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Abstract— In this paper, we propose a feature-free method for
detecting phishing websites using the Normalized Compression
Distance (NCD), a parameter-free similarity measure which
computes the similarity of two websites by compressing them,
thus eliminating the need to perform any feature extraction.
It also removes any dependence on a specific set of website
features. This method examines the HTML of webpages and
computes their similarity with known phishing websites, in order
to classify them. We use the Furthest Point First algorithm
to perform phishing prototype extractions, in order to select
instances that are representative of a cluster of phishing web-
pages. We also introduce the use of an incremental learning
algorithm as a framework for continuous and adaptive detection
without extracting new features when concept drift occurs. On a
large dataset, our proposed method significantly outperforms
previous methods in detecting phishing websites, with an AUC
score of 98.68%, a high true positive rate (TPR) of around 90%,
while maintaining a low false positive rate (FPR) of 0.58%. Our
approach uses prototypes, eliminating the need to retain long
term data in the future, and is feasible to deploy in real systems
with a processing time of roughly 0.3 seconds.

Index Terms— Phishing detection, webpage, incremental learn-
ing, feature-free methods.

I. INTRODUCTION

PHISHING is defined as a cyber-attack which uses social
engineering via digital means to persuade victims to

disclose their personal information, such as their password
or credit card number [13]. The strategies used in phishing
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attacks exploit human vulnerabilities in distinguishing between
authentic and phishing messages or websites [29]. Phishing
is a low-cost, yet essential tool to aid various cyber-attacks,
as it is often used as the key step in advanced persistent
threats. With our ever-increasing reliance on various digital
platforms, phishing has become a versatile weapon in the
attacker’s arsenal. Despite the general definition of phishing,
the term itself has been commonly associated specifically with
Web phishing attacks that use emails or SMS as the attack
vector to lure victims into submitting personal information
via phishing websites or by downloading malicious software.
These websites are typically crafted to look professional and
convincing as if they are legitimate.

As mentioned in their report, the Anti-Phishing Working
Group (APWG) recorded a considerable increase in unique
phishing attacks from 2014 to 2016 [13], which caused
significant financial losses, estimated to be between $60
million and $3 billion per year in the United States [24].
In another report, the APWG detected around 65,400 phishing
websites per month in 2018 [14], while PhishLabs reported
that phishing volume grew by 40.9% in 2018 compared to
the previous years [32]. PhishLabs also reported how attack
volumes continue to increase as actors’ methods evolve and
adapt to changes in the digital landscape. Furthermore, the
use of free hosting providers has resulted in an increase in
phishing attacks during the past four years, from 3.0% in
2015 to 13.8% in 2018. It is also relatively easy to set up
phishing websites using phishing toolkits. The availability of
these toolkits enables a single actor to create a large number
of professional-looking phishing websites in a short period of
time. As an example, PhishLabs reported a sharp increase in
the number of attacks in August 2018. This phishing campaign
used at least 2,000 freely-hosted phishing websites, all created
using the same kit [32]. With the availability of these phishing
kits provided by organized crime groups, it is likely that the
number of phishing attacks will increase further in the future.
The use of free hosts, phishing kits, and SSL certificates show
that there has been a persistent effort by actors to capitalize
upon new opportunities, resulting in the continuous growth of
the number of phishing attacks from year to year. This makes
it challenging to develop a reliable phishing detection method
that can deal with the dynamic nature of the attacks [28].

To prevent the negative impacts of phishing, researchers
have studied various methods in recent years to build an
automated phishing website detection system by investigating
the website content, appearance, URL, and other web-related
features [21], [36]–[39], [41]. In general, these approaches
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could be classified into two categories. The first approach
finds intrinsic features of phishing websites and attempts to
detect these attacks based on these specific characteristics.
Many studies in recent years go along with this type of
approach, using machine learning and deep learning methods.
While these methods have shown to perform well in detecting
phishing, their detection are less robust towards concept drift
since they are heavily based on certain characteristics assumed
to be related to phishing websites (e.g., specific types of web
forms or unusual structures in the URLs) which may change
and become irrelevant in the future. Meanwhile, the second
approach tries to detect phishing by measuring similarities
between phishing websites and the targeted legitimate web-
site. This method is less robust to zero-day phishing attacks
compared to the first approach. However, the similarity-based
methods are effective for quickly filtering a large amount of
phishing websites, before being fed into machine learning
based methods which typically take more time to perform
classification. A number of previous studies have proposed the
use of various similarity metrics and models to detect near
similar phishing websites. These similarity-based techniques
usually require the websites to be modeled into a certain
representation space, e.g., using DOM trees, bag-of-words,
or Doc2Vec models [20].

In contrast, we attempt to propose a feature-free method
for detecting phishing websites which uses the Normalized
Compression Distance [17] to compute website HTML sim-
ilarity. The rationale of the study is based on the work
of Cui et al. [18], which reveals the commonalities between
phishing websites, demonstrating that 90% of the 19,066
confirmed phishing websites from PhishTank [9] are replicas
or variations of other already known phishing websites. In their
study, Cui et al. proposes a new distance metric, the pro-
portional distance, to assess website similarities for detecting
phishing. This distance metric takes into account the number
of occurrences of a predefined set of HTML tags, which are
found to provide significant information whether a website
is related to phishing attacks. On the other hand, the use of
prototypes and the Normalized Compression Distance in our
proposed method would eliminate the need of the predefined
HTML tags, and uses compression algorithms to universally
measure similarities between two streams of data based on the
amount of information they have in common. Our proposed
method is not limited to a specific kind of phishing attack
or phishing campaign, nor a certain type of the phishing
email. However, our method is limited to variations of phishing
websites which have occurred at least once, and unable to
identify a new phishing website with a completely different
and distinctive HTML structure.

To summarize, this paper makes the following
contributions:
• We introduce a systematic method to perform web-

site similarity measurements for detecting similar phish-
ing websites using Normalized Compression Distance
(NCD).

• We provide an analysis on the similarities and differ-
ences between phishing and legitimate website contents
and visual appearances, and how content-based methods

would effectively detect phishing attacks better than
visual-based methods.

• We propose PhishSim as a tool to effectively detect
slightly modified or near-similar phishing websites using
prototype-based learning algorithms and the Normalized
Compression Distance, which is a parameter-free and
application independent distance metric to measure sim-
ilarities between websites’ HTML content. This tool
works by measuring the pairwise similarity between
websites in the dataset, clustering these websites, and
performing phishing classifications based on whether a
website is grouped in the same cluster with a known
phishing website.

• We introduce a feature-free phishing detection system
architecture that can be deployed within intranet servers
or in the cloud.

The paper is organized as follows. Section II provides
an overview of past studies which are related to our work
in phishing detection systems. In section III, we intro-
duce the normalized compression distance (NCD) and some
background mathematical concepts which are used in this
paper. Section IV describes the overview of our system.
Section V provides results on the website similarity analysis
to observe the characteristics between a phishing website
and its legitimate target website based on the pairwise NCD
value. Section VI provides results on the optimal distance
threshold selection process. We describe the experimental
setup in Section VII, then provide the performance evaluation
results in Section VIII and further analysis on these results in
Section IX. At the end of the paper, in Section X, we wrap
up with conclusions.

II. RELATED WORKS

There is significant research focusing on phishing detection.
Some studies focus on the use of blacklists and whitelists in
anti-phishing systems. Blacklist-based methods keep a list of
domain names or links to known phishing websites and alert
users if they try to visit those sites. However, phishing websites
are highly dynamic, and the average lifetime of a phishing
webpage is only a few hours [12]. In many cases, zero-
hour phishing attacks easily bypass blacklist-based methods.
Meanwhile, whitelist-based approaches allow users to browse
only those webpages that are deemed safe, which is often
impractical.

