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Abstract—Typical deep neural network (DNN) backdoor at-
tacks are based on triggers embedded in inputs. Existing imper-
ceptible triggers are computationally expensive or low in attack
success. In this paper, we propose a new backdoor trigger, which
is easy to generate, imperceptible, and highly effective. The new
trigger is a uniformly randomly generated three-dimensional
(3D) binary pattern that can be horizontally and/or vertically
repeated and mirrored and superposed onto three-channel images
for training a backdoored DNN model. Dispersed throughout an
image, the new trigger produces weak perturbation to individual
pixels, but collectively holds a strong recognizable pattern to
train and activate the backdoor of the DNN. We also analytically
reveal that the trigger is increasingly effective with the improving
resolution of the images. Experiments are conducted using the
ResNet-18 and MLP models on the MNIST, CIFAR-10, and
BTSR datasets. In terms of imperceptibility, the new trigger
outperforms existing triggers, such as BadNets, Trojaned NN,
and Hidden Backdoor, by over an order of magnitude. The
new trigger achieves an almost 100% attack success rate, only
reduces the classification accuracy by less than 0.7%–2.4%, and
invalidates the state-of-the-art defense techniques.

Index Terms—deep neural network, image classification, back-
door trigger, imperceptibility.

I. INTRODUCTION

In recent years, deep neural network (DNN) has been
increasingly widely used thanks to its excellent performance
in object detection [1], voice conversion [2], and autonomous
driving [3]. DNN has even outperformed humans in some
tasks, e.g., large-scale image classification [4]–[6]. However,
backdoor attacks put the applications of DNN to safety- or
security-critical tasks at stake. Backdoored DNN was first
introduced by BadNets [7], where a color block was used as a
trigger and added on input images to encode its features into
the parameters of the backdoored DNN in the training process.
Many different triggers have been proposed since, including
tatoo [8], graffiti [9], and cartoon patches [10].

To counteract backdoored DNNs, a range of defense meth-
ods have been developed. For example, STRong Intentional
Perturbation (STRIP) [11] detects triggers by assuming a
distinguishable entropy distribution of the DNN model predic-
tion between clean and poisoned images. Februus [8] adopts
Class Activation Map (CAM) [12] to visualize the decision
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of a DNN, locate and remove the trigger, and restore the
changed pixels using a pre-trained generative neural network
(GAN) [13]. Spectral Signature Defense (SSD) [14] uses
singular value decomposition (SVD) to obtain the dominant
vector of samples in the training dataset and determine whether
an input contains a trigger by comparing the correlation be-
tween the input and the vector against a pre-defined threshold.
Activation Clustering (AC) [15] treats the trigger detection
as a two-class clustering problem and utilizes K-Means to
group the inputs into two clusters based on their hidden layer
outputs. Other defense mechanisms include Artificial Brain
Stimulation (ABS) [16], Neuron Pruning [17], and Neural
Cleanse [18]. These defense approaches effectively defend
existing triggers that typically produce intensive perturbations
to a small region of an image (e.g., sunflower trigger [8]). A
strong perturbation makes the triggers distinguishable in the
final and/or intermediate output of a backdoored DNN, and
makes the triggers perceptible.

Imperceptible triggers are more threatening to DNN applica-
tions and typically studied in the contexts of DNN adversarial
attack [19], [20] and DNN robustness [21]. No backdoor needs
to be installed in a DNN. Instead, a trigger is derived from
the trained DNN to misclassify an image arbitrarily or into
a target class. Imperceptibility was achieved by restricting
the `∞- or `2-norm of the trigger. However, the triggers
are input-specific, i.e., different images (even from the same
class) require different triggers, leading to high complexities
in trigger generation. The triggers can also be invalidated
by changes in the images. Several input-agnostic adversarial
trigger generation approaches have been developed [22], [23].
They exhibit much lower attack success rates (ASRs) than the
input-specific imperceptible adversarial triggers. Moreover, a
defender may have the knowledge of an attacker and poten-
tially reproduce the triggers to reinforce the DNN through
so-called adversarial training [20], [24].

In this paper, we propose a new backdoor trigger that is
easy to generate, imperceptible, and highly effective. The new
trigger is a uniformly randomly generated, three-dimensional
(3D) binary pattern that can be horizontally and/or vertically
repeated and mirrored and then superposed onto three-channel
images for training a backdoored DNN model. While the
new trigger collectively holds a strong recognizable pattern to
effectively train or activate the backdoor of a DNN model, it
generates weak perturbation to individual pixels and remains
imperceptible. The complexity of the trigger generation and
image perturbation is linear to the image size, and substantially
lower than those of the existing triggers. Extensive experi-
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ments demonstrate the superiority of the new trigger to existing
methods in complexity, imperceptibility, and effectiveness.
• Low complexity: The generation of the new trigger only

involves linear operations, such as repetition, addition,
and clamping (to within [0, 255]). The complexity is
O(CWH) for an image with C color channels and
W × H pixels per channel. In contrast, the existing
imperceptible triggers, e.g., AdvGAN [22], UAT [23],
and Hidden Backdoor [25], require back propagation and
gradient descent operations on a neural network with
dramatically higher complexities. The generation of a
malicious input using the new trigger is computationally
efficient, since the trigger is input-agnostic and can be
directly superposed onto a benign image to perturb the
image. In contrast, existing approaches, such as projected
gradient descent (PGD) [24] and DeepFool [26], produce
input-dependent triggers and perturb inputs using the
gradient of the attacked neural network.

• Imperceptibility: Compared to existing backdoor triggers
typically using more visible colored blocks (e.g., [7]–
[10]), our trigger is imperceptible. The imperceptibility
of the new trigger is analyzed both quantitatively and
visually on three different datasets. We show that the
proposed trigger outperforms all baseline approaches in
two popular perceptual metrics, namely, Structural Sim-
ilarity (SSIM) Index [27] and Learned Perceptual Image
Patch Similarity (LPIPS) [28], and in the visual difference
between clean and poisoned images.

• High effectiveness: The new trigger is evaluated experi-
mentally under different datasets, neural network archi-
tectures, and latest defense strategies. We show that the
trigger threatens the reliability of image classifier models
with an ASR of close-to-100%, which is 17% higher than
the existing input-agnostic imperceptible triggers, such
as AdvGAN [22] and UAT [23]. The new trigger also
invalidates the existing defense strategies.

The rest of this paper is organized as follows. Section II
provides the related works. Section III presents the threat
model and the new trigger. The new trigger is extensively
tested against popular datasets, DNN models, and defense
strategies in Section IV, followed by conclusions in Section V.

II. RELATED WORK

A. Backdoor Trigger

Recently, several backdoor triggers have been proposed,
mostly visible to human eyes, such as a small patch beside
a digit [18], a pair of bright-rim eyeglasses on a face [29],
a bright pixel in an image [30], or a cartoon watermark [11].
BadNets [7] uses a small patch (e.g., a yellow rectangle sticker
on a traffic sign) as a trigger to poison images and trains a
neural network model with the poisoned images.

Invisible backdoor triggers have been designed in [25],
[31]–[34]. Saha et al. [25] introduced Hidden Backdoor (HB)
attacks, which used a small image patch as a trigger. An im-
age with invisible perturbations was produced by minimizing
the difference of neuron activations in the penultimate layer
between a clean image and its poisoned version with the

trigger. However, once the backdoored DNN is deployed, an
attack still requires a visible trigger to activate the embedded
backdoor. Backdoor defense strategies, such as Februus [8],
can detect and eliminate the trigger.

Li et al. [31] designed two types of invisible triggers for
backdoor attacks. The first type was produced by converting a
static trigger (for example, a string of texts) to a binary form
and then replacing the least significant bits of pixels in an
image with the trigger. Only altering the least significant bits
results in minor changes in color intensity, making a trigger
hard to detect by human inspectors. However, a defender can
disable the trigger by replacing the least significant bits with
random values. The second type was to amplify the trigger-
induced activations of a subset of neurons in the DNN’s
penultimate layer. The process also reduced the trigger’s norm
to below a threshold, making the trigger imperceptible. Hence,
a backdoor was implanted in a small number of neurons. In the
presence of the trigger, those neurons can produce significantly
larger activations than the others, making them detectable
for detection strategies, e.g., AC [15], and suppressible using
neuron pruning techniques, e.g., Neural Cleanse [18].

