader’s
profit is Ul(x, y1) = θ′. Since Θ is not closed, there is no
DSSE.

Furthermore, the following theorem shows the existence of
a HNE in H2(Θ).

Theorem 1 Under Assumptions 1 and 2, there exists a HNE
of H2(Θ).

Proof: For any fixed θ′ ∈ Θ, in the leader’s view,
the ith follower acts with Ui(x, yi, θ

′). For any x ∈
Ωl and y ∈ Ωf , denote F (x,y) = {(x̂, ŷ)|x̂ ∈
argmax
x′∈Ωl

Ul(x
′,y), ŷ ∈ BR(x, θ′)}. Take (xj ,yj) as a cover-

gent sequence, where lim
j→∞

(
xj , (y)j

)
= (x∗,y∗). There exists

(x̂j , ŷj) ∈ F (xj , (y)j). Since Ωl × Ωf is compact, there
exists a convergent subsequence {

(
x̂jm , (ŷ)jm

)
}∞m=1, where
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lim
m→∞

(
x̂jm , (ŷ)jm

)
= (x̂∗, ŷ∗). By the continuity of Ul,

Ul(x̂
∗,y∗)= lim

m→∞
Ul
(
x̂jm ,(y)jm

)
= lim
m→∞

max
x′∈Ωl

Ul
(
x′,(y)jm

)
.

According to Lemma 17.30 in [45],

Ul(x̂
∗,y∗) = max

x′∈Ωl
lim
m→∞

Ul
(
x′, (ŷ)jm

)
= max
x′∈Ωl

Ul
(
x′, (y)∗

)
.

Thus, x̂∗ ∈ argmax
x′∈Ωl

Ul(x
′, (y)∗). Similarly, ŷ∗ ∈ BR(x∗, θ′).

Then (x̂∗, ŷ∗) ∈ F (x∗,y∗). According to Theorem A.14
in [44], there exists (x′,y′) such that (x′,y′) ∈ F (x′,y′).
Then (x′,y′) is the best response strategy for everyone in
the leader’s view. Also, in the ith follower’s view, x∗ ∈
argmax
x∈Ωl

Ul(x, y
∗), and y′i ∈ BRi(x′, θ′). Thus, (x′,y′) is a

HNE of H2(Θ). �
The following example indicates that misinformation may

lead to some players’ suspicions on the observation of the
game, since others’ strategies do not match their cognitions.

Example 2 Consider a SLMF game with n = K = 2,
Rl = R1 = R2 = 1, Θ = {0, 1}, and θ0 = 0. Take
Uul (t1) = 2, Uul (t2) = 3, Uu2 (θ′, t1) = Uu2 (θ′, t2) = 0,
and U cl (t1) = U cl (t2) = U c2 (θ′, t1) = U c2 (θ′, t2) = 1.
Denote U c1 (θ′, t1) = Uu1 (θ′, t1) = θ′ and U c1 (θ′, t2) =
Uu1 (θ′, t2) = 1 − θ′. Then the leader’s optimal deception
is θ∗ = 1, and players take x∗ = [0, 1]T , y∗1 = [1, 0]T ,
and y∗2 = [0, 1]T . Notice that the first follower may not
observe the leader’s strategy before attacking [1]. In the first
follower’s view, x∗ is not the best response strategy to y∗,
and players should have taken x′ = [0, 1]T , y′1 = [0, 1]T with
θ0 = 0. Clearly, θ∗ brings more benefits to the leader since
Ul(x

∗, y∗1 , y
∗
2) > Ul(x

′, y′1, y
∗
2). Then the first follower realizes

the misinformation and tends to update its observation.

According to Example 2, players’ suspicions on their cogni-
tions may cause them to update their observations, and even
make the game model collapse. Thus, cognitive stability is
crucial for SLMF games with misinformation. To this end, we
aim at analyzing the cognitive stability and strategic stability
of MSSE and DSSE with the help of HNE.

IV. STABILITY ANALYSIS

It is known that HNE describes a stable state when each
player does not update its own cognitions and strategies. In
this section, we explore conditions to reveal how the MSSE
and DSSE can become a HNE in the Stackelberg hypergame.

A. Stable Conditions

With misperception, MSSE is called stable when players do
not realize the inherent misperception, while, with deception,
DSSE is called stable when the leader has no will to change
its manipulation on followers’ cognitions.

First, in order to evaluate the stability of MSSE, given y ∈
Ωf , θ

′ ∈ Rm, define

SOL(y, θ′) = {y′ ∈ Ωf , λ > 0|A1(θ′)y′ = λBy, A2y
′ = 0},

where

A1(θ′) = [A1(θ′, 1), . . . , A1(θ′, n)],

A1(θ
′,i)=diag

(
Uu1(θ′, t1)−U c1(θ′, t1)
U cl(t1)−Uul (t1)

,. . .,
Uu1(θ′, tK)−U c1(θ′, tK)

U cl(tK)−Uul (tK)

)
,

A2 = diag
(
1nK−χ(y)

)
, B = [IK , IK , . . . , IK ].

Notice that A2y
′ = 0 is equivalent to (y′)ki = 0 if yki = 0 for

any i ∈ P, k = 1, . . . ,K. Here, χ(·) is the indicative function
where χ(x) = 0 iff x = 0.

Let (xMSSE,yMSSE) be a MSSE of H2(θ′). In the following,
we give a result about the MSSE of H2(θ′), whose proof can
be found in Appendix A.

Theorem 2 Under Assumptions 3 and 4, if SOL(yMSSE, θ
′) is

nonempty, then (xMSSE,yMSSE) is also a HNE.

