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Abstract—In this paper, we investigate the optimal proba-
bilistic constellation shaping design for covert communication
systems from a practical view. Different from conventional covert
communications with equiprobable constellations modulation, we
propose non-equiprobable constellations modulation schemes to
further enhance the covert rate. Specifically, we derive covert
rate expressions for practical discrete constellation inputs for the
first time. Then, we study the covert rate maximization problem
by jointly optimizing the constellation distribution and power
allocation. In particular, an approximate gradient descent method
is proposed for obtaining the optimal probabilistic constellation
shaping. To strike a balance between the computational com-
plexity and the transmission performance, we further develop a
framework that maximizes a lower bound on the achievable rate
where the optimal probabilistic constellation shaping problem
can be solved efficiently using the Frank-Wolfe method. Extensive
numerical results show that the optimized probabilistic constella-
tion shaping strategies provide significant gains in the achievable
covert rate over the state-of-the-art schemes.

Index Terms—Covert communications, probabilistic constella-
tion shaping, achievable rate.

I. INTRODUCTION

Radio frequency (RF) based wireless communication is

inevitably susceptible to eavesdropping due to the broadcast

nature of the electromagnetic waves. With the ever-growing

Internet of Things (IoT) applications, the security issue has

become more and more crucial in the future sixth-generation

(6G) wireless networks [1]. For example, in large enterprise

buildings, hospitals, factories, communication may be very

sensitive to a hostile adversary. The conventional cryptography

approaches [2] usually focus on protecting the transmission

content or increasing message decoding complexity, while

the physical-layer security [3], [4] approaches exploit the

intrinsic wireless fading channels properties to minimize the

information leakage to the eavesdroppers. In fact, a higher

level of security is to hide the existence of the communica-

tion, which not only can be applied in all aforementioned

application scenarios [5]–[8], but also meets more critical

demands from military or security agencies. To address this

high level security, covert communications [9], [10], which

shields the existence of message transmissions against the

detection of a warden, are emerging as a cutting-edge wireless

communication security technique, and have recently attracted

significant research attention. Note that, covert communication
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aims to hide the communication behavior from the eaves-

dropper, while physical layer security tries to reduce the

interception information of the eavesdropper.

The basic idea of covert communications is as follows. The

legitimate transmitter (Alice) transmits messages to the paired

receiver (Bob), while guaranteeing a low detection probability

for a Warden (Willie). Although such idea has been realized

by spread-spectrum techniques [11] for several decades, the

information-theoretic limits of covert communications, which

is also referred to as low probability of detection (LPD)

communications in some literature, were only recently de-

rived [10], [12]–[14]. In particular, the authors in [12] firstly

demonstrated that in additive white Gaussian noise (AWGN)

channels, Alice can reliably send at most O (
√
n) bits to Bob

in n channel usages under the covert requirement. Such result

is also called the square root law (SRL). Subsequent works

have extended this result to various channel models such as

binary symmetric channels [15], broadcast communications

[16], multiple access channels [17], and interference channels

[18].

Although the SRL indicates that the asymptotic achievable

rate under the covert requirement approaches zero, many

researchers have shown that the SRL limit can be beaten by

exploiting additional techniques in the considered covert com-

munication scenario. These methods include: taking advantage

of the ignorance of the transmission time at Willie [19];

applying an intelligent reflecting surface [20]–[22]; exploring

the molecular absorption or scattering feature of the Terahertz

spectrum [23], [24]; cooperative jamming [25] or uninformed

jamming [26]–[29]; jointly optimizing the beam training and

data transmission for millimeter-wave communication [30];

exploiting the uncertainty noise power or channel state infor-

mation (CSI) at Willie [31]–[35]; robust beamforming design

[36], [37], over a finite number of channel uses [38]; applying

a full-duplex transceiver [39]–[42]; intermediate relay [43],

[44] or exploring unmanned aerial vehicle (UAV) as mobile

relay [45], [46].

To be more specific, it is shown in [19] that Alice can

covertly transmit O
(

min
{

n,
√

n logT (n)
})

bits to Bob.

When Willie lacks the knowledge of his noise power, Alice

can reliably transmit O (n) bits [31]–[33]. With the aid of

an uninformed jammer [26], Alice can also achieve positive

transmission rate. With a finite number of channel uses, a

uniformly distributed power allocation scheme was proposed

[38] to enhance the covert transmission. In [39], the authors

showed that, the effective throughput under delay constraints
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can be improved by adding artificial noise (AN) at the full-

duplex receiver. For a one-way relay network, the authors in

[43] studied the performance limits of convert communications

of an energy harvesting relay. In [44], a multiple-relay network

was considered, and both the maximum throughput and the

minimum end-to-end delay routing algorithms were developed

with multiple Willies. In [36], two probabilistic metrics, called

the covert outage probability and the connectivity probability,

were analyzed for multi-antenna covert communications with

randomly located wardens and interferers. Using Kullback-

Leibler divergence, i.e., D (p1||p0) or D (p0||p1) to measure

the covertness, a Gaussian input distribution was shown to be

optimal for the covert metric D (p1||p0), and not optimal for

the covert metric D (p0||p1) [9], where p0 and p1 represent

Willie’s received signal distributions when covert communica-

tions occur and not occur, respectively.

The aforementioned research advances in covert communi-

cations mainly make the assumption of a Gaussian input dis-

tribution at the transmitter side, which can hardly be realized

in practical communication systems. In fact, the information

symbols in practical communication systems are realized in the

form of discrete constellation points, i.e., finite alphabet inputs,

such as pulse amplitude modulation (PAM) and multiple-

quadrature amplitude modulation (M-QAM). In [47], both the

lower bound of covert transmission probability and throughput

maximization have been analyzed with discrete constellation

inputs. The discrete constellation points are assumed to be

equally likely, which is not optimal for practical covert com-

munications, especially for high-order modulation schemes.

So far, the optimal discrete constellation inputs of covert

communication are still not well discussed in the literature.