Zhong et al. [32] developed two invisible triggers. One
was a static perturbation mask based on a repeated pattern.
The pattern consists of an array of small sub-regions, and
increases the color intensity of pixels in the sub-regions. Since
this trigger is not random, it can be reverse-engineered by
enumerating all possible sizes of the sub-regions and the
increase of color intensity. The second trigger employed the
DeepFool [26] to obtain a universal, invisible perturbation by
projecting the images of one class to the boundary between
their source class and the adversary-specified target class. The
adversary can poison the training data, insert the backdoor
into the DNN model, and use the perturbation as a trigger.
However, the trigger depends on the source and target classes
and is computationally expensive to produce.

Trojaned NN [33] and RobNet [34] are two recent and
related designs of backdoor triggers. Trojaned NN [33] selects
the most connected neurons in the penultimate layer of a
pre-trained neural network model, and generates a trigger
that maximizes the activation of the selected neurons using
gradient descent. A backdoored model is obtained by further
training the model with images poisoned with the trigger.
RobNet [34] is a variation of Trojaned NN, and conducts
neuron selection and trigger generation. It supports multiple
trigger locations (up to eight per image) and multiple triggers
(at different locations of an image) to produce a backdoored
model. AdvGAN [22] and UAT [23] are two other recent
designs of imperceptible triggers. AdvGAN adopts GANs to
train a perturbation generator. For any image in the same
domain as the images used to train the generator, the generator
produces and adds a trigger to the image to attack a DNN
model. UAT produces an input-agnostic imperceptible trigger
for an image dataset and a given DNN architecture. It solves
an optimization problem of universal perturbation by adopting
the stochastic gradient method. AdvGAN and UAT require
back propagation and gradient descent operations on a neural
network, incurring high complexities.
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B. Defense Methods

Defense strategies have been developed to detect or disable
triggers, or repair backdoored DNN models [8], [11], [14]–
[18], [35]. Februus [8] sanitizes inputs by removing potential
trigger artifacts and keeping the information for classification
tasks. The triggers are located using GradCAM [12], a variant
of the classic DNN visualization technique, CAM [36]. It was
reported in [8] that Februus reduced the ASR from 100%
to nearly 0% for a badge, tattoo, image patch, and color
block triggers on the CIFAR-10, German Traffic Sign Recogni-
tion Benchmark (GTSRB), Belgium Traffic Sign Recognition
(BTSR), and VGGFace2 datasets.

STRIP [11] is a trigger detection algorithm for vision sys-
tems. It perturbs the input to a DNN model by superimposing
various image patterns, and then observes the randomness
of predicted classes for the perturbed inputs. The entropy
exceeding a pre-defined threshold in predicted classes indicates
the presence of a backdoor trigger. STRIP archives close-to-
zero false acceptance rate and false rejection rate on small
black square, heart-shape frame, mosaic patch on MNIST,
CIFAR-10, and GTSRB datasets. The effectiveness of STRIP
depends on the existence and selection of the threshold.

SSD [14] detects triggers by first calculating the covariance
matrix of the feature representation of training samples for
each class. Then, SSD calculates the correlation between
the feature representation of the incoming input and the top
eigenvector of the covariance matrix (i.e., the eigenvector
corresponding to the largest eigenvalue). It compares the
correlation with a predefined threshold to detect triggers. Let
ε denote the ratio of poisoned data in the testing data. SSD is
effective under an ε-spectrally separable condition, i.e.,

PrX∼W [〈X − µF , v〉 < ξ] < ε; (1)
PrX∼D[〈X − µF , v〉 > ξ] < ε, (2)

where W and D are the distributions of the inner representa-
tions of the poisoned and clean samples in the hidden layer;
F = εW+(1−ε)D is the mixture ofW and D; µF is the mean
of F ; v is the top eigenvector of the covariance of F ; and ξ
is the threshold to distinguish clean and poisoned samples.

AC [15] adopts K-Means to cluster input images into clean
and poisoned groups by inspecting the activations of the hid-
den layers of a DNN model. AC first retrieves the activations,
then reduces their dimensions with primary component anal-
ysis (PCA) [37], fast independent component analysis (Fast
ICA) [38], or t-distributed stochastic neighbor embedding (t-
SNE) [39]. AC determines the clusters containing poisoned
samples using one of four cluster analysis methods: Smaller,
Relative Size, Distance, and Silhouette. The cluster with the
fewest items is selected as poisoned by Smaller. Relative Size
classifies a cluster as poisoned if the smaller one contains less
data than a threshold. Distance classifies a cluster as poisoned
if its median activation is closer to the median of another class
than to its own. Silhouette analyzes the suspicion level based
on size and Silhouette score [40].

Neuron Pruning [17] is under the premise that the average
activation of neurons in the final convolutional layer of a
backdoored neural network is significantly different between

clean and adversarial inputs. The neurons that are dormant
for clean inputs are removed to disable the backdoor. The
termination condition is that the decrease of the classification
accuracy on clean inputs exceeds a threshold, e.g., 4%.

Neural Cleanse [18] is a trigger detection and mitigation
method for DNN backdoor attacks. It detects and reverse-
engineers a trigger by finding the minimal trigger required
to misclassify all samples from other labels to the target
label. The trigger size is measured by the number of pixels
replaced. The mitigation techniques include input filtering,
neuron pruning, and unlearning. Input filtering discards inputs
with potential triggers. Neuron pruning removes backdoor-
related neurons identified by the reverse-engineered trigger in
the penultimate layer of the DNN model. Unlearning trains the
backdoored DNN to forget the trigger by using the reverse-
engineered trigger and correct labels.

Spatial Smoothing [35] is a class of widely used tech-
niques in image processing for suppressing image noise. Local
smoothing methods make use of nearby pixels to smooth
each pixel. By selecting different weighting mechanisms for
neighboring pixels, a local smoothing method can be Gaussian,
mean, or median smoothing. The median filter runs a sliding
window over each pixel, where the center pixel is replaced
by the median value of the neighboring pixels within the
window. Spatial Smoothing is effective in defending malicious
inputs having invisible triggers, such as adversarial examples
generated by PGD [20].

Last but not least, adaptive attacks can minimize the dif-
ference of neuron activations within each layer or reduce the
difference of neuron activations between benign and malicious
inputs (e.g., by minimum or min-max criteria) during data
poisoning. ABS [16] provides an effective means to defend
adaptive attacks by defining an adaptive loss function and
minimizing it together with the classification loss function.

As will be shown in Section IV-D, none of the above state-
of-the-art techniques is effective in detecting or disabling the
new backdoor trigger discovered in this paper.

III. NEW BACKDOOR TRIGGER TO IMAGE
CLASSIFICATION NEURAL NETWORKS

In this section, we first describe the threat model of the new
backdoor trigger. Then, we describe the trigger generation,
followed by implementation considerations.

A. Threat Model

We adopt a threat model similar to the one used in [34],
where a cloud service provider delivers Machine-Learning-
as-a-Service (MLaaS) Platform. DNN training usually re-
quires significant computing resources, e.g., GPU clusters, and
domain knowledge of the DNN design and hyperparameter
configuration. Commercially available MLaaS platforms, e.g.,
AWS Machine Learning, Google Cloud Machine Learning,
and Microsoft Azure ML Studio, are widely accessible for
DNN users to outsource DNN model training. In this case, the
cloud service provider can be adversarial (because of a rogue
employee or a compromised server). A user outsourcing the
DNN training to the cloud provider is the defender. The DNN
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user evaluates the prediction performance of the received DNN
model with clean datasets (e.g., images). The user may also
try to detect the backdoors in the DNN model, and disable
backdoor triggers using the state-of-the-art algorithms.

The goal of an adversary performing a backdoored DNN at-
tack can be formulated as the following Maximum Likelihood
Estimation (MLE) problem:

max
T,θ

N∏
i=1

φθ(cX(i) |X(i))φθ(ct|T (X(i) +T))pi , (3)

where

• X(i) ∈ [0, 255]LH×LV ×NC (i = 1, . . . , N ) is the i-th
testing image with the size of LH × LV and NC color
channels;

• T ∈ [−255, 255]LH×LV ×NC is the backdoor trigger;
• pi ∈ {0, 1} indicates whether X(i) is poisoned by trigger
T for backdoor learning or not (pi = 1 if X(i) is
poisoned; or pi = 0, otherwise);

• cX(i) is the ground-truth class of X(i);
• ct is the target class specified by the attacker;
• θ is the set of the model parameters of the DNN, i.e., the

weights of connections and the biases of neurons;
• φθ(c|X) is the trained DNN which outputs the probability

of the input X belonging to class c ∈ {ct, cX(i) ,∀i};
• T (X) is a truncation function to ensure that each NC-

channel pixel of a poisoned image X is within [0, 255]NC .