Other studies in phishing detection use similarity-based
methods to measure similarities between websites by ana-
lyzing a website’s textual content or screenshot. Text
similarity-based methods analyze the semantics of the textual
content of emails and webpages to decide whether they
classify as a phishing attempt. This method is likely to fail
in the future with the increased use of code obfuscation
techniques [25]. A past study by Chen et al. [16] introduced
the use of the normalized compression distance (NCD) to
measure visual similarities between webpages using the web-
site screenshots. Their work is based on the assumption that
phishing websites usually look almost identical to the legiti-
mate website they are targeting. However, this method might
not perform well when detecting phishing websites which
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have a distinct appearance to the target website (Figure 6 and
Figure 7). Cui et al. [18] proposed the proportional distance
metric, which computes similarities between websites based
on the number of occurrences of a predefined set of HTML
tags. A more recent work by Feng et al. [20] studied the
use of Doc2Vec, which is a deep learning based method to
create a numerical representation of phishing websites, and
performed phishing website detection based on the similarity
of the website’s numerical representation.

Several other studies have attempted to find intrinsic char-
acteristics of phishing websites and use machine learning
algorithms to perform classification based on these features.
Whittaker et al. [36] introduced a classification system to
maintain Google’s phishing blacklist automatically based on
features extracted from the website’s URL, page hosting
information, and page content. Furthermore, Zhang et al. [41]
developed a framework, called CANTINA, to identify phish-
ing targets using TF-IDF (Term Frequency-Inverse Document
Frequency) analysis and seven other content-based heuris-
tics, including domain age, logo image and domain name
inconsistency, as well as suspicious links in the HTML.
Purwanto et al. [33] designed a new compression-based algo-
rithm PHISHZIP to detect phishing websites. Xiang et al. [37]
improved CANTINA by proposing a more comprehensive
framework to detect phishing websites named CANTINA+,
which makes use of URL-based, HTML-based, and web-based
features. Xiang and Hong [38] also proposed a hybrid phishing
detection approach by extracting keywords and performing
identity discovery with named entity recognition. Araujo and
Martinez-Rico proposed a phishing detection system which
combines the use of website link and language-model (LM)-
based features [15]. Meanwhile, Zhang et al. [39] introduced
a phishing website detection system that analyses the website’s
textual and visual content, and assesses the similarities. In a
recent study, Quinkert et al. [34] attempted to identify scams
and phishing by looking for homograph domains that use
visually similar Unicode characters to create URLs that look
identical.

Several past studies focused on using natural language
processing (NLP) based techniques to perform phishing web-
site classification. Zhang et al. [40] proposed the use of text
semantic features together with statistical features from the
website to improve Chinese phishing website detection. Mean-
while, Opara et al. [30] proposed HTMLPhish which uses
convolutional neural networks to learn the feature represen-
tation of websites based on the semantic dependencies of the
website’s textual content. The use of semantic analysis has
shown to perform well in identifying phishing and legitimate
websites, since specific words has shown to occur more
frequently in phishing websites [33], e.g. email, sign, account,
password. However, the use of NLP based techniques limits
the phishing detection to a specific language.

III. CONCEPTS AND DEFINITION

In this section, we introduce and discuss the use of nor-
malized compression distance (NCD) to perform phishing
website detection, and prototype-based learning algorithms for
clustering and classifying websites.

A. NCD for Measuring Phishing Website Similarity

NCD is a parameter-free distance measure, which is uni-
versal such that it attempts to approximately measure the
similarity of dominant features in all pairwise file or object
comparisons. The aim of NCD is to capture each effective dis-
tance, including the effective versions of Hamming distance,
Euclidean distance, and edit distance. Further details on NCD
is provided in Appendix A. The generic characteristics of NCD
make it applicable to various kinds of applications [17]. Based
on these characteristics, we have set out to explore whether
the use of NCD as a non-feature similarity metric is suitable
in the study of phishing detection systems. With the dynamics
of phishing, a detection system which relies on a specific and
static set of features would potentially fail to detect phishing
once the attack behavior changes.

Besides the selection of NCD as the similarity metric,
another aspect to consider is the selection of object or
data to be compared in the context of phishing detection.
Chen et al. [16] use NCD to measure visual similarities
between websites and detect phishing websites by calculat-
ing the NCD between two website screenshot images. Their
study attempts to detect deceptive phishing attacks where
the phishing sites are visually very similar to their target
legitimate website. Chen et al. argue that while there are some
small differences between phishing and legitimate websites,
attackers must design the phishing page to be similar to the
legitimate page in order to convince users to believe that
the website is legitimate. Based on this assumption, they
performed phishing website detection by computing the NCD
between a suspicious website and the legitimate website.
An NCD value below a certain threshold indicated that the
website was indeed imitating the legitimate website, therefore
categorizing it as a phishing website. While this assumption is
true for some phishing websites, we found that in many other
cases, phishing websites are not necessarily identical to their
target website.

On the other hand, Cui et al. [18] demonstrated that 90% of
the phishing data collected in a 10-month period in 2016 were
variations or replications of other previous attacks in the
database, which indicates that there are repetitions and simi-
larities among the phishing websites themselves. This is also
understandable as there has been an increase in the use of
phishing kits which increase the possibility of similar HTML
contents from new phishing websites. Thus, we take a new
approach where we perform phishing detection by detecting
similarities in the website HTML content, as phishing websites
are often developed from a certain template or kit. Therefore,
in this study, we perform pairwise NCD calculations between
website HTML datasets to measure website similarities and
detect phishing websites. Further details regarding the system
design will be discussed in the next section.

B. Prototype-Based Learning

Using NCD metrics to measure the similarities between two
websites, we perform clustering to divide phishing websites
with similar HTML contents into a number of groups and
classification to assign a website to the previously generated
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group with the closest similarity. The aim of our clustering
is to group similar websites, indicated by the relatively small
number of pairwise NCD values.

When deciding which approach to take when performing
clustering and classification, we take into consideration the
main goals or characteristics which are important to have for
the detection to be accurate and sustainable. Firstly, we aim for
the system to be feature-free, meaning that it can learn directly
from the data without the need to perform manual feature
extraction. Furthermore, one of the advantages of using a
feature-free approach is that the system can adapt to changes in
phishing behavior or data representation. Secondly, we attempt
to build a detection system that has the ability to continuously
learn and gain knowledge from the previous learning process,
and incorporate this with new knowledge obtained while
processing new data, resulting in a continuously learning
system. With the ability to incrementally learn, the goal is
that the system will be able to improve its detection over time
as it meets new phishing examples.

For the reasons mentioned above, a prototype-based cluster-
ing approach has been selected, where clusters are represented
by actual samples in the dataset instead of centroids. By using
actual website samples as cluster representations, we are able
to implement an incremental feature-free learning method as
the prototype-based method does not necessarily require the
data to be transformed into a specific feature representation.
The prototype-based method fits our purpose of designing
a fast, efficient, and feature-free algorithm. Using a greedy
clustering algorithm [18], the overall time-complexity for n
data samples would be O(n2), whereas it would only be O(nk)
using the prototype-based approach, where k is the number of
clusters [22].

By definition, a prototype is a data point, which represents
all the data points in a cluster. Each data point in a given cluster
can be assigned to a specific prototype, where the distance
from this prototype to the data instance is less than a certain
threshold distance d . Each prototype in our detection system
would be one or several phishing websites which represent
a cluster of similar phishing websites, potentially generated
using the same template or phishing kit. However, we are not
focusing on which cluster or class of phishing websites each
dataset belongs to. Instead, we aim to detect whether a website
would be categorized as one of the phishing classes or whether
it is not similar to any class at all. Therefore, our detection
approach attempts to check whether a website is similar to any
phishing cluster/class, by measuring the pairwise NCD values
between the website and each prototype. Further details on the
algorithms will be given in the following sections.