Motivated by the above background, we develop

information-theoretic limits of covert communications

with probabilistic constellation shaping. First, we derive the

achievable rate expression of the system with the discrete

constellation input signals, rather than the Gaussian inputs

adopted in most of the existing works. Then, we investigate

the performance with the optimal input distribution. Our

results provide a practical design framework for covert

communication systems. The main contributions of this paper

are summarized as follows:

• Generally, the inputs of practical communications sys-

tems follow a finite-set discrete distribution rather than a

Gaussian distribution. To evaluate performance, we derive

the achievable rate expressions for an arbitrary discrete

distributed input. Comparing to the existing rate ex-

pressions with equiprobable discrete constellation points,

the derived expressions are more general and practical.

Since the derived rate expression is not in closed-form,

we further derive both lower and upper bounds. All

these results can be used as performance metrics for the

considered covert communication system.

• Furthermore, we design optimal discrete constellation

inputs to maximize the exact covert rate under the

covertness constraints, transmit power limitations, and

the signal distribution requirements, which is a chal-

lenging problem since neither the exact covert rate nor

the covertness constraint has an analytical expression.

To efficiently solve it, we conservatively transform the

covertness constraint into its upper bound with closed-

form expression. Then, we adopt the numerical integra-

tion method to approximate the covert rate objective func-

tion and its gradient. Afterwards, the optimal probability

distributions of the discrete constellation are calculated

by the approximate gradient descent method, where the

step sizes are calculated by the backtracking line search.

• To reduce the computation complexity of the design

problem, we further adopt the derived lower bound as

the covert rate performance metric. To overcome the non-

convexity challenge, this problem is iteratively solved by

the proposed Frank-Wolfe method.

The rest of this paper is organized as follows. The system

model and the derivation of Bob’s achievable rate are presented

in Section II. The optimal probabilistic constellation shaping

design for covert communications is provided in Section III.

The probabilistic constellation shaping design and its approxi-

mations are presented in Section IV. In Section V, we evaluate

the proposed probabilistic constellation shaping design using

numerical results. Finally, we conclude the paper in Section

VI.

Notations: The vectors and matrices are represented by

boldfaced lowercase and uppercase letters, respectively. The

notations (·)∗, E {·}, ‖·‖, Tr (·), Re (·) and Im (·) represent

the conjugate, the expectation, Frobenius norm, trace, the

real part and imaginary part of its argument, respectively.

And ⊙ is Hadamard Product,i.e.Am×n [aij ] ⊙ Bm×n [bij ] =
Cm×n [aijbij ]. The operator A≻0 means A is positive

semidefinite. The notation CN
(

µ, σ2
)

denotes a complex-

valued circularly symmetric Gaussian distribution with mean

µ and variance σ2.

II. SYSTEM MODEL

Bob

Probabilistic 

Constellation Shaping

bg

wg

Alice

Willie

Fig. 1: The system model of covert communication.

Consider a typical covert communication scenario as illus-

trated in Fig. 1, where Alice and Bob are a legitimate com-

munication pair, and Willie is the eavesdropper. Each one of

them is equipped with a single antenna. Let gb ∼ CN
(

0, σ2
1

)

and gw ∼ CN
(

0, σ2
2

)

denote the Rayleigh flat fading channel

from Alice to Bob and Willie, respectively [48], where σ2
1

and σ2
2 are the variances of gb and gw. Let x [i] denote Alice’s

transmitted symbol at the i-th channel use, where i = 1, ..., N ,

and N is the total number of channel uses.
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A. Achievable Rate of Bob

As it is the case in practice, x [i] ∈ Ω follows a discrete con-

stellation distribution instead of Gaussian distribution. Here,

Ω denotes a discrete constellation set with K discrete points

{xk}1≤k≤K , i.e.,

Ω =















X

∣

∣

∣

∣

∣

∣

∣

∣

Pr (X = xk) = pk ≥ 0,
K
∑

k=1

pk = 1,

K
∑

k=1

pk|xk|2 ≤ PA, xk ∈ C, k = 1, ...,K















,

(1)

where xk denotes the kth discrete point, pk denotes the

corresponding probability, and PA denotes the average power.

For the i-th channel use, the received signal at Bob yb [i] is

given as

yb [i] = g∗bx [i] + zb [i] , (2)

where zb [i] ∼ CN
(

0, σ2
b

)

denotes the received noise at Bob.

Since x [i] ∈ Ω, then the likehood functions of yb [i] is given

as

p (yb) =
1

πσ2
b

K
∑

k=1

pk exp

(

−|yb − g∗bxk|2
σ2
b

)

. (3)

Therefore, given the discrete constellation, the achievable

rate of Bob Rb is given by

Rb = I (yb [i] ;x [i]) (4a)

= h (yb [i])− h (zb [i]) (4b)

= −
∫ ∞

−∞

p (yb)log2p (yb) dyb − log2πeσ
2
b (4c)

= −
K
∑

k=1

pkEzb







log2

K
∑

j=1

pj exp

(

−|g
∗
b (xk − xj) + zb|2

σ2
b

)







− 1

ln 2
, (4d)

where h (X) = −
∫

f (x) log f (x) dx denotes differential

entropy, and f (x) represents the probability density function

(PDF).

Based on the achievable rate expression in (4), we will

further investigate the optimal probability of discrete constel-

lations for covert communications.

B. Hypothesis Testing

According to the received signals, Willie attempts to decide

whether Alice covertly transmits information to Bob or not

by performing an optimal statistical hypothesis test (such

as the Neyman-Pearson test). Specifically, Willies needs to

distinguish between two hypotheses: 1) the null hypothesisH0

indicating no transmission; 2) the hypothesisH1 indicating the

transmission. Let yw [i] denote the received signal at Willie in

the i-th channel use. Under the two hypotheses, the signal

received at Willie is given as

H0 : yw [i] = zw [i] , (5a)

H1 : yw [i] = g∗wx [i] + zw [i] , (5b)

where zw [i] ∼ CN
(

0, σ2
w

)

denotes the received noise at

Willie. Let D1 and D0, respectively, denote the binary de-

cisions of Willie. Thus, the total detection error probability of

Willie is defined as [9], [49], [50]

ξ = Pr (D1|H0) + Pr (D0|H1) . (6)

