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When Satellites Work as Eavesdroppers
Dong-Hyun Jung, Joon-Gyu Ryu, and Junil Choi

Abstract—This paper considers satellite eavesdroppers in uplink
satellite communication systems where the eavesdroppers are
randomly distributed at arbitrary altitudes according to homoge-
neous binomial point processes and attempt to overhear signals
that a ground terminal transmits to a serving satellite. Non-
colluding eavesdropping satellites are assumed, i.e., they do not
cooperate with each other, so that their received signals are not
combined but are decoded individually. Directional beamforming
with two types of antennas: fixed- and steerable-beam antennas, is
adopted at the eavesdropping satellites. The possible distribution
cases for the eavesdropping satellites and the distributions of the
distances between the terminal and the satellites are analyzed.
The distributions of the signal-to-noise ratios (SNRs) at both
the serving satellite and the most detrimental eavesdropping
satellite are derived as closed-form expressions. The ergodic
and outage secrecy capacities of the systems are derived with
the secrecy outage probability using the SNR distributions.
Simpler approximate expressions for the secrecy performance
are obtained based on the Poisson limit theorem, and asymptotic
analyses are also carried out in the high-SNR regime. Monte-
Carlo simulations verify the analytical results for the secrecy
performance. The analytical results are expected to be used
to evaluate the secrecy performance and design secure satellite
constellations by considering the impact of potential threats from
malicious satellite eavesdroppers.

Index terms — Satellite communication systems, physical-
layer security, satellite eavesdropper, secrecy outage probability,
secrecy capacity.

I. INTRODUCTION

S
ATELLITE communications have been recently employed

to provide global internet services exploiting the large

coverage of satellites. As a part of the fifth generation standard,

non-terrestrial networks (NTNs) have been standardized by 3rd

Generation Partnership Project (3GPP) since Release 15 [1],

[2]. The 3GPP standard is to harmonize the original terrestrial

networks (TNs) with the NTNs composed of flying entities

such as satellites, unmanned aerial vehicles (UAVs), and high-

altitude platforms (HAPs). Such three-dimensional networks

including both TNs and NTNs will provide communication

services to not only ground terminals but those in the sky such

as drones, airplanes, and vehicles for urban air mobility. In

addition, several companies such as SpaceX, OneWeb, Telesat,

and Amazon have planned to launch a large number of low

Earth orbit (LEO) satellite constellations to enhance the system
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throughput in the near future [3]. For example, SpaceX has

plans to launch more than 10,000 satellites over the next

couple of years, while OneWeb designed a constellation with

720 satellites at the altitude of 1,200 km. Telesat has planned

to construct the constellation of 117 satellites on the polar

and inclined orbits at the altitude of 1,000 and 1,200 km,

respectively. However, the growing number of satellites may

cause problems from a communication security perspective.

For example, some satellites with specific purposes could

overhear important information transmitted from ground nodes

without permission. With these potential threats by the massive

number of satellites, it is important to keep communication

systems safe in terms of communication security.

A. Related Works

Due to the characteristics of wireless channels, the in-

formation signals from a transmitter can reach not only a

legitimate receiver but other malicious receivers, which act as

eavesdroppers [4]. With the knowledge of the communication

protocols of the legitimate link, the eavesdroppers are able

to overhear the signals without permission. The positions of

eavesdroppers may not be known at legitimate transceivers, as

the eavesdroppers usually act as passive nodes. To tackle this

uncertainty, many works considered multiple eavesdroppers

randomly distributed in infinite areas based on Poisson point

processes (PPPs) [5]-[7]. However, when the number of nodes

distributed in the networks is finite, the randomness of the

positions of the nodes should be modeled by using a finite

point process other than the PPP [8].

The binomial point process (BPP) is a finite point pro-

cess where each point is independently distributed, and the

number of points in a bounded region follows the binomial

distribution. The distributions of LEO satellite constellations

can be modeled as the BPP over a sphere-shaped region

because the satellites may look randomly distributed due to

the mobility of the LEO satellites and various orbits of the

practical constellations [9]-[11]. It was shown in [9] that

the BPP is appropriate to model practical LEO satellites’

distributions from coverage and rate perspectives. The user

coverage probability of LEO satellite communication systems

was studied in [10] where gateways act as relays between users

and LEO satellites. The distance distributions for gateway-

satellite and inter-satellite links were studied in [11].

As interest in the NTNs including satellites, UAVs, and

HAPs is growing, physical layer security in the NTNs has

recently been investigated in [12]-[18] assuming ground eaves-

droppers. The ergodic secrecy capacity for UAV networks

was analyzed in [12] where a transmit jamming strategy was

proposed to confuse randomly-located eavesdroppers. Zero-

forcing-based beamforming schemes for multi-beam satellite

systems were proposed in [13] and [14] to minimize the

transmit power of the satellite with a secrecy rate constraint.

http://arxiv.org/abs/2206.12006v1
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For both perfect and imperfect channel state information,

secure transmission schemes in cognitive satellite-terrestrial

networks were proposed in [15]. As stated, however, these

works are based only on the ground eavesdroppers in the

NTNs.

B. Motivation and Contributions

As the number of NTN elements, such as satellites and

UAVs, rapidly grows in the sky, some of them may illegally

attempt to eavesdrop on information signals from ground

transmitters for political or military purposes. In addition, the

large coverage, which is an advantage of the NTNs, may rather

become a major threat, making it easier for the signals to be

overheard. The impacts of UAV eavesdroppers on the secrecy

performance have been recently investigated in [19]-[23].

The secrecy outage probability of hybrid satellite-terrestrial

networks was analyzed in [19] where a UAV eavesdropper tries

to overhear information signals from a UAV relay. Asymptotic

expressions for the ergodic and outage secrecy capacities

were derived in [20] with a UAV eavesdropper. A secure

connection probability was analyzed in [21] in the presence

of UAV eavesdroppers randomly located in a disk according

to a BPP. For both colluding and non-colluding aerial eaves-

droppers that are distributed over a hemisphere, the ergodic

and outage secrecy capacities were analyzed in [22]. The

secrecy outage probability of ground-to-air communication

networks was derived in [23] where a deep learning model

to predict the secrecy performance was developed. However,

there have been few studies on the impact of satellites working

as eavesdroppers, which are worthwhile to investigate as the

number of satellites increases.

Motivated by this, we aim to analyze the secrecy perfor-

mance of satellite communication systems in the presence of

multiple satellite eavesdroppers. The main contributions of this

paper are summarized as follows.

• Eavesdropping satellites: The impact of satellites work-

ing as eavesdroppers is investigated, while previous works

on the physical layer security in satellite communication

systems [13]-[17] only consider the eavesdroppers located

on the Earth. Different from aerial UAV eavesdroppers in

[21]-[23], satellites are distributed over a sphere centered

at the Earth’s center, which makes distance distributions

different.

• Two types of beamforming antennas: Directional beam-

forming with both fixed- and steerable-beam antennas is

considered for the eavesdropping satellites to compensate

the large path loss [2], which has not been considered

in the previous works [21]-[23]. The satellites with the

fixed-beam antennas maintain the boresight fixed in the

direction of the subsatellite point (the nearest point on

the Earth), while with the steerable-beam antennas, the

boresight direction of the satellite’s beam can be steered

to the location of the targeted terminal to improve the

quality of received signals.

• BPP-based secrecy performance analyses: The possible

distribution cases for eavesdropping satellites are studied,

and the probabilities of these cases are derived based on

the mathematical properties of the BPP. The distributions

of distances between the terminal and eavesdropping

satellites are analyzed. With the derived distance distri-

butions, we obtain the distributions of the signal-to-noise

ratios (SNRs) at the serving satellite and the most detri-

mental eavesdropping satellite, i.e., the eavesdropping

satellite with the highest received SNR. For both fixed-

and steerable-beam antennas, we analyze three secrecy

performance: (i) ergodic secrecy capacity, (ii) secrecy

outage probability, and (iii) outage secrecy capacity of

the systems by using the SNR distributions. Using the

Poisson limit theorem, we derive simpler approximate

expressions for the secrecy performance and compare

their computational complexity with the exact expres-

sions. In addition, the asymptotic behavior of the secrecy

performance is investigated in the high-SNR regime.

• Verification by simulations: Finally, we numerically

verify the derived expressions through Monte-Carlo sim-

ulations. The impact of the number of eavesdropping

satellites, position of the serving satellite, and beam-

steering capability is also shown in the simulations.

The rest of this paper is organized as follows. In Section

II, the system model for satellite communication systems

with randomly-located eavesdropping satellites is described.

In Section III, the possible distribution cases and the distance

distributions for the eavesdropping satellites are studied. In

Section IV,the SNR distributions and the secrecy performance

of the systems are analyzed. In Section V, the approximate and

asymptotic secrecy performance are obtained. In Section VI,

the analyzed results are extended to the satellites at different

altitudes. In Section VII, simulation results are provided, and

conclusions are drawn in Section VIII.

