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Abstract—Recently, moving target defence (MTD) has been
proposed to thwart false data injection (FDI) attacks in power
system state estimation by proactively triggering the distributed
flexible AC transmission system (D-FACTS) devices. One of
the key challenges for MTD in power grid is to design its
real-time implementation with performance guarantees against
unknown attacks. Converting from the noiseless assumptions in
the literature, this paper investigates the MTD design problem
in a noisy environment and proposes, for the first time, the
concept of robust MTD to guarantee the worst-case detection
rate against all unknown attacks. We theoretically prove that, for
any given MTD strategy, the minimal principal angle between the
Jacobian subspaces corresponds to the worst-case performance
against all potential attacks. Based on this finding, robust MTD
algorithms are formulated for the systems with both complete and
incomplete configurations. Extensive simulations using standard
IEEE benchmark systems demonstrate the improved average
and worst-case performances of the proposed robust MTD
against state-of-the-art algorithms. All codes are available at
https://github.com/xuwkk/Robust_MTD.

Index Terms—Cyber physical power system, false data injec-
tion attacks, moving target defence, principal angles and vectors.

I. INTRODUCTION

A. Background

THE EMERGING implementation of information tech-
niques has reformed the power gird into a complex cyber-

physical power system (CPPS), where the two-way real-time
communication among multiple parties raises new risks in the
grid [1]. Musleh et al. [2] reviewed seven recent cyber attacks
in energy industry and spotted the related vulnerabilities in
both physical and cyber layers. Recently, false data injection
(FDI) attacks against power system state estimation (SE)
have been developed by intruding through the Modbus/TCP
protocol without being noticed by the bad data detector (BDD)
at the control centre [3]–[6]. As accurate state estimation is
crucial for energy management system (EMS) activities, such
as generator dispatch, contingency analysis, and fault diag-
nosis, states falsified by FDI attacks can result in erroneous
control actions, causing economic losses, system instability,
and safety violation [7]–[9].

As the power system operates quasi-statically, the intruders
have enough time to learn the system parameters and prepare
FDI attacks [10]–[12]. As a result, it is crucial to invalidate
the attacker’s knowledge by proactively changing the system

This work was supported by EPSRC under Grant EP/W028662/1 and by
The Royal Society under Grant RGS/R1/211256. (Corresponding author: Fei
Teng)

The authors are with the Department of Electrical and Electronic Engineer-
ing, Imperial College London, London, SW7 2AZ, U.K.

configuration. Moving target defence (MTD), which is con-
ceptualised first for information technology security, utilises
this proactive defence idea [13]. With the distributed flexi-
ble AC transmission system (D-FACTS) devices, the control
centre can alter the reactances of the transmission lines to
physically change the system parameters that are unknown to
the attackers.

B. Related Work

Initially, MTD research involves using random placement
and reactance perturbations to expose FDI attacks [14]–[16].
However, it has been shown that the so-called ‘naive’ appli-
cations cannot guarantee an effective detection on stealthy
FDI attacks. Therefore, [17] and [18] demonstrate that the
effectiveness of MTD depends on the rank of the composite
pre- and post- MTD measurement matrices. Furthermore, Liu,
et al. [19] and Zhang et al [20] investigate the D-FACTS
devices placement in the planning stage to maximise the
effectiveness while minimising the investment budget. The
authors in [21] analyse the effectiveness of the MTD using
the minimal principal angle metric and numerically show the
relationship between the angle and the average detection rate,
which can be used to design the MTD. Liu, et al. [22] extends
the MTD strategy in [17] with sensor protections and Tian, et
al. [23] applies MTD to detect Stuxnet-like attack. Moreover,
Higgins et.al. [24] suggests to perturb the reactance through
Gaussian watermarking to prevent the attacker from inferring
the new system parameters. However, majority of the above
literature studies the effectiveness of MTD under DC and
noiseless assumptions. As the detection rate of MTD is limited
by the ratio between the attack strength and the noise level
[25], there is no guarantee on the detection performance of
existing MTD strategies against the unseen attacks in a noisy
environment.