Note that, Pr (D1|H0) denotes the false alarm probabil-

ity that Willie believes H1 when Alice does not transmit,

and Pr (D0|H1) denotes the missed detection probability

that Willie decides H0 when Alice transmits. Moreover, let

py,0 = f (yw |H0 ) and py,1 = f (yw |H1 ) denote the likehood

functions of yw under H0 and H1, respectively. According to

(5), we have

py,0 =
1

πσ2
w

exp

(

−|yw|
2

σ2
w

)

, (7a)

py,1 =
1

πσ2
w

K
∑

k=1

pk exp

(

−|yw − g∗wxk|2
σ2
w

)

. (7b)

Let VT (py,0 ‖py,1 ) = 1
2‖py,0 − py,1‖1 denote the total vari-

ation distance between py,0 and py,1. According to Theorem

13.1.1 in [50], the optimal detection error probability of Willie

is given as

ξopt = 1− VT (py,0 ‖py,1 ) = 1− 1

2
‖py,0 − py,1‖1. (8)

However, in general, VT (py,0 ‖py,1 ) is difficult to analyze.

To address this issue, we apply Pinsker’s inequality [49] to

obtain an upper bound

VT (py,0 ‖py,1 ) ≤
√

1

2
D (py,0 ‖py,1 ), (9)

VT (py,0 ‖py,1 ) ≤
√

1

2
D (py,1 ‖py,0 ), (10)

where D (py,0 ‖py,1 ) =
∫

y
py,0log2

py,0

py,1
dyw denotes the

Kullback-Leibler (KL) divergence from py,0 to py,1, and

D (py,1 ‖py,0 ) =
∫

y
py,1log2

py,1

py,0
dyw denotes the KL diver-

gence from py,1 to py,0.

Based on the likehood functions of yw in (7), D (py,0 ‖py,1 )
and D (py,1 ‖py,0 ) are, respectively, given as

D (py,0 ‖py,1 ) = −
1

ln 2
− Ezw

{

log2

K
∑

k=1

pk

× exp

(

−|zw − g∗wxk|2
σ2
w

)}

, (11a)

D (py,1 ‖py,0 ) =
K
∑

k=1

pkEzw







log2

K
∑

j=1

pj

× exp

(

−|g
∗
w (xk − xj) + zw|2

σ2
w

)}

+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

+
1

ln 2
.

(11b)

Covert communication is achieved for a given ε if the

detection error probability ξ is no less than 1− ε, i.e.,

ξ ≥ 1− ε, ε ∈ [0, 1] , (12)
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where ε is a small number determining the required covertness

level.

Therefore, to achieve covert communication with the given

ε, i.e., ξ ≥ 1−ε, the KL divergences of the likelihood functions

should satisfy one of the following constraints:

D (py,0 ‖py,1 ) ≤ 2ε2, (13a)

D (py,1 ‖py,0 ) ≤ 2ε2. (13b)

Both of the above constraints can meet the requirements

of covert communication, but these two constraints are not

exactly the same, as we discuss next.

III. OPTIMAL SIGNALING DESIGN UNDER COVERT

CONSTRAINTS

In this section, we investigate the design of optimal prob-

ability of discrete constellation points for covert transmis-

sion with covertness constraints D (py,0 ‖py,1 ) ≤ 2ε2 or

D (py,1 ‖py,0 ) ≤ 2ε2 [9], [10], [12], [13].

A. Case of D (py,0 ‖py,1 ) ≤ 2ε2

For the probabilistic constellation shaping scheme, we aim

to maximize the achievable rate of Bob Rb by optimizing

the distribution of discrete constellation inputs, while satisfy-

ing both the covert transmission constraint and the discrete

distribution constraint. Mathematically, the covert discrete

constellation input optimization problem can be formulated

as follows

max
{pk}

Rb (14a)

s.t. D (py,0 ‖py,1 ) ≤ 2ε2, (14b)

Pr (X = xk) = pk ≥ 0, (14c)

K
∑

k=1

pk|xk|2 ≤ PA, (14d)

K
∑

k=1

pk = 1, k = 1, ...,K. (14e)

Since the KL-divergence D (py,0 ‖py,1 ) in (11b) is not

an analytical expression, constraint (14b) is intractable. To

circumvent this, we derive an explicit upper bound for the

KL-divergence D (py,0 ‖py,1 ), which is given by

DU (py,0 ‖py,1 ) = −log2
K
∑

k=1

pk exp

(

−|g
∗
wxk|2
σ2
w

)

. (15)

The details of derivations for (15) can be found in Appendix

A. Based on (15), problem (14) can be rewritten as

max
{pk}

Rb (16a)

s.t. − log2

K
∑

k=1

pk exp

(

−|g
∗
wxk|2
σ2
w

)

≤ 2ε2, (16b)

(14c), (14d), (14e).

In order to put problem (16) in a more concise form, we

define the following variables

x
∆
= [x1, ..., xK ]T , (17a)

p
∆
= [p1, ..., pK ]T , (17b)

q
∆
=
[

log2p
T q̂1, ..., log2p

T q̂K

]T
, (17c)

q̂l
∆
=









exp
(

− |g∗

b(xl−x1)+zb|
2

σ2
b

)

...

exp
(

− |g∗

b(xl−xK)+zb|
2

σ2
b

)









, ∀l ∈ K, (17d)

t
∆
=

[

exp

(

−|g
∗
wx1|2
σ2
w

)

, ..., exp

(

−|g
∗
wxK |2
σ2
w

)]T

, (17e)

φ (p)
∆
= Ezb

{

pTq
}

. (17f)

Furthermore, the rate of Bob Rb and the upper bound of

the KL-divergence DU (p0||p1) can be, respectively, rewritten

as follows

Rb = −φ (p)− 1

ln 2
, (18a)

DU (py,0 ‖py,1 ) = −log2pT t. (18b)

Since 1
ln 2 is constant and maximizing −φ (p) is equivalent

to minimizing φ (p), problem (16) can be reformulated as

min
p

φ (p) (19a)

s.t.− log2p
T t ≤ 2ε2, (19b)

pT1K = 1, (19c)

pT (x⊙ x) ≤ PA, (19d)

p ≥ 0, (19e)

where 1K is a K × 1 vector with all elements equal to 1.