The adversary trains the DNN model to misclassify any
poisoned input (i.e., images embedded with the trigger T)
to the target class specified by the adversary. For clean inputs
(e.g., images without the trigger T), the adversary wishes the
DNN model to provide a satisfactory classification accuracy.

The joint optimization can be readily decoupled into the
separate design and optimization of the trigger T and the
model parameter θ. Specifically, T can be viewed as an
additional feature of the images, and is used to classify the
images into a target class specified by the attacker, as done
in existing backdoored models, e.g., BadNets [7]. According
to the Universal Approximation Theorem [41], a neural net-
work can approximate any continuous function at any given
precision requirement. In this sense, given any trigger T, the
model parameter θ can be trained to achieve any pre-specified
classification accuracy of clean images and any pre-specified
misclassification rate of poisoned images. For this reason, the
attacker could design T, prior to the training of θ based on
the trigger T, as done in BadNets [7].

B. The New Backdoor Trigger

We discover a new backdoor trigger T, which is a randomly
generated binary 3D matrix superposed to the pixels of the
input image. A DNN trained with poisoned images, X′, can
detect the presence of T and, therefore, contain a backdoor
that can be exploited in a later stage. By carefully configuring
its magnitude m, the backdoor trigger T can be imperceptible
to human eyes. T is also input-agnostic, since it is generated
independently of input images.
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Fig. 1: The generation process of the proposed trigger, where
a red box corresponds to a “+m” and a blue box corresponds
to a “−m”.

1) Generation of the New Trigger: As illustrated in Fig. 1,
the new trigger is generated in three steps.
Step 1: Produce a 3D random matrix with the dimension of

TH × TV × NC , where each layer comprising the
first two dimensions of the matrix corresponds to
one channel of the images to be poisoned. The third
dimension indicates different channels of the images.
The elements of the 3D matrix follow the i.i.d.
binary distribution with amplitude m (i.e., “±m”)
and are generated using the Cryptographically Secure
Pseudo-Random Number Generator (CSPRNG).

Step 2: Extend each layer of the 3D matrix using repetition,
i.e., repeating every element horizontally and verti-
cally multiple times on each layer.

Step 3: Mirror the 3D matrix horizontally (and/or vertically)
on each layer to produce a horizontally (and/or
vertically) symmetric matrix used as the new trigger.

When poisoning an image, each page of the trigger is su-
perposed (i.e., added) onto the middle of the corresponding
channel of the image with margins reserved unperturbed to
bypass Februus trigger removal [8]. The resulting magnitude
of each pixel is truncated to be within the valid range of
[0, 255]NC . The purposes of the repetition in Step 2 and the
symmetric extension in Step 3 are to get around the typical
image blurring method, such as Spatial Smoothing [35], and
image transformation, such as flipping.

The numbers of horizontal and vertical repetitions per pixel
in Step 2, denoted by RH and RV , and the width of the
unperturbed margin, denoted by MG, are hyperparameters and
can be adjusted, given the size of the 3D random matrix
generated in Step 1, i.e., TH × TV × NC , and the size of
the images to be poisoned, i.e., LH × LV ×NC . Apparently,
LH = 2(RHTH +MG) and LV = RV TV + 2MG in Fig. 1.

A backdoor trigger is a secret withheld by an attacker,
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Fig. 2: A Perceptron is trained to recognize the new trigger,
where the activation function ϕ(·) maps positive and negative
inputs to the presence and absence of the trigger, respectively.

and can be constructed from a random sequence gener-
ated by a pseudo-random number generator. Most statisti-
cal Pseudo-Random Number Generators (PRNGs) are based
on recurrences and can be recognizable by assessing out-
put streams [42]. It is possible to predict the future output
of PRNGs [43] based on past observations. In contrast, a
CSPRNG avoids detectable regularities and can withstand
cryptanalysis conducted by a defender with full knowledge of
the CSPRNG used. Given a sequence of pseudo-random bits
generated by a randomly initialized CSPRNG, it is impossible
to predict the next bit with a probability greater than 1/2 using
a probabilistic polynomial-time algorithm.

The proposed trigger is much easier to generate than the ex-
isting imperceptible triggers. The generation of the new trigger
only involves linear operations, such as repetition, addition,
and clamping (to within [0, 255]). It incurs the computational
complexity of O(CWH) for an image with C color channels
and W × H pixels per channel. In contrast, the existing
imperceptible triggers, such as AdvGAN [22], UAT [23], and
Hidden Backdoor [25], require back propagation and gradient
descent operations on a neural network. Their computational
complexities are significantly higher than O(CWH).

2) Selection of Trigger’s Magnitude: We analyze the re-
quired magnitude of the proposed backdoor trigger for specific
ASRs. Our analysis based on a Perceptron model suggests that
the new trigger is not only feasible, but effective in creating
a backdoor and poisoning the model.

Let P denote a 3D random matrix generated using the
CSPRNG. For illustration convenience, we assume that the
size of P, i.e., TH × TV ×NC , is the same as the size of an
input image X, i.e., LH × LV × NC . Then, the new trigger
is T = mP, where m ∈ R+ is the magnitude of the trigger.
The size of the trigger is M = THTVNC .

Considering the Perceptron model in Fig. 2, which takes
vectorized images as the input. The magnitude of the trigger,
m, is obtained by solving the following problem:

min
m,w

m

s.t. Pr
{
T (x+mp)>w + b > 0

}
> η, (4)

Pr
{
x>w + b < 0

}
> η,

where p and x are the vectorizations of P and X; T (x+mp)
is the poisoned version of x, see (3); and η is the ASR.

Since the elements in p are i.i.d., E[xTp] = 0 and pTp =
M . By vectorizing T to t, we set w = t = mp and b =
−m

2M
2 in (4). Then,

(x+ t)>t =
∑
i

(xiti) +m2M, (5)

where xi and ti are the i-th elements of x and t, respectively.
Assume that the pixels are independent in the image x.

Then, x>t obeys the Gaussian distribution according to the
Law of Large Numbers. Also assume that xi ∼ U [0, 255].
Then, E[xi] = 255

2 and D[xi] = 2552/12. Since E[ti] = 0
and t is independent of x, we have E[x>t] = 0. Then, the
variance of x>t is given by

D[x>t] =Mm2C, (6)

where C = E[xi]2 + D[xi]. As a result,

E[(x+ t)>t] =Mm2; D[(x+ t)>t] = D[x>t]. (7)

The rate of the Perceptron recognizing the backdoor trigger
in Fig. 2 (i.e., the ASR) is given by

Pr
{
T (x+mp)>w + b > 0

}
= Pr

{
x>w + b < 0

}
=

1−Q

(
E[(x+ t)>t]

2
√

D[x>t]

)
= 1−Q

(
m

2

√
M

C

)
, (8)

where Q(·) is the tail distribution function of the Normal
distribution. A large value of m increases the ASR (at an
increased risk of the trigger being perceptible to human eyes).
Given the ASR η, the magnitude m satisfies

m ≥ 2Q−1(η)

√
C

M
, (9)

where Q−1(·) is the inverse function of Q(·). The right-hand
side of (9) provides a lower bound for m, since w and b in
(4) are designed only for trigger recognition. The lower bound
confirms that a higher-resolution image is more susceptible to
backdoor attacks since the image can accommodate a longer
and less visible trigger (with a larger M and a smaller m). To
this end, the new trigger may be less effective when small-
sized, black and white images are perturbed. This is because
the trigger can be more visible on black and white images,
especially when the images are small and the amplitude of
the trigger needs to be large to be effective.

As discussed in Section III-B1, repeating each randomly
generated ±m element horizontally and vertically (over RH
and RV pixels, respectively) and then mirroring horizontally
(and/or vertically) on each layer of the 3D matrix to produce
a horizontally (and/or vertically) symmetric 3D trigger, are
recommended to get around Februus trigger removal [8]
and image transformation-based trigger disabling [44]. In
the experiments presented in Section IV, we repeat every
random element horizontally and vertically and then mirror
it horizontally to produce a horizontally symmetric trigger.
While the trigger size is M , the number of randomly generated
elements in the trigger is M/(2RHRV ) (since each element is
replicated for 2RHRV times, one per pixel). The magnitude
assigned to 2RHRV pixels is m′ ≥ 2Q−1(η)

√
C

M/2RHRV
.