Notation: P[·] indicates the probability measure, and E[·]

denotes the expectation operator. The empty set is ∅, and

the complement of a set X is Xc. The length between two

points A and B is AB. The absolute value of a real number

G is |G |. The indicator function is 1(G ∈ X), which has

the value of 1 if G ∈ X and 0 otherwise.
(=
:

)
denotes

the binomial coefficient. The cumulative distribution function

(CDF) and the probability density function (PDF) of random

variable - are �- (G) and 5G (G), respectively. Γ(·) is the

Gamma function, and the Pochhammer symbol is defined as

(G)= = Γ(G + =)/Γ(G). The lower incomplete Gamma function

is defined as W(0, G) =
∫ G

0
C0−14−C3C. The inverse function of

5 (·) is 5 −1(·). The floor function is ⌊·⌋.

II. SYSTEM MODEL

Consider an uplink LEO satellite communication system

where a ground terminal communicates to a serving satellite

at the altitude 0s and the elevation angle \s in the presence of

multiple eavesdropping satellites. Assume the handheld-type

terminal that is equipped with an omni-directional antenna

as considered in the 3GPP NTN standard.1 We begin with

the assumption that # eavesdropping satellites are randomly

1The 3GPP NTN standard considers the handheld terminal, i.e., the user
equipment with the power class 3, with an omni-directional antenna as one
of the target terminals [2]. This antenna configuration can be applicable to
low-cost terminals, such as handheld and IoT terminals.
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Fig. 1. (a) System model and (b) parameter description. Blue, red, and black dots indicate the terminal, serving satellite, and eavesdropping satellites,
respectively.

distributed at the altitude 0e according to a homogeneous BPP

Φ, as shown in Fig. 1(a), which will be extended to the general

case of eavesdropping satellites at different altitudes in Section

VI. The region where the eavesdropping satellites can be

located is a sphere with the radius A +0e, where A is the radius

of the Earth. With spherical coordinates, this region can be

expressed as A = {d = A + 0e, 0 ≤ k ≤ c, 0 ≤ i ≤ 2c}, where

d, k, and i are the radial distance, polar angle, and azimuthal

angle, respectively. Among the eavesdropping satellites in A,

those located above the horizontal plane at the terminal are

only considered as effective eavesdropping satellites, which

attempt to overhear the information signals transmitted from

the terminal. Let Φ̄ denote the set of the effective eavesdrop-

ping satellites, and Ā represent the region where the satellites

in Φ̄ can be located, shown as the shaded areas in Fig. 1(b).

Since Ā is the surface of the spherical cap with the radius A+0e

above the horizontal plane at the terminal, Ā can be expressed

as Ā = {d = A + 0e, 0 ≤ k ≤ kmax, 0 ≤ i ≤ 2c}, where

the maximum polar angle is given by kmax = cos−1
(

A
A+0e

)
.

Assume that the eavesdropping satellites are non-colluding,

i.e., they do not cooperate with each other.2

Directional beamforming is adopted at both the serving and

eavesdropping satellites to compensate the path loss. Assume

that the main lobe of the serving satellite’s beam is directed

towards the terminal based on the terminal’s location. For the

eavesdropping satellites, two types of beamforming capabil-

ities are considered: (i) satellites with fixed-beam antennas,

which maintain the boresight in the direction of the subsatellite

point and (ii) satellites with steerable-beam antennas, of which

the boresight direction can be steered to a targeted position.

For mathematical tractability, the satellites are assumed to

have a sectorized beam pattern whose antenna gains for the

main and side lobes are respectively given by �r,ml and �r,sl

[24]. Let l8 , 8 ∈ {s, 4̄}, 4̄ ∈ Φ̄, denote the angle between the

2Colluding satellite eavesdroppers may not be practical due to the limited
capacities of inter-satellite and feeder links. In addition, the signals transmitted
from the eavesdroppers experience very different propagation delays and
Doppler offsets due to geographical distance between the satellites. From these
facts, a collecting node may have difficulty combining the received signals.

terminal and the boresight direction of the satellite 8, where the

indices s and 4̄ denote the serving and effective eavesdropping

satellites, respectively. Then, the receive antenna gain of the

satellite 8 is given by

�r,8 =

{
�r,ml, if |l8 | ≤ lth,

�r,sl, otherwise,
(1)

where lth is the threshold angle between the main and

side lobes of the beam pattern. The propagation loss for

the link from the terminal to the satellite 8 is modeled as

ℓ(38) = � t�r,8

(
2

4c 5c

)2

3−U
8

, where 38 is the distance between

the terminal and the satellite 8, � t is the transmit antenna gain,

2 is the speed of light, 5c is the carrier frequency, and U is

the path-loss exponent. The shadowed-Rician fading model is

assumed for the channels between the terminal and satellites.3

Let ℎ8 denote the channel gain between the terminal and the

satellite 8. Then, the CDF of the channel gain is given by [28]

�ℎ8 (G) =  

∞∑
==0

(<)=X
=(21)1+=

(=!)2
W

(
1 + =,

G

21

)
, (2)

where  = (21</(21< + Ω))</21, X = (Ω/(21< + Ω))/21

with Ω being the average power of the line-of-sight (LOS)

component, 21 is the average power of the multi-path com-

ponents except the LOS component, and < is the Nakagami

parameter.

The SNR at the satellite 8, 8 ∈ {s, 4̄}, 4̄ ∈ Φ̄, is given by

W8 =
%ℎ8ℓ(38)

#0,
, (3)

where % is the transmit power of the terminal, #0 is the

noise power spectral density, and , is the bandwidth. For

the non-colluding satellites, the secrecy rate of the system is

determined by the most detrimental eavesdropping satellite,

3The shadowed-Rician fading model is widely adopted for satellite chan-
nels, which has been proved its suitability in various frequency bands, e.g.,
the UHF-band, L-band, S-band, and Ka-band [25]-[27].
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i.e., the eavesdropping satellite with the highest SNR, which

is given by

We∗ =

{
max
4̄∈Φ̄

W4̄, if Φ̄ ≠ ∅,

0, if Φ̄ = ∅.
(4)

Since the eavesdropping satellites are randomly distributed

over a sphere, it is possible that no eavesdropping satellites

are located in Ā, i.e., Φ̄ = ∅, which means that there is no

malicious node to eavesdrop on the signals from the terminal.

In such case, the SNR at the most detrimental eavesdropping

satellite is considered to be zero.

III. BINOMIAL POINT PROCESS-BASED ANALYSES

In this section, the possible distribution cases and distance

distributions for the eavesdropping satellites are analyzed

based on the characteristics of the BPP. Hereafter, we analyze

secrecy performance assuming the eavesdropping satellites

with the fixed-beam antennas and then extend the results to

those with the steerable-beam antennas in Section IV-D.

A. Distribution Cases for Eavesdropping Satellites

When the eavesdropping satellites with the fixed-beam

antennas maintain the boresight in the direction of the sub-

satellite point, the set of effective eavesdropping satellites Φ̄

can be divided into two sets Φ̄ml and Φ̄sl consisting of the

effective eavesdropping satellites whose main and side lobes

are directed towards the terminal, respectively. The regions

where the satellites in Φ̄ml and Φ̄sl can be located are denoted

by Āml and Āsl, respectively, which are shown in Fig. 2. The

threshold polar angle kth differentiating Āml and Āsl can be

obtained as

OP =OS sinlth = OT sin(lth + kth)

=(A + 0e) sinlth = A sin(lth + kth), (5)

which gives the threshold polar angle as

kth = sin−1
( A + 0e

A
sinlth

)
− lth, (6)

when lth ≤ sin−1
(

A
A+0e

)
. If lth > sin−1

(
A

A+0e

)
, the main lobes

of all the effective eavesdropping satellites are directed toward

the terminal so that Āml is expanded to Ā, i.e., kth = kmax.

With respect to kth, the regions Āml and Āsl can be expressed

as Āml = {d = A + 0e, 0 ≤ k ≤ kth, 0 ≤ i ≤ 2c} and

Āsl = {d = A + 0e, kth < k ≤ kmax, 0 ≤ i ≤ 2c}, respectively.

As the satellites are randomly distributed over a sphere, the

numbers of satellites in Āml and Āsl can be zero, i.e., Φ̄ml = ∅

and/or Φ̄sl = ∅. Hence, there can be four distribution cases for

the eavesdropping satellites as follows.

• Case 1: There are no effective eavesdropping satellites,

i.e., Φ̄ = ∅, or equivalently Φ̄ml = ∅ and Φ̄sl = ∅.

• Case 2: There are no eavesdropping satellites in Āml, but

in Āsl, i.e., Φ̄ml = ∅ and Φ̄sl ≠ ∅.

• Case 3: There are no eavesdropping satellites in Āsl, but

in Āml, i.e., Φ̄ml ≠ ∅ and Φ̄sl = ∅.

• Case 4: At least one eavesdropping satellite exists in both

Āml and Āsl, i.e., Φ̄ml ≠ ∅ and Φ̄sl ≠ ∅.

th
w

P

O

S

T

th
y

max
y

mlmlmlml

M

N

slslslsl

Fig. 2. Descriptions of the areas Āml and Āsl where the main and side
lobes of the satellites’ beams are respectively directed toward the terminal.
The points O, T, and S respectively represent the positions of the Earth’s
center, the terminal, and the eavesdropping satellite at the boundary between
Āml and Āsl.

Before driving the probabilities of the four cases, we obtain the

finite-dimensional distribution of the BPP Φ in the following

lemma.