C. Contributions

With the attackers becoming more resourceful and intel-
ligent, it is critical for the system operator to determine
and guarantee the lowest detection rate of MTD against all
unknown attacks. In this context, this paper introduces the
concept of robust MTD, which aims to guarantee the worst-
case MTD effectiveness against a given level of attack strength
under noisy environment. The main contributions of this paper
are summarised as follows.
• This paper, for the first time, proposes the concept of ro-

bust MTD in a noisy environment. We theoretically prove
that, for any given grid topology and MTD strategy, the
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minimal principal angle between the pre- and post-MTD
Jacobian subspaces is directly linked with the worst-case
performance against all potential attacks, which can be
used as a new metric to represent the MTD effectiveness.

• A novel MTD design algorithm is formulated to improve
the worst-case detection rate by maximising the minimal
principal angle under the complete grid configuration.
We then demonstrate that the worst-case detection rate
of the grid with incomplete configuration cannot be
improved. Therefore, an iterative algorithm is formulated
to maximise the minimal nonzero principal angle while
limits the chance of attacking on the subspace that cannot
be detected.

• Numerical simulations on IEEE case-6, 14, and 57 sys-
tems demonstrate the improved detection performance of
robust MTD algorithms against the worst-case, random,
and single-state attacks, under both simplified and full
AC models.

The rest of the paper is organised as follows. The pre-
liminaries are summarised in Section II; Analysis on MTD
effectiveness is presented in Section III; Problem formulation
and proposed robust algorithms are presented in Section IV;
Case studies are given in Section V with conclusions in
Section VI.

II. PRELIMINARIES

A. Notations

In this paper, vectors and matrices are represented by bold
lowercase and uppercase letters, respectively. The p-norm of
a is written as ‖a‖p. The column space of A is A = Col(A).
The kernel of a matrix A is represented as Ker(A). The rank
operator is written as rank(A). PA = A(ATA)−1AT repre-
sents the orthogonal projector to Col(A) while SA = I−PA
represents the orthogonal projector to Ker(AT ). The set of sin-
gular values is σ(A) = {σ1(A), σ2(A), . . . , σmin{m,n}(A)}.
The spectral norm is ‖A‖2 = maxi σi(A) and the Frobenius
norm is ‖A‖F . We use the symbol (·)′ to indicate the
quantities after MTD and (·)a to indicate the quantities after
the attack. The matrix operator ◦ represents the Hadamard
product. Other symbols and operators are defined in the paper
whenever appropriate.

B. System Model and State Estimation

The power system can be modelled as a graph G(N , E)
with |N | = n + 1 number of buses and |E| = m number
of branches. For each bus, we denote its complex voltage as
ν = v∠θ; and for each branch, we denote the admittance
as y = g + jb. The power balances can be modelled by a
set of nonlinear equations z = h(ν) + e where z ∈ Rp is
the sensor measurement; h(·) ∈ Rp is the power balancing
equation; ν ∈ R2n+1 is the system state composing of voltage
magnitudes at all bus and phase angles at non-reference buses.
The measurement noise vector e ∼ N (0,R) follows an
independent Gaussian distribution with diagonal covariance
matrix R = diag([σ2

1 , σ
2
2 , · · · , σ2

p]).
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Figure 1: EMS with injection attacks and MTD in CPPS.

In detail, h(·) is considered as [7]:

Pi = vi

n∑
j=1

vj (gij cos θij + bij sin θij) (1a)

Qi = vi

n∑
j=1

vj (gij sin θij − bij cos θij) (1b)

Pk:i→j = vivj (gij cos θij + bij sin θij)− gijv2
i (1c)

Qk:i→j = vivj (gij sin θij − bij cos θij) + bijv
2
i (1d)

where Pi and Qi are the active and reactive power injections
at bus i; Pk:i→j and Qk:i→j are the k-th active and reactive
power flows from bus i to j; θij = θi − θj is the phase angle
difference between bus i and j.