Problem (19) is now a convex problem, and we adopt the

gradient projection method to solve it. Specifically, let ∇φ (p)
denote the gradient of the objective function (19a), which is

given by

∇φ (p) = Ezb {q+Qp} =
∫ ∞

−∞

fzb (zb) (q+Qp) dzb.

(20a)

Here, fzb (zb)=
1

πσ2
b
exp

(

− |zb|
2

σ2
b

)

denotes the probability

density function of zb, Q
∆
= [Qi,j ], where Qi,j

∆
=

q̂
T
j ei

q̂T
j
p ln 2

,

and ei is the unit vector where the ith element is 1 and the

other elements are 0.

However, neither the objective function φ (p) or the gradient

∇φ (p) has an analytic expression. To tackle this challenge, we

adopt the numerical integration method to approximate φ (p)
and ∇φ (p), i.e.,

φ̃ (p) =

∫ τ1

−τ1

fzb (zb)
(

pTq
)

dzb, (21a)

∇φ̃ (p) =

∫ τ2

−τ2

fzb (zb) (q+Qp) dzb, (21b)

where [−τ1, τ1] and [−τ2, τ2] denote the integration intervals,

by defining τ1 > 0, τ2 > 0. Furthermore, φ̃ (p) and ∇φ̃ (p)
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denote the approximations of the objective function and its

gradient, respectively.

Furthermore, let p0 denote a feasible starting point, and

pn denote the nth iteration feasible point. With approximate

gradient ∇φ̃ (p), the gradient descent iteration step is given

as

p̂n+1 = pn − αn∇φ̃ (pn) , (22)

where αn ∈ (0, 1] is the stepsize of the nth iteration. To choose

a proper step size αn with a sufficient decrease, we adopt the

backtracking line search algorithm, given in Algorithm 1.

Then, we project p̂n+1 in the feasible region of problem

(19). Specifically, when p̂n+1 satisfies constraints (19b)-(19e),

pn+1 = p̂n+1 is in the feasible region. Otherwise, we need

to find the closest point pn+1 in the feasible region as the

projection of p̂n+1.

Mathematically, the projection operation of p̂n+1 can be

formulated as follows

min
pn+1

‖pn+1 − p̂n+1‖2 (23a)

s.t. − log2p
T
n+1t ≤ 2ε2, (23b)

pT
n+11K = 1, (23c)

pT
n+1 (x⊙ x) ≤ PA, (23d)

pn+1 ≥ 0. (23e)

Algorithm 1 : Backtracking Line Search for Stepsize αn.

1: Input: pn, φ̃(pn), ∇φ̃ (pn) and ᾱ > 0, ρ, c ∈ (0, 1);
2: Update p̂n+1 = pn − αn∇φ̃ (pn);
3: if p̂n+1 satisfies constraints (19b)-(19e)

4: pn+1 = p̂n+1;

5: else

6: Solve problem (23) over p̂n+1 to obtain pn+1;

7: end;

8: While φ̃ (pn+1) ≤ φ̃ (pn) + cᾱ∇φ̃(pn)
T (pn+1 − pn);

9: ᾱ← ρᾱ;

10: Update p̂n+1 = pn − αn∇φ̃ (pn);
11: if p̂n+1 satisfies constraints (19b)-(19e)

12: pn+1 = p̂n+1;

13: else

14: solve problem (23) over p̂n+1 to obtain pn+1;

15: end;

16: end;

17: return αn = ᾱ.

Therefore, we propose the approximate gradient descent

projection method to efficiently solve problem (19), which is

summarized in Algorithm 2.

B. Case of D (py,1 ‖py,0 ) ≤ 2ε2

In this subsection, we further consider the other covert

constraint D (py,1 ‖py,0 ) ≤ 2ε2, and the corresponding covert

Algorithm 2 Inexact Gradient Descent Projection Method.

1: Input: choose K ≥ 2 and choose a random starting point

p0 which satisfies constraints (19b)-(19e), set c2 as

the stopping parameter and n = 0;
2: Repeat

3: Let n← n+ 1;

4: Update φ̃ (pn−1) =
∫ τ1

−τ1
fzb (zb)

(

pT
n−1q

)

dzb;

5: Update ∇φ̃ (pn−1) =
∫ τ2

−τ2
fzb (zb) (q+Qpn−1) dzb;

6: Compute stepsize αn−1 by Algorithm 1;

7: Update p̂n = pn−1 − αn−1∇φ̃ (pn−1);
8: if p̂n satisfies constraints (19b)-(19e)

9: pn = p̂n;

10: else

11: solve problem (23) over p̂n to obtain pn;

12: end;

13: Until ‖pn − pn−1‖ ≤ c2;

14: Output Popt = pn.

rate optimization problem can be formulated as

max
{pk}

Rb (24a)

s.t. D (py,1 ‖py,0 ) ≤ 2ε2, (24b)

Pr (X = xk) = pk ≥ 0, (24c)

K
∑

k=1

pk|xk|2 ≤ PA, (24d)

K
∑

k=1

pk = 1, k = 1, ...,K. (24e)

To handle intractable constraint (24b), we first derive an

upper bound on D (py,1 ‖py,0 ) denoted by DU (py,1 ‖py,0 ),
which is given by

DU (py,1 ‖py,0 ) =
K
∑

k=1

pklog2

K
∑

j=1

pj exp

(

−|g
∗
w (xk − xj)|2

2σ2
w

)

+
1

ln 2
+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

− 1. (25)

The details of derivations for (25) are given in Appendix B.

Then, problem (24) can be reformulated as

max
{pk}

Rb (26a)

s.t. DU (py,1 ‖py,0 ) ≤ 2ε2, (26b)

(24c), (24d), (24e).