The magnitude needs to be distributed evenly among the
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2RHRV pixels. The per-pixel magnitude m yields m′ =

RHRVm ≥ 2Q−1(η)
√

C
M/2RHRV

, or

m ≥ 2Q−1(η)√
2RHRV

√
C

M
. (10)

3) Implementation Consideration: Defenders may apply
image transformation techniques (e.g., random cropping, flip-
ping, or rotation) to disable a trigger. To bypass these de-
fenses, the trigger can be generated to be horizontally and
vertically symmetric. Data augmentation can also be applied
when training the backdoored DNN, by generating randomly
cropped and rotated versions of poisoned images. Defenders
may detect triggers by observing the contribution of pixels to
classification through DNN visualization techniques, such as
CAM [12]. A smaller-sized trigger can be generated only to
perturb the inner part of an image. The margins remain intact
to escape the inspection of activation in the margins.

According to the moments of the distribution of input
images, the images are often normalized in DNN training.
To prevent the normalization of input images from destroying
the trigger, the attacker can unnormalize the trigger T before
applying it to an image. The unnormalization can be given
by T̃ = T × σ + µ, where T̃ is the unnormalized trigger;
µ and σ are the mean and standard deviation of the input
images, respectively. Since µ and σ are publicly known, the
unnormalization can be readily accomplished by the adversary.

IV. EXPERIMENT RESULTS

In this section, we experimentally evaluate the proposed
backdoor trigger in terms of the attack capability and its
resilience toward popular defense strategies.

1) DNN Model: We evaluate the threat of the new backdoor
trigger by considering a customized Multilayer Perceptron
(MLP) and a Convolutional Neural Network (CNN).
• MLP: We consider a 7-layer MLP made up of three fully-

connected layers, two Leaky ReLU activation layers with
a negative slope of 0.2, and two Dropout Layers with the
dropout probability of 0.2; see [45];

• CNN: We choose the 18-layer ResNet, where, besides
the heading convolution layer and the fully-connected
layer at the end of the CNN, the remaining sixteen
convolutional layers in the middle are grouped into eight
pairs. In each pair, a skip connection adds the input of
the first convolutional layer to the output of the second
convolutional layer; see [46].

2) Dataset: The following public datasets produce poi-
soned data for training and testing backdoored DNNs. In each
training dataset, 5% of images are poisoned with the new
backdoor trigger. We train all three datasets with 100 epochs
using a Stochastic Gradient Decent optimizer with the learning
rate of 0.1, momentum 0.9, and weight decay 5× 10−4.
• MNIST [47]: MNIST is a handwritten digital dataset,

consisting of 60,000 training and 10,000 testing samples.
Each sample is a 28× 28 gray-scale image. Any class in
the dataset can be chosen as the target class. We choose
five as the target class. The trigger used is horizontally

TABLE I: Analytic lower bound for the trigger magnitude m
under η = 99.9%, and the m values taken in the experiments.

Dataset Repetition Symmetry M Analytical m Selected m
MNIST 4 Horizontal 576 5.94 10

CIFAR-10 4 Horizontal 2325 2.94 4
BTSR 14 Horizontal 124848 0.12 3

symmetric with a margin of 4 and 4 horizontal and
vertical repetitions;

• CIFAR-10 [48]: CIFAR-10 is a low-resolution natural
image dataset with ten classes. Each sample is a 32 ×
32× 3 color image. The numbers of training and testing
data samples are 50,000 and 10,000, respectively. The
trigger is horizontally symmetric with a margin of 4 and
4 horizontal and vertical repetitions. We choose dog as
the target class;

• BTSR [49]: BTSR contains 62 classes of high-resolution
images typically resized to 224 × 224 × 3. We choose
class 5 at random as the target. BTSR contains only 4,570
training samples and 2,528 testing samples. The trigger
is horizontally symmetric with a margin of 20 and 14
horizontal and vertical repetitions.

Table I provides the analytical lower bound of the trigger mag-
nitude m for the MNIST, CIFAR-10, and BTSR datasets based
on (10), and the default m values used in the experiments.

3) Evaluation Metric: We evaluate the following metrics
for the attack performance of the new backdoor trigger:
• Functionality [31]: The average classification accuracy

of a DNN when tested only using clean images;
• Functionality Loss (Func. Loss): The difference in

Functionality between a benign DNN (trained using clean
images) and a backdoored DNN;

• Attack Success Rate (ASR): The ratio of the poisoned
images classified correctly to the target class to the total
number of images in the testing dataset. The poisoned
images are generated by embedding a trigger to the clean
images in the testing dataset;

• Balanced Accuracy (bACC) [50]: This is the arithmetic
mean of the true positive rate (TPR) and the true negative
rate (TNR) of poisoned data classification, as given by

bACC = (TPR + TNR)/2, (11)

where TPR = # identified poisoned samples
# all poisoned samples and TNR =

# identified clean samples
# all clean samples . This metric quantifies the trigger

detection accuracy of the considered defense algorithms.
We adopt two perceptual metrics to quantify the impercep-

tibility of a trigger in a poisoned image:
• Structural Similarity (SSIM) Index [27], an extensively

adopted metric for measuring the structural similarity of
two images;

• Learned Perceptual Image Patch Similarity
(LPIPS) [28], a metric designed specifically to quantify
the invisibility of triggers in poisoned images.

A. Attack Success Rate
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TABLE II: The attack capability of the new trigger and its
impact on the Functionality Loss of the considered DNN
models.

Model Dataset ASR Functionality Loss
96.80% 0.70%
98.11% 1.14%

MLP MNIST 95.92% 0.81%
95.88% 0.78%
96.67% 0.89%
95.30% 2.40%
95.95% 0.49%

ResNet-18 CIFAR-10 97.63% 0.98%
96.30% 0.78%
96.71% 0.97%
98.70% 2.10%
98.43% 2.37%

ResNet-18 BTSR 98.46% 1.73%
98.69% 2.40%
97.25% 1.38%

The attacking performance of the new trigger is shown in
Table II. Since the trigger is random, we repeat these exper-
iments with five independently randomly generated triggers
on the three datasets. In general, the ASRs are close-to-100%
under all the considered models and datasets. The backdoor
trigger can be easily recognized by the models, and exploited
by the adversary. At the same time, the Functionality Loss is
low, only around 2%. The image classification capability of the
poisoned DNN models is not compromised by the backdoor
trigger, hence making the trigger hard to notice. As also shown
in Table II, any trigger with the same magnitude and margin
can achieve nearly the same performance (including the ASR
and the Functionality Loss) in the test stage.

B. Imperceptibility

Table III evaluates quantitatively and qualitatively the in-
visibility of the proposed trigger on the MNIST dataset. It
shows that the perturbation magnitude m = 10 can provide
reasonable imperceptibility. The difference between a clean
image and its poisoned version is unnoticeable in the residual
maps, as also corroborated quantitatively with the SSIM close
to one and the LPIPS close to zero. Table IV evaluates the
invisibility of the trigger on the CIFAR-10 dataset. Without
loss of generality, we select at random a clean image from
each of the ten classes in the CIFAR-10 dataset. We see that
the difference between a clean image and its poisoned version
is unnoticeable in the residual maps, and the SSIM is close to
one and the LPIPS is close to zero.

The invisibility of the new trigger is also evaluated on the
BTSR dataset in Table V, where a clean image and its poisoned
versions under different backdoor methods are provided. With
the highest SSIM and the lowest LPIPS, the proposed trigger is
the least visible among all the methods. Specifically, the LPIPS
of the trigger is about 5, 20, and 1.5 times lower than those
of the original BadNets, Trojaned NN, and HB, respectively
(see the second, fourth, sixth, and eighth rows in Table V).

We also investigate the relationship between the magni-
tude m and the invisibility of the proposed trigger by taking
the CIFAR-10 dataset for example. As shown in Table VI,
even when the ASR of the trigger is as high as 96.49% (even

TABLE III: The qualitative and quantitative evaluation of the
imperceptibility of the new trigger on the MNIST dataset,
where the perturbation magnitude m is set to 10.

Origin Poisoned Residual Map SSIM LPIPS

0.993159 0.004201

0.993159 0.004201

0.993159 0.004201

0.988416 0.045952

0.946696 0.175602

0.993159 0.004201

0.993159 0.004201

0.985550 0.014404

0.985550 0.014404

0.993159 0.004201

TABLE IV: An illustration of the visibility of the proposed
trigger on the CIFAR-10 dataset.