As shown in Fig. 1, the control centre is equipped with
state estimation (SE) which serves as a bridge between remote
terminal units (RTU) and the energy management system
(EMS) [7]. Given the measurements, the AC-SE is solved by
the following weighted least-square problem using iterative
algorithm, such as Gauss-Newton method [26]:

min
ν̂
J(ν̂) = (z − h(ν̂))T ·R−1 · (z − h(ν̂)) (2)

where ν̂ is the estimated state. Furthermore, the bad data
detection (BDD) at the control centre detects any measurement
error that violates a Gaussian prior. Given ν̂, the residual
vector is calculated as r = z − h(ν̂) and the residual is
represented as γ(z) = ‖R− 1

2 r‖22. Let e be the random
variable; then γ approximately follows χ2 distribution with
degree of freedom (DoF) p−(2n+1) [26]. The threshold τχ(α)
of the χ2 detector can be defined probabilistically based on
the desired False Positive Rate (FPR) α ∈ (0, 1) by the system
operator [26]: ∫ ∞

τχ(α)

g(u)du = α (3)

where g(u) is the p.d.f of the χ2 distribution and α is
usually set as 1%-5%. Consequently, the BDD detector can
be designed as:

DBDD(z) =

{
1 γ(z) ≥ τχ(α)

0 γ(z) < τχ(α)
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C. Attack Assumptions

With the emerging implementation of information and com-
munication techniques, standard protocols, such as Modbus,
can be vulnerable to FDI attacks. It has been shown that
an FDI attack za = z + a can bypass the BDD if a =
h(ν + c) − h(ν) where c is the attack vector on the state
vector. In this case, the contaminated measurement becomes
za = h(ν + c) + e whose residual follows the same χ2

distribution as the legit measurement z.
To successfully launch FDI attacks, we assume the at-

tacker’s abilities as follows.
Assumption 1: The attackers can access all measurements

and are aware of the admittance and topology of the grid to
build h(·). The exfiltration can be achieved by data-driven
algorithms [10]–[12], [27]. However, the duration of data
collection is much longer than a single state estimation time,
implying that the attacker cannot immediately know the exact
value of reactance changes [21]. Meanwhile, attackers are also
aware of the exact state or estimation of the state from previous
measurements [4], [5].

Assumption 2: The attackers can modify or replace all
the eavesdropped measurements to achieve their purposes.
However, since large instant measurement changes may violate
the temporal trends of the grid measurements and be detected
[28], [29], the attack strength ‖a‖2 is assumed to be small.

Assumptions 1-2 require the attacker’s efforts to gain
sufficient knowledge on the grid topology and operational
conditions, which may not be easy in practise. However, we
assume a strong attack ability and study the defence algorithm
against general and unpredictable FDI attacks.

D. Moving Target Defence

By using the D-FACTS devices, the system operator can
proactively change the reactances to keep invalidating the
attacker’s knowledge on h(·):

hx(·) D-FACTS−−−−−→ hx′(·)

where x′ = x + ∆x is the reaction after activating the D-
FACTS devices. As illustrated in Fig. 1, the channels of D-
FACTS devices are encrypted and MTD is implemented with
a period shorter than the reconnaissance time of the attacker
(see Assumption 1). In addition, the reactances changed by
the D-FACTS devices are physically limited:

− τxi ≤ ∆xi ≤ τxi, i ∈ ED (4a)

∆xi = 0, i ∈ E \ ED (4b)

where xi is the reactance of the ith branch; τ represents
the maximum perturbation ratio of D-FACTS devices. Typical
values of τ are reported as 20%− 50% in the literature [17]–
[19], [21]; ED represents the set of branches equipped with
the D-FACTS devices. After implementing MTD, the residual
vector becomes r′a = h′(x)+h(x+c)−h(x)+e which may
no longer follow the χ2 distribution of the legit measurement
and hence trigger the BDD.