Theorem 2 implies that a MSSE strategy is stable in such
a condition, since such a decision-making process prevents
players from realizing the inherent misperception. Concretely,
for each follower, the leader’s strategy is consistent with each
follower’s anticipation, and its MSSE strategy is also the best
response strategy in its own subjective game. Thus, they can
not be aware of their cognitive errors in H2(θ′), which also
conforms with the two-players game model in [27]. Addi-
tionally, for the leader, Theorem 2 also indicates that, even
if followers cannot observe the consequences of the leader’s
strategy, the leader can safely play a MSSE strategy since it
is still the best response strategy. Furthermore, no matter how
many followers move simultaneously, the conclusion holds in
the SLMF game with misperception H2(θ′), which covers the
situation in [1].

Second, in the view of deception, our major concern is the
stability of DSSE. The following theorem gives a sufficient
condition to guarantee that a DSSE ofH2(Θ) is a HNE, whose
proof can be found in Appendix B.

Theorem 3 Under Assumptions 1-4, if Kmax ∈
argmax
k=1,...,K

U cl (tk) and the leader is able to trick followers

into attacking target tKmax , then the corresponding DSSE of
H2(Θ) is a HNE.

Theorem 3 indicates that a DSSE strategy is stable in such a
sufficient condition, since the leader has no will to change its
manipulation on followers’ cognitions. The deception brings
the leader the most benefit since its DSSE strategy is the
best response strategy. Also, similar to Theorem 2, followers
are not able to find that their observations of θ0 are misled,
because the leader acts as they expect. Thus, followers do not
update their observations, and the leader can safely deceive
followers without being found out. Then the deception result
is stable, as the discussion in [22]. Additionally, no matter how
many followers cannot observe the consequence of the leader’s
strategy, the leader can select a DSSE strategy because it is at
least a HNE strategy for itself. Thus, the leader has no need to
worry whether followers can observe its decision, which also
consists with the analysis of two-players games in [46].

Remark 6 Clearly, MSSE describes a situation caused by
passive factors with players’ biased cognitions, while DSSE
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Fig. 4. Ratios of the two cases in misperception. The x-axis is for the target number in (a)-(c), and for the follower number in (d)-(f). y-axis
is for ratios of Case 1 and Case 2 in 100 instances, which are depicted in blue and red, respectively.

describes another situation caused by active factors among
players with players’ manipulated cognitions. Additionally,
it is called stable with misperception when players do not
realize the inherent misperception, while it is called stable
with deception when the leader has no will to change its
manipulation on followers’ cognitions. On the other hand,
the evaluation processes of stability with misperception and
deception are different. Since deception happens in a cognitive
set, we use the deception’s influences on players to investigate
the stability of DSSE, while for misperception, SOL(y, θ′)
gives how the misperception affects players’ strategies.

B. Typical Cases

Here we investigate several typical cases to further explain
the proposed stable conditions in Theorems 2 and 3, in order to
show them can be widely applied to many practical problems.

1) Players’ Perspective: Consider the SLSF game in [1].
The follower takes strategy y1 ∈ Ω1, and its utility function is
U1(x, y, θ′). For any θ′ ∈ Rm, SOL(y, θ′) can be converted to
SOL(y, θ′) = {y′ ∈ Ωf , λ > 0|A1(θ′, 1)y′ = λy} . It is easy
to verify that SOL(y, θ′) is always nonempty. Then we have
the following result, regarded as an extension of the Theorem
3.9 in [1].

Corollary 1 Under Assumptions 3 and 4, for any θ′ ∈ Rm,
any MSSE is a HNE of the SLSF game H2(θ′).

In addition, players’ DSSE strategies are with a certain θ∗,
and the following result follows directly.

Corollary 2 Under Assumptions 1-4, any DSSE is a HNE of
the SLSF game H2(Θ).

2) Targets’ Perspective: Consider the case that all followers
prefer to attack the same target. Notice that our SLMF game

is with independent targets. Attacks on one target do not
affect others. If followers attack the same target independently,
A1(θ′)y′ = λBy covers the solution to A2y

′ = 0. Thus,
SOL(y, θ′) can be converted to

SOL(y, θ′) = {y′ ∈ Ωf , λ > 0|A1(θ′)y′ = λBy} . (6)

Also, it is easy to see that (6) is always nonempty. Then
we get the following result, which consists with the ‘near
decomposability’ [28].

Corollary 3 Under Assumptions 3 and 4, for any θ′ ∈ Rm,
a MSSE of H2(θ′) is also a HNE if all followers attack the
same target.

3) With Same Perception: If there is no cognitive differ-
ence, followers’ observations of θ0 are true, i.e., θ′ = θ0, and
all players are involved in an identical game G. Then the model
turns into the SLMF game in [34]. Take (xSSE,ySSE) as the SSE
of G. The next result reveals a relationship between SSE and
NE with the same perception.

Corollary 4 Under Assumptions 1, 3 and 4, if SOL(ySSE, θ0)
is nonempty, then (xSSE,ySSE) is also a NE of G.

V. ROBUSTNESS ANALYSIS

In this section, we discuss the robustness of MSSE and
DSSE. As a complement to HNE, we focus on the misinfor-
mation’s influence on players’ actual utility functions, which
refers to players’ capacities to keep their profits.

Conveniently, for any x ∈ Ωl, θ ∈ Θ, i ∈ P, k = 1, . . . ,K,
let gi(x, θ, k) = xkU ci (θ, tk) + (Rl − xk)Uui (θ, tk). Corre-
spondingly, denote

Γ1
i (x, θ) = argmax

k=1,...,K
gi(x, θ, k),
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Γ2
i (x, θ) = argmax

k=1,...,K,k/∈Γ1
i (x,θ)

gi(x, θ, k).