Lemma 1. Let Φ(X) denote a random variable representing

the number of eavesdropping satellites of the BPP Φ lying in

a region X, i.e., Φ(X) =
∑

4̄∈Φ 1(4̄ ∈ X). For disjoint regions

X1, X2, · · · , X� satisfying X1 ∪X2 ∪ · · · ∪ X� = A, the finite-

dimensional distribution, i.e., the probability distribution of

the random vector [Φ(X1) Φ(X2) · · · Φ(X� )], is given by

P[Φ(X1) = =1,Φ(X2) = =2, · · · ,Φ(X� ) = =� ]

=
#!

=1!=2! · · · =� !
×

(SX1
)=1 (SX2

)=2 · · · (SX�
)=�

(SA)#
, (7)

where SX9
is the surface area of the region X9 .

Proof: This result is given in [29]. �

From Lemma 1, we obtain the probability distribution for

the three disjoint regions Āml, Āsl, and Āc in the following

corollary.

Corollary 1. The probability distribution for the three disjoint

regions Āml, Āsl, and Āc is given by

P[#, ?, @] , P[Φ(Āml) = ?,Φ(Āsl) = @,Φ(Āc) = #−?−@]

=
#!

?!@!(# − ? − @)!

(
1 − coskth

2

) ?

×

(
(A + 0e) coskth − A

2(A + 0e)

)@ (
1−

0e

2(A + 0e)

)#−?−@

.

(8)

Proof: See Appendix A. �

In (8), we define a new function P[#, ?, @] for simplic-

ity of notation since the probability distribution becomes

a constant with given # , ?, and @. Using Corollary 1,

the probabilities of the four cases are obtained as %1 =

P[#, 0, 0], %2 =
∑#

?=1 P[#, ?, 0], %3 =
∑#

@=1 P[#, 0, @], and

%4 =
∑#

?=1

∑#−?

@=1
P[#, ?, @], respectively, where

∑4
8=1 %8 =∑#

?=0

∑#−?

@=0
P[#, ?, @] = 1.
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B. Distance Distributions

In this subsection, we characterize the distributions of the

distances from the terminal to the satellites, which is an

important step to derive secrecy performance of the system.

Lemma 2. The CDF of the distance between the terminal and

eavesdropping satellite 4̄ ∈ Φ is given by

�34̄ (G) =




0, if G ≤ 0e,
G2−02

e

4A (A+0e)
, if 0e < G ≤ 2A + 0e,

1, if G > 2A + 0e.

(9)

Proof: See Appendix B. �

Let -4̄ denote the distance between the terminal and eaves-

dropping satellite 4̄, given 4̄ ∈ Φ̄ml. Then, the CDF and PDF of

-4̄ are obtained in the following two lemmas using the result

in Lemma 2.

Lemma 3. The CDF of -4̄ is given by

�-4̄
(G) =




0, if G ≤ 0e,
G2−02

e

32
th
−02

e
, if 0e < G ≤ 3th,

1, if G > 3th,

(10)

where 3th =
√
A2 + (A + 0e)2 − 2A (A + 0e) coskth.

Proof: See Appendix C. �

Lemma 4. The PDF of -4̄ is given by

5-4̄
(G) =

{
2G

32
th
−02

e
, if 0e < G ≤ 3th,

0, otherwise.
(11)

Proof: The proof is complete by differentiating (10). �

Given 4̄ ∈ Φ̄sl, the CDF and PDF of the distance between

the terminal and eavesdropping satellite 4̄, denoted by .4̄, are

provided next.

Lemma 5. The CDF of .4̄ is given by

�.4̄ (G) =




0, if G ≤ 3th,
G2−32

th

32
max−3

2
th

, if 3th < G ≤ 3max,

1, if G > 3max,

(12)

where 3max =
√
0e(2A + 0e).

Proof: The proof is similar to that of Lemma 3. �

Lemma 6. The PDF of .4̄ is given by

5.4̄ (G) =

{
2G

32
max−3

2
th

, if 3th < G ≤ 3max,

0, otherwise.
(13)

Proof: The PDF of .4̄ is obtained by differentiating (12).

�

The finite-dimensional distribution and the distance distri-

butions for the eavesdropping satellites will be used to derive

the secrecy performance in the following section.

IV. SECRECY PERFORMANCE ANALYSES

In this section, the secrecy performance of the system is

analyzed as follows. We first derive the CDFs of the SNRs at

the serving satellite and the most detrimental eavesdropping

satellite. Using the results in the previous section with the

CDFs of the SNRs, we derive the analytical expressions for the

ergodic and outage secrecy capacities with the secrecy outage

probability. Finally, we extend the results to the eavesdropping

satellites with the steerable-beam antennas.

A. SNR Distributions

To analyze the secrecy performance, we need the distribu-

tions of the SNRs at the serving and the most detrimental

eavesdropping satellites, which are obtained in the following

lemmas.

Lemma 7. The CDF of the SNR at the serving satellite located

at the altitude 0s with the elevation angle \s is given by

�Ws
(G) =  

∞∑
==0

(<)=X
=(21)1+=

(=!)2
W

(
1 + =,

F13
U
s G

21

)
, (14)

where F1 = 16c2 5 2
c #0,/(22%� t�r,ml) and 3s =√

A2 sin2 \s + 0
2
s + 2A0s − A sin \s.

Proof: The CDF of the SNR at the serving satellite is

given by

�Ws
(G) = P[Ws < G] = P

[
ℎs <

#0,G

%ℓ(3s)

]
= �ℎs

(F13
U
s G). (15)

From (2) and (15), the CDF of the SNR at the serving satellite

is obtained. �

Remark 1. It is expected that the SNR at the serving satellite

with the higher elevation angle is more likely to be larger than

that with the lower elevation angle. To show this, with the fact

that the derivative of the lower incomplete gamma function

is given by
3W (0,G)

3G
= 4−GG0−1, the derivative of �Ws

(G) with

respect to \s is obtained as

3�Ws
(G)

3\s

= U 4−
F13

U
s G

21

∞∑
==0

(<)=X
= (F1G)

1+=

(=!)23
1−U(1+=)
s

3

3\s

3s, (16)

where

3

3\s

3s = A cos \s

©­­«
A sin \s√

A2 sin2 \s + 0
2
s + 2A0s

− 1
ª®®
¬
. (17)

Since A sin \s <

√
A2 sin2 \s + 0

2
s + 2A0s,

3�Ws (G)

3\s
< 0 for all G,

i.e., �Ws
(G) is a monotonically decreasing function of \s. Note

that, when the CDF of a random variable -1 is less than that

of another random variable -2, i.e., �-1
(G) < �-2

(G),∀G, -1

is more likely to be larger than -2.

Remark 2. Similarly, the derivative of �Ws
(G) with respect to

0s is given by

3�Ws
(G)

30s

=
U 4−

F13
U
s G

21 (0s + A)√
A2 sin2 \s + 0

2
s + 2A0s

∞∑
==0

(<)=X
=(F1G)

1+=

(=!)23
1−U(1+=)
s

.

(18)
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Since
3�Ws (G)

30s
> 0, it is expected that the SNR at the serving

satellite with the lower altitude is more likely to be larger than

that with the higher altitude.

We denote W
(?)

e∗ ,ml
and W

(@)

e∗,sl
as the SNRs at the most detri-

mental eavesdropping satellite in Āml and Āsl, respectively,

when the numbers of eavesdropping satellites in Āml and

Āsl are ? and @, i.e., Φ(Āml) = ? and Φ(Āsl) = @. Then,

the most detrimental eavesdropping satellite in Ā is given

by W
(?,@)
e∗

= max{W
(?)

e∗ ,ml
, W

(@)

e∗ ,sl
}. With these definitions, the

following two lemmas show the CDFs of W
(?)

e∗ ,ml
and W

(@)

e∗,sl
,

respectively.

Lemma 8. Given the number of eavesdropping satellites in

Āml is ?, the CDF of the SNR at the most detrimental

eavesdropping satellite in Āml is given by

�
W
(?)

e∗ ,ml

(G) =

[
2 

32
th
− 02

e

∞∑
==0

(<)=X
=(21)1+=

(=!)2
Iml(G, =)

] ?
, (19)

where

Iml (G, =) =
32

th

2
W

(
1 + =,

F13
U
th
G

21

)
−
02

e

2
W

(
1 + =,

F10
U
e G

21

)

−
1

2

(
21

F1G

) 2
U
{
W

(
1 + = +

2

U
,
F13

U
th
G

21

)
− W

(
1 + = +

2

U
,
F10

U
e G

21

)}
.

(20)

Proof: See Appendix D. �

Lemma 9. Given the number of eavesdropping satellites

in Āsl is @, the CDF of the SNR at the most detrimental

eavesdropping satellite in Āsl is given by

�
W
(@)

e∗ ,sl

(G) =

[
2 

32
max − 3

2
th

∞∑
==0

(<)=X
=(21)1+=

(=!)2
Isl(G, =)

]@
, (21)

where

Isl(G, =) =
32

max

2
W

(
1 + =,

F23
U
maxG

21

)
−
32

th

2
W

(
1 + =,

F23
U
th
G

21

)

−
1

2

(
21

F2G

) 2
U
{
W

(
1+ = +

2

U
,
F23

U
maxG

21

)
−W

(
1+ = +

2

U
,
F23

U
th
G

21

)}
(22)

with F2 = 16c2 5 2
c #0,/(22%� t�r,sl).