Class Origin Poisoned Residual SSIM LPIPS

airplane 0.979512 0.003648

car 0.992114 0.000466

bird 0.959018 0.001097

cat 0.983587 0.003116

deer 0.947664 0.003062

dog 0.985340 0.002234

frog 0.983045 0.002367

horse 0.995333 0.000964

ship 0.982897 0.001897

truck 0.990353 0.002192
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TABLE V: The imperceptibility of poisoned images on a
224 × 224 BTSR image, where the images are resized for
display. Trojaned NN can trojan “1 neuron”, “2 neurons”, or
“all neurons” of a selected layer in the DNN model.

Method Origin Poisoned Residual SSIM LPIPS

Ours
(m = 2)

0.993159 0.004201

Ours
(m = 3)

0.986918 0.009344

BadNets
(Standard,
T = 0)

0.965563 0.136998

BadNets
(T = 0.7)

0.988416 0.045952

Trojaned NN
(1 neuron,
T = 0)

0.946696 0.175602

Trojaned NN
(1 neuron,
T = 0.7)

0.946105 0.185182

HB
(Standard,
T = 0)

0.976996 0.054661

HB
(T = 0.7)

0.985550 0.014404

higher than the classification accuracy of benign images) under
m = 6, the new trigger is still invisible (and effective in terms
of attack success).

The superb imperceptibility of the new trigger is the result
of the large dimension and subsequently the weak per-pixel
perturbation of the trigger. Specifically, the perturbation of the
new trigger is dispersed throughout large areas of a poisoned
image. The perturbation to each individual pixel is weak, e.g.,
m ≤ 10, substantially smaller than the maximum magnitude
of 256 per RGB channel (i.e., less than 5%). Moreover, the
uniformly randomly produced elements inside the trigger can
be viewed as noises to the images poisoned. With an adequate
selection of m, the trigger can be imperceptible to human eyes
while remaining highly effective in attack success.

C. Attack Performance vs. Imperceptibility

Figs. 3–6 show the trade-off between the ASR and invisibil-
ity of backdoor triggers assessed on the CIFAR-10 and BTSR
dataset. The invisibility is measured by LPIPS and SSIM. For
a comprehensive comparison, the transparency of a trigger is
adjusted by configuring a transparency parameter 0 ≤ T < 1
in BadNets and HB, as in Trojaned NN [33]. The trigger is
opaque if T = 0. It is more transparent if T is larger.

TABLE VI: The impact of perturbation magnitude on the
visibility of the proposed trigger. The Functionality of the
benign ResNet-18 model is 89.5%.

m Poisoned Residual ASR Func. SSIM LPIPS

1 92.48% 89.01% 0.991773 0.000315

2 91.34% 88.06% 0.993684 0.000665

3 92.08% 89.94% 0.991707 0.000752

4 95.30% 87.10% 0.990609 0.001824

5 93.78% 88.10% 0.974187 0.001396

6 96.49% 88.15% 0.970179 0.003235

Figs. 3 and 4 show that the new trigger and BadNets
perform significantly better than the other considered methods
on the CIFAR-10 dataset. The results of the new trigger and
BadNets are localized in the upper left corner of Fig. 3 and
the upper right corner of Fig. 4, indicating the new trigger
and BadNets can achieve both high ASRs and imperceptibility
(high in SSIM and low in LPIPS). It is worth pointing out
that the original design of BadNets only uses opaque triggers
(i.e., T = 0). While the extended BadNets with transparent
triggers can marginally outperform the new trigger, the original
BadNets performs poorly in imperceptibility. Moreover, the
new trigger generally has a smaller Functionality Loss than
BadNets on the CIFAR-10 dataset, as revealed in Table VII.

The superiority of the new trigger to the other methods,
including BadNets, is revealed on the BTSR dataset in terms
of both ASR and invisibility, as shown in Figs. 5 and 6. The
images in the BTSR dataset have a larger dimension (i.e.,
224 × 224 pixels) than those in the CIFAR-10 dataset (i.e.,
32 × 32 pixels). The larger dimension of the images allows
for a larger size and smaller perturbation magnitude of the new
trigger, benefiting both attack success and imperceptibility.

We also compare the new backdoor trigger with Rob-
Net [34], an extension to Trojaned NN [33] by supporting
multiple locations for a trigger (up to eight different locations
on an image) or multiple different triggers (one per location)
for a backdoored model. We adopt the setting of [34] on
the trigger number and locations of RobNet: In the case of
multiple locations for a trigger, we generate two poisoned
versions of every clean image, each placing the trigger at a
different and randomly selected location from the eight can-
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Fig. 3: The trade-off of ASR and invisibility of triggers on the
CIFAR-10 dataset. The invisibility is measured by LPIPS. A
lower LPIPS indicates better invisibility.

Fig. 4: The trade-off of ASR and invisibility of triggers on the
CIFAR-10 dataset. The invisibility is measured by SSIM. A
higher SSIM indicates better invisibility.

didate locations. In the case of multiple triggers, we generate
three poisoned versions of a clean image, each poisoned with a
different trigger at a randomly selected location. The poisoning
rate (i.e., the ratio of poisoned images to all input images) of
RobNet is set to be no lower than the poisoning rate of the
new trigger. We set the poisoning rate of the new trigger to
5%, which corresponds to 228 and 2500 poisoned images on
the BTSR dataset and the CIFAR-10 dataset, respectively.

As shown in Table VIII, the new trigger achieves higher

TABLE VII: The comparison of Functionality Loss between
the proposed trigger and BadNets on the CIFAR-10 dataset.
The Functionality of the benign ResNet-18 model is 89.5%.

Method Parameter Func.(%) Loss (%) ASR(%) SSIM LPIPS
T = 0 82.79 6.71 99.91 0.896295 0.071578
T = 0.3 87.00 2.50 99.83 0.927061 0.035184
T = 0.5 87.01 2.49 99.58 0.949753 0.016209

BadNets T = 0.7 82.42 7.08 98.04 0.970536 0.005937
T = 0.9 86.65 2.85 95.65 0.991857 0.000805
m = 3 88.94 0.56 92.08 0.983782 0.002213

Ours m = 4 87.10 2.40 95.30 0.979386 0.003094
m = 5 88.10 1.40 93.78 0.974112 0.004347
m = 6 88.15 1.35 96.49 0.967717 0.004371

Fig. 5: The ASR vs. invisibility (measured by LPIPS) of the
considered triggers on the BTSR dataset.

Fig. 6: The trade-off of ASR and invisibility (measured by
SSIM) of the considered triggers on the BTSR dataset.

ASRs and significantly lower Functionality Loss than RobNet
in all considered scenarios. On the BTSR dataset, the trigger
achieves the ASR of over 90% with at most a 3.16% loss
of Functionality. In contrast, RobNet undergoes around 50%
loss of Functionality, and its ASR is just about 16%. On
the CIFAR-10 data, the highest ASR achieved by RobNet is
58.86% at a 8.79% Functionality Loss. By setting m to be
as small as m = 3, the new trigger can achieve higher ASRs
with much smaller Functionality Loss than RobNet. Moreover,
the new trigger is less visible (with higher SSIM and lower
LPIPS) than RobNet.

We also compare the proposed trigger with the input-
agnostic adversarial trigger generation approaches, i.e.,
AdvGAN [22] and UAT [23]. As shown in Table IX, the new
trigger achieves significantly higher ASRs than AdvGAN and
UAT on all the considered datasets. Take the CIFAR-10 dataset
for an example. The new trigger outperforms AdvGAN and
UAT by 17.26% and 30.53%, respectively. Considering the
LPIPS metric, the new trigger is the most invisible on the
MNIST dataset, less visible than AdvGAN on the CIFAR-
10 dataset, and less visible than UAT on the BTSR dataset.
Considering the SSIM metric, the new trigger is the most
invisible on both the CIFAR-10 and BSTR datasets, and less
visible than UAT on the MNIST dataset.
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TABLE VIII: Comparison between the proposed method and RobNet. ResNet-18 is used as the neural network model.