Intuitively, Γ1
i (x, θ) and Γ2

i (x, θ) represent the corresponding
target sets of the two most attractive utilities to the ith follower
under the leader’s strategy x and the observation θ. Moreover,
let

ĝri = gi(xSSE, θ0, k), k ∈ Γri (xSSE, θ0), r ∈ {1, 2}, (7)

5∗i = max
k∈Γ1

i (xSSE,θ0)
‖ 5θgi(xSSE, θ0, k) ‖ . (8)

A. For MSSE

In this situation, the imprecise observation mainly affects
followers, and additionally, the followers’ decisions under
different observations also reflect the game’s performance of
resisting misperception. For instance, in cyber-physical secu-
rity problems, external perturbation influences the followers’
profits through their observations [14]. If the followers’ profits
do not change under the perturbation, the game has a strong
anti-jamming capacity. In the view of bounded rationality such
as computational constraints, emotion, and habitual thoughts,
players have an inherent observation error [12]. If the profits
of followers remain unchanged under bounded rationality, the
game is said to be robust to the inherent systemic uncertainty.
Moreover, for the accidental error, it reveals the tolerance of
the model for the random internal uncertainty, if the accidental
error does not change the followers’ profits [30].

For θ′ ∈ Rm, let yMSSE(θ
′) be the followers’ the MSSE

strategy of H2(θ′) and (xSSE,ySSE) be the SSE of G(θ0). We
are interested in the subset δθ ⊆ Θ such that

Ui
(
xSSE, (ySSE)i, θ0

)
=Ui

(
xSSE, (yMSSE)i(θ

′), θ0

)
,∀θ ∈ δθ, i ∈ P,

(9)
which is regarded as the robustness set of MSSE. The follow-
ing result shows the robustness of MSSE, whose proof can be
found in Appendix C.

Theorem 4 Under Assumptions 1-4,
1) there exists a convex subset δθ ⊆ Θ satisfying (9) with
nonempty int(δθ);
2) moreover, if U ci (θ, tk) and Uui (θ, tk) are convex and ς-
Lipschitz continuous in θ ∈ Θ for all i ∈ P, k = 1, . . .K,

there exists δθ = {θ ∈ Θ :‖ θ − θ0 ‖< ∆θ} satisfying (9) such
that

∆θ=min
i∈P

ĝ1
i − ĝ2

i

5∗i + ςRl
,

where ĝ1
i and ĝ2

i are from (7), and 5∗i is according to (8).

Conclusion 1) of Theorem 4 shows that there is always
a nonempty subset of the observation parameter such that
the MSSE is robust for the followers. Additionally, 2) of
Theorem 4 gives a lower bound for players to ignore the
misperception if the game model satisfies the convexity and
Lipschitz continuity.

B. For DSSE

In the deception situation, the leader deceives followers
by manipulating followers’ observations, and followers are
unaware of the deception. Obviously, the leader will not
deceive if the implementation does not increase its own profit
[33], and it always needs to spend energy for deception [35].
Therefore, the deceiver decides to cheat when the rewards
exceed the lower bound of the deceptive energy. Moreover,
the ridiculous and outrageous deception may cause followers’
suspicions, which may lead to the collapse of the model [21].

Let (xDSSE,yDSSE, θ
∗) be the DSSE of H2(δθ) for the decep-

tive set δθ. We are interested in the subset δθ ⊆ Θ such that

Ul(xSSE,ySSE) = Ul(xDSSE,yDSSE), ∀θ ∈ δθ, (10)

which is regarded as the robustness set of DSSE. The follow-
ing theorem reveals the robustness of DSSE, whose proof can
be found in Appendix D.

Theorem 5 Under Assumptions 1-5,
1) there exists a convex subset δθ ∈ Θ satisfying (10) with
nonempty int(δθ);
2) moreover, if U ci (θ, tk) and Uui (θ, tk) are convex and ς-
Lipschitz continuous in θ ∈ Θ for all k = 1, . . .K, i ∈ P, there
exists δθ = {θ ∈ Θ :‖ θ − θ0 ‖< ∆θ} satisfying (10) such that

∆θ = min
i∈P

ĝ1
i − ĝ2

i

2ςRl
,

where ĝ1
i and ĝ2

i are from (7), and 5∗i is according to (8).

Conclusion 1) of Theorem 5 shows that there is always
a nonempty subset of the observation parameter such that the
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Fig. 6. Ratios of the two cases in deception. The x-axis is for the target number in (a)-(c), and for the follower number in (d)-(f). y-axis is
for ratios of Case 3 and Case 4 in 30 instances, which are depicted in blue and red, respectively.

leader does not implement deception, since tiny deception does
not bring the leader more benefits. Moreover, 2) of Theorem
5 gives a lower bound if utility functions satisfy the convexity
and Lipschitz continuity. From the perspective of energy, if
the leader wants more benefits from deception, it needs to pay
energy no less than the lower bound ∆θ. Therefore, it can be
regarded as a tradeoff for the leader.

Remark 7 The robustness of the MSSE indicates that fol-
lowers can ignore the misperception, while the robustness of
the DSSE means the leader does not implement deception
in this region. On the other hand, the proofs of robustness
under misperception and deception are different. We consider
Assumption 5 in the robustness analysis of deception since the
deceptive strategy is affected by followers’ utility functions in
different targets. Moreover, the proof for the misperception
focuses on followers’ profits under the fixed leader’s strategy,
while the proof to handle the deception counts in the influence
of the leader’s deceive strategy on followers’ actions.

VI. EXPERIMENT

In this section, we provide numerical simulations for the
stability and robustness of MSSE and DSSE.