Proof: The proof is similar to that of Lemma 8. �

Using these lemmas, the CDF of W
(?,@)
e∗ is obtained in the

following lemma.

Lemma 10. Given the numbers of eavesdropping satellites in

Āml and Āsl are ? and @, the CDF of the SNR at the most

detrimental eavesdropping satellite in Ā is the product of the

CDFs of W
(?)

e∗ ,ml
and W

(@)

e∗,sl
, i.e.,

�
W
(?,@)

e∗
(G) = �

W
(?)

e∗ ,ml

(G)�
W
(@)

e∗ ,sl

(G). (23)

Proof: The CDF of W
(?,@)
e∗

is given by

�
W
(?,@)

e∗
(G) = P[We∗ ≤ G |Φ(Āml) = ?,Φ(Āsl) = @]

= E-4̄ ,.4̄


∏
4̄∈Φ̄ml

P[W4̄ ≤ G]
∏
4̄∈Φ̄sl

P[W4̄ ≤ G]


(0)
= E-4̄


∏
4̄∈Φ̄ml

P[W4̄ ≤ G]


E.4̄


∏
4̄∈Φ̄sl

P[W4̄ ≤ G]


, (24)

where (0) follows from the independence between the random

variables -4̄ and .4̄. From the definition of the CDFs of W
(?)

e∗,ml

and W
(@)

e∗,sl
, the proof is complete. �

The derived expressions for the CDFs of Ws and W
(?,@)
e∗ will

be useful to derive the ergodic and outage secrecy capacities

in the next subsections.

B. Ergodic Secrecy Capacity

The instantaneous secrecy rate of the system is defined as

the data rate securely transferred from the terminal to the

serving satellite, which is given by [4]

' = [log2(1 + Ws) − log2(1 + We∗ )]
+, (25)

where [G]+ = max{0, G}. The ergodic secrecy capacity of the

system is the average of the instantaneous secrecy rate, i.e.,

�erg = E['], which is obtained in the following theorem.

Theorem 1. The ergodic secrecy capacity of the uplink satel-

lite communication system in the presence of # eavesdropping

satellites randomly located at the altitude 0e is given by

�erg=

#∑
?=0

#−?∑
@=0

P[#, ?, @]

ln 2

∫ ∞

0

�
W
(?,@)

e∗
(G)

1 + G
(1 − �Ws

(G))3G, (26)

where P[#, ?, @], �Ws
(G), and �

W
(?,@)

e∗
(G) are given in (8), (14),

and (23), respectively.

Proof: See Appendix E. �

Remark 3. Since the integrands in (26) decrease with the

CDF of Ws and increase with the CDF of W
(?,@)
e∗ , the ergodic

secrecy capacity increases as Ws increases or W
(?,@)
e∗

decreases,

which is expected from the definition of the secrecy rate (25).

C. Outage Secrecy Capacity

A secrecy outage occurs when the secrecy rate of the system

is less than or equal to a target secrecy rate 't. Mathematically,

the secrecy outage probability of the system is defined as

%out = P[' ≤ 't], which is obtained in the following theorem.

Theorem 2. The secrecy outage probability of the uplink satel-

lite communication system in the presence of # eavesdropping

satellites randomly located at the altitude 0e is given by

%out =1 −

#∑
?=0

#−?∑
@=0

P[#, ?, @]

×

∫ ∞

2't−1

�
W
(?,@)

e∗
(2−'t (1 + G) − 1) 5Ws

(G)3G, (27)
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where P[#, ?, @] and �
W
(?,@)

e∗
(G) are given in (8) and (23),

respectively, and 5Ws
(G) is given by

5Ws
(G) =  4−F13

U
s G

∞∑
==0

(<)= (XG)
=(21F1)

1+=

(=!)23
−U(1+=)
s

(28)

Proof: See Appendix F. �

The outage secrecy capacity is defined as the maximum

secrecy rate successfully transferred from the terminal to the

serving satellite with a target secrecy outage probability n .

Using Theorem 2, the outage secrecy capacity is given in the

following corollary.

Corollary 2. With a target secrecy outage probability n , the

outage secrecy capacity of the uplink satellite communication

system in the presence of # eavesdropping satellites randomly

located at the altitude 0e is given by �out = (1 − n)'∗
t , where

'∗
t is the target secrecy rate satisfying %out = n .

The closed-form expressions of (26) and (27) are difficult

to obtain due to the integrals, which can instead be computed

numerically. In addition, the optimal target secrecy rate '∗
t

for the outage secrecy capacity can be easily obtained using a

simple line-search since %out is an increasing function of 't.

D. Extension to Steerable-Beam Antennas With Terminal’s

Location Information

So far, we considered the eavesdropping satellites with the

fixed-beam antennas. In this subsection, we assume that the

eavesdropping satellites are equipped with the steerable-beam

antennas and have information of the terminal’s position, so

that the eavesdropping satellites are able to steer the main

lobes of the beams in the direction of the terminal. Let Δlsb

indicate the steerable angle of the boresight from the direction

to the subsatellite point. Then, the steerable-beam case can

be seen as the case that the beamwidth of the main lobe

is increased by Δlsb without any loss of the antenna gain,

i.e., l̃th = lth + Δlsb. For example, when Δlsb is close to

zero, the case becomes comparable to that with the fixed-beam

antennas, while when Δlsb is large enough, the main lobes of

most of effective eavesdropping satellites can be directed to the

terminal. The analytical results for the case with the steerable-

beam antennas can be easily obtained through the same steps

for the fixed-beam case with the different threshold angle l̃th.

Remark 4. It can be seen from Fig. 2 that the main lobes of

the satellites at the boundary of Ā are directed to the terminal

if sinlth ≥ A/(A + 0e). With the steerable-beam antennas, the

condition that all effective eavesdropping satellites can steer

the main lobes to the terminal is given by sin(lth + Δlsb) ≥

A/(A + 0e). Hence, the minimum steerable angle with which

all effective eavesdropping satellites can steer the main lobe

to the terminal, is given by

Δl∗
sb = sin−1

(
A

A + 0e

)
− lth. (29)

As Δlsb increases, the surface area of Āml is more expanded

and finally becomes that of Ā when Δlsb reaches Δl∗
sb

.

V. APPROXIMATION AND ASYMPTOTIC ANALYSES FOR

SECRECY PERFORMANCE

The expressions for the secrecy performance in Theo-

rems 1 and 2 are exact but complicated to evaluate because
(#+1) (#+2)

2
integrals need to be computed numerically. In this

section, we approximate the secrecy performance to reduce

the computational complexity, assuming that the altitude of

the eavesdropping satellites is sufficiently low.4 In addition,

simpler expressions are derived to investigate asymptotic be-

havior of the secrecy performance.

A. Performance Approximation

From the definition of the BPP, the number of eavesdropping

satellites in Ā follows the binomial distribution with the total

number of points # and the success probability5 ?(Ā) =

SĀ/SA =
0e

2(A+0e)
. Based on the Poisson limit theorem,

when the success probability of the binomial distribution is

very small, the distribution asymptotically follows the Poisson

distribution [29]. Thus, when 0e → 0, ?(Ā) → 0 so that the

BPP in Ā, Φ̄, can be approximated as a PPP Φ̄′ with the

density of _e =
#

4c (A+0e)2 . The PPP Φ̄′ can be divided into

two PPPs Φ̄
′
ml

and Φ̄
′
sl

for the two disjoint regions Āml and

Āsl, respectively.

We denote W̃e∗ ,ml and W̃e∗,sl as the SNRs at the most detri-

mental eavesdropping satellite in Āml and Āsl, respectively,

when 0e → 0. Then, the CDFs of W̃e∗,ml and W̃e∗ ,sl are given

in the following two lemmas.

Lemma 11. When 0e → 0, the CDF of the SNR at the

most detrimental eavesdropping satellite in Āml, W̃e∗ ,ml, is

approximated as

�W̃e∗ ,ml
(G) = exp

(
−
#

2

{
1 − coskth −  

∞∑
==0

(<)=X
=(21)1+=

(=!)2

×

[{
A2 + (A + 0e)

2

2A (A + 0e)
− coskth

}
W(1 + =,Πml(G, kth))

−
02

e

2A (A + 0e)
W(1 + =,Πml (G, 0)) −

1

2A (A + 0e) (F1G)
2
U

×

{
W

(
1 + = +

2

U
,Πml(G, kth)

)
− W

(
1 + = +

2

U
,Πml(G, 0)

)}]})
,

(30)

where

Πml(G, k) =
F1G

21

(√
A2 + (A + 0e)2 − 2A (A + 0e) cosk

)U
.

(31)

Proof: See Appendix G. �

4This assumption is valid for the eavesdropping satellites with the low
altitudes, e.g., LEO and very low Earth orbit (VLEO) satellites, and its validity
will be shown in Figs. 3 and 4.