There is no specific requirement as to what distance metrics
to choose (e.g., Hamming distance, Euclidean distance, and
edit distance). However, in our case, we have selected NCD
as the distance measure for reasons that were mentioned in
the earlier sections. The concept of prototypes is illustrated
in Figure 1. In this figure, roughly 60 data instances are
grouped in three classes, which are represented using five
prototypes. In some cases, a cluster can also be represented by
more than one prototype, e.g., the clusters in the left-bottom
and right parts of Figure 1. Using the prototypes, we are

Fig. 1. Classification using Prototypes.

Fig. 2. Furthest Point First Algorithm.

also able to perform classification on a new data point x by
checking if the data is similar to one of the prototypes, i.e.,
NC D(x, z) < dthreshold for each z ∈ prototypes (the set of
prototypes). As seen in Figure 1, it is possible that the new data
sample may be close to two or more prototypes, or located in
the regions where the prototype decision boundaries overlap
with one another. For simplicity, we have assigned such data
samples to the prototype which is the closest (i.e., with the
smallest NCD). Note that the clusters are circular in nature,
with a prototype at the center. This is in contrast with Lloyd’s
algorithm for the k-means clustering problem, which produces
Voronoi cells, with the cluster center as the centroid.

1) Prototype Extraction: Extracting representative proto-
types from the data is a non-trivial task. The algorithms
used to perform prototype extraction is inspired by [22],
with changes made to use NCD as the distance function.
The algorithm adopted an O(nk)-time algorithm originally
proposed by Gonzàlez [22], in which extracting k prototypes
from n data points takes an objective function value at most
twice the size of the optimal solution. Gonzàlez’s Furthest
Point First (FPF) algorithm is illustrated in Figure 2. The main
idea behind this algorithm is to select a data instance as a
prototype, assign all data to the closest prototype, then choose
the next instance furthest from the current prototype as the next
prototype. This process is repeated until all data is assigned
to a prototype with NCD values less than dthreshold . After
performing prototype extraction by running this algorithm,
we will have a set of prototypes representative of the phishing
data.

2) Classification: With the list of prototypes, we are able
to classify whether a website is similar to one of the known
phishing websites. This is done by computing the NCD
between the website x and each phishing website proto-
type z, and checking whether a prototype exists such that
the NCD value is less than a certain maximum distance
value or NC D(x, z) < dthreshold . The algorithm to perform
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Algorithm 1 Prototype Extraction
1: prototypes← ∅
2: for all x ∈ data do
3: distance[x] ← ∞
4: cluster [x] ← ∅
5: end for
6: while max(distance) > dthreshold do
7: z ← arg maxx∈data distance[x]
8: for x ∈ data do
9: if distance[x] > NC D(x, z) then

10: distance[x] ← NC D(x, z)
11: cluster [x] ← z
12: end if
13: end for
14: prototypes← prototypes ∪ {z}
15: data← data \ {z}
16: end while

classification for this work is adapted from the method pro-
posed by Rieck at al. [35], as shown in Algorithm 2.

Algorithm 2 NCD-Based Classification
1: for x ∈ datatest do
2: z ← arg min p∈prototypes NC D(x, p)
3: if NC D(x, z) < dthreshold then
4: classify x as phishing
5: else
6: classify x as non-phishing
7: end if
8: end for

3) Incremental Learning: For continuous phishing website
detection, the use of an incremental learning algorithm is
proposed, which is adapted from the incremental learning
algorithm introduced by Rieck et al. [35]. The main idea is
to perform NCD-based classification in each iteration, and
update the set of prototypes with new prototypes extracted
from misclassified phishing samples belonging to new data in
every iteration.

Algorithm 3 Incremental Learning
1: for data← source do
2: for x ∈ data do
3: classify x using prototypes � Algorithm 2
4: end for
5: rejected ← samples in data rejected as phishing
6: prototypesnew← prototypes in rejected �

Algorithm 1
7: prototypes← prototypes ∪ prototypesnew

8: end for

C. Optimal Distance Threshold

When performing prototype extraction, we need to select
the maximum distance threshold that defines the size of each
prototype’s covering, which in the end will affect the size of

each cluster and the classification’s performance. A common
and intuitive characteristic of a good clustering threshold is one
that produces compact or dense clusters, which are far away
from each other [18]. Based on these characteristics, we define
a quality of clustering (QC) metric, which is obtained by
calculating the ratio between the average cluster compactness
and the minimum distance between the prototypes, as shown
in Equation 3. The compactness of each cluster is computed by
taking the average of pairwise NCD values between each data
instance in a cluster with the corresponding prototype (Equa-
tion 1). Note that the more compact the cluster, the smaller this
value will be. Minimum inter-cluster distance (MICD) is the
minimum NCD value between every combination of prototype
pairs (Equation 2). The further apart the clusters are, the larger
this value will be. Therefore, a smaller QC value represents a
better quality of clustering.

Compactness(Ci) = 1

|Ci |
∑

x∈Ci

NC D(x, prototypei ) (1)

M IC D = min
x,y∈prototypes

NC D(x, y) (2)

QC =
1
|C |

∑|C |
i=1 Compactness(Ci)

M IC D
(3)

During the threshold selection process, our aim is to select
the distance threshold dthreshold which leads to the best clus-
tering quality. As smaller QC implies better cluster quality, the
threshold selection process is done by performing optimization
to obtain the minimum QC parameter.

IV. PHISHSIM SYSTEM OVERVIEW

We propose a server-based phishing detection system
PhishSim that can be deployed by enterprises in their corporate
intranets, Internet Service Providers (ISP), and cloud providers
like Amazon, Microsoft, and Google, to defend against phish-
ing attacks. Figure 3 shows a high-level overview of how the
system works and how it can be implemented. The system
receives website URLs requested by users as input. Then,
it provides recommendations about whether the webpages are
safe or malicious. The recommendation output is generated
from the NCD-based classifier using prototypes stored in its
Prototype DB database. This system also has an ability to
update its prototype database by receiving a new phishing
website list and generating new prototypes. The new phishing
websites can be obtained from user reports and feedback, and
from phishing blacklist providers, such as PhishTank [9].

In the following subsections, we describe the two main
components in our proposed feature-free phishing detection
system: phishing website classification and phishing prototype
database update.

A. Phishing Website Classification
To perform phishing website detection, our proposed system

receives the website URL when a user is about to open the
website’s HTML Document Object Model (DOM), hence sim-
ulating how the page is rendered by a web browser. To obtain
the website’s HTML DOM, we used Chromium [10], an open-
source software project, which is the basis of several web
browsers, including Google Chrome and Microsoft Edge.
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Fig. 3. System Diagram of the Feature-free Phishing Detection Framework
PhishSim.

After obtaining the website’s HTML DOM, the system
performs classification by measuring NCD-based similarities
between the website and known phishing prototypes in the
database. The classification process returns a prediction on
whether the website is phishing or legitimate. If the website is
suspected to be a phishing website, this result will be added to
the prototype database or blacklist provider, and users will be
redirected to a warning page (with a recommendation to not
open the page) when accessing the webpage. Our system can
be used in conjunction with Google Safe Browsing [36] that
is based on the list of URLs for websites that contain phishing
content.

To enhance the robustness and prevent attackers from evad-
ing detection, we removed the text and HTML comments in
the content prior to performing compression, leaving only the
HTML tags which are rendered and visually shown on the
browser. Thus, the addition of invisible elements in the HTML
will not affect the performance.