Dataset Method #Poison Attack Success Rate Functionality Loss SSIM LPIPS
RobNet (8 locations) 2× 114 0.28% 46.40% 0.932617 0.201440

BTSR RobNet (3 triggers) 3× 91 15.82% 46.33% 0.932605 0.199078
ours (m = 2) 228 90.74% 3.12% 0.991851 0.008482
ours (m = 3) 228 98.58% 2.30% 0.983669 0.018595
ours (m = 4) 228 97.94% 2.14% 0.968385 0.041093
ours (m = 5) 228 99.56% 3.16% 0.959122 0.055185

RobNet (8 locations) 2× 1250 51.27% 6.80% 0.835987 0.057399
CIFAR-10 RobNet (3 triggers) 3× 1000 58.86% 8.79% 0.846650 0.052198

ours (m = 3) 2500 92.08% 0.56% 0.983782 0.002213
ours (m = 4) 2500 95.30% 2.40% 0.979386 0.003094
ours (m = 5) 2500 93.78% 1.40% 0.974112 0.004347
ours (m = 6) 2500 96.49% 1.35% 0.967717 0.004371

TABLE IX: Comparison of the proposed trigger with the
existing input-agnostic, imperceptible attacks, AdvGAN [22]
and UAT [23]. For AdvGAN, the number of epochs is 60 based
on experimental tests to maximize the ASR (as no value was
recommended in [22]). For UAT, the number of epochs is 10,
as suggested in [23].

Method ASR (%) SSIM LPIPS
MLP Ours (m = 10) 96.80 0.863732 0.000553

on AdvGAN (ε = 0.3) 58.20 0.922047 0.180812
MNIST UAT (ε = 16/255) 14.60 0.848677 0.097013

ResNet-18 Ours (m = 5) 93.78 0.974112 0.004347
on AdvGAN (ε = 8/255) 76.52 0.925907 0.009442

CIFAR-10 UAT (ε = 10/255) 63.25 0.906396 0.003110
ResNet-18 Ours (m = 5) 99.56 0.979386 0.003094

on AdvGAN (ε = 10/255) 24.33 0.967096 0.000045
BTSR UAT (ε = 10/255) 24.22 0.935355 0.104915

D. Resistance to Existing Defense Methods

One possible defense method is that a defender could decide
to enumerate all possible 3D patterns (or realizations) of the
trigger. A poisoned image could be potentially detected by cor-
relating the image with every possible realization of the trigger.
Nevertheless, the use of the CSPRNG ensures consistently low
correlations between any two different random sequences. The
trigger would only be revealed if the same trigger is picked up
for correlation. A backdoored DNN model could be potentially
detected by perturbing (labeled) benign images with each
possible trigger realization and inputting the perturbed images
into the model to gauge the misclassification rate. An image
perturbed by the real trigger would be classified to a different
class from its correct class, and the misclassification rate
increases. The complexity of enumerating all possible trigger
realizations grows exponentially with the elements in the
trigger and is computationally prohibitive in practice.

Many defense algorithms have been proposed to counteract
backdoored DNNs [8], [11], [14]–[18], [35], which can detect
or mitigate backdoor triggers. The new trigger is tested against
eight recently published defense methods, namely, STRIP [11],
SSD [14], AC [15], Februus [8], Neural Cleanse [18], Spatial
Smoothing [35], ABS [16], and Neuron Pruning [17]. We show
that the trigger can escape the detection and scrutiny of the
methods, and pose significant threats to image classification
neural networks. The details of the eight state-of-the-art de-
fense methods are provided in Section II-B.

1) STRIP: In this strategy, a backdoor trigger is detected
by comparing the outputs of the backdoored DNN after being
fed with clean and poisoned samples. For the CIFAR-10 and
MNIST datasets, we randomly select 2,000 images from a
pool of 10,000 testing images and organize them into a clean
group. The images in the clean group are then duplicated and
poisoned with the new trigger to form a poisoned group. We
superpose clean images from other classes than the selected
2,000 images, to both the clean and poisoned groups. For the
BTSR dataset, we randomly select 1,000 images since there
are a limited number of testing images.

Fig. 7 plots the histogram of entropy. The entropy of
samples with and without the new backdoor trigger has nearly
the same distribution in Fig. 7(a). The entropy of both clean
and poisoned CIFAR-10 samples is primarily lower than 0.2,
and more than half of them are close to zero. In Figs. 7(b)
and 7(c), while the distributions of the entropy of the samples
with and without the backdoor trigger are different, the entropy
of most samples in the BTSR and MNIST datasets ranges from
0.5 to 1.5, and from 0.5 to 1.3, respectively. It is difficult to
derive a threshold to separate the clean and poisoned samples
based on the entropy.

2) Spectral Signature Defense and Activation Clustering:
SSD [14] and AC [15] examine the difference of internal
representations (i.e., activations) between clean and poisoned
images in the hidden layers (e.g., penultimate layer) of a DNN.

Table X shows that SSD has a significantly lower TNR
than TPR on all the three datasets, with the TNRs lower than
0.1 for all the considered values of εm. This is because SSD
first determines the trigger detection threshold ξ by (1), and
then confirms clean samples if 〈X − µF , v〉 > ξ in (2). As
samples poisoned by the new trigger do not satisfy the ε-
spectrally separable condition described in Section II-B, most
clean samples yield 〈X − µF , v〉 < ξ. As a result, SSD
classifies nearly all samples as poisoned images and obtains a
bACC of around 0.5. SSD cannot detect the trigger.

Table X also shows that the bACC of AC is less than 0.7
on the different datasets, while most of its TPRs are much
lower than the TNRs. The TPR and TNR of the AC method
vary significantly across different parameter configurations and
datasets. On the low-dimensional grey-scale MNIST images,
using the Smaller method (see Section II-B) with AC allows
for a TPR of 0.494 and a TNR of 0.572. The rest of the
methods cause AC to misclassify all samples to be clean
images and obtain a TPR of zero. On the high-dimensional
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TABLE X: The detection result of SSD [14] and AC [15].

Method MLP on MNIST ResNet18 on CIFAR10 RetNet18 on BTSR
TPR TNR bACC TPR TNR bACC TPR TNR bACC

SSD 0.920 0.081 0.501 0.926 0.080 0.503 0.996 0 0.498
PCA + Smaller 0.494 0.572 0.533 0.027 0.706 0.367 0.407 0.751 0.579
PCA + Distance 0 1 0.500 0.027 0.104 0.066 0.422 0.989 0.706
PCA + RelativeSize 0 1 0.500 0.027 0.827 0.427 0 0.858 0.429
PCA + Silhouette 0 1 0.500 1 0.2 0.600 0 0.365 0.183
FastICA + Smaller 0.494 0.572 0.533 0.024 0.787 0.406 0.407 0.715 0.561

AC FastICA + Distance 0 1 0.500 0.014 0.830 0.422 0.411 0.980 0.696
FastICA + RelativeSize 0 1 0.500 0.014 0.820 0.417 0 0.835 0.418
FastICA + Silhouette 0 1 0.500 1 0 0.500 0 0.172 0.086
TSNE + Smaller 0.494 0.573 0.534 0.028 0.708 0.368 0.398 0.741 0.570
TSNE + Distance 0 1 0.500 0.028 0.960 0.494 0.411 0.985 0.698
TSNE + RelativeSize 0 1 0.500 0.028 0.829 0.429 0 0.842 0.421
TSNE + Silhouette 0 1 0.500 1 0.301 0.651 0 0.210 0.105
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Fig. 7: The STRIP results on MNIST, CIFAR-10 and BTSR.
The distributions of the entropy of samples with and without
the new trigger overlap substantially, making setting a detec-
tion threshold impossible.

TABLE XI: Comparison of Functionality and ASR before and
after applying Februus.

Model Dataset Before After
Func. ASR Func. ASR

6 Conv + 2 Dense CIFAR-10 87.8% 92.2% 42.5% 18.8%
ResNet-18 BTSR 91.8% 98.7% 91.4% 98.6%

color BTSR images, the Distance method (see Section II-B)
allows AC to achieve a high TNR between 0.980 and 0.989
along with a TPR ranging from 0.411 to 0.422, resulting in a
small bACC value ranging from 0.696 to 0.706.

Techniques that reduce the dimensions of images, such
as PCA, FastICA, and t-SNE, cause little difference. AC
fails to detect the new trigger, as K-Means is unsuitable
for high-dimensional data while the dimension reduction of
the activations can compromise the images. Other clustering
methods, such as DBSCAN, Gaussian Mixture Models, and
Affinity Propagation, perform worse in clustering dimension-
reduced activations than K-Means [15]. Because the new
trigger has a smaller perturbation magnitude than a visible
trigger (e.g., the yellow square in [7]), it gets obfuscated
during the dimension reduction. As a result, it is difficult
to distinguish between poisoned and clean samples using the
reduced activations in AC.