By defining the following equations to simplify

DU (py,1 ‖py,0 )

sw,k
∆
=
[

exp
(

− |g∗

w(xk−x1)|
2

2σ2
w

)

, ..., exp
(

− |g∗

w(xk−xK)|2

2σ2
w

) ]T

,

(27a)

vw (p)
∆
=
[

log2p
T sw,1, ..., log2p

T sw,K

]T
, (27b)

we obtain

DU (py,1 ‖py,0 ) = pTvw (p) +
1

ln 2
+

∣

∣g2wPx

∣

∣

(ln 2)σ2
w

− 1. (28)
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Unfortunately, DU (py,1 ‖py,0 ) is non-convex in p, and the

covert constraint is also non-convex. To handle this issue,

we apply the first order Taylor expansion to DU (py,1 ‖py,0 ).
Specifically, the derivative of DU (py,1 ‖py,0 ) at p̄n is given

by

∇DU (py,1 ‖py,0 ) |p=p̄n
= vw (p̄n) +∇vwp̄n, (29)

where ∇vw =
[

sw,1

p̄T
n sw,1

, ...,
sw,K

p̄T
n sw,K

]

K×K
. Then, the first order

Taylor expansion of pTvw (p) is given as follows

L (p) ≈ p̄T
nvw (p̄n) + (vw (p̄n) +∇vwp̄n)

T
(p− p̄n) .

(30)

Then, constraint (26b) can be recast to a convex form as

L (p) +
1

ln 2
+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

− 1 ≤ 2ε2. (31)

Thus, problem (24) can be reformulated as

min
p

φ (p) (32a)

s.t. L (p) +
1

ln 2
+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

− 1 ≤ 2ε2, (32b)

pT1K = 1, (32c)

pT (x⊙ x) ≤ PA, (32d)

p ≥ 0, (32e)

which is convex.

Similarly, problem (32) can be efficiently solved by the

inexact gradient descent projection method. The details are

omitted due to space limitation.

IV. SIGNALING DESIGN WITH APPROXIMATE COVERT

RATE EXPRESSION

Due to the expectation operation, the achievable rate in

(4) does not have a closed-form expression, and can only be

computed numerically using the approximate gradient descent

method at the expense of high computational complexity. To

strike a balance between complexity and performance, we

further derive analytical upper bound and lower bound on the

achievable rate in (4).

Lemma 1: An upper bound RU
b on the rate Rb is given by

RU
b = −

K
∑

k=1

pklog2

K
∑

j=1

pj exp

(

−|g
∗
b (xk − xj)|2

σ2
b

)

, (33)

while a lower bound RL
b on the rate Rb is given as

RL
b =−

K
∑

k=1

pklog2

K
∑

j=1

pj exp

(

−|g
∗
b (xk − xj)|2

2σ2
b

)

− 1

ln 2
+ 1. (34)

Please find the derivation in Appendices C and D.

In this section, we adopt the upper bound and lower bound

on the achievable rate Rb in our following analysis.

A. Maximizing RU
b

In this subsection, we consider the upper bound on the

achievable rate for Bob RU
b as the objective function to find the

optimal probability of discrete constellation points set. Specif-

ically, we study beamforming design with the objective of

maximizing RU
b , subject to the covert transmission constraint,

and the discrete constellation set.

1) DU (py,0 ‖py,1 ) ≤ 2ε2: Finding the optimal probability

of discrete constellation set can be equivalently written as the

following optimization problem

max
{pk}

RU
b (35a)

s.t. DU (py,0 ‖py,1 ) ≤ 2ε2, (35b)

Pr (X = xk) = pk ≥ 0, (35c)

K
∑

k=1

pk|xk|2 ≤ PA, (35d)

K
∑

k=1

pk = 1, k = 1, ...,K. (35e)

In order to solve problem (35), we first define the following

variables

rk
∆
=
[

exp
(

− |g∗

b(xk−x1)|
2

σ2
b

)

, ..., exp
(

− |g∗

b(xk−xK)|2

σ2
b

) ]T

,

(36a)

u (p)
∆
=
[

log2p
T r1, ..., log2p

T rK
]T

. (36b)

In this case, we can obtain

RU
b = −pTu (p) . (37)

Therefore, problem (35) can be reformulated as follows

min
p

fU (p) (38a)

s.t. − log2p
T t ≤ 2ε2, (38b)

pT1K = 1, (38c)

pT (x⊙ x) ≤ PA, (38d)

p ≥ 0, (38e)

where fU (p) = pTu (p). Since the Frank-Wolf method

is an algorithm for solving linearly-constrained problems,

it makes a linear approximation of the objective function,

obtains the feasible descending direction by solving the linear

programming, and conducts a one-dimensional search in the

feasible region along this direction. Therefore, we will apply

the Frank-Wolf method to solve the optimization problem.

We use Taylor’s expansion to make a linear approximation

of the objective function fU (p). The first order Taylor expan-

sion at pn is as follows

fU (p) ≈ pT
nu (pn) +∇fU(pi)

T
(p− pn) , (39a)

∇fU (pn) = u (pn) +∇upn, (39b)

where ∇u =
[

r1
pT

n r1
, ..., rK

pT
n rK

]

K×K
, and pn denotes the

current iteration point. Then, we reformulate the optimization
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problem of (38) as follows

min
p
∇fU(pn)

T
p (40)

s.t. (38b), (38c), (38d), (38e).

By applying the Frank-Wolf method, the detailed procedures

for solving (40) are summarized in Algorithm 3. Note that λn

is the stepsize of the nth iteration and dn denotes the feasible

descending direction of the nth iteration.

Algorithm 3 : Solving (40) by Frank-Wolf method.

1: Initialization: Choose a feasible starting point p0, set δ >

0 as the stopping parameter, let n = 0;

2: While

∥

∥

∥∇f(pn)
T
dn

∥

∥

∥ ≤ δ;

3: Solve the linear programming problems (40) and obtain

optimal solution p̄n ;

4: Construct the feasible descending direction dn = p̄n−
pn;

5: Obtain optimal solution λn = argmin
0≤λ≤1

f (pn + λdn);

6: Let pn+1 = pn + λndn, n← n+ 1;
7: end

8: Output pn

2) DU (py,1 ‖py,0 ) ≤ 2ε2: Furthermore, we consider the

optimal probabilistic constellation shaping for covert commu-

nications with covert constraint DU (py,1 ‖py,0 ) ≤ 2ε2, such

that

max
{pk}

RU
b (41a)

s.t. DU (py,1 ‖py,0 ) ≤ 2ε2, (41b)

(35c), (35d), (35e),

which is non-convex.