5Note that the success probability is the probability that a point is located
on the area of interest. For homogeneous BPPs, the success probability is
obtained as the ratio of the surface area of interest to the total surface area
where all points are distributed [29].
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Lemma 12. When 0e → 0, the CDF of the SNR at the

most detrimental eavesdropping satellite in Āsl, W̃e∗ ,sl, is

approximated as

�W̃e∗ ,sl
(G) =exp

(
−
#

2

{
coskth −

A

A + 0e

−  

∞∑
==0

(<)=X
=(21)1+=

(=!)2

×

[
0e(0e + 2A)

2A (A + 0e)
{W (1 + =,Πsl(G, kmax))−W (1 + =,Πsl(G, kth))}

+

(
coskth −

A

A + 0e

)
W (1 + =,Πsl(G, kth)) −

1

2A (A + 0e) (F2G)
2
U

×

{
W

(
1 + = +

2

U
,Πsl(G, kmax)

)
−W

(
1 + = +

2

U
,Πsl(G, kth)

)}]})
,

(32)

where

Πsl(G, k) =
F2G

21

(√
A2 + (A + 0e)2 − 2A (A + 0e) cosk

)U
.

(33)

Proof: The proof is similar to that of Lemma 11. �

Let W̃e∗ denote the SNR at the most detrimental eavesdrop-

ping satellite in Ā when 0e → 0. Then, the CDF of W̃e∗ is

given by �W̃e∗
(G) = �W̃e∗ ,ml

(G)�W̃e∗ ,sl
(G).

With this CDF, we obtain the approximated ergodic secrecy

capacity and secrecy outage probability in the following the-

orem.

Theorem 3. When the altitude of the eavesdropping satellites

is low, e.g., LEO or VLEO satellites, the ergodic secrecy

capacity and the secrecy outage probability are respectively

approximated as

�erg ≈
1

ln 2

∫ ∞

0

�W̃e∗
(G)

1 + G
(1 − �Ws

(G))3G (34)

and

%out ≈ 1 −

∫ ∞

2't−1

�W̃e∗
(2−'t (1 + G) − 1) 5Ws

(G)3G. (35)

Proof: With the expression for the CDF of W̃e∗ , the

proof is complete with the similar steps as in the proofs of

Theorems 1 and 2. �

Compared to the exact expressions derived in (26) and (27),

the simplified expressions (34) and (35) significantly reduce

the computational complexity to evaluate the performance.

Specifically, the computational complexity to evaluate the

CDFs of W
(?)

e∗,ml
and W

(@)

e∗ ,sl
in (19) and (21) is given by $ (g?)

and $ (g@), respectively, where $ (g) is the computational

complexity for the lower incomplete gamma function. In

contrast, the computations of the CDFs of W̃e∗,ml and W̃e∗ ,ml

only require the complexity of $ (g) thanks to the probability

generating functional of the PPP. In addition, the approximate

expressions do not have P[#, ?, @] requiring the complexity

of $ (#?2@2 (# − ? − @)2). More importantly,
(#+1) (#+2)

2

integrals in the exact expressions are reduced to only one in

the approximate ones, which is the key for the complexity

reduction. For example, when # = 10, 000, around 50 million

integrals should be calculated in the exact expressions, while

only a single integral is required in the approximate ones.

Fig. 3. Ergodic secrecy capacity versus the altitude of the eavesdropping
satellites 0e for various threshold angles lth = {20, 30, 40} deg with # = 10,
0s = 0e = 600, \s = 60 deg, and Δlsb = 0 deg.

Fig. 4. Secrecy outage probability versus the altitude of the eavesdropping
satellites 0e for various threshold angles lth = {20, 30, 40} deg with # = 10,
0s = 0e = 600, \s = 60 deg, Δlsb = 0 deg, and 't = 2 bps/Hz.

In Figs. 3 and 4, we compare the exact expressions of the

secrecy performance to the approximate ones. For the altitudes

from 300 to 2, 100 km, at which the LEO and VLEO satellites

are usually located, the secrecy performance is degraded with

the altitude of the eavesdropping satellites 0e for a given # .

This shows that the eavesdroppers better overhear desired

signals with the higher altitude, which leads to the larger

coverage for a given 3-dB beamwidth. As we expect from

the assumption 0e → 0 for the approximate analyses, as

0e decreases, the gap between the exact and approximate

performance decreases. These results show the validity of

the Poisson limit theorem, i.e., when the success probability

is sufficiently small, the binomial distribution asymptotically

becomes the Poisson distribution. Thus, the approximate ex-

pressions can be used to evaluate the secrecy performance with

low complexity but high accuracy.
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B. Asymptotic Analyses

In this subsection, we obtain simpler expressions to inves-

tigate asymptotic behavior of the secrecy performance in the

three different scenarios.

1) When there is no malicious eavesdropping satellite, i.e.,

# → 0: This scenario describes the situation where all

satellites are trustworthy, i.e., the satellites do not eavesdrop

on terminal’s signals. In such a case, the asymptotic ergodic

secrecy capacity and secrecy outage probability are obtained

in the following corollary.

Corollary 3. When # → 0, the ergodic secrecy capacity and

the secrecy outage probability in Theorem 3 are simplified as

�erg →
 

ln 2

⌊<⌋−1∑
:=0

:∑
C=0

(−1): (1 − <):X
: (F13

U
s )

C

:!
(

1
21

− X
):−C+1

× exp

((
1

21
− X

)
F13

U
s

)
Γ

(
−C,

1

21
− X

)
(36)

and

%out → �Ws
(2't − 1). (37)

Proof: See Appendix H. �

Remark 5. The asymptotic expression (36) gives a theoretical

upper-bound of the ergodic secrecy capacity, and (37) is a

lower-bound of the secrecy outage probability.

2) When there are a large number of eavesdropping satel-

lites, i.e., # → ∞: In this scenario, the secrecy performance

with a large number of eavesdroppers is given as follows.

Corollary 4. When # → ∞, we have �erg → 0 and %out → 1.

Proof: As # goes to infinity, the CDF of W̃e∗ becomes

zero for a given G, i.e., �W̃e∗
(G) → 0. By letting �W̃e∗

(G) = 0

in (34) and (35), the proof is complete. �

Remark 6. �W̃e∗
(G) → 0 means that the SNR at the most

detrimental eavesdropper is certainly very high, e.g., W̃e∗ → ∞.

This explains that when there is a large number of eavesdrop-

ping satellites, the most detrimental eavesdropping satellite is

likely to have a very high eavesdropping capability, which is

intuitively true.

3) When the transmit power of the terminal is large, i.e.,

% → ∞: In the high-SNR regime, the asymptotic ergodic

secrecy capacity is obtained in the following theorem.

Theorem 4. In the high-SNR regime, the ergodic secrecy

capacity is asymptotically upper-bounded as

lim
%→∞

�erg (%) ≤ �
∞
erg, (38)

where

�∞
erg = log2 Λ3th ,0e

+
(
1 − �34̄ (3th)

)#
log2

(
�r,mlΛ

U
3max ,3th

�r,slΛ
U
3th ,0e

)

+
(
1 − �34̄ (3max)

)#
log2

(
�r,sl

�r,mlF13
U
s Λ

U
3max ,3th

)
(39)

with ΛG,H given in (40) at the bottom of this page.

Proof: See Appendix I. �

The asymptotic upper-bound of the ergodic secrecy capacity

in (39) can be expressed as [30]

�∞
erg = (∞(log2 % − L∞), (41)

where (∞ denotes the high-SNR slope in bps/Hz (3 dB), and

L∞ is the high-SNR power offset in 3 dB units. After some

manipulations, the high-SNR slope of (39) is obtained as

(∞ = lim
%→∞

�∞
erg

log2 %
=

(
1 −

0.5

1 + A/0e

)#
, (42)

and the high-SNR power offset is given in (43) at the bottom

of this page.

Remark 7. In (42), as A/0e is always positive, 1− 0.5
1+A/0e

lies

in (0.5, 1). From this observation, we can know that the high-

SNR slope (∞ decreases with the number of eavesdroppers # .

Fig. 5 shows the ergodic secrecy capacity versus the transmit

power of the terminal % for various numbers of eavesdropping

satellites. This figure verifies Theorem 4, showing that the

gap between the asymptotic and approximate results becomes

smaller as % increases. As mentioned in Remark 7, the asymp-

totic slope gets smaller as the number of the eavesdroppers

increases, which means a greater eavesdropping capability.

ΛG,H =
#

2A (A + 0e)3s

{
�34̄ (G)

# − �34̄ (H)
#
}−1

#−1∑
8=0

(
# − 1

8

) (
1 +

02
e

4A (A + 0e)

)#−1−8 (
−1

4A (A + 0e)

) 8
G28+3 − H28+3

28 + 3
(40)

L∞ = lim
%→∞

(
log2 % −

�∞
erg

(∞

)

= −
log2 Λ3th ,0e(

1 − �34̄ (3max)
)# −

(
1 − �34̄ (3th)

)#
(
1 − �34̄ (3max)

)# log2

(
�r,mlΛ

U
3max ,3th

�r,slΛ
U
3th ,0e

)
− log2

(
22� t�r,sl

16c2 5 2
c #0,�r,ml3

U
s Λ

U
3max ,3th

)
(43)
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Fig. 5. Ergodic secrecy capacity versus the transmit power of the terminal %
for various numbers of the eavesdropping satellites # = {10, 50, 200} with
0s = 0e = 600 km, \s = 60 deg, lth = 40 deg, and Δlsb = 0 deg.

VI. EAVESDROPPING SATELLITES AT DIFFERENT

ALTITUDES

In this section, we extend the analytical results to the

general case that the satellites are located at different altitudes,

which can be applied to practical LEO satellite constellations.