A. Stable Condition for MSSE

1) Inspired by the single-leader-single-follower game in
infrastructures protection problems [1], with misperception θ′,
we verify Theorem 2 by a numerical simulation. We consider
models for K = 10, 15, . . . , 50 when n = 5, 10, 15, and other
models for n = 10, 15, . . . , 50 when K = 5, 10, 15, respec-
tively. In each model, we randomly generate 100 instances
as follows. For the leader, U cl (tk) and Uul (tk) are uniformly
generated in the ranges [5, 10] and [0, 5], while for the ith

follower, U ci (θ′, tk) and Uui (θ′, tk) are uniformly generated in
the ranges [0, 5] and [5, 10]. Rl and Ri are uniformly generated
in the range [1, 5]. Moreover, we compute MSSE of H2(θ′)
by the extension of the mixed-integer linear program [1]:

max
x,y,a

K∑
k=1

(

n∑
i=1

yki Ri)(x
kU cl (tk)+(Rl − xk)Uul (tk)),

s.t. 0 6 ai −Rigi(x, θ′, k) 6 (1− yki )M,
K∑
k=1

xk = Rl, x
k > 0,

K∑
k=1

yki = 1, yki ∈ {0, 1},

a = [a1, . . . , an]T ∈ Rn,∀i ∈ P, k=1, . . .,K,

(11)

where M = 109 is a sufficiently large number. Take the MAT-
LAB toolbox YALMIP [48] to solve (11) with the terminal
condition U

q−Uq
|Uq| < 10−6, where U

q
and Uq are the upper

and lower bounds of the objective function in qth iteration.
Set (xMSSE,yMSSE) as the MSSE strategy of each instance.

Case 1: (xMSSE,yMSSE) is a HNE when SOL(yMSSE, θ
′) is

nonempty.
Case 2: SOL(yMSSE, θ

′) is nonempty when (xMSSE,yMSSE) is a
HNE.

In Fig. 4, the ratio of Case 1 is always 100%, which verifies
Theorem 2. Also, the ratio of Case 2 is always larger than 85%.
Therefore, when (xMSSE,yMSSE) is a HNE, the stable condition
of Theorem 2 can cover most instances.

2) Consider a single-leader-two-followers model in MTD
problems [32]. Take n = K = 2, Rl = Ri = 1, Θ = [0, 1],
U c2 (θ′, t1)=0.041((θ′−0.5)2−10+a)2+4.305, U c2 (θ′, t2)=0,
Uu2 (θ′, t1) = −0.05((θ′ − 0.5)2 + 10 − a)2 + 5.1532, and
Uu2 (θ′, t2) = −0.004((θ′−0.5)2−10+a)2+0.82, where a ∈ R
is a parameter in attackers’ migration cost. Set a = 0.2, 0.3,
and 0.4 in Fig. 5(a), 5(b), and 5(c), respectively. In Fig. 5(a),
MSSE is always not HNE, and no cognitively stable MSSE



11

(a) Uc
l (t1) = 3, Uc

l (t2) = 6. (b) Uc
l (t1) = 3.2, Uc

l (t2) = 2.

Fig. 7. To find cognitively stable DSSE with different environment settings. The blue line describes for the leader’s utility UL of MSSE with
different θ′ ∈ Θ, while the red line describes the leader’s utility UL of HNE with different θ′ ∈ Θ. Besides, the light green region exhibits
UL of DSSE since the leader aims to maximize its own utility among all possible θ′.

can be found by Theorem 2. Further, in Fig. 5(b), there is
only one cognitively stable MSSE when θ′ = 0.5. In this
case, it is usually hard for the player to reach the cognitively
stable MSSE in MTD problems [32], since the probability
for finding such a singleton is zero. However, by verifying
the stable condition in Theorem 2, we obtain a stable MSSE
precisely and conveniently. Fig. 5(c) shows a similar result,
and we can improve the efficiency to find a cognitively stable
MSSE once the stable condition in Theorem 2 is verified.

B. Stable Condition for DSSE

1) Similar to security problems in deployed systems [17],
we verify Theorem 3 by a numerical simulation. We consider
models for K = 1, . . . , 5 when n = 1, 3, 5, and other
models for n = 1, . . . , 5 when K = 1, 3, 5, respectively. In
each model, we randomly generate 30 instances as follows.
Uul (tk), U ci (tk), Ri, and Rl are uniformly generated in the
range [5, 10], and U cl (tk), Uui (tk) are uniformly generated in
the range [0, 5]. Take Θ = [0, 5]nk ⊂ RnK . Concretely,
for any θ′ ∈ Θ, θ′ = [θ′1,1, . . . , θ

′
1,K , . . . , θ

′
n,1, . . . , θ

′
n,K ]T ,

where θ′i,k ∈ [0, 5]. For the followers under the observation
θ′, set U ci (θ′, tk) = U ci (tk) + θ′i,k and Uui (θ′, tk) = Uui (tk) +
θ′i,k. We compute DSSE of H2(Θ), similar to (11). Take
(xDSSE,yDSSE, θ

∗) as the DSSE strategy of each instance.
Case 3: (xDSSE,yDSSE) is a HNE when the leader is able to

trick followers into attacking target tKmax , where Kmax ∈
argmax
k=1,...,K

U cl (tk).

Case 4: the leader is able to trick followers into attacking
target tKmax when the DSSE strategy is a HNE.
The above two cases are represented in blue lines and red
lines.

In Fig. 6, the ratio of Case 3 is always 100%, which verifies
Theorem 3. Also, the ratio of Case 4 is always larger than
60%. Hence, when the DSSE is a HNE, the stable condition
of Theorem 3 can cover many instances.