3) Februus: Under the assumption that the pixels corre-
sponding to the activation hot spots in a DNN’s penultimate
layer are potentially a backdoor trigger, Februus removes the
trigger by replacing the pixels with an image patch recovered
by a pre-trained GAN model [8]. We reuse the model archi-
tecture and pre-trained GAN model provided in [8]. On the
CIFAR-10 dataset, a DNN with six convolution layers and
two dense (i.e., fully-connected) layers is trained with clean
images and images poisoned with the new trigger.

Table XI shows that Functionality and ASR are 87.8%
and 92.2%, respectively. Although the ASR is reduced to
18.8% by applying Februus, the Functionality of the network
is also reduced significantly to 42.5%, rendering the model
useless. On the BTSR dataset, the ResNet-18 achieves the
Functionality of 91.8% and the ASR of 98.7% before the
trigger removal. However, the Functionality drops to 91.4%
after the trigger removal, while the ASR remains barely
changed. On the CIFAR-10 dataset, the significant reduction in
the Functionality is due to the fact that poisoned samples with
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TABLE XII: The new trigger under Neuron Pruning.

Model Dataset ASR ASR ASR Func.
before after Change Loss

MLP MNIST 96.76% 74.26% -22.5% 4.13%
ResNet-18 BTSR 99.13% 95.37% -3.76% 4.43%
ResNet-18 CIFAR-10 95.28% 97.83% +2.55% 4.09%

the new trigger produce similar hot spots to clean samples and
Februus using CAM cannot tell their difference.

As shown in Fig. 8, the hot spot (shaded in red) in a
poisoned image overlaps with the object to be classified (e.g.,
the majority of the ship body). Furthermore, because the pixels
outside the hot spot are mainly the background and provide
little information about the original image, the GAN model
cannot recover the original clean image patch at the hot spot.
The barely changed ASR on the BTSR dataset is due to the
fact that the magnitude used is too weak for CAM to produce
a meaningful hot spot. Few pixels are changed by the pre-
trained GAN used in Februus. As a result, the trigger cannot
be removed without compromising the classification capability
(i.e., the Functionality) of a DNN.
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Fig. 8: An illustration of the CAM of samples in the CIFAR-
10 dataset, where the red region is the hot spot whose pixels
contribute the most to the image classification.

4) Neuron Pruning: Table XII shows the resistance of the
new backdoor trigger to Neuron Pruning, where the thresh-
old of terminating Neuron Pruning is over 4% reduction in
Functionality Loss (i.e., the loss of classification accuracy
on clean inputs), as considered in [17]. It is shown that
on the BTSR dataset, Neuron Pruning can only reduce the
ASR of the proposed trigger by only 3.76% (from 99.13% to
95.37%), which is even smaller than the 4.43% decrease in
the classification accuracy. On the CIFAR-10 dataset, Neuron
Pruning even increases the ASR by 2.55%. On the low-
dimensional gray-scale MNIST dataset, the ASR drops by
22.5% for a shallow MLP model. However, the residual ASR is
still as high as 74.26%, posing a considerable threat to safety-
or security-critical applications.

5) Neural Cleanse: Given a potentially backdoored neural
network model, Neural Cleanse obtains a set of triggers, each
of which can cause misclassification to the corresponding tar-
get label and has the minimal footprint in terms of the number
of occupied pixels and color intensities [18]. A backdoor is
detected if any of these triggers has a significantly smaller
`1-norm than the others and has a variance larger than a

TABLE XIII: Results of Neural Cleanse on the CIFAR-10
dataset and the backdoored ResNet-18 model trained with the
new trigger. m = 4. The median value is 0.000549316. The
MAD is 0.00033934. The Anomaly index of the i-th class is
Ai = |`(i)1 −median|/MAD for i = 1, · · · , 10.

Class `1 of trigger < Median ? Ai > 2 ?
airplane 0.003570557 7 8.903278025 3

car 0.001647949 7 3.237555645 3
bird 0.001098633 7 1.618777823 7
cat 0.000732422 7 0.539592608 7

deer 0.000640869 7 0.269796304 7
dog 0.000457764 3 0.269796304 7
frog 0.000366211 3 0.539592608 7
horse 0.000366211 3 0.539592608 7
ship 0.000274658 3 0.809388911 7
truck 0.000274658 3 0.809388911 7

TABLE XIV: The defense effect of Spatial Smoothing.

Window MNIST CIFAR-10 BTSR
Size Func. ASR Func. ASR Func. ASR

1 98.3% 96.8% 87.1% 95.3% 91.8% 98.7%
2 94.6% 98.1% 67.0% 97.5% 35.5% 92.9%
3 97.5% 95.2% 22.1% 99.7% 80.8% 81.0%
4 93.8% 95.5% 26.1% 96.7% 29.4% 96.0%
5 89.6% 96.2% 12.1% 99.8% 2.4% 98.0%

threshold, e.g., 2. The target label associated with the trigger
is considered as the target label of the backdoor attack.

We examine the resistance of the new backdoor trigger
to Neural Cleanse, where a backdoored ResNet-18 model is
considered on the CIFAR-10 dataset. Table XIII summarizes
the `1-norm and the anomaly indices of all ten image classes,
where the target label is set to be dog. The median and the
median absolute fdeviation (MAD) of the `1-norm of the
triggers are 0.000549316 and 0.00033934, respectively. We
see that the anomaly index values of the first two classes (i.e.,
airplane and car) are greater than 2, but their `1-norm values
are greater than the median (i.e., 0.000549316). Therefore, the
two classes are not considered as target classes. The remaining
classes (from row 4 to row 11 in Table XIII) all have their
anomaly indices smaller than 2. As a result, the Neural Cleanse
fails to detect the proposed backdoor trigger.

6) Spatial Smoothing: Spatial Smoothing obfuscates a trig-
ger’s perturbation by blurring the pixel values in each patch
of an image [35]. A window size specifies the size of a patch
on the image. The window size of 1 indicates a median filter
with size of 1× 1.

As shown in Table XIV, the new backdoor trigger is re-
sistant to the obfuscation by the Spatial Smoothing technique.
The ASRs are close to 100% under all the considered datasets.
This is because the perturbations in each tile are identical,
hence Spatial Smoothing has minimal impact on the perfor-
mance of the trigger. On the other hand, Spatial Smoothing can
substantially compromise the Functionality of the backdoored
DNN models, particularly on high-dimensional, color image
datasets. The Functionality of the backdoored DNN model
drops from 87.1% to 12.1% on the CIFAR-10 dataset, and
from 91.8% to 2.4% on the BSTR dataset. This is because
some image features are lost as a result of the obfuscation
induced by Spatial Smoothing.



13

TABLE XV: Impact of image transformation on Functionality
(%) and ASR (%)

MNIST CIFAR-10 BTSR
Func. ASR Func. ASR Func. ASR

No Transform 98.3 96.8 87.1 95.3 91.8 98.7
Random Crop 96.0 94.0 86.7 96.8 91.7 98.5
Rotation ±5◦ 96.6 89.2 86.3 96.0 91.1 98.7
Horizontal Flip 96.6 89.4 87.2 95.6 91.7 98.6

7) Image Transformation: Defenders can destroy the per-
turbation caused by the backdoor trigger by performing image
transformations, such as random cropping, random rotation,
and horizontal flipping. Table XV demonstrates that these
image transformations have no adverse effect on the ASR
under the CIFAR-10 and BTSR datasets. The ASR is con-
sistently around 98.6% under the BSTR dataset, while it
increases by 0.3 to 1.5% under the CIFAR-10 dataset. The
reason is twofold. Firstly, the backdoor trigger is symmetric;
see Section III-B. Flipping has no impact on the performance
of the trigger. Secondly, the training data contains randomly
cropped and/or rotated versions of the poisoned images due to
the application of data augmentation. Therefore, the DNN can
still be triggered to open a backdoor by transformed images.

8) ABS: ABS is effective when the maximum reverse-
engineered trojan trigger’s ASR (RE-ASR) of a benign model
is considerably lower than the RE-ASR of its trojaned version,
e.g., by 5% or more [16]. Table XVI shows that the gap is
smaller than 2% on the MNIST and BTSR datasets. ABS
cannot detect the backdoored MLP and ResNet-18 models
trained with the new trigger. Particularly, it cannot detect
suspicious neurons in the backdoored MLP model and fails
to reverse-engineer any trigger. The RE-ASR is zero.