B. Phishing Prototype Database Update

To keep the system prediction accurate, our system has a
mechanism to frequently update the phishing prototype data-
base. The system is able to update its prototype database by
periodically receiving data from phishing blacklist providers
(e.g., daily or weekly) and users’ reports. After obtaining
the websites’ HTML DOMs, the system performs prototype
extraction to extract representative prototypes from these new
data. Afterwards, the extracted prototypes are stored in the
prototype database used for NCD-based classification.

V. SIMILARITY ANALYSIS

To validate our method, we conducted two experiments to
observe the characteristics and similarities between a phishing
website and its legitimate target website by performing pair-
wise NCD computations. In the first experiment, we performed
pairwise NCD calculations and clustering on data targeting a
specific brand, and we focused on observing the similarities
between phishing and legitimate websites. The aim of this
experiment was to observe the relationship between each web-
site, specifically the relationship between websites (phishing
and legitimate) of different brands. In the second experiment,
we applied the same approach as in the second experiment to
phishing and legitimate website data of multiple brands.

Fig. 4. Netflix dendrogram (HTML DOM).

Fig. 5. Netflix Dendrogram (Website Screenshot Image).

The phishing data used in this experiment is from websites
reported by Internet users to PhishTank [9] and collected
between March and April 2020. To identify the target brand of
each phishing website, we utilized the target brand informa-
tion, which was provided by PhishTank. However, we noticed
that many phishing websites reported to PhishTank did not
provide target brand information (i.e., identified as ’Others’).
Thus, we also made use of Google’s Cloud Vision API to
estimate the target brand by detecting the logos that appeared
in website screenshots. Lastly, we performed manual checking
after grouping the data based on its brand to ensure that the
target brand was correct.

A. Brand Specific Similarity Analysis

For comparison with Chen et al. [16], we also performed
website similarity analyses using the website screenshots.
In this experiment, we focus on three brands, which are
Microsoft, PayPal, and Netflix, as we found that these brands
dominate our phishing website data. Furthermore, VadeSecure
reported that these brands were among the top five phishing
targets in 2019 and the top three phishing targets in Q1 and
Q3 2019 [5]–[8]. For each brand, we included the legitimate
website data and ten corresponding phishing websites selected
at random.

We first performed pairwise NCD computation using HTML
DOM files to observe whether similarities exist among the
phishing websites, and whether they are also similar to the
legitimate target website. To gain a better understanding of
the relationships between the websites, we performed data
clustering on the pairwise NCD data and visualized the data
as dendrograms. In the dendrograms provided in the following
subsections, we followed a strict naming convention with
three label codes (separated by an underscore). The first
code (prefix), indicates whether it is a legitimate or phishing
website (’L’ for legitimate, ’P’ for phishing). The second code
indicates the brand (’MST’ for Microsoft, ’NTF’ for Netflix,
and ’PYL’ for PayPal). The third code (suffix) indicates the
website number. In the following subsections, we will focus
our discussion on the findings for each brand.

In this section, we will only include similarity analyses on
Netflix phishing and legitimate websites, as we found that the
design of the Netflix phishing websites has more variations.
These variations are potentially due to frequent changes of the
design of the target legitimate website itself.
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Fig. 6. Phishing Websites with Similar HTML Contents (Cluster 1).

Fig. 7. Netflix Legitimate Website.

To observe the relationship between these websites based
on their content, we compute the pairwise NCD values and
perform data clustering on the HTML DOM files. The pairwise
NCD values between the HTML DOM files are visualized as
a cluster dendrogram as shown in Figure 4. Cutting the den-
drogram on the highest level gives two clusters. The legitimate
website is clustered together with two of the phishing websites,
while the remaining phishing websites are clustered together.
As shown in the dendrogram, the phishing websites that are
most similar to each other are P_NTF_52 and P_NTF_60, with
a NCD of 0.04. Interestingly, these two websites have a very
distinctive design, as shown in Figure 6. By looking into the
HTML DOM files, however, these websites’ HTML DOMs are
almost identical. The only difference is in a numeric variable
set when loading the CSS stylesheet. It is very likely that
these websites are built using the same phishing kit, indicated
by the similarities in the HTML DOM structure. We also
found that this is the case in the other cluster of websites,
which are (P_NTF_21, P_NTF_35, P_NTF_2, P_NTF_5),
and (P_NTF_37, P_NTF_22). Similar to the first case of
P_NTF_52 and P_NTF_60, the websites which are clustered
together have an identical HTML DOM structure, but with
different website designs. We also found that in some cases,
the websites are similar in style but have different background
images. Meanwhile, we also see that the legitimate website
has a close relationship with one of the phishing websites,
P_NTF_58. While this might introduce false positives in the
detection system for detecting phishing using NCD-based
similarity measurements, we argue that this would be a rare
case and it can be avoided by whitelisting legitimate websites.
The aim of the whitelist method is to filter legitimate websites
by comparing whether the content and domain of the website is
identical to one of the whitelisted websites. Using this method,
the phishing website will fail to satisfy the properties needed
to escape filtering, and would be processed further with the
NCD-based similarity assessment.

To observe the relationship between the websites based
on their screenshots, we also analyzed the pairwise NCD
values between the screenshots. Using the same approach as
the Netflix HTML DOM files, we performed clustering with
the screenshot image data. The cluster dendrogram is shown

Fig. 8. Multi-Brand Website Data (HTML DOM).

Fig. 9. Multi-Brand Website Data (Website Screenshot Image).

in Figure 5. Based on these results, it is demonstrated that
websites with different designs have pairwise NCD values
between 0.95 and 1. Meanwhile, the websites that are detected
as having high similarity are clustered together, as shown
in the dendrogram. These websites have identical designs,
such as (P_NTF_22, P_NTF_52, P_NTF_54), (P_NTF_37,
P_NTF_21, P_NTF_35), and (P_NTF_2, P_NTF_58). Inter-
estingly, the legitimate website (Figure 7) was not detected as
similar to any of the phishing websites, despite having similar
element styles. The only difference is the background image,
which may be updated frequently with images from the latest
movie or TV series. Based on this experiment, we were unable
to detect website similarities by computing the pairwise NCD
values on the website screenshots.

B. Multi-Brand Similarity Analysis

To observe the relationship between various brands’ phish-
ing and legitimate websites, we attempted to compute the
pairwise NCD values between the websites. We did this in
terms of the HTML DOM and website screenshot images. The
brands that we included in this analysis were Microsoft, Net-
flix, and PayPal, which are the three brands that consistently
ranked among the top five phishing targets in every quarter
in 2019 [5]–[8]. Having these pairwise NCD values, we were
able to cluster the websites and observe the relationship by
visualizing the clusters as a dendrogram. The dendrogram of
websites from the pairwise NCD values between the HTML
DOM files is shown in Figure 8, while the dendrogram con-
structed using the screenshot image files is shown in Figure 9.

By comparing the dendrograms in Figure 8 and Figure 9,
we are able to capture similarities and differences between
the website clusters constructed using HTML DOM files
and website screenshot image files. In terms of similarities,
phishing websites targeting similar brands are shown to be
clustered together and have a close relationship in both dendro-
grams. However, the first dendrogram (constructed using the
HTML DOM files) demonstrates a greater separation between
the cluster of phishing websites targeting a certain brand
and the cluster where the legitimate target website belongs.
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Fig. 10. Website Clusters.

Meanwhile, in the second dendrogram (constructed using the
website screenshot images), clusters of the same brands tend
to be alongside each other. Furthermore, there seems to be
very limited separation between the legitimate and phishing
websites.