2) Consider a single-leader-two-followers model in infras-
tructures protection problems [33]. Take n=K=2, Rl=Ri=1,
Θ=[0, 1], Uul (t1)=2, Uul (t2)=1, U c1 (θ′,t1)=3, U c1 (θ′,t2)=1,
Uu1 (θ′, t1) = 4, Uu1 (θ′, t2) = 2, U c2 (θ′, t1) = −2.52θ′ + 1.428,
U c2 (θ′, t2) = 0, Uu2 (θ′, t1) = −0.4θ′ + 2, and Uu2 (θ′, t2) =
−0.16θ′ + 0.504. Also, take U cl (t1) = 3, U cl (t2) = 6 in Fig.
7(a) and U cl (t1) = 3.2, U cl (t2) = 2 in Fig. 7(b), where U cl (tk),

the reward for protecting tk, is different in situations with
different leader’s forms. In the environment setting of Fig.
7(a), no DSSE is HNE. Neither can the previous work [33] find
the cognitively stable DSSE, nor can our proposed condition
in Theorem 3 be verified. However, the phenomenon changes
in Fig. 7(b), because we can find a cognitively stable DSSE,
i.e., HNE, once the stable condition in Theorem 3 is satisfied.
Thus, our proposed framework and conclusion in Theorem 3
actually provide a way to tell the differences among various
environment settings when DSSE is HNE.

C. Robustness of MSSE: in Counterterrorism Problems
Inspired by the counterterrorism problems with multiple

attack forms [29], we consider that the American govern-
ment wants to defend against the criminals with different
attack forms, including armed assaults, bombing/explosion,
assassinations, facility/infrastructure attacks, hijackings, and
hostage taking. Regard the government as a leader and the
criminals with 6 attack forms as followers. Besides, ‘New York
City,’ ‘Los Angeles’, ’SanFrancisco’, ‘Washington, D.C.’, and
‘Chicago’ are ranked as the top five risky urban areas in
America. Then we regard the 5 cities as targets such as the
first target for ‘New York City’. Suppose that all players have
$1 millinon budgets, i.e., Rl = 1 and Ri = 1 for i ∈ P.
Take U cl (tk), Uul (tk), U ci (tk), Uui (tk) ∈ [0, 0.7] as utilities
under the true observation. Also, followers have a success
probability of 0.2, considering that the United States can
interdict some attack plots [29]. Therefore, followers have a
false observation of the success rate as pi,k(θ′) = di,kθ

′+0.2,
where θ′ ∈ Θ = [−0.2, 0.2], θ0 = 0 and di,k is generated
in the range [−1, 1]. Hence, U ci (θ′, tk) = pi,k(θ′)U ci (tk) and
Uui (θ′, tk) = pi,k(θ′)Uui (tk) are the utilities perceived by the
ith follower.

Fig. 8 shows the utilities of all followers, where the x-
axis represents the value of θ′ and the y-axis is for the true
utility of each follower under the observation θ′. The blue
cylinders are followers’ true utilities when they select the
MSSE strategy under different θ′. In Fig. 8, the light blue
region is in |θ′| 6 0.045 and the light red region is in
|θ′| 6 0.075. Actually, the utility under θ′ = 0 is the real
one with no misperception. Notice that all followers’ utilities
are unchanged when |θ′| 6 0.075, which is consistent with
Theorem 4 since ∆θ = 0.045 < 0.075.
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(a) Utilities of the 1st follower
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(b) Utilities of the 2nd follower
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(c) Utilities of the 3rd follower
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(d) Utilities of the 4th follower
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(e) Utilities of the 5th follower
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(f) Utilities of the 6th follower

Fig. 8. Utilities of followers in the counterterrorism problem. θ′ denotes the followers’ false observation of the parameter, which affects
success rate pi,k(θ′) for all i, k. The light blue region describes robust bounds of MSSE according to Theorem 4, and the light red region
shows bounds referring to θ′, where all followers’ utilities are invariant in this instance.

D. Robustness of DSSE: in CPS

Similar to the CPS with two players [6], we consider
one network administrator (leader) and one hacker (follower).
The follower invades the leader with many attack methods
such as ‘malware’, ‘web-based attacks’, ‘denial-of-service’,
‘malicious insiders’, ‘phishing and social enginering’, ‘ma-
licious code’, ‘stolen devices’, ‘ransomware’, and ‘botnets’.
Regard the 9 attack methods as 9 targets such as the first
target for ‘malware’. Each player has $1 million budgets, i.e.,
Rl = 1, Rf = 1 and they allocate funds to the 9 targets.
Denote U cl (tk), Uul (tk), U cf (tk), Uuf ∈ [0, 2.5] as the values for
different targets. Moreover, the network administrator makes
some observable properties of a system such as TCP/IP stack
appear different from what it actually is, and then the hacker
probes the system. Concretely, denote Θ = [−1, 1] as the
deceptive set and θ0 = 0 as the true value. For θ′ ∈ Θ,
Uuf (θ′, tk) = Uuf (tk) + dkθ

′2 and U cf (θ′, tk) = U cf (tk) are
utilities perceived by the follower, where dk is generated in
the range D ⊂ R.

Fig. 9 shows the utilities of the leader with D =
(0, 1), (0, 2), and (0, 3), respectively. The blue cylinders are
the leader’s utilities if the leader deceives as θ′. The light
blue regions are in |θ′| 6 0.45 in 9(a), |θ′| 6 0.225 in 9(b)
and |θ′| 6 0.15 in 9(c). Also, the light red regions are in
|θ′| 6 0.9 , |θ′| 6 0.6, and |θ′| 6 0.5, respectively. Besides,
the blue cylinder under θ′ = 0 is the utility if the leader
does not deceive. Notice that in 9(a), the leader’s utility under
|θ′| 6 0.9 is no larger than that under θ′ = 0. It is consistent
with Theorem 5 that the DSSE strategy is robust for the leader
since ∆θ = 0.45 < 0.9. Moreover, in Fig. 9(a), if the leader
wishes to benefit more from deception, the deception strategy
needs to exceed |θ′| > 0.9 > ∆θ. Similar conclusions can

be found in Fig. 9(b) and 9(c). In fact, the robust boundary
decreases as the bound of the parameter set D increases, which
is also consistent with Theorem 5.