E. Model Simplification for MTD Design

To design the MTD against FDI attacks, most of the
literature relies on DC or simplified AC power system models
[17]–[22], [25] and then verifies the performance on the full
AC model. Here, we adopt the simplified AC model based
on the linearised measurement equation. Compared with the
DC model, the simplified AC model can reflect different state
values with branch resistance also considered.

In detail, the first-order Taylor expansion can be established
around a stationary state ν0:

z = h(ν0) + Jν0(ν − ν0) + e (5)

where the Jacobian matrix of h(·) is found with respect to ν0

as Jν0 =

[
∂hk
∂νi

∣∣∣
ν=ν0

]
i,k

. The state ν0 can be simulated from

security constrained AC-OPF [7] around the estimated active
and reactive loads before the real-time operation. Alternatively,
the states estimated from the previous measurements or a flat
state [22], [30] can also be used. Following the recent literature
on MTD [17], [19], [22], we consider the FDI attacks on the
voltage phase angle and derive the defence strategies according
to the power flow measurements at each branch. Therefore, the
Jacobian matrix is considered as follows.

Jθ0 =

[
∂Pk:i→j

∂θi

∣∣∣∣
θ=θ0

]
k

= −V ·G·Asin
r +V ·B ·Acos

r (6)

where V = diag ((Cfv) ◦ (Ctv)); G = diag(g);
B = diag(b); Asin

r = diag(sinAθ0)Ar; and Acos
r =

diag(cosAθ0)Ar. Moreover, Cf and Ct are the ‘from’ and
‘to’ -side incidence matrices; Ar is the reduced incidence
matrix by removing the column representing the reference bus
from the incidence matrixA. To simplify the notation, we omit
the subscript θ0 in Jθ0 in the following discussion.

According to Assumption 2, as the attack strength is limited,
the attack vector can also be linearised around θ0 as [22]:

a = h(θ0 + c)− h(θ0) = Jc (7)

We design the MTD algorithm based on the simplified AC
model (5)-(7) using active power flow measurements. The
proposed MTD will be applied to the original AC model (1)-
(2) in the simulation.

III. ANALYSIS ON MTD EFFECTIVENESS

In this section, we first extend the concept of complete MTD
in the literature from DC model to simplified AC model. We
then define the MTD effectiveness in a probabilistic way and
illustrate the need for a new metric on effective MTD design
in a noisy environment.

A. Complete MTD

Let H and H ′ be the DC measurement matrices. Under
the noiseless condition, the complete MTD can be designed
to detect any FDI attack by keeping the composite matrix
[H,H ′] full column rank [17]–[20]. If the full rank condition
cannot be achieved due to the sparse grid topology (e.g.
m < 2n) or limited number of D-FACTs devices, a max-
rank incomplete MTD can be designed to minimise the attack
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space. As the rank of the composite matrix is maximised under
both complete and incomplete conditions, we refer to the MTD
strategies in [17]–[20] as max-rank MTD.

To better define the problem, we extend the concept of
complete and incomplete MTDs from the DC model to the
simplified AC models in the following proposition:

Proposition 1. The power system modelled by (5) is with
complete configuration against the FDI attack modelled by (7)
only if m ≥ 2n where m and n are the number of branches
and the number of non-reference buses, respectively.

Proof. Please refer to Appendix A.

As stated by Proposition 1, to have a complete con-
figuration rank([JN ,J

′
N ]) = 2n, the number of branches

should be at least one time larger than the number of non-
reference buses. In addition, the max-rank incomplete MTD
with rank([JN ,J

′
N ]) = m can be designed for the grid

with incomplete configuration. In the following discussions,
we refer the grid that can achieve complete MTD under
certain topology and D-FACTS device deployment as complete
configuration, otherwise as incomplete configuration.