Similar to problem (26), by replacing constraint (41b) by

constraint (31), we can obtain the optimization problem

min
p
∇fU (pn)

T
p (42a)

s.t. L (p) +
1

ln 2
+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

− 1 ≤ 2ε2, (42b)

(38b), (38c), (38d), (38e).

Then, we apply the Frank-Wolf method to solve problem

(35), and the details are omitted since the corresponding

algorithm is similar to Algorithm 3.

B. Maximizing RL
b

In this subsection, we further study the lower bound beam-

forming design for covert communication by maximizing the

lower bound RL
b, while satisfying the covert transmission

requirement and the discrete constellation set with K .

1) DU (py,0 ‖py,1 ) ≤ 2ε2: Under the covert constraint

DU (py,0 ‖py,1 ) ≤ 2ε2, the optimal probabilistic constellation

shaping for covert communications is formulated as follows

max
{pk}

RL
b (43a)

s.t. DU (py,0 ‖py,1 ) ≤ 2ε2, (43b)

Pr (X = xk) = pk ≥ 0, (43c)

K
∑

k=1

pk|xk|2 ≤ PA, (43d)

K
∑

k=1

pk = 1, k = 1, ...,K. (43e)

To solve the problem, we define the following equations

sb,k
∆
=
[

exp
(

− |g∗

b(xk−x1)|
2

2σ2
b

)

, ..., exp
(

− |g∗

b(xk−xK)|2

2σ2
b

) ]T

,

(44a)

vb (p)
∆
=
[

log2p
T sb,1, ..., log2p

T sb,K
]T

, (44b)

and then the lower bound RL
b can be transformed to

RL
b = −pTvb (p)−

1

ln 2
+ 1. (45)

Thus, the covert optimization problem is recast as follows

max
p
− pTvb (p) (46a)

s.t. − log2p
T t ≤ 2ε2, (46b)

pT1K = 1, (46c)

pT (x⊙ x) ≤ PA, (46d)

p ≥ 0, (46e)

Similar to problem (35), we can apply the Frank-Wolf

method to solve problem (43), and the details are omitted.

2) DU (py,1 ‖py,0 ) ≤ 2ε2: With the covert constraint

DU (py,1 ‖py,0 ) ≤ 2ε2, the optimal probabilistic constellation

shaping for covert communications is given as

max
{pk}

RL
b (47a)

s.t.DU (py,1 ‖py,0 ) ≤ 2ε2, (47b)

(43c), (43d), (43e).

By replacing the constraint (47b) with (31), we obtain the

optimization problem

max
p
− pTvb (p) (48a)

s.t. L (p) +
1

ln 2
+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

− 1 ≤ 2ε2, (48b)

(46c), (46d), (46e).

Similar to problem (41), we can apply a similar method to

solve problem (47).

V. NUMERICAL RESULTS

In this section, we present and discuss numerical results

to assess the performance of the proposed probabilistic con-

stellation shaping designs. In our simulations, the discrete

constellation input is QAM modulation, the total transmit

power of Alice is PA = 10W, the noise variance of Willie
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Fig. 2: The empirical CDF of a) D (py,0 ‖py,1 ) and (b)

D (py,1 ‖py,0 ) with the covertness threshold 2ε2 = 0.02 for

the proposed optimal probabilistic constellation shaping

design and the equiprobable design.

is σ2
w = 1W, and the noise variance of Bob is σ2

b=
PA

10SNR/10 .

Moreover, we assume that all channels experience Rayleigh

flat fading, and σ1 = σ2 = 1 [48].

We first compare the proposed optimal probabilistic constel-

lation shaping design with the equiprobable design, starting

from the empirical CDF of KL divergence and the rate

comparison.

Fig. 2 shows the empirical CDF of the achieved

D (py,0 ‖py,1 ) and D (py,1 ‖py,0 ), respectively, for both the

proposed optimal probabilistic constellation shaping design

and the equiprobable design with SNR = 10dB and K =
8, where the covertness threshold is 2ε2 = 0.02, i.e.,

D (py,0 ‖py,1 ) ≤ 0.02 and D (py,1 ‖py,0 ) ≤ 0.02. As observed

from Fig. 2, the proposed optimal probabilistic constellation

4 6 8 10 12
1.4

1.6

1.8

2

2.2

2.4

2.6

Optimal signaling design
Equiprobable signaling design

(a)

4 6 8 10 12
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Optimal signaling design
Equiprobable signaling design

(b)

Fig. 3: The covert rate of a) D (py,0 ‖py,1 ) and (b)

D (py,1 ‖py,0 ) for the proposed optimal probabilistic

constellation shaping design and the equiprobable design.

shaping design satisfies the covertness constraint. On the other

hand, the equiprobable design cannot satisfy the covertness

constraints.

Fig. 3 (a) and (b) show the achievable covert rate of Bob

Rb for the proposed optimal probabilistic constellation shap-

ing design and the equiprobable design with D (py,0 ‖py,1 )
and D (py,1 ‖py,0 ), respectively. We observe that the optimal

probabilistic constellation shaping design is superior when the

signal-to-noise ratio is low. Therefore, in practical applica-

tions, the proposed optimal probabilistic constellation shaping

design is advantageous in medium and low SNR, and the

equiprobable design is suitable for high SNR.

Next, we evaluate the performance of the proposed optimal

probabilistic constellation shaping design.

Fig. 4 shows the optimal probability distribution of input
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Fig. 4: The optimal probability of discrete constellation

points with (a) D (py,0 ‖py,1 ) and (b) D (py,1 ‖py,0 ) for the

proposed optimal probabilistic constellation shaping design.

{pi,j} with SNR = 12dB of the proposed optimal probabilis-

tic constellation shaping design, for D (py,0 ‖py,1 ) in Fig. 4

(a), and for D (py,1 ‖py,0 ) in Fig. 4 (b). As it can be seen from

Fig. 4, for the proposed optimal probabilistic constellation

shaping design, the optimal probability distribution is not

equiprobable, and the symmetrical points have equal probabil-

ities. Specifically, when the number of discrete constellation

points is sixteen, the probability of each constellation point for

D (py,0 ‖py,1 ) and D (py,1 ‖py,0 ) is given in Table I. From

the table, we can clearly see that when the coordinates of the

constellation points are symmetrical, their probabilities are the

same, and vice versa.