VII. CONCLUSIONS

In this paper, we have investigated the SLMF Stackelberg
security game by virtue of the second-level Stackelberg hyper-
game. We have provided a novel criterion to evaluate both the
strategic and cognitive stability of games with misinformation
based on HNE. Moreover, we have provided two different
stable conditions to connect MSSE and DSSE with HNE.
Also, we have analyzed the influences of misperception and
deception by the robustness of the MSSE and DSSE strategies.
Finally, we have presented numerical experiments for the
validity and broad applicability of our results.

APPENDIX A
PROOF OF THEOREM 2

Denote Ei(x, θ
′) = max

yi∈Ωi
Ui(x, yi, θ

′), E(x, θ′) =

n∑
i=1

Ei(x, θ
′), and E∗(θ′) = min

x∈Ωl
E(x, θ′). The leader’s strat-

egy x ∈ Ωl is said to be a Minimax Strategy if E(x, θ′) =
E∗(θ′). Then the following proof consists of three steps. Step
1 shows the relationship between the leader’s utility function
and followers’ ones. Step 2 reveals that xMSSE is a leader’s
Minimax Strategy. Step 3 shows that (xMSSE,yMSSE) is HNE.

Step 1: Since (y′, λ) ∈ SOL(y, θ′), λ > 0, and A1(θ′)y′ =
λBy. Thus,
n∑
i=1

(y′)ki
Uui (θ′, tk)− U ci (θ′, tk)

U cl (tk)− Uul (tk)
= λ

n∑
i=1

yki , ∀k = 1, . . . ,K.
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(c) D = (0, 3).

Fig. 9. Utilities of the leader in CPS. θ′ leads to followers’ perceived utility Uu
f (θ′, tk) for all k. The light blue region describes robust

bounds of DSSE according to Theorem 5, and the light red region describes bounds referring to θ′, where all followers’ utilities are invariant
in this instance.

Then

Ul(x,y)− Ul(x′,y)

=

K∑
k=1

n∑
i=1

yki
(
xk − (x′)k

)(
U cl (tk)− Uul (tk)

)
=− 1

λ

K∑
k=1

n∑
i=1

(y′)ki
(
xk − (x′)k

)(
U ci (θ′, tk)− Uui (θ′, tk)

)
.

Clearly,

n∑
i=1

Ui
(
x,y′i, θ

′)− n∑
i=1

Ui
(
x′,y′i, θ

′)
=

K∑
k=1

n∑
i=1

(y′)ki
(
xk − (x′)k

)(
U ci (θ′, tk)− Uui (θ′, tk)

)
.

Therefore,

Ul(x,y)−Ul(x′,y)=
1

λ

( n∑
i=1

Ui(x
′, (y′)i, θ

′)−
n∑
i=1

Ui(x, (y
′)i, θ

′)
)
.

Since λ > 0, Ul(x,y) > (=)Ul(x
′,y) for x, x′ ∈ Ωl, and y ∈

Ωf if and only if
n∑
i=1

Ui
(
x,y′i, θ

′) < (=)
n∑
i=1

Ui
(
x′,y′i, θ

′) for

x, x′ ∈ Ωl, y ∈ Ωf , θ
′ ∈ Rm, and (y′, λ) ∈ SOL(y, θ′).

Step 2: By the definition of E∗, E(xMSSE, θ
′) > E∗(θ′) is

always true. Suppose

E(xMSSE, θ
′) > E∗(θ′). (12)

Consider x∗ as the leader’s Minimax Strategy, where
E(x∗, θ′) = E∗(θ′). For (y′, λ) ∈ SOL(yMSSE, θ

′),

n∑
i=1

Ui(x
∗,y′i, θ

′) 6 E∗(θ′).

Denote S(y) = {(i, k)|yki 6= 0, i ∈ P, k = 1, . . . ,K}. For any
(i, k1), (i, k2) ∈ S(yMSSE), the target k1 and target k2 have the
same appeal to the ith follower. For any (i, k) ∈ S(yMSSE), set

Mi(xMSSE)=xkMSSEU
c
i (θ′, tk)+(Rl−xkMSSE)U

u
i (θ′, tk). (13)

Additionally, A2y
′ = 0 implies (y′)ki = 0 if (yMSSE)

k
i = 0.

Then S(y′) ⊆ S(yMSSE). Therefore, for any (i, k) ∈ S(y′),
(13) also holds. Then

Ui(xMSSE,y
′
i, θ
′)

=

n∑
k=1

(y′)ki
(
xkMSSEU

c
i (θ′, tk) + (Rl − xkMSSE)U

u
i (θ′, tk)

)
=

∑
(y′)ki 6=0

Mi(xMSSE) = RiMi(xMSSE).

Similarly, Ui(xMSSE,yMSSE, θ
′) = RiMi(xMSSE). Thus,

Ui
(
xMSSE,y

′
i, θ
′) = Ui(xMSSE, (yMSSE)i, θ

′). (14)

As a result, y′ is the followers’ best respose strategy to xMSSE

under the observation θ′. Then

E(xMSSE, θ
′) =

n∑
i=1

max
yi∈Ωi

Ui(xMSSE, yi, θ
′) =

n∑
i=1

Ui(xMSSE,y
′
i, θ
′).