The relationship between each website can also be observed
by plotting the clusters as a quartet tree (Figure 10), which
visualizes the closeness of the websites based on their dis-
tances to each other. To generate the quartet trees, we used
the CompLearn toolkit,1 which uses the Minimum Cost
Quartet Tree Reconstruction method to generate the opti-
mal quartet trees that represent the clusters. As shown
in Figure 10, the majority of PayPal phishing websites
occupy a single branch on the tree when clustering using
HTML and screenshot data. Using the HTML data, it is
shown that the Microsoft phishing websites are clustered
more closely compared to clustering using screenshot data.
The Netflix phishing websites are grouped together in the
lower right part of the tree when clustering using HTML
data. Meanwhile, using screenshot data, the Netflix phish-
ing websites with identical designs are clustered together
(i.e., (P_NTF_22, P_NTF_52, P_NTF_54), (P_NTF_37,
P_NTF_21, P_NTF_35), and (P_NTF_2, P_NTF_58)) as also
shown in the dendrogram in Figure 5. Based on these quartet
trees, the phishing websites of the same brands are relatively
closer to each other when clustered using its HTML data com-
pared to the screenshot data, which indicates high similarity
between phishing websites’ HTML content despite its visual
appearance.

VI. OPTIMAL DISTANCE THRESHOLD SELECTION

We attempted to vary the maximum distance value to obtain
the minimum Quality of Clustering (QC) value as defined
in Section III-C. Note that a smaller QC value indicates
superior cluster quality. After calculating the Quality of Clus-
tering (QC) values, we plot the QC against the maximum
distance threshold and fit an eighth-degree polynomial to the
points, then take the distance which gives the minimum value
of the fitted curve as the distance threshold.

For the threshold selection process, we used the phishing
data shared by Cui et al. [18], and selected the ones which are

1https://complearn.org/index.html

Fig. 11. Threshold Selection.

reported between 1 and 31 January 2016. The cluster quality
and false positive rate for a corresponding selected threshold
is shown in Figure 11. As shown in the graph, we obtained
the best cluster quality or minimum QC by selecting 0.251 as
the distance threshold. At this point, the false positive rate is
also very low, which is close to zero.

VII. EXPERIMENTAL SETUP

In this section, we briefly describe the experiment and
methodology to evaluate our proposed method, followed by
further details on the phishing and legitimate website dataset
used in our study.

A. Evaluation Methodology
There are three experiments in this study. The first experi-

ment aims to evaluate the performance of our prototype-based
method in detecting phishing websites and compare the result
to other methods, i.e., the proportional distance based method
proposed by Cui et al. [18] and the use of Doc2Vec models
and the Manhattan distance as introduced by Feng et al. [20].
In this experiment, we also evaluated the performance of
detection in various legitimate-to-phishing class ratios, and
the detection performance when using the combination of
NCD with other distance measures. In the second experiment,
we simulate the incremental detection of phishing websites
and assess the performance of NCD and prototype-based
incremental learning. Finally, in the third experiment, we per-
form an analysis on the memory requirements and run-time
performance for evaluating the feasibility of PhishSim imple-
mentation. In this study, we used the LZMA algorithm when
computing the NCD values at it is shown to approximate
the NID better which leads to better prototype extraction
and superior phishing detection performances as shown in
Appendix B.

B. Dataset
To evaluate the performances, we used our own dataset

which is completely different from the one used in the simi-
larity analysis (Section V) and the optimal distance threshold
selection process (Section VI). We plan to share the dataset
for the experiments for future work studies.

To build the phishing dataset, we created a script which
fetched the latest phishing URL list from PhishTank and col-
lected phishing pages every 3 hours to maximize the number of
live phishing pages. The phishing URLs that are provided by
PhishTank are typically fake sign-in or login pages, or pages
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TABLE I

DETECTION METHOD COMPARISON

with input forms to steal account information. The total
number of collected phishing websites are roughly 13,300
websites. To fetch the website content, we used Selenium
and Chromium [10], instead of fetching the HTML source
code using built-in wget or curl tools, which gave us the
HTML as rendered in a browser. After performing sanitation
and removing error/empty pages, we have 9,034 phishing
websites which were reported by users to PhishTank [9]
between 28 April 2020 and 22 February 2021. We also
removed cloaked phishing websites, by inspecting the URL
of the landing page, then removed pages whose domain is
included in the top 500 domains, which indicates that there is
a redirection to a legitimate page.

Meanwhile, to obtain a representative legitimate website
dataset, we compiled legitimate pages in the Common Crawl
database [3]. The legitimacy of the website is assessed by
the website’s popularity based on the Tranco page ranking
list by Le Pochat et al. [26]. This page ranking is selected
because it is claimed to be more robust against manipulation
by adversaries. We use the Tranco list2 generated on 14 March
2021, and selected the top 4,000 domains. For each domain,
we collected 100 pages in Common Crawl’s February/March
2021 crawl archive.3 After removing empty pages and error
pages, we have a collection of 180,302 websites.

VIII. RESULTS

In this section, we provide further details regarding the
results of the experiments. We study the performance of the
phishing detection algorithm, evaluate the incremental learning
framework, and analyze the memory requirements and the
runtime measurement.

A. PhishSim Performance

Based on the results we obtained during the threshold
selection process, we selected the maximum distance threshold
value as 0.251 (Section VI). We evaluated the performance
of our proposed phishing website detection method using
prototype-based learning algorithms, with NCD as the distance
metric. We applied a temporal split to the phishing dataset
based on the website submission date, when allocating the
data for prototype extraction (model training) and performance
evaluation (testing). This is recommended in past studies over
the cross-validation evaluation as cross-validations could intro-
duce performance overestimation due to the risk of training
on future data and testing on past data [23], [31]. We use the
7,746 phishing data submitted prior to 18 February 2021 when
extracting the phishing prototypes, while the remaining 1,288
phishing data are allocated for testing. Meanwhile, we use

2Available at https://tranco-list.eu/list/7JNX.
3Available at https://commoncrawl.s3.amazonaws.com/crawl-data/CC-

MAIN-2021-10/index.html.

Fig. 12. Receiver Operating Characteristic (ROC) Curve.

TABLE II

PHISHING DETECTION PERFORMANCE COMPARISON

(DEFAULT DISTANCE THRESHOLD)

the entire legitimate website dataset for testing. The testing
dataset has a phishing to legitimate class ratio of 1 to 140.
We intentionally craft the testing dataset class ratio to resemble
phishing detection in the real scenarios, where typically there
is one phishing page for every 100 legitimate pages [19], [36].

We compare the performance of PhishSim with other
similarity-based phishing detection approaches introduced
in past studies by Cui et al. [18] and Feng et al. [20].
Cui et al. [18] proposed a distance metric for detecting sim-
ilarity among phishing websites, the proportional distance,
and made use of hierarchical clustering to group similar
phishing websites and detect whether an unknown website
is clustered together with a known phishing website. Mean-
while, Feng et al. [20] proposed a method to detect phishing
websites using clustering algorithms and Doc2Vec models to
represent phishing and legitimate websites. To measure the
website similarities, Manhattan distance is used as proposed
in their study. Details on each technique, including the distance
metrics and clustering algorithms, are summarized in Table I.
As the code implementation of the approaches proposed by
Cui et al. [18] and Feng et al. [20] are not publicly shared,
we replicated these approaches using the same algorithms and
model hyperparameters as mentioned in the research papers.