Fig. 5 considers the proposed optimal probabilistic constel-

lation shaping design and depicts, the achievable covert rate

of Bob Rb versus SNR with different number of constellation

-2 0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5
BPSK
4-QAM
8-QAM
16-QAM

Fig. 5: The achievable covert rate of Bob versus SNR with

different number of points K for D (py,0 ‖py,1 ).

points K = 2, 4, 8, 16 for D (py,0 ‖py,1 ). It can be seen from

Fig. 5 that when SNR increases, the covert rate of Bob Rb

increases. In addition, we observe that larger number of points

K results in higher covert rate of Bob Rb, especially for high

SNRs. Thus, as the modulation order increases, the rate of

covert communication increases.

Fig. 6 shows the covert rate versus ε for the pro-

posed optimal probabilistic constellation shaping design for

D (py,0 ‖py,1 ) and D (py,1 ‖py,0 ), where K = 8, SNR =
6dB. It can be observed from the figure that as ε increases, the

covert constraint becomes loose, resulting in a covert rate in-

crease. The rate of the covert constraint D (py,0 ‖py,1 ) ≤ 2ε2

is higher than that of the case D (py,1 ‖py,0 ) ≤ 2ε2. This is

because D (py,1 ‖py,0 ) is less than D (py,1 ‖py,0 ) for the same

probability distribution, and thus D (py,1 ‖py,0 ) ≤ 2ε2 is more

stringent than D (py,0 ‖py,1 ) ≤ 2ε2.

Finally, we compare the performance and complexity of

three objective functions.

Fig. 7 depicts the achievable rate of Bob Rb with the

proposed optimal probabilistic constellation shaping design,

as well as the objective functions RL
b and RU

b versus the SNR
for the case of D (py,0 ‖py,1 ) and D (py,1 ‖py,0 ), respectively.

It can be observed that the mutual information of Bob Rb

increases as the SNR increases, while Rb of the proposed

optimal probabilistic constellation shaping design is between

the objective functions RL
b and RU

b , and the objective function

RU
b is higher than the objective function RL

b.

From Fig. 7 we observe that the proposed optimal proba-

bilistic constellation shaping design is between the objective

functions RL
b and RU

b . Here, we compare the computational

complexity of the three designs by computational time in Table

II, and all simulations of the three methods are performed

using MATLAB 2016b with 2.30GHz, 2.29GHz dual CPUs

and a 128GB RAM, where K = 8. Specifically, Table III

shows that the computational time of objective functions Rb,
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TABLE I: The optimal probability distribution of the optimal probabilistic constellation shaping design for D (py,0 ‖py,1 )
and D (py,1 ‖py,0 ) with SNR = 12dB and K = 16

Im {xi,j}

{pi,j} Re {xi,j} D (py,0 ‖py,1 ) D (py,1 ‖py,0 )
−3 −1 1 3 −3 −1 1 3

-3 0.0484 0.0524 0.0524 0.0484 0.0454 0.0502 0.0502 0.0454
-1 0.0524 0.0968 0.0968 0.0524 0.0502 0.1041 0.1041 0.0502
1 0.0524 0.0968 0.0968 0.0524 0.0502 0.1041 0.1041 0.0502
3 0.0484 0.0552 0.0552 0.0484 0.0454 0.0502 0.0502 0.0454

0.02 0.04 0.06 0.08 0.1 0.12
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Fig. 6: The covert rate versus ε for the proposed optimal

probabilistic constellation shaping design with the cases of

D (py,0 ‖py,1 ) and D (py,1 ‖py,0 ).

RL
b and RU

b for the covert constraint condition D (py,0 ‖py,1 )
is 55.04, 2.845 and 3.012 seconds, respectively. The computa-

tional times of the latter two cases is approximately 95 percent

shorter than that of the probabilistic constellation shaping

design. Under the covert constraint condition D (py,0 ‖py,1 )
the computational time of objective functions Rb, RL

b and

RU
b is 107.77, 3.219 and 3.438 seconds, respectively. The

computational times of the latter two cases is approximately

improved by 97 percent compared to that of the probabilistic

constellation shaping design. Moreover, the computational

time of the design for D (py,0 ‖py,1 ) is less than that of

D (py,1 ‖py,0 ).

TABLE II: Computational time comparison among the

objective functions Rb, RL
b and RU

b

Constraint

Time/second Objective
Rb RL

b RU
b

D (py,0 ‖py,1 ) 55.04 2.845 3.012
D (py,1 ‖py,0 ) 107.77 3.219 3.438

2 4 6 8 10 12
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2.5

3

(a)

2 4 6 8 10 12
0
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1

1.5

2
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(b)

Fig. 7: The achievable rate of Bob versus SNR for (a)

D (py,0 ‖py,1 ) and (b) D (py,1 ‖py,0 ) with the covertness

threshold 2ε2 = 0.1.
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VI. CONCLUSIONS

In this paper, we propose an optimal probabilistic constel-

lation shaping design for covert communications, where Alice

covertly sends a message to Bob while avoiding being discov-

ered by Willie. We derive the achievable rate expressions of

the covert communications system, and we study the covert

rate maximization problem via optimizing the constellation

distribution. In addition, to strike a balance between the

computational complexity and the transmission performance,

we further develop a framework that maximizes the upper and

lower bounds of the achievable rate. Numerical results quantify

the gains of the proposed beamformers design over state-of-

the-art schemes in terms of the achievable covert rate.

APPENDIX A

DERIVATION OF THE FORMULATION (15)

The upper bound DU (py,0 ‖py,1 ) on the KL divergence

D (py,0 ‖py,1 ) is derived as follows

D (py,0 ‖py,1 ) ≤ −
1

ln 2

− log2

K
∑

k=1

pk exp

(

−Ezw

{

|zw − g∗wxk|2
σ2
w

})

(49a)

= − 1

ln 2
− log2

K
∑

k=1

pk exp

(

−Ezw

{

z2w
}

+ |g∗wxk|2
σ2
w

)

(49b)

= − 1

ln 2
− log2

K
∑

k=1

pk exp

(

−1− |g
∗
wxk|2
σ2
w

)

(49c)

= − 1

ln 2
−
(

− 1

ln 2
+ log2

K
∑

k=1

pk exp

(

−|g
∗
wxk|2
σ2
w

))

(49d)

= −log2
K
∑

k=1

pk exp

(

−|g
∗
wxk|2
σ2
w

)

, (49e)

where inequality (49a) holds due to Jensen’s Inequality.