Table XVI also shows that, on the CIFAR-10 dataset, the
best RE-ASR is 34.16% under the backdoored ResNet-18
model, while the maximum RE-ASR of the benign model
is 24.83%. ABS can be aware of the existence of the new
backdoor trigger. Nevertheless, the attacker can launch an
adaptive attack to refine the backdoored model using the best
reverse-engineered trigger generated by ABS. Specifically, we
replace half of the clean images with images poisoned with
the trigger in the poisoned training dataset, and continue to
train the backdoored model for 30 epochs. The poisoned
training dataset contains 5% poisoned images tampered with
the proposed trigger and the attack target class label, 47.5%
poisoned images tampered with the best reverse-engineered
triggers and with their original class labels unchanged, and
47.5% clean images with original class labels. We see that,
after the adaptive attack, the RE-ASR of the backdoored model
drops to 18.26%, even lower than the maximum RE-ASR of
the benign model. ABS cannot detect the backdoored models,
under adaptive attacks with the new trigger.

9) Fine-tuning: Fig. 9 evaluates the robustness of the pro-
posed trigger and the benchmarks against fine-tuning, where
part of the testing data is repurposed by the defender (i.e., the
recipient of the backdoored DNN model) to fine-tune the DNN
model. The x-axis of the subfigures specifies the proportion
of the testing data that is randomly selected to fine-tune the
DNN model. The rest of the testing data is used to test the

TABLE XVI: The resistance of the new trigger to the ABS.
The model trained on the MNIST dataset is an MLP. The
models trained on the BTSR and CIFAR-10 datasets are
ResNet-18.

Dataset RE-ASR of Max. RE-ASR ASR Func. of Func. of
Trojaned of Benign Benign Trojaned

MNIST 0% 0% 89.68% 99% 96.70%
BTSR 16.89% 15.11% 98.66% 93.9% 92.95%

CIFAR-10 34.16% 24.83% 91.51% 89.5% 90.26%
Adaptive Attack 18.26% 24.83% 98.88% 89.5% 87.98%

model and plot the curves. The hyperparameters of the fine-
tuning are consistent with those observed at the end of the
DNN model training. For a fair comparison, the number of
epochs is 10 under all the considered methods.

As expected, the ASRs of the considered backdoor attacks
decline and the classification accuracies of the backdoored
DNN models (regarding benign inputs) improve, with the in-
crease of benign inputs used for fine-tuning the DNN models.
The new trigger remains the most effective after fine-tuning,
offering the highest ASR and classification accuracy on all the
considered datasets; see Fig. 9. We note that BadNets provides
a similar ASR and/or classification accuracy to the proposed
trigger under some of the datasets; see Figs. 9(a)–9(c). But it
is considered to be less effective than the new trigger due to
its much worse performance in imperceptibility (see Figs. 3
and 4) and on the other datasets; see Figs. 9(d)–9(f).

E. Comparison of Run Time

Table XVII provides a quantitative comparison between the
proposed approach and the existing schemes in terms of the
time required to generate a trigger, denoted by T-time, and the
time to produce a malicious input perturbed by the trigger,
denoted by M-time. All the experiments are carried out on
a server with Intel(R) Xeon(R) Gold 6258R CPU@2.70GHz
and 503G memory, and an NVIDIA A100 Tensor Core GPU
with 80G memory, running Python 3.7.11, Numpy 1.21.2, and
PyTorch 1.10.2 installed on an Ubuntu 18.04.5 LTS operating
system. The Python time module, time.time(), is called at
the beginning and the end of a trigger or malicious input
generation process to evaluate the T-time and M-time.

We can see from the third column of Table XVII that the
trigger generation time of ours is negligible and much shorter
than AdvGAN, UAT, Trojaned NN, and RobNet on all the
considered datasets. We can also see from the last column of
Table XVII that the malicious input generation time of our
approach is the shortest among all of the considered methods
under the MNIST dataset and the CIFAR-10 dataset. We note
that the triggers used by BadNets and Hidden Backdoor (e.g.,
a color block) are selected in prior, and the trigger generation
time (T-time) is not applicable.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new backdoor trigger, which
is a uniformly randomly generated 3D binary pattern and can
be horizontally and/or vertically repeated and mirrored and
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(a) ASR on the MNIST dataset
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(b) Functionality on the MNIST dataset
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(c) ASR on the CIFAR-10 dataset
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(d) Functionality on the CIFAR-10 dataset
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(e) ASR on the BTSR dataset
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(f) Functionality on the BTSR dataset
Ours
BadNets (T=0.7)
Trojaned NN (1 neuron, T=0.7)

Trojaned NN (2 neurons, T=0.7)
Trojaned NN (all neurons, T=0.7)

RobNet (1 trigger, 8 locations, T=0.7)
RobNet (3 triggers, 3 locations, T=0.7)

Fig. 9: The robustness of the considered backdoor attacks against fine-tuning, where the backdoored models are fine-tuned
using part of the benign testing datasets. The magnitude of our proposed trigger is m = 10, 6, and 5 under the MNIST,
CIFAR-10, and BTSR datasets, respectively. For the clarity of the subfigures, the methods providing poor ASRs, i.e., hidden
backdoor (HB) (see Figs. 3–6) and RobNet on the BTSR dataset (see Figs. 5–6), are not plotted.

superposed onto three-channel images to train backdoored
DNN models. While the new trigger collectively holds a
strong recognizable pattern to effectively train or activate the
backdoor of a DNN model, it generates weak perturbation

to individual pixels and hence remains imperceptible. The
complexity of the trigger generation and image perturbation
is linear to the image size, and substantially lower than that
of the existing triggers, such as RobNet, AdvGAN, and UAT.
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TABLE XVII: Comparison of the time required to produce a
trigger (T-time) and the time required to produce a malicious
input with the trigger (M-time). “/” indicates “not applicable”.

Method T-time (s) M-time (s)

M
L

P
on

M
N

IS
T

Ours (m=10) 9.998× 10−3 8.601× 10−5

AdvGAN (ε = 0.3, 60 epochs) 263.55 2.001× 10−3

UAT (ε = 16/255, 10 epochs) 47.21 1.847× 10−4

BadNets / 6.893× 10−4

Trojaned NN (1 neuron) 4.00 1.360× 10−4

Trojaned NN (2 neurons) 4.40 1.570× 10−4

Trojaned NN (all neurons) 9.98 1.374× 10−4

Hidden Backdoor / 0.773
RobNet (1 trigger, 8 locations) 4.18 1.845× 10−4

RobNet (3 triggers, 3 locations) 11.57 1.310× 10−4

R
es

N
et

-1
8

on
C

IF
A

R
-1

0

Ours (m=6) 1.646× 10−2 1.085× 10−4

AdvGAN (ε = 8/255, 60 epochs) 511.82 2.050× 10−3

UAT (ε = 10/255, 10 epochs) 146.76 2.191× 10−4

BadNets / 2.214× 10−4

Trojaned NN (1 neuron) 295.11 2.125× 10−4

Trojaned NN (2 neurons) 328.70 1.979× 10−4

Trojaned NN (all neurons) 366.88 2.014× 10−4

Hidden Backdoor / 0.162
RobNet (1 trigger, 8 locations) 255.08 2.511× 10−4

RobNet (3 triggers, 3 locations) 1010.81 2.014× 10−4

R
es

N
et

-1
8

on
B

T
SR

Ours (m=5) 0.988 1.975× 10−3

AdvGAN (ε = 10/255, 60 epochs) 485.77 3.035× 10−3

UAT (ε = 10/255, 10 epochs) 29.77 1.440× 10−3

BadNets / 1.642× 10−2

Trojaned NN (1 neuron) 1055.86 0.433

Trojaned NN (2 neurons) 1372.42 0.402

Trojaned NN (all neurons) 1261.80 0.413

Hidden Backdoor / 8.170
RobNet (1 trigger, 8 locations) 2413.13 0.113
RobNet (3 triggers, 3 locations) 4463.91 8.492× 10−2

Extensive experiments showed that the new trigger is more
than 5, 20, and 1.5 times better than the existing backdoor
attacks, such as BadNets, Trojaned NN, and Hidden Backdoor,
in terms of imperceptibility (LPIPS). The new trigger achieves
nearly 100% ASR, and invalidates the state-of-the-art defense
techniques. In the future, we will investigate countermeasures
to detect and defend the new trigger.
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