B. β-Effective MTD

Following (5), denote z , z − h(θ0) and θ , θ − θ0. For
the new system equation z = Jθ + e, the residual vector of
the χ2 detector can be written as r = S(Jθ+e) = Se where
S = I − J(JTR−1J)−1JTR−1 is the weighted orthogonal
projector on Ker(JT ). The residual γ = ‖R− 1

2Se‖22 follows
the χ2 distribution with DoF m−n. Referring to the simplified
attack model (7), the residual vector after MTD under attack
can be written as r′a = S′(Jc + e) where S′ = I −
J ′(J ′TR−1J ′)−1J ′TR−1. As a is usually not in J ′ and r′a
is biased from zero, the residual γ′a = ‖R− 1

2S′(Jc + e)‖22
follows the non-central χ2 distribution, i.e. γ′a ∼ χ2

m−n(λ)

with non-centrality parameter λ = ‖R− 1
2S′Jc‖22 [31]. Mean-

while, the mean and variance of the distribution are given as
E(γ′a) = m − n + λ and Var(γ′a) = 2(m − n + 2λ), re-
spectively. For clear presentation, the matrices are normalised
with respect to the measurement noises, e.g., JN = R−

1
2J

and aN = JNc. More details can be found in Appendix B.
It is clear that when a noisy environment is considered,

deterministic criteria can no longer be used to describe the
effectiveness of MTD. A probabilistic criteria is hence defined.
Following (3), for any given attack vector a, we define
an MTD as β-effective (β-MTD in short) if the following
inequality is satisfied:

f(λ) =

∫ ∞
τχ(α)

gλ(u)du ≥ β (8)

where gλ(u) is the p.d.f. of non-central χ2 distribution and
β ∈ (0, 1) is a desired detection rate. When λ increases from
0, the detection probability on a also increases as the mean
and variance increase [32]. Therefore, for a given β, there
exists a minimum λ such that (8) is satisfied. This minimum
λ is defined as critical and denoted as λc(β).

Consequently, the rank conditions in [17]–[20], [22] cannot
guarantee detection performance, as they are not directly
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Figure 2: Illustration of attack detection probability on IEEE
case-14 system based on simplified AC model (5)-(7). The
more positively the c.d.f. is shifted, the higher averaged
detection rate can be achieved.

linked with the increase of λ to have β-MTD. Fig. 2 illustrates
the c.d.f. of γ′ on a random FDI attack using max-rank MTDs
in a case-14 system. Without using MTD, the detection rate is
5% which is consistent with the FPR. To have a high detection
rate, e.g., β = 95%, it is desirable to sufficiently shift the
distribution as shown by the blue curve. The max-rank MTDs
can shift the c.d.f. positively, but there is no guarantee on how
much of such shift can be achieved and whether it leads to
the desired detection rates. This finding clearly calls for a new
design of MTD algorithm in a noisy environment.

Moreover, as numerically shown by [25], not all attacks can
be detected by the MTD with high detection rate. Therefore,
we theoretically introduce the following necessary condition
to have β-MTD which can be seen as the limitation of MTD
against FDI attacks with small attack strength.

Proposition 2. An MTD is β-effective only if ‖aN‖2 ≥√
λc(β).

Proof. Please refer to Appendix C.

Proposition 2 can be further analysed on a to have ‖a‖2 ≥
σmin

√
λc(β) with σmin = mini{σ1, σ2, . . . , σm}. This im-

plies that β-MTD can be achieved only if the ratio between
attack strength and measurement noise is higher than a certain
value, which verifies the numerical results in [25].

C. Max MTD
While Proposition 2 establishes the theoretical limit on the

detection probability for any given attack strength, in practise,
the constraints on D-FACTS devices (4a)-(4b) further restricts
such limit. In this context, the maximum detection rate on
a known attack vector aN , with the limits of the D-FACTS
devices considered, can be found by the max-MTD algorithm:

max∆x ‖S′NaN‖22
s.t. (4a)− (4b)

(9)

In practice, it is impossible to design ∆x to achieve a certain
λc(β) in advance as aN cannot be known. Nonetheless, max-
MTD can be regarded as the performance upper-bound for any
MTD strategy with the same placement and perturbation limit.