Assume that #E , E = {1, 2, · · · , + }, eavesdropping satellites

are located at the altitude 0e,E according to a BPP ΦE ,

where
∑+

E=1 #E = # . Then, the SNR at the most detrimental

eavesdropping satellite at the altitude 0e,E is given by

We∗ ,E =




max
4̄∈Φ̄E

W4̄, if Φ̄E ≠ ∅,

0, if Φ̄E = ∅,
(44)

where Φ̄E is the set of effective eavesdropping satellites at the

altitude 0e,E . The SNR at the most detrimental eavesdropping

satellite among all the satellites is given by

Ŵe∗ = max
E∈{1,2, · · · ,+ }

We∗,E . (45)

Using Lemmas 11 and 12, the CDF of Ŵe∗ is given in the

following lemma.

Lemma 13. When #E eavesdropping satellites are randomly

located at the altitude 0e,E , E = {1, 2, · · · , + }, the CDF of

the SNR at the most detrimental eavesdropping satellite is

approximated as

�Ŵe∗
(G) ≈

+∏
E=1

�W̃e∗ ,ml
(G |#E , 0e,E)�W̃e∗ ,sl

(G |#E , 0e,E), (46)

where �W̃e∗ ,ml
(G |#E , 0e,E) and �W̃e∗ ,sl

(G |#E , 0e,E) are the CDFs

of W̃e∗,ml and W̃e∗ ,sl in Lemmas 11 and 12 with # = #E and

0e = 0e,E .

Proof: The CDF of Ŵe∗ is given by �Ŵe∗
(G) =

P[Ŵe∗ ≤ G] =
∏+

E=1 P[We∗ ,E ≤ G] =
∏+

E=1 �We∗ ,E
(G).

The CDF of We∗,E is approximated as �We∗ ,E
(G) ≈

�W̃e∗ ,ml
(G |#E , 0e,E)�W̃e∗ ,sl

(G |#E , 0e,E) by using Lemmas 11 and

12, which completes the proof. �

TABLE I
SIMULATION PARAMETERS

Parameter Value

Radius of the Earth A [km] 6,378

Path-loss exponent U 2

Speed of light 2 [m/s] 3 × 108

Carrier frequency 5c [GHz] 2

Carrier bandwidth , [MHz] 1

Transmit power % [dBm] 23

Noise spectral density #0 [dBm/Hz] −174

Transmit antenna gain �t [dBi] 0

Receive antenna gain for the main lobe �r,ml [dBi] 30

Receive antenna gain for the side lobe �r,sl [dBi] 10

This lemma is used to derive the ergodic secrecy capacity

and secrecy outage probability for the satellites with the

different altitudes in the following theorem.

Theorem 5. The ergodic secrecy capacity and the secrecy

outage probability of the uplink satellite system in the presence

of #E eavesdropping satellites randomly located at the altitude

0e,E , E = {1, 2, · · · , + }, are respectively approximated as

�̂erg ≈
1

ln 2

∫ ∞

0

�Ŵe∗
(G)

1 + G
(1 − �Ws

(G))3G (47)

and

%̂out ≈ 1 −

∫ ∞

2't−1

�Ŵe∗
(2−'t (1 + G) − 1) 5Ws

(G)3G. (48)

Proof: Using the derived CDF of Ŵe∗ in (46), this result

can be obtained with the similar steps as in the proof of

Theorem 3. �

This theorem provides the approximate results that can be

applicable to the satellites with arbitrary low altitudes and

becomes the result of Theorem 3 when a single altitude is

considered.

VII. SIMULATION RESULTS

In this section, we numerically verify the derived results

with the simulation parameters listed in Table I unless other-

wise stated, where the parameters for the terminal are based on

the handheld-type terminal considered in the 3GPP NTN stan-

dard [2]. For the shadowed-Rician fading, the average shad-

owing is assumed with {1 = 0.126, < = 10.1, Ω = 0.835}

[28]. Except for the simulations shown in Fig. 7, we set the

number of altitudes for the eavesdropping satellites to + = 1

and denote the altitude by 0e for simplicity of notation. For the

single altitude constellation, i.e., + = 1, the analytical results

for the secrecy performance are obtained from Theorems 1

and 2, while for the multi-altitude constellation, i.e., + > 1,

the analytical results are given from Theorem 5.

Fig. 6 shows the probability of distribution cases for

the eavesdropping satellites with both fixed-beam (FB) and

steerable-beam (SB) antennas. When the number of eaves-

dropping satellites is small, the probability of Case 1, i.e., the

probability that there is no effective eavesdropping satellite,

is larger than those of the other cases, while as # increases,

Case 4 becomes the most probable case. This is because, with

the large number of eavesdropping satellites, it is more likely
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(a) Fixed-beam case.
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(b) Steerable-beam case.

Fig. 6. Probabilities of distribution cases for the eavesdropping satellites
with (a) fixed-beam and (b) steerable-beam antennas, where 0e = 1200 km,
lth = 40 deg, and Δlsb = 15 deg.

for both Āml and Āsl to include at least one satellite. It is also

shown that the probability of Case 2 is much larger than that of

Case 3 for the eavesdropping satellites with the FB antennas.

This is because the surface area of Āsl is SĀsl
= 51.88 × 106

km2, which is approximately 10 times larger than that of Āml,

SĀml
= 5.26 × 106 km2, so that Case 3 is much less likely to

happen than Case 2. On the other hand, for the eavesdropping

satellites with the SB antennas, the surface areas of Āml and

Āsl are given by SĀml
= 2.56×107 km2 and SĀsl

= 3.15×107

km2, respectively. The gap between SĀml
and SĀsl

becomes

smaller compared to that with the FB antennas, which in turn

makes the probabilities of Cases 2 and 3 close to each other.

Fig. 7 shows the impact of the serving satellite’s altitude

0s on the secrecy capacities with lth = 20 deg, Δlsb = 10

deg, n = 0.1, + = 2, {01, 02} = {1015, 1325} km, and

{#1, #2} = {78, 220} [3]. The analytical results for the satel-

lites at different altitudes well match the simulation results.

The ergodic and outage secrecy capacities decrease with 0s

because the path loss of the legitimate link becomes larger. The

secrecy capacities for the eavesdropping satellites with the FB

antennas are always higher than those with the SB antennas.

This is mainly because when the eavesdropping satellites

have a more flexible beam-steering capability, the number of

eavesdropping satellites whose main lobes are directed to the

terminal increases.

Fig. 8 shows the secrecy outage probability versus the target

secrecy rate 't for various numbers of eavesdropping satellites

# = {10, 50, 100, 200} with 0s = 0e = 600, \s = 60 deg,

lth = 20 deg, and Δlsb = 10 deg. The analytical results for the

exact secrecy outage probability are in good agreement with

the simulation results. The secrecy outage probability increases

with the target secrecy rate 't, which is expected from the

definition of the secrecy outage probability. To achieve 10%

of the secrecy outage probability for # = {10, 50, 100, 200},

the target secrecy rates for the FB case have to be less

than approximately {2.3, 2.16, 1.99, 1.64} bps/Hz. For the SB
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(a) Ergodic secrecy capacity.
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Fig. 7. Ergodic and outage secrecy capacities versus the altitude of the serving
satellite 0s for various numbers of eavesdropping satellites with + = 2,
{01, 02 } = {1015, 1325} km, {#1, #2 } = {78, 220}, \s = 60 deg, lth = 20
deg, Δlsb = 10 deg, and n = 0.1.
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Fig. 8. Secrecy outage probability versus the target secrecy rate 't for various
numbers of eavesdropping satellites # = {10, 50, 100, 200} with 0s = 0e =

600, \s = 60 deg, lth = 20 deg, and Δlsb = 10 deg.

case, the maximum values of the target secrecy rates are

{2.26, 1.95, 1.48, 0.43} bps/Hz, which are smaller than the

FB case due to the greater ability of eavesdropping. From

these observation, SB antennas will enhance the eavesdropping

performance at the price of higher costs.

Fig. 9 shows the ergodic secrecy capacity versus the number

of eavesdropping satellites # for various altitudes of the

serving satellite 0s = {300, 600, 1200} km with \s = 60

deg, 0e = 600 km, lth = 40 deg, Δlsb = 20 deg, and

n = 0.1. As expected, the ergodic and outage secrecy capacities

decrease with # because the SNR at the most detrimental

eavesdropping satellite increases with # . This means that,

from an eavesdroppers’ perspective, it will be more efficient

to deploy eavesdropping satellites as many as possible. With

small # , the performance gap between the FB and SB cases
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Fig. 9. Ergodic secrecy capacity versus the number of eavesdropping satellites
# for various altitudes of the serving satellite 0s = {300, 600, 1200} km with
\s = 60 deg, 0e = 600 km, lth = 40 deg, and Δlsb = 20 deg.

is marginal as the probability that the main lobes of the

eavesdropping satellites’ beams are directed to the terminal is

very low for both FB and SB cases. In contrast, with large # ,

the performance gap is large because there are many effective

eavesdropping satellites that can steer their main lobes in the

direction to the terminal for the SB case.