To compare the detection performances and characteristics,
we plot the receiver operating characteristic (ROC) curve
based on the distance of each instance to the closest phishing
sample or phishing prototype. The ROC curve is shown
in Figure 12. The AUC score could be interpreted as the
probability of the model assigning a phishing website with a
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TABLE III

PHISHING DETECTION PERFORMANCE COMPARISON (AT EER POINT)

higher similarity score than the legitimate website’s similarity
score. The AUC score is an aggregate measure that model’s
classification performance across all possible thresholds which
provides a method to compare binary classifier performances
regardless of the selection of distance threshold or cut-off.
Based on the AUC score, PhishSim slightly outperforms other
methods with an AUC score of 0.9868, indicating that it
performs better in classifying phishing and legitimate websites
in general. In the case of detecting phishing attacks, we would
be more interested in selecting an operating point with a
low false positive rate (FPR). To observe the performance
in this region, we also provide a ROC curve which focuses
on the low-FPR region and the partial AUC scores of each
method (maximum FPR of 5%). As shown in Figure 12, the
partial AUC score also shows that PhishSim outperforms other
methods with a partial AUC score of 0.9668.

We also compare the detection performance when choos-
ing the default optimal distance thresholds. As discussed
in Section III-C, we found that PhishSim works best
when selecting 0.251 as the distance threshold. Meanwhile,
we selected the best distance threshold of the baseline methods
using the suggested value or settings as mentioned in the past
study [18], [20]. As shown in Table II, PhishSim achieved
an excellent TPR of almost 90% with a low FPR of 0.58%.
While Doc2Vec achieves a higher TPR, the FPR at this
operating point is also significantly higher, which would not
be ideal for phishing detection. We also measured the G-mean,
or the geometric mean of the TPR and true negative rate
(TNR), which provides a better way to evaluate a model in
a highly imbalanced classification problem, which is similar
to the ratio between phishing to legitimate websites in real
scenarios. As shown in Table II, PhishSim outperformed other
methods with a G-mean of 94.47%, indicating a better overall
performance in detecting phishing with the real imbalanced
class distribution. Furthermore, we also compared the per-
formance of each method when selecting the EER point as
the operating point, which indicates the operating point when
the false negative rate and the false positive rate have the
same value. As shown in Table III, PhishSim has superior
performance compared to other methods, by achieving TPR,
TNR, and accuracy, with the lowest FPR. It is also shown
that PhishSim gives the best G-mean score, which shows the
ability to provide the best compromise between achieving a
high TPR while still having a high TNR.

B. PhishSim for Improving Existing Methods

We also observed if the use of PhishSim in combination
with other methods would improve the phishing detection
performance. In this experiment, we combined the two best

Fig. 13. Combining NCD and Proportional Distance.

performing methods in terms of AUC score, which are
PhishSim and the proportional distance based method by
Cui et al. [18] and trained a logistic regression model to
perform a weighted sum on the NCD and proportional distance
values.

For this experiment, we used the dataset that we collected,
as mentioned in Section VII-B. We allocated 90% of the
phishing and legitimate website data for training the logistic
regression model and used the remaining 10% of the phishing
and legitimate website data for testing the model’s perfor-
mance, while keeping the phishing to legitimate class ratio
to 1:140 in both training and testing dataset. To improve the
trained logistic regression model’s performance, we applied
the SMOTE oversampling method on the training dataset to
generate synthetic phishing data to provide more samples.

The performance of the logistic regression model is shown
in Figure 13. The AUC score shows a similar performance
in general. However, in a very low FPR region (maximum
FPR of 0.5%), the combined method was able to achieve a
higher partial AUC score compared to PhishSim and propor-
tional distance alone. To compare the performance, we select
an operating point where the FPR is around 0.1% which
is considered an acceptable false positive rate for phishing
detection in real scenarios, similar to some past studies [18],
[36]. The TPR, FPR, and accuracy of the combined method
at this operating point is shown in Table IV. It is shown that
combining these methods resulted in a great improvement in
terms of TPR, with a 5% difference from using proportional
distance alone, while having a slightly lower FPR of 0.09%
and a higher accuracy of 99.82%.

C. Incremental Learning

With the selected threshold (Section VI), we also evalu-
ated the performance using the incremental learning method.
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TABLE IV

PERFORMANCE OF PHISHSIM WITH
PROPORTIONAL DISTANCE (FPR<0.1%)

TABLE V

PHISHING DETECTION PERFORMANCE COMPARISON FOR INCREMENTAL
LEARNING (DEFAULT DISTANCE THRESHOLD)

TABLE VI

PHISHING DETECTION PERFORMANCE COMPARISON FOR INCREMENTAL

LEARNING (AT EER POINT)

Similar to the previous experimentation, we also applied a
temporal split to the dataset. The phishing dataset was sorted
and divided by its week of submission for each iteration of
the incremental learning process. In each iteration, we treated
the last week of data as the testing data and performed
classifications to evaluate the detection performance using
the prototypes extracted in earlier months. Following this,
we performed prototype extraction on the testing data at
each iteration to learn new phishing prototypes, simulating
the process of weekly detection and database updates of
anti-phishing systems. Using the testing data from 28 May
2020 to 22 February 2021, we performed evaluations for
roughly 39 weeks. As a comparison, we also implemented
the hierarchical clustering method proposed by Cui et al. [18]
and Doc2Vec based method by Feng et al. [20] in an incre-
mental learning experimental setup. Note that instead of
updating the clustering model, we performed clustering from
scratch in every iteration when implementing the method
by Cui et al. [18] and Feng et al. [20], since we are unable
to find an approach to perform the clustering incrementally
using this method. The performance of PhishSim compared to
these methods at the last iteration of the incremental learning
experiment is shown in Table V, which is consistent with the
results from the non-incremental learning setting in Table II.
We also included the ROC curve and performance at the EER
point in Table VI.

Furthermore, we also observed the true positive rate and
false positive rate at each iteration, which are provided in

Fig. 14. Receiver Operating Characteristic (ROC) Curve (in Incremental
Learning Experiment).

Fig. 15. TPR in Incremental Learning Setting.

Fig. 16. FPR in Incremental Learning Setting.

Figure 15 and Figure 16. As shown in Figure 15, the Doc2Vec
based method by Feng et al. [20] outperforms the other meth-
ods in most iterations. However, it is also shown in Figure 16
that the false positive rate of the Doc2Vec-based method is
relatively high and seems to increase over time, which would
not be suitable for phishing detection. On the other hand,
PhishSim consistently outperforms the proportional distance
based method by Cui et al. [18] in terms of true positive
rate with a TPR of nearly 90%. While having a high TPR,
PhishSim maintains a low and stable FPR of under 0.8% in
each iteration.

D. Memory Requirements and Run-Time Analysis

Besides evaluating the detection performance, we also ana-
lyzed the memory requirements and run-time performance of
PhishSim to evaluate the feasibility of deployment in real
scenarios. To observe the memory requirements, we analyze
the number of prototypes extracted at each iteration in the
incremental learning experiment in comparison to the number
of phishing websites these prototypes represent. We also
computed the amount of time needed to process every website
using a 6-core 3.70 GHz Intel(R) Xeon(R) W-2135 CPU.

Figure 17 depicts the compression ratios at each itera-
tion in the incremental learning experiment (as discussed in
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Fig. 17. Ratio of prototype number to phishing data size.

Section VIII-C). Compression ratio in this context is defined as
the ratio between the number of prototypes extracted relative to
the total number of phishing websites they represent. As the
detection system incrementally learns, the number of proto-
types increases as new website samples are learned. However,
compression ratio gradually decreases over time, showing that
the system was able to extract meaningful phishing prototype
representations. At the last iteration, around 1,366 prototypes
were extracted which represents 9,034 phishing websites,
giving a compression ratio of 0.15. The phishing HTML
DOM data size average is around 2.02 KB with a standard
deviation of 3.81 KB. A larger standard deviation relative to
the mean would indicate that the data distribution is heavily
right-skewed with a number of data outliers. Therefore, we use
the median of the phishing website HTML DOM size in this
analysis to predict the data storage consumption. Based on
our experiment, the number of prototypes is 1,366 at the
last iteration. With a median of around 727 B, storing 1,366
phishing prototypes would take roughly 0.947 MB of data
storage.