IV. ROBUST MTD ALGORITHMS

In this section, we start by establishing the concept of robust
MTD and its mathematical formulation. Then the robust MTD
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algorithms are formulated for the grid with complete and
incomplete configurations, respectively.

A. Definition and Problem Formulation

Instead of considering the average detection rate, this paper
defines the robust MTD that can maximise the worst-case
detection rate against all possible attacks. First, we define the
weakest point for a given MTD design as follows.

Definition 1. Given ∆x and the corresponding pair of sub-
spaces (JN ,J ′N ), the weakest point of (JN ,J ′N ) is defined
as a unitary element j∗N ∈ JN such that λ(∆x, j∗N ) ≤
λ(∆x, jN ) for ∀jN ∈ JN , ‖jN‖2 = 1. The worst-case
detection rate for attack strength ‖aN‖2 = |a| 6= 0 is defined
as f(λmin) with λmin = λ(∆x, aj∗N ).

According to the Definition 1, the weakest point in
(JN ,J ′N ) satisfies |a|‖S′Nj∗N‖2 ≤ |a|‖S′NjN‖2, ∀jN ∈
JN , ‖jN‖2 = 1, a 6= 0. Let a∗N = aj∗N and aN = ajN ,
the detection rate on a∗N is the lowest among all attacks
with the same strength as ‖S′Na∗N‖2 ≤ ‖S′NaN‖2,∀aN ∈
JN , ‖aN‖2 = |a| 6= 0. Note that the weakest point may not
be unique, but all of them have the same worst-case detection
rate.

Based on the definition of MTD weakest point, the follow-
ing robust max-min optimization problem can be formulated:

max∆xmin‖aN‖2=1,aN∈JN ‖S′NaN‖22
s.t. (4a)− (4b)

(10)

The inner problem min‖aN‖2=1,aN∈JN ‖S′NaN‖22 is the
mathematical formulation of the weakest point in Definition
1 which is maximised over the outer programming. From a
game-theoretic point of view, we can present this setting as
an intelligent attacker aims to develop an FDI attack with the
highest probability to bypass BDD and the system operator
tries to improve his/her defence strategy against this intelligent
attacker.

In the following sections, we will show that the two-stage
problem (10) can be reduced into a single-stage minimisation
problem by analytically representing the weakest point using
the principal angles between JN and J ′N .

B. Robust MTD for the Grid with Complete Configuration

Similar to the one-dimensional case where the angle be-
tween two unitary vectors u and v is defined as cos θ = vTu,
the minimal angle between subspaces JN ,J ′N ⊆ Rp is defined
as 0 ≤ θ1 ≤ π/2 [33]:

cos θ1 = max
u∈JN,v∈J

′
N

‖u‖2=‖v‖2=1

uTv = uT1 v1 (11)

where θ1 is the minimal principal angle; u1 and v1 are the first
principal vectors. Referring to (11), the following proposition
specifies that the weakest point with the lowest detection rate
of (JN ,J ′N ) is the first principal vector u1 associated with
the minimal principal angle θ1.

Proposition 3. Given a pair of (JN ,J ′N ), the minimum non-
centrality parameter under attack strength ‖aN‖2 = |a| 6= 0

is λmin = a2 sin2 θ1. Meanwhile, λmin is achieved by attacking
the first principal vector u1 of JN .

Proof. Please refer to Appendix D.

When θ1 = π/2, Proposition 3 implies that the minimum
non-centrality parameter is equal to a2. As two subspaces are
orthogonal if θ1 = π/2, Proposition 3 is consistent with the
maximum detection probability stated in Theorem 1 of [21].