Consequently,
n∑
i=1

Ui(x
∗,y′i, θ

′) <
n∑
i=1

Ui(xMSSE,y
′
i, θ
′). Ac-

cording to [1], there exists x′ such that yMSSE ∈ BR(x′, θ′)

and
n∑
i=1

Ui(x
′,y′i, θ

′) <
n∑
i=1

Ui(xMSSE,y
′
i, θ
′). Recalling Step

1, Ul(x′,yMSSE) > Ul(xMSSE,yMSSE), which contradicts that xMSSE

is the leader’s MSSE strategy. Thus, (12) does not hold. As
a result, E(xMSSE, θ

′) = E∗(θ′), which indicates that xMSSE is
the leader’s Minimax Strategy and yMSSE is the corresponding
strategies of followers.

Step 3: Note that E(xMSSE, θ
′) = E∗(θ′) and yMSSE ∈

BR(xMSSE, θ
′). By (14), y′ ∈ BR(xMSSE, θ

′). Define another
associated zero-sum game Ḡ with two players denoted as
{1, 2} in Ḡ. The strategy set of player 1 is Ωl and the strategy
set of player 2 is Ωf . For any x ∈ Ωl,y ∈ Ωf , Ū1(x,y, θ′) =

−
n∑
i=1

Ui(x, yi, θ
′) and Ū2(x,y, θ′) =

n∑
i=1

Ui(x, yi, θ
′) are the

utility functions of player 1 and player 2, respectively. Each
player aims at maximizing its utility functions.

For any y ∈ Ωf , since y′i ∈ BRi(xMSSE, θ
′), y′ is the best

response strategy to xMSSE in Ḡ. Moreover,

E(x, θ′) =

n∑
i=1

max
yi∈Ωi

Ui(x, yi, θ
′) = max

y∈Ωf

Ū2(x,y, θ′).
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Since E(xMSSE, θ
′) = E∗(θ′),

xMSSE ∈ argmin
x∈Ωl

max
y∈Ωf

Ū2(x,y, θ′).

Then xMSSE is the Minimax Strategy in Ḡ. By Theo-
rem 3.2 in [47], (xMSSE,y

′) is also a NE of Ḡ. Then
xMSSE is also the best response strategy to y′ in Ḡ. For
any x ∈ Ωl, Ū1(xMSSE,y

′, θ′) > Ū1(x,y′, θ′). Therefore,
n∑
i=1

Ui
(
xMSSE,y

′
i, θ
′) 6 n∑

i=1

Ui
(
x,y′i, θ

′). Then by Step 1,

Ul(xMSSE,yMSSE, θ
′) > Ul(x,yMSSE, θ

′). (15)

Because (15) holds for any x ∈ Ωl, xMSSE is the best response
strategy to yMSSE in H2(θ′). Then (xMSSE,yMSSE) is HNE of
H2(θ′). �

APPENDIX B
PROOF OF THEOREM 3

Clearly, there exists θ∗ ∈ Θ such that (y∗)Kmaxi = Ri, x∗ ∈
Ωl, and y∗ ∈ BR(x∗, θ∗), where (x∗,y∗) is the decision result
under the observation θ. Thus, SOL(y∗, θ∗) has a solution

λ =

n∑
i=1

Ri
Uui (θ∗,tKmax )−Uci (θ∗,tKmax )

Uc
l
(tKmax

)−Uu
l

(tKmax
)

n∑
i=1

Ri

,

(y∗)Kmaxi = Ri,∀i ∈ P,
(y∗)ki = 0,∀l 6= Kmax, i ∈ P.

By Theorem 2, x∗ is the best response strategy to y∗ and
(x∗)Kmax = Rl. Thus,

Ul(x
∗,y∗)

=

K∑
k=1

( n∑
i=1

(y∗)ki
)(

(x∗)kU cl (tk)+(Rl−(x∗)k)Uul (tk)
)

=

n∑
i=1

RiRlU
c
l (tKmax) = RlU

c
l (tKmax)(

n∑
i=1

Ri).

Since Kmax ∈ argmax
k∈K

U cl (tk), for all k = 1, . . . ,K,

U cl (tKmax) > U cl (tk). By Assumption 3, U cl (tKmax) >
Uul (tk). Then, for any θ ∈ Θ,y ∈ Ωf , x ∈ Ωl, we have

Ul(x,y)

6
K∑
k=1

n∑
i=1

yki
(
xkU cl (tKmax) + (Rl − xk)U cl (tKmax)

)
=

K∑
k=1

(
xkU cl (tKmax) + (Rl − xk)U cl (tKmax)

) n∑
i=1

yki

=

K∑
k=1

RlU
c
l (tKmax)

n∑
i=1

yki = RlU
c
l (θ, tKmax)(

n∑
i=1

Ri).

Thus, Ul(x,y) 6 Ul(x
∗,y∗) for any x ∈ Ωl,y ∈ Ωf .

Therefore, θ∗ ∈ argmax
θ′∈Θ

max
x∈Ωl,y∈BR(x,θ′)

Ul(x,y) is the optimal

deception. Also, (x∗,y∗) is a DSSE of H2(Θ). Besides, x∗ is
the best response strategy to y∗ since Ul(x,y∗) 6 Ul(x∗,y∗)
for any x ∈ Ωl. Thus, the conclusion follows. �

APPENDIX C
PROOF OF THEOREM 4

1) For any αi ∈ Γ1
i (xSSE, θ0), l /∈ Γ1

i (xSSE, θ0),
gi(xSSE, θ0, αi) > gi(xSSE, θ0, l). Since U ci (θ, tαi) and
U ci (θ, tαi) are differentiable in θ ∈ Θ by Assumption
2, there is a convex set δiθ such that, for all θ ∈ δiθ,
gi(xSSE, θ, αi) > gi(xSSE, θ, l). Let δθ = ∩ni=1δ

i
θ. Then

int(δθ) is nonempty. For any θ′ ∈ δθ, the ith follower attacks
the target in Γi, which leads to the same profit as ySSE. Thus,
Ui
(
xSSE,(ySSE)i,θ0

)
=Ui

(
xSSE,(yMSSE)i(θ

′),θ0

)
.