Fig. 10 shows the secrecy outage probability versus the

number of eavesdropping satellites # for various altitudes of

the serving satellite 0s = {300, 600, 1200} km with \s = 60

deg, 0e = 600 km, lth = 40 deg, Δlsb = 20 deg, and

't = 3 bps/Hz. The secrecy outage probability increases with

the number of eavesdropping satellites # . For 0s = 300 km,

when there are less than 56 eavesdropping satellites with the

FB antennas, less than 10% of the secrecy outage probability

is achieved, and, for the satellites with the SB antennas, it is

achieved with less than 16 eavesdropping satellites. On the

other hand, when 0s = {600, 1200} km, 10% of the secrecy

outage probability cannot be achieved with any number of

eavesdropping satellites due to the low SNR of the legitimate

link.

Fig. 11 shows the ergodic secrecy capacity versus the

steerable angle of the boresight Δlsb for various altitudes of

the eavesdropping satellites 0e = {600, 800, 1200} km with

0s = 600 km, \s = 60 deg, lth = 40 deg, and # = 100. As

Δlsb increases, the ergodic secrecy capacity for the SB case

decreases because the surface area of Āml increases. When

Δlsb is larger than Δl∗
sb

given in Remark 4, the surface

area of Āml becomes the same as that of Ā, which is the

reason why the ergodic secrecy capacity stays constant. With

small Δlsb, as 0e increases, the ergodic secrecy capacities

for both FB and SB cases decrease because the number

of effective eavesdropping satellites increases with 0e. More

specifically, the average numbers of effective eavesdropping

satellites are given by E[Φ(Ā)] = #SĀ/SA , which results in

{E[Φ(Ā)]} = {4.3, 5.57, 7.92} for 0e = {600, 800, 1200} km

and # = 100. In contrast, with large Δlsb, the secrecy capacity

for the SB case increases with 0e. This is because when the

eavesdropping satellites have the greater beam-steering ability,
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Fig. 10. Secrecy outage probability versus the number of eavesdropping
satellites # for various altitudes of the serving satellite 0s = {300, 600, 1200}
km with \s = 60 deg, 0e = 600 km, lth = 40 deg, Δlsb = 20 deg, and 't = 3
bps/Hz.
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Fig. 11. Ergodic secrecy capacity versus the steerable angle of the bore-
sight Δlsb for various altitudes of the eavesdropping satellites 0e =

{600, 800, 1200} km with 0s = 600 km, \s = 60 deg, lth = 40 deg, and
# = 100.

the number of satellites whose main lobe is directed to the

terminal increases, which makes up the decreased number

of effective eavesdropping satellites for small 0e. Thus, the

impact of the increased SNRs of the eavesdropping links from

smaller path loss with small 0e becomes a dominant factor to

degrade the ergodic secrecy capacity.

VIII. CONCLUSIONS

In this paper, we investigated uplink low Earth orbit

satellite communication systems with eavesdropping satellites

randomly distributed according to binomial point processes

(BPPs). The possible distribution cases and the distance dis-

tributions for the eavesdropping satellites were analyzed based

on the characteristics of the BPP. The distributions of the

signal-to-noise ratios (SNRs) at both the serving and the most

detrimental eavesdropping satellite were derived in closed-

forms. The ergodic and outage secrecy capacities with the se-
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crecy outage probability were analyzed by using the SNR and

distance distributions. To reduce the computational complexity

of the performance evaluation, the approximate expressions

were derived with the help of the Poisson limit theorem, and

the asymptotic performance was obtained in various scenarios.

The analyses were verified by the simulation results where

the impact of the location of the serving satellite, the number

of eavesdropping satellites, and the beam-steering capability

was also discussed in terms of secure communications. The

analytical results are expected to give a guideline when de-

signing practical techniques for secure satellite communication

systems, e.g., multi-antenna transmissions and anti-jamming

schemes.

APPENDIX A

PROOF OF COROLLARY 1

Let 6 be the cap height of a spherical cap X with radius

A. Then, the surface area of X is given by SX = 2cA6 [31].

The region Ā is a spherical cap with the radius A +0e and cap

height 0e, of which surface area is given by

SĀ = 2c(A + 0e)0e. (49)

As shown in Fig. 2, the region Āml is a spherical cap with

the radius A + 0e whose cap height NM is ON − OM = (A +

0e) (1 − coskth). The surface area of Āml is given by

SĀml
= 2c(A + 0e)NM = 2c(A + 0e)

2(1 − coskth). (50)

The surface area of the region Āsl can be obtained from the

difference between SĀ and SĀml
as

SĀsl
= SĀ − SĀml

= 2c(A + 0e){(A + 0e) coskth − A}. (51)

For the three disjoint regions Āml, Āsl, and Āc with

Āml ∪ Āsl ∪ Āc = A, the probability that ? and @ points

respectively lie in Āml and Āsl is obtained by the finite-

dimensional distribution as

P[Φ(Āml) = ?,Φ(Āsl) = @,Φ(Āc) = #−?−@]

=
#!

?!@!(#−?−@)!

(
SĀml

SA

) ? (
SĀsl

SA

)@ (
SĀc

SA

)#−?−@

. (52)

By plugging (49)-(51) into (52) with the fact that SĀc = SA−

SĀ , the proof is complete.

APPENDIX B

PROOF OF LEMMA 2

Let A(G), G ∈ [0e, 2A + 0e], be the surface of a spherical

cap with the radius A + 0e and the cap height 6(G) such that

the distance between any point on A(G) and the terminal is

less than G. Then, the surface area of A(G) is given by

SA(G) = 2c(A + 0e)6(G) =
c(A + 0e) (G

2 − 02
e)

A
, (53)

where 6(G) = (G2−02
e)/(2A) is obtained using the Pythagorean

theorem. For example, when G = 0e, the surface area vanishes,

i.e., SA(0e) = 0, and when G = 2A+0e, the area A(G) becomes

the entire sphere with the radius A + 0e whose surface is given

by SA(2A+0e) = 4c(A + 0e)
2. The number of points on A(G)

follows the binomial distribution with the total number of

points # and the success probability ?(A(G)), given by

?(A(G)) =
SA(G)

SA(2A+0e)

=
G2 − 02

e

4A (A + 0e)
. (54)

Since the success probability is the probability that an eaves-

dropping satellite is located in A(G), it is equivalent to

the probability that the distance between the terminal and

eavesdropping satellite 4̄ is less than G. With this fact, the

proof is complete.

APPENDIX C

PROOF OF LEMMA 3

By the law of cosines, the distance between the termi-

nal and the eavesdropping satellite 4̄ is obtained as 34̄ =√
A2 + (A + 0e)2 − 2A (A + 0e) cosk. Since 34̄ is an increasing

function of k ∈ [0, kmax], the probability that the eavesdrop-

ping satellite 4̄ lies in Āml can be expressed as Pr[4̄ ∈ Φ̄ml] =

Pr[34̄ ≤ 3th], where 3th =
√
A2 + (A + 0e)2 − 2A (A + 0e) coskth.

From this fact, the CDF of -4̄ is given by

�-4̄
(G) = Pr[-4̄ ≤ G]

= Pr[34̄ ≤ G |4̄ ∈ Φ̄ml]

=
Pr[34̄ ≤ G, 34̄ ≤ 3th]

Pr[34̄ ≤ 3th]

=




0, if G ≤ 0e,
�34̄

(G)

�34̄
(3th)

, if 0e < G ≤ 3th,

1, if G > 3th.

(55)

Plugging the result of Lemma 2 into (55) completes the proof.

APPENDIX D

PROOF OF LEMMA 8

Given Φ(Āml) = ?, the CDF of the SNR at the most

detrimental eavesdropping satellite in Āml is given by

�
W
(?)

e∗ ,ml

(G) = P[W
(?)

e∗,ml
≤ G]

= E-4̄


∏
4̄∈Φ̄ml

P[ℎ4̄ ≤ F1-
U
4̄ G]


(0)
=

[∫ 3th

0e

�ℎ4̄ (F1I
UG) 5-4̄

(I)3I

] ?

(1)
=

[
2 

32
th
− 02

e

∞∑
==0

(<)=X
=(21)1+=

(=!)2

×

∫ 3th

0e

W

(
1 + =,

F1I
UG

21

)
I3I

] ?
, (56)

where (0) follows form the fact that the distances of ?

eavesdropping satellites, -4̄, 4̄ ∈ Φ̄ml, are independently and

identically distributed, and (1) follows from the CDF of the

channel gain and the PDF of -4̄, given by (2) and (11),

respectively.

From the definition of the lower incomplete Gamma func-

tion, the integral in (56) is expressed as

Iml(G, =) =

∫ 3th

0e

∫
Λ(I)

0

C=4−C I3C3I, (57)
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where Λ(I) = F1I
U G

21
. Since Λ(I) is an increasing function of I

for I > 0 and U > 0, the domain of the integration (57) can be

divided into two domains (1 and (2 that are respectively given

by (1 = {0 ≤ C ≤ Λ(0e), 0e ≤ I ≤ 3th} and (2 = {Λ(0e) ≤

C ≤ Λ(3th), Λ
−1(C) ≤ I ≤ 3th}, where Λ−1(C) =

(
21C
F1G

)1/U

.