To evaluate the run-time performance, we analyzed the time
needed to perform classification on each website. To decide
whether a website is legitimate or phishing, we perform
pairwise NCD calculation between the website and each
phishing prototype. The length of the compressed phishing
prototype can be precomputed before classification, while the
length of the compressed website only needs to be computed
once. Thus, the process which would take time the most
is compressing the concatenation of the website and each
phishing prototype, which cannot be precomputed and should
be performed individually for each prototype. The total amount
of time to process a website would depend on the number of
phishing prototypes. With the assumption that the length of
each compressed prototype file is precomputed and the number
of prototypes in the database is 1,366, we found that it would
take around 0.3 seconds to process a single website.

In the incremental learning experiment (Section VIII-C),
we also measured the total amount of time taken by PhishSim
and other methods in past studies to perform detection and any
other processes to prepare the detection model, which include
prototype extraction (PhishSim), HTML tag computation and
distance matrix construction (Proportional Distance [18]),
Doc2Vec model training, vector inference, and distance matrix
construction (Doc2Vec [20]). The total process duration at

the first five iteration is shown in Figure 18. As shown in
Figure 18, PhishSim takes less than 0.3 seconds to perform
detection, which is relatively similar to the time taken by the
other methods. While PhishSim has the highest overhead on
the first iteration, it takes the least amount of time to update
the model on the next iterations compared to other methods,
indicating the PhishSim’s detection model can be updated
incrementally faster.

IX. DISCUSSION

A. Detection Method and Performance

This study proposes a feature-free method for detecting
phishing websites, which we argue would be suitable with
the dynamic characteristics of phishing attacks. As reported
by PhishLabs [32], phishing attackers have been persistently
adapting to new opportunities and changing the manner in
which they adapt. Furthermore, a study by Cui et al. [18]
found that around 90% of phishing websites are variations
or replicas of other phishing websites. There has also been
an increased use of phishing kits, which ease the process of
setting up phishing websites, enabling attackers to launch a
large number of phishing attacks in a short period of time.
As discussed in Section V-A, we found that these kits make
the process of changing the phishing website layout and style
more effortless.

Based on the experiments in Section VIII-A and
Section VIII-C, our proposed method is able to outperform
the hierarchical-clustering based method by Cui et al. [18]
and Doc2Vec based method by Feng et al. [20] based on
its AUC score. PhishSim achieves a high TPR of around
90% while maintaining a low FPR of 0.58%. We can also
apply this method to build a model which can incrementally
learn using one week of data to perform phishing detection
with relative success. Evaluating our detection method in
comparison with state-of-the-art methods, it has also been
shown that PhishSim is able to outperform past studies with
significant improvements in terms of true positive rate and
with a relatively low FPR which is suitable for phishing
detection. It has also been shown that we are able to improve
the phishing detection performance when combining PhishSim
with proportional distance, as shown in Table IV. Using this
combined method, we could operate at an even lower FPR of
0.09% with a TPR of 88.37% and accuracy of 99.82%.

The method that we proposed is a feature-free method,
which means that our method is not tied to a fixed web-
site representation (Table I) and is more robust compared
to feature-based methods which rely on specific features.
On the other hand, the method by Cui et al. [18] uses the
proportional distance which measures website similarity based
on the number of occurrences of a set of predefined HTML
tags and assumes that similar websites have a nearly identical
number of HTML tag counts. While phishing websites that
use custom HTML tags are not very common currently, the
use of WebComponents [11] provide a method to perform
novel website obfuscation technique using custom HTML
tags to avoid detection from content-based methods which
heavily relies on the analysis of the HTML content. While
adding HTML tag definition and model training are possible,
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Fig. 18. Total Process Duration at 1st to 5th Iteration.

phishing attacks are very dynamic and aggressive with changes
in evasive phishing campaign methods every 37 days in
average [2]. Having the flexibility to perform detection based
on similarities without reliance on a preset corpus would be a
great benefit to counteract the dynamics of phishing. Similarly,
the approach by Feng et al. [20] uses a trained Doc2Vec
model to generate vector representation for each website.
It is not guaranteed that the generated vectors are always
representative over time. To have an accurate detection, these
methods rely on the assumption that the website representation
would always remain relevant, which might not always be
the case. Some features that were previously used to detect
phishing websites accurately (e.g., bad forms, bad action fields,
and non-matching URLs [37]) may no longer be relevant to
phishing attacks. A past study investigated the relevance of
these features in a phishing dataset collected in 2020 and has
shown that only 8.90% of the phishing websites contain bad
forms, while only 19.95% and 47.92% of them contain bad
action fields and non-matching URLs respectively [33].

On the other hand, NCD as a similarity measure is uni-
versal and is purely based on the shared information between
measured websites. Every phishing cluster is represented by
a data instance, while the NCD value is used for measuring
the relationship between all pairs of websites. Furthermore,
the use of the Furthest Point First (FPF) algorithm provides
a systematic way for prototype learning such that it does
not require the data to be represented in a fixed vector
representation or data structure. This is unlike most clustering
and classification algorithms which require the data to be
represented as a vector of representative feature values. Once
the selected feature values are no longer relevant for phishing
attacks, there is a risk of missing malicious phishing attacks.
Meanwhile, our feature-free method would still be able to
continuously identify these attacks with a maintained up-to-
date phishing data and without the reliance on a specific
feature set.

Robustness against code obfuscation is generally a concern
when the detection approach evaluates the website’s HTML
source code. However, as stated in Section IV, PhishSim
evaluates the HTML of the rendered page instead of the
HTML source code. A web browser will produce the same
HTML code regardless of the HTML obfuscation or hidden
alterations in the CSS or JavaScript files. Furthermore, we also
removed the text and HTML comments in the content prior to

performing compression, leaving only the HTML tags which
are rendered and visually shown on the browser. Thus, the
performance will also be unaffected by addition of invisible
elements in the HTML.

B. Limitations and Future Work

There are some limitations to our proposed method. First,
it may not be able to detect zero-day attacks or new variants
of phishing websites, as our method is primarily focused on
detecting variations of known attacks. However, we argue that
our proposed method would improve the quality of detection
done by experts, by using various machine learning algorithms,
and by providing a framework to continuously learn and adapt
to new cases of phishing, without the need to choose a fixed
representation of phishing instances.

Moreover, there are some challenges in the practical imple-
mentation of this method. It is possible that a certain phishing
prototype becomes obsolete which then makes the prototype
irrelevant for detection. Therefore, ideally, there needs to be
a way to effectively maintain the prototype collection so
that only the useful prototypes are retained in the database.
This is, however, currently beyond the scope of our paper.
The proposed method can also be improved in the future by
designing methods to effectively maintain useful prototypes,
as well as by removing instances which are no longer relevant.
The ability to remove irrelevant prototypes would be beneficial
to reduce the storage size of the prototype database.

Our proposed phishing detection approach uses a
prototype-based clustering and classification approach.
This helps us to make the algorithm’s decisions more
interpretable, as it clarifies what each cluster or class
corresponds to, by observing the prototypes. For future work,
it would be interesting to further investigate the relationship
between the set of prototypes that the algorithm finds and the
phishing dataset, and how they evolve over time.