APPENDIX B

DERIVATION OF THE FORMULATION (25)

The upper bound DU (py,1 ‖py,0 ) of the KL divergence

D (py,1 ‖py,0 ) is given as

D (py,1 ‖py,0 ) ≤
K
∑

k=1

pklog2

K
∑

j=1

pj

× Ezw

{

exp

(

−|g
∗
w (xk − xj) + zw|2

σ2
w

)}

+
1

ln 2
+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

(50a)

=
K
∑

k=1

pklog2

K
∑

j=1

pjEzw,R

{

exp

(

− (cR + zw,R)
2

σ2
w

)}

× Ezw,I

{

exp

(

− (cI + zw,I)
2

σ2
w

)}

+
1

ln 2
+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

(50b)

=

K
∑

k=1

pklog2

K
∑

j=1

pj





∞
∫

−∞

dzw,R√
πσw

exp

(

− (cR + zw,R)
2

σ2
w

+
z2w,R

σ2
w

)]

×





∞
∫

−∞

dzw,I√
πσw

exp

(

−
(cR + zw,I)

2
+ z2w,I

σ2
w

)





+
1

ln 2
+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

(50c)

=

K
∑

k=1

pklog2

K
∑

j=1

pj

[

1√
πσw

1

2

√

σ2
wπ

2
exp

(

− c2R
2σ2

w

)

2

]

×
[

1√
πσw

1

2

√

σ2
wπ

2
exp

(

− c2I
2σ2

w

)

2

]

+
1

ln 2
+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

(50d)

=

K
∑

k=1

pklog2

K
∑

j=1

pj
1

2
exp

(

−c2R + c2I
2σ2

w

)

+
1

ln 2
+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

(50e)

=

K
∑

k=1

pklog2
1

2
+

K
∑

k=1

pklog2

K
∑

j=1

pj exp

(

−|g
∗
w (xk − xj)|2

2σ2
w

)

+
1

ln 2
+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

(50f)

=

K
∑

k=1

pklog2

K
∑

j=1

pj exp

(

−|g
∗
w (xk − xj)|2

2σ2
w

)

+
1

ln 2

+

∣

∣g2wPA

∣

∣

(ln 2)σ2
w

− 1, (50g)

where inequality (50a) is true due to Jensen’s Inequality.

Equality (50b) holds because of the definitions zw,R
∆
=

Re {zw} and zw,I
∆
= Im {zw}, zw,R, zw,I ∼ N

(

0, 12σ
2
w

)

, and

cR
∆
= Re (g∗w (xk − xj)), cI

∆
= Im (g∗w (xk − xj)).

APPENDIX C

DERIVATION OF THE FORMULATION (33)

The upper bound RU
b of the covert rate Rb is derived as

follows

Rb ≤ −
K
∑

k=1

pklog2

K
∑

j=1

pj

× exp

(

−Ezb

{

|g∗b (xk − xj) + zb|2
σ2
b

})

− 1

ln 2
(51a)

= −
K
∑

k=1

pklog2

K
∑

j=1

pj exp



−|g
∗
b (xk − xj)|2

σ2
b

−
Ezb

{

|zb|2
}

σ2
b





− 1

ln 2
(51b)

= − 1

ln 2
−

K
∑

k=1

pklog2

K
∑

j=1

pj exp

(

−|g
∗
b (xk − xj)|2

σ2
b

− 1

)

(51c)
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= −
K
∑

k=1

pklog2

K
∑

j=1

pj exp

(

−|g
∗
b (xk − xj)|2

σ2
b

)

exp (−1)

− 1

ln 2
(51d)

= −
K
∑

k=1

pk



log2

K
∑

j=1

pj exp

(

−|g
∗
b (xk − xj)|2

σ2
b

)

− 1

ln 2





− 1

ln 2
(51e)

= −
K
∑

k=1

pklog2

K
∑

j=1

pj exp

(

−|g
∗
b (xk − xj)|2

σ2
b

)

, (51f)

where inequality (51a) is true due to Jensen’s Inequality.

APPENDIX D

DERIVATION OF THE FORMULATION (34)

The lower bound RL
b on the covert rate Rb is given as

Rb ≥ −
K
∑

k=1

pklog2

K
∑

j=1

pj

× Ezb

{

exp

(

− (g∗b (xk − xj) + zb)
2

σ2
b

)}

− 1

ln 2
(52a)

= −
K
∑

k=1

pklog2

K
∑

j=1

pj





∞
∫

−∞

dzb,R√
πσb

exp

(

−
(aR + zb,R)

2 + z2b,R

σ2
b

)





×





∞
∫

−∞

dzb,I√
πσb

exp

(

−
(aR + zb,I)

2
+ z2b,I

σ2
b

)



− 1

ln 2

(52b)

= −
K
∑

k=1

pklog2

K
∑

j=1

pj

[

1√
πσb

1

2

√

σ2
bπ

2
exp

(

− a2R
2σ2

b

)

2

]

×
[

1√
πσb

1

2

√

σ2
bπ

2
exp

(

− a2I
2σ2

b

)

2

]

− 1

ln 2
(52c)

= − 1

ln 2
−

K
∑

k=1

pklog2

K
∑

j=1

pj
1

2
exp

(

−a2R + a2I
2σ2

b

)

(52d)

= − 1

ln 2
+ 1−

K
∑

k=1

pklog2

K
∑

j=1

pj exp

(

−|g
∗
b (xk − xj)|2

2σ2
b

)

,

(52e)

where inequality (52a) is true due to Jensen’s inequality, equal-

ity (52b) holds because of the definitions zb,R
∆
= Re {zb},

zb,I
∆
= Im {zb}, zb,R, zb,I ∼ N

(

0, 12σ
2
b

)

, and aR
∆
=

Re (g∗b (xk − xj)), aI
∆
= Im (g∗b (xk − xj)).
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