In addition, as sin · is monotonically increasing in [0, π/2],
Proposition 3 demonstrates that the two-stage problem (10)
can be equivalently solved by one-stage maximisation:

max∆x θ1

s.t. (4a)− (4b)
(12)

To analytically represent θ1, a sequence of principal angles
Θ = {θ1, θ2, . . . , θn} can be defined iteratively by finding the
orthonormal basis of JN and J ′N such that for i = 2, . . . , n
[33]:

cos θi = max
u∈JN,i,v∈J

′
N,i

‖u‖2=‖v‖2=1

uTv = uTi vi (13)

where JN,i = u⊥i−1 ∩ JN,i−1 and J ′N,i = v⊥i−1 ∩ J ′N,i−1.
Θ can be separated into three parts. Let Θ1 = {θi|θi = 0},

Θ2 = {θi|0 < θi < π/2}, and Θ3 = {θi|θi = π/2} with
cardinality equal to k, r, and l, respectively, and n = k+r+ l.
The corresponding vectors U = {u1,u2, . . . ,un} and V =
{v1,v2, . . . ,vn} are called principal vectors, which are the
orthonormal basis of JN and J ′N , respectively. Similarly, U
and V can also be separated into U1,V1, · · · . Specifically,
U1 = V1 = J ′N ∩ JN represents the intersection subspace
of dimension k and l is the dimension of orthogonality. Fur-
thermore, it is proved that there always exist semi-orthogonal
matrices U and V for any JN and J ′N such that the bi-
orthogonality is satisfied [34]:

UTV = diag([cos θ1, cos θ2, . . . , cos θn]) = Γ (14)

Since the orthogonal projector is uniquely defined [33] and
also by (14), rewriting PN = UUT and P ′N = V V T gives

PNP
′
N = UUTV V T = UΓV T (15)

Eq. (15) is the truncated singular value decomposition (t-
SVD) on PNP ′N where the diagonal matrix Γ contains the
first n largest singular values of PNP ′N , and U and V are
the first (left- and right-hand) n singular vectors of PNP ′N .
As σ(PNP

′
N ) = {1k, cos2 θk+i(i = 1, . . . , r),0k+r+i(i =

1, . . . , l),0n+i(i = 1, . . . ,m − n)}, this t-SVD is an exact
decomposition of PNP ′N .

Based on the t-SVD, Algorithm 1 is proposed to find the
weakest point and the worst-case detection rate. For the grid
with complete configuration, the composite matrix can be full
column rank so that k = 0. Line 6 outputs the weakest point
u1 while line 9 outputs the empty intersection subspace. The
worst-case detection rate is calculated according to Proposition
3 in line 7. Practically, once the MTD strategy is determined,
the weakest point u1 of this strategy can be directly spotted.
Therefore, the system operator can evaluate the worst-case
detection rate with respect to a maximum tolerable attack
strength |a|.
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Algorithm 1: Find the Weakest Point(s) and the Worst-
Case Detection Rate

Input : grid topology G(N , E), reactance perturbation ∆x, and
attack strength |a|

Output: weakest point uk+1, intersection subspace U1, and
worst-case detection rate fmin

1 Construct the pre- and post- MTD measurement matrices JN and
J ′
N , respectively;

2 Find the orthogonal projectors PN and P ′
N on JN and J ′

N . Then
do t-SVD (15);

3 rank = rank([JN ,J
′
N ]); /* Rank of the composite

matrix. */
4 k = 2n− rank; /* The dimension of J ′

N ∩ JN. */
5 cos(θk+1) = Γ(k + 1, k + 1);
6 uk+1 = U(k + 1, k + 1); /* The weakest point in

JN \ (J ′
N ∩ JN ). */

7 fmin = f(a2 sin2(θk+1)); /* The worst-case detection
rate in JN \ (J ′

N ∩ JN ). */
8 if rank = 2n then
9 U1 = ∅; /* Complete MTD configuration. */

10 else
11 U1 = U(:, 1 : k); /* Incomplete MTD

configuration. */
12 end

The t-SVD (15) also results in a solvable reformulation of
(12). The worst-case detection rate can be maximised by the
robust MTD algorithm for the grid with complete configuration
as follows:

min∆x ‖PNP ′N‖2
s.t. (4a)− (4b)

(16)

where the property ‖PNP ′N‖2 = σmax(PNP
′
N ) = cos(θ1