Furthermore, the study of PhishSim was mainly motivated
by a previous work [18], which found that most of the
phishing websites are replicas with similar HTML contents.
Currently, performing a comprehensive comparison of using
content similarity over visual similarity would be a challenging
task, due to the unavailability of a large-scale high-quality
dataset that contains both the rendered page’s HTML and
its screenshot. Future studies that focus on a comprehensive
study of the content-based and visual-based methods using
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a standard website dataset would be beneficial in improving
phishing detection studies.

X. CONCLUSION

In this paper, we propose a feature-free method for detect-
ing phishing websites using the Normalized Compression
Distance (NCD) which measures website similarity by com-
pressing them, eliminating the need to perform any feature
extraction nor any reliance on a specific set of website features.
This method examines the HTML source codes of webpages
and computes their similarity with known phishing websites.
We propose the use of the Furthest Point First algorithm
to perform phishing prototype extractions, in order to select
instances that are representative of a cluster of phishing
webpages. We also introduce the use of an incremental learn-
ing algorithm as a framework for continuous and adaptive
detection without re-performing new feature extraction when
concept drift occurs. Evaluating the performance on a recent
large-sized dataset, our proposed method is shown to outper-
form past studies in detecting phishing websites with an AUC
score of 98.68%, a high true positive rate of around 90% while
maintaining a low FPR of 0.58%.

APPENDIX A
NORMALIZED COMPRESSION DISTANCE

Normalized Compression Distance (NCD) is an applica-
tion independent information theoretic method for measuring
the similarities between two objects. It is a parameter-free
similarity measure which uses compression algorithms to
perform data clustering and classification in a broad range
of applications. With this method, useful knowledge can
be obtained from data without prior domain expertise as it
operates on generic file objects, regardless of their format,
structure, or semantics [27].

NCD computes the distance between two files by observing
the result of compressing both files together and comparing
this with the result of compressing each file separately. The
key concept behind NCD is that two very similar files would
compress much more effectively when combined prior to com-
pression, compared with the total file size when compressed
separately. On the other hand, compressing two files with
little or nothing in common would not be as beneficial as
compressing them separately [17].

NCD is motivated by the idea that the similarity of two
objects can be measured by how easy it is to transform one
object into the other. This concept is formally expressed by the
information distance E(x, y), which is defined as the length
of the shortest binary program to compute y from x or x from
y, and can be rewritten as

E(x, y) = max{K (x |y), K (y|x)} (4)

The information distance is based on the notion of Kolmogorov
complexity, K (x), which depicts the length of the shortest
program that computes x [17].

The normalized version of E(x, y), called the normalized
information distance (NID), is defined as

N I D(x, y) = max{K (x |y), K (y|x)}
max{K (x), K (y)} (5)

NID itself satisfies the conditions of a metric and can represent
the similarity between two arbitrary entities according to the
dominating shared features between both objects [27]. Unfor-
tunately, the NID is based on the Kolmogorov complexity,
which is not computable. This indicates that NID cannot be
used directly. However, Cilibrasi and Vitanyi [17] demonstrate
that we can approximate the Kolmogorov complexity, and
introduce the notion of NCD as a practical similarity metric
approximating NID using a real-world compression algorithms
C , which is defined as,

NC D(x, y) = C(xy)− min{C(x), C(y)}
max{C(x), C(y)} (6)

The NCD is a non-negative number between 0 and 1 + �
which depicts how similar two objects are. Highly similar files
would give smaller NCD values, while distinctive files would
give NCD values closer to 1. Meanwhile, the � in the upper
bound represents a small error caused by imperfections in the
compression algorithms which is usually a value below 0.1 for
most standard algorithms [17].

The approximation of the denominator of NID in Equation 5
given a compressor C is quite obvious, giving us the denom-
inator of NCD in Equation 6. However, the approximation of
the NID numerator is not as straightforward. The numerator
in Equation 5 can be expressed as

max{K (x, y)− K (x), K (x, y)− K (y)} (7)

with

K (x, y) = K (xy) = K (yx) (8)

where xy or yx depicts the concatenation of x and y, and
K (x, y) denotes the length of the shortest program to compute
(x, y). The approximation is expressed using K (x, y) since in
practice, it would be easier to perform compression on the
concatenation xy. Equation 7 can be best approximated by

min{C(xy), C(yx)} − min{C(x), C(y)} (9)

In our experiment, C(x, y) is used instead of
min{C(xy), C(yx)} as proposed in [17]. Here, we assume
that C is symmetric, i.e., C(xy) = C(yx). This is justified by
previous experiments [17] using various block-coding based
and stream-based compression algorithms, where it has been
shown that the results are symmetric or only produce small
deviations from symmetry.

APPENDIX B
COMPRESSION ALGORITHM SELECTION

In this section, we performed an evaluation on the perfor-
mance of PhishSim using various compression algorithms (i.e.
zlib, bz2, LZMA, and gzip). For this comparison, we used
a different set of phishing and legitimate website data from
the datasets used in our main experiment. To build the
phishing dataset for this evaluation, we use the list of 9,245
phishing website URLs reported by user to PhishTank [9]
between 7 November 2008 and 28 March 2020. Meanwhile,
to obtain representative legitimate website dataset, we col-
lected URLs of non-phishing pages which are associated with
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TABLE VII

PERFORMANCE COMPARISON OF VARIOUS COMPRESSION ALGORITHMS

the brands or organizations that are commonly targeted by
phishing attacks, especially its login page. This data collection
process makes use of the Google Custom Search API [4] to
perform custom search using a specific query and specify-
ing the search results to be pages from a specific domain.
To collect the legitimate webpage URLs, the phishing target
list by PhishTank and Alexa top 1 million sites [1] were
used. Each domain in the list was searched using the Google
Custom Search Engine API and we collected the login page as
well as the top 100 URLs the search. In total, our legitimate
dataset consists of 10,869 legitimate websites, which were
collected between February and April 2020. We applied a
temporal split to the phishing dataset based on the website
submission date, when allocating the data for prototype extrac-
tion (model training) and performance evaluation (testing).
The training dataset consists of 8,511 phishing websites and
8,511 legitimate websites, while the testing dataset comprises
734 phishing and 734 legitimate websites.

The phishing detection performance comparison results are
provided in Table VII. As shown in this table, the use of
zlib algorithm leads to the best performance in terms of TNR
and AUC score. However, the LZMA algorithm achieved a
significantly higher TPR of 74.114% which is 13% higher
than the TPR of zlib algorithm, indicating a superior ability
in classifying the phishing websites. Furthermore, LZMA also
outperformed other compression algorithms in terms of the
accuracy and G-mean score, which computes the geometric
mean of TPR (sensitivity) and TNR (specificity).

To observe the memory requirements, we also analyzed
the number of prototypes extracted at each iteration in an
incremental learning experiment in comparison to the number
of phishing websites these prototypes represent. Fig. 19 shows
the number of extracted prototypes, while Fig. 20 depicts the
compression ratios at each iteration in the incremental learning
experiment (Algorithm 3). Compression ratio in this context
is defined as the ratio between the number of prototypes
extracted relative to the total number of phishing websites
they represent. As the detection system incrementally learns,
the number of prototypes increases as new website samples
are learned. However, compression ratio gradually decreases
over time, showing that the system was able to extract
meaningful phishing prototype representations. As shown in
Figs. 19 and 20, the use of LZMA algorithms achieved the
highest number of extracted prototypes which are representa-
tive of the online phishing data. The ability to extract more
phishing prototypes consequently led to a better performance
over time without the need to retain a large number of phishing

Fig. 19. Number of prototypes.

Fig. 20. Ratio of prototype number to phishing data size.

prototypes, as shown by the decreasing ratio of prototype
number to phishing data size.
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