2) For any αi ∈ Γ1
i (xSSE, θ0), βi ∈ Γ2

i (xSSE, θ0), l /∈
Γ1
i (xSSE, θ0), we have gi(xSSE, θ0, αi) > gi(xSSE, θ0, l) and
gi(xSSE, θ0, βi) > gi(xSSE, θ0, l). Since U ci (θ, tk) and Uui (θ, tk)
are ς-Lipschitz continuous in θ ∈ Θ, for any θ, θ′ ∈ Θ,

|U ci (θ, tk)− U ci (θ′, tk)| 6 ς ‖ θ − θ′ ‖,
|Uui (θ, tk)− Uui (θ′, tk)| 6 ς ‖ θ − θ′ ‖ .

Thus,

|gi(xSSE, θ, k)− gi(xSSE, θ
′, k)|

=|xkSSE

(
U ci (θ, tk)− U ci (θ′, tk)

)
+ (Rl − xkSSE)|Uui (θ, tk)− Uui (θ′, tk)|
6xkSSEς ‖ θ − θ′ ‖ +(Rl − xkSSE)ς ‖ θ − θ′ ‖
=ςRl ‖ θ − θ′ ‖ .

Therefore, for any k, gi(xSSE, θ, k) is ςRl-Lipschitz continuous
in θ ∈ Θ. Then

gi(xSSE, θ, l) 6gi(xSSE, θ0, l) + ςRl ‖ θ − θ′ ‖
6gi(xSSE, θ0, βi) + ςRl ‖ θ − θ′ ‖ .

(16)

Also, since U ci (θ, tk) and Uui (θ, tk) are convex and differ-
entiable in θ, gi(xSSE, θ, k) is convex in θ ∈ Θ. Thus,

gi(xSSE, θ, k)−gi(xSSE, θ0, k)>5θgi(xSSE, θ0, k)T(θ−θ0).

Take 5αii = 5θgi(xSSE, θ0, αi). If (5αii )T5αii 6= 0, then, with
taking qθ =

(5αii )T (θ−θ0)

(5αii )T5αii
, |qθ| 6‖ θ − θ0 ‖. Thus,

gi(xSSE, θ, αi)− gi(xSSE, θ0, αi)

>5θ gi(xSSE, θ0, αi)
T (θ − θ0)

=− qθ(5αii )T5αii
>− ‖ θ − θ0 ‖ (5αii )T 5αii .

Obviously, if (5αii )T5αii = 0,

gi(xSSE, θ, αi)−gi(xSSE, θ0, αi)>0=−‖ θ−θ0 ‖ (5αii )T 5αii .

Recalling (16),

gi(xSSE, θ, αi)− gi(xSSE, θ, l)

>gi(xSSE,θ0,αi)−gi(xSSE,θ0,βi)−
(
(5αii )T5αii +ςRl

)
‖θ−θ′ ‖ .

Since ‖ θ − θ′ ‖< ∆θ = min
i∈P

ĝ1i−ĝ
2
i

5∗i+ςRl
,

‖ θ − θ′ ‖< gi(xSSE, θ0, αi)− gi(xSSE, θ0, βi)

(5αii )T 5αii +ςRl
.

For any αi ∈ Γ1
i (xSSE, θ0), l /∈ Γ1

i (xSSE, θ0),

gi(xSSE, θ, αi) > gi(xSSE, θ, l).

For i ∈ P, Ui
(
xSSE,(ySSE)i,θ0

)
=Ui

(
xSSE,(yMSSE)i(θ

′),θ0

)
. �
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APPENDIX D
PROOF OF THEOREM 5

1) By Theorem 4, the leader does not change its strategy
under δθ according to [17]. Thus, the leader’s profit does not
change, and Ul(xSSE,ySSE) = Ul(xDSSE,yDSSE).

2) By Assumption 5, Γ1
i (xSSE, θ0) has the unique element.

Take αi ∈ Γ1
i (xSSE, θ0), βi ∈ Γ2

i (xSSE, θ0), l /∈ Γ1
i (xSSE, θ0). As

shown in the proof of Theorem 4, gi(xSSE, θ, l) is ςRl-Lipschitz
continuous in θ ∈ Θ. Then

gi(xSSE, θ, l) 6gi(xSSE, θ0, l) + ςRl ‖ θ − θ′ ‖ .

Since βi ∈ Γ2
i (xSSE, θ0), gi(xSSE, θ0, βi) > gi(xSSE, θ0, l).

Then gi(xSSE, θ, l) 6 gi(xSSE, θ0, βi) + ςRl ‖ θ − θ′ ‖ . Also,

gi(xSSE, θ, αi) >gi(xSSE, θ0, αi)− ςRl ‖ θ − θ′ ‖ .

Therefore,

gi(xSSE, θ, αi)− gi(xSSE, θ, l)

>gi(xSSE, θ0, αi)− gi(xSSE, θ0, βi)− 2ςRl ‖ θ − θ′ ‖ .

For any θ with ‖ θ − θ0 ‖< ∆θ, since ∆θ = min
i∈P

ĝ1
i − ĝ2

i

2ςRl
,

‖ θ − θ0 ‖<
gi(xSSE, θ0, αi)− gi(xSSE, θ0, βi)

2ςRl
.

Therefore, for i ∈ P,

gi(xSSE, θ, l) < gi(xSSE, θ, αi). (17)

According to [17] and Assumption 5, (17) holds for any xDSSE ∈
Ωl. Thus, the leader does not change its strategy under δθ, and
Ul(xSSE,ySSE) = Ul(xDSSE,yDSSE). �
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