The integral over domain (1 is obtained as the product of two

independent integrals over I and C, which is given by

I(1
(G, =) =

∫
Λ(0e)

0

∫ 3th

0e

C=4−C I3I3C

=

∫
Λ(0e)

0

C=4−C3C ×

∫ 3th

0e

I3I

=
32

th
− 02

e

2
W(1 + =,Λ(0e)), (58)

and the integral over domain (2 is given by

I(2
(G, =) =

∫
Λ(3th)

Λ(0e)

∫ 3th

Λ−1 (C)

C=4−C I3I3C

=
1

2

∫
Λ(3th)

Λ(0e)

C=4−C

(
32

th −

(
21C

F1G

) 2
U

)
3C

=
32

th

2

∫
Λ(3th)

Λ(0e)

C=4−C3C −
1

2

(
21

F1G

) 2
U
∫

Λ(3th)

Λ(0e)

C=+
2
U 4−C3C

=
32

th

2
{W(1 + =,Λ(3th)) − W(1 + =,Λ(0e))}

−
1

2

(
21

F1G

) 2
U

{
W

(
1 + = +

2

U
,Λ(3th)

)

−W

(
1 + = +

2

U
,Λ(0e)

)}
. (59)

From (56)-(59), we can obtain the final expression for the CDF

of W
(?)

e∗ ,ml
.

APPENDIX E

PROOF OF THEOREM 1

Based on the law of total expectation, i.e., E[-] =∑
8 P[�8]E[- |�8], the ergodic secrecy capacity of the system

is given by

�erg =

#∑
?=0

#−?∑
@=0

P[#, ?, @]E[' |Φ(Āml) = ?,Φ(Āsl) = @]

=

#∑
?=0

#−?∑
@=0

P[#, ?, @]

×

∫ ∞

0

∫ G

0

log2

(
1 + G

1 + H

)
5
Ws ,W

(?,@)

e∗
(G, H)3H3G

(0)
=

#∑
?=0

#−?∑
@=0

P[#, ?, @]

ln 2

∫ ∞

0

�
W
(?,@)

e∗
(G)

1 + G
(1 − �Ws

(G))3G,

(60)

where 5
Ws ,W

(?,@)

e∗
(G, H) is the joint PDF of Ws and W

(?,@)
e∗

, and

(0) follows from the independence of two random variables Ws

and W
(?,@)
e∗

. From (14), (23), and (60), the final expression for

the ergodic secrecy capacity of the system can be obtained.

APPENDIX F

PROOF OF THEOREM 2

Using the law of total probability, the secrecy outage

probability is given by

%out =

#∑
?=0

#−?∑
@=0

P[#, ?, @]P[W
(?,@)
e∗

≥ 2−'t (1 + Ws) − 1]

= 1 −

#∑
?=0

#−?∑
@=0

P[#, ?, @]

×

∫ ∞

2't−1

�
W
(?,@)

e∗
(2−'t (1 + G) − 1) 5Ws

(G)3G. (61)

With the fact that
3W (0,G)

3G
= 4−GG0−1, the PDF of the SNR at

the serving satellite in (61) is obtained by differentiating (14)

as (28), which completes the proof.

APPENDIX G

PROOF OF LEMMA 11

When 0e → 0, the CDF of the SNR at the most detrimental

eavesdropping satellite in Āml is given by

�W̃e∗ ,ml
(G)=P[W̃e∗,ml ≤ G]= EΦ̄′

ml


∏
4̄∈Φ̄′

ml

�ℎ4̄

(
#0,G

%ℓ(34̄)

)
. (62)

By using the probability generating functional of the PPP Φ̄′
ml

[29]

EΦ̄′
ml


∏
4̄∈Φ̄′

ml

5 (G)


= exp

(
−_e

∫
Āml

(1 − 5 (G))3G

)
, (63)

with conversion from the Cartesian to spherical coordinates,

we have

�W̃e∗ ,ml
(G) = exp

(
−_e(A + 0e)

2

∫ 2c

0

∫ kth

0

×

{
1 − �ℎ4̄

(
#0,G

%ℓ(34̄)

)}
sink3k3i

)

= exp

(
−
#

2

{
1 − coskth −  

∞∑
==0

(<)=X
= (21)1+=

(=!)2

×

∫ kth

0

∫
Πml (G,k)

0

C=4−C sink3C3k

})
, (64)

where Πml(G, k) is in (31). The integration in (64) can be

obtained by using the similar way as in the proof of Lemma

8. The details are omitted due to the space limitation.

APPENDIX H

PROOF OF COROLLARY 3

As # goes to zero, �W̃e∗
(G) becomes one. Substituting

�W̃e∗
(G) = 1 into (34), we have

�erg →
1

ln 2

∫ ∞

0

1 − �Ws
(G)

1 + G
3G

(0)
≈

 

ln 2

⌊<⌋−1∑
:=0

:∑
C=0

(−1): (1 − <):X
: (F13

U
s )

C

:!C!
(

1
21

− X
):−C+1

×

∫ ∞

0

GC

1 + G
4−(

1
21

−X)F13
U
s G3G, (65)
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where (0) follows from the fact that the CDF of the channel

gain in (2) can be approximated with integer < as [32]

�ℎ (G) = 1 −  

<−1∑
:=0

:∑
C=0

(−1): (1 − <):X
:

:!C!
(

1
21

− X
):−C+1

GC4−(
1

21
−X)G . (66)

Using
∫ ∞

0
GC

1+G
4−b G = 4 bΓ(1 + C)Γ(−C, b) in (65), we obtain

the final expression of the ergodic secrecy capacity. Similarly,

the asymptotic secrecy outage probability in (37) is obtained

by simply letting �W̃e∗
(G) = 1 in (35).

APPENDIX I

PROOF OF THEOREM 4

Let e0 ∈ Φ̄ denote the nearest eavesdropping satellite from

the terminal. Then, the SNR at the nearest eavesdropping

satellite is given by We0
=

%ℎe0
ℓ (30)

#0,
, where 30 = min4̄∈Φ̄ 34̄

is the distance between the nearest eavesdropper and the

terminal. The CDF of 30 is given by

�30
(G) = P

[
min
4̄∈Φ̄

34̄ ≤ G

]
= 1 −

∏
4̄∈Φ̄

P[34̄ > G]

= 1 − (1 − �34̄ (G))
# . (67)

By differentiating (67) with respect to G and using (9), the

PDF of 30 is given by

530
(G) = # (1 − �34̄ (G))

#−1 534̄ (G)

=
#G

2A (A + 0e)

(
1 −

G2 − 02
e

4A (A + 0e)

)#−1

. (68)

In the high-SNR regime, the ergodic secrecy capacity is

upper-bounded by

�erg ≤ E

[
log2

(
1 + Ws

1 + We0

)]
%→∞
≈ E

[
log2

(
Ws

We0

)]
=
Δ
�∞

erg. (69)

Using the law of total probability, the upper-bound is ex-

pressed as

�∞
erg =P[30 ≤ 3th] E

[
log2

(
Ws

We0

)���� 30 ≤ 3th

]
︸                          ︷︷                          ︸

Ξ1

+ P[3th < 30 ≤ 3max] E

[
log2

(
Ws

We0

)���� 3th < 30 ≤ 3max

]
︸                                     ︷︷                                     ︸

Ξ2

+ P[30 > 3max] E[log2 Ws |30 > 3max]︸                     ︷︷                     ︸
Ξ3

. (70)

The first expectation on the right-hand side of (70), Ξ1, can

be further approximated as

Ξ1 = Eℎs,ℎe0
,30

[
log2

(
Ws

We0

)���� 30 ≤ 3th

]

(0)
≈ E30

[
log2

(
Eℎs

[Ws]

Eℎe0
[We0

]

)����� 30 ≤ 3th

]

(1)
= E30

[
log2

(
3−Us

3−U
0

)���� 30 ≤ 3th

]
(2)
≈ log2

(
3−Us

E30
[30 |30 ≤ 3th]−U

)
, (71)

where (0) follows from the results in Appendix C of [22] and

the independence between the random variables ℎs and ℎe0
;

(1) follows from the definition of the SNR in (3); and (2)

follows from the approximation given in Appendix B of [22].

To further derive (71), we obtain the conditional CDF

�30 |30≤3th
(G) as

�30 |30≤3th
(G) = P[30 ≤ G |30 ≤ 3th]

=




0, if G ≤ 0e,
�30

(G)

�30
(3th)

, if 0e < G ≤ 3th,

1, if G > 3th,

(72)

which gives the corresponding PDF as

530 |30≤3th
(G) =

{
530

(G)

�30
(3th)

, if 0e < G ≤ 3th,

0, otherwise.
(73)

Using this PDF, E30
[30 |30 ≤ 3th] in (71) is given by

E30
[30 |30 ≤ 3th] =

∫ 3th

0e

G 530 |30≤3th
(G)3G

=
#

2A (A + 0e)�30
(3th)

∫ 3th

0e

G2

(
1 −

G2 − 02
e

4A (A + 0e)

)#−1

3G

(0)
=

#

2A (A + 0e)�30
(3th)

#−1∑
8=0

(
# − 1

8

)

×

(
1 +

02
e

4A (A + 0e)

)#−1−8 (
−1

4A (A + 0e)

) 8 328+3
th

− 028+3
e

28 + 3
, (74)

where (0) follows from the binomial expansion. From (71)

and (74), we can obtain Ξ1. Similarly, Ξ2 and Ξ3 can be

readily derived, but the details are omitted due to lack of

space. Plugging Ξ1, Ξ2, and Ξ3 into (70) with the CDF of 30

completes the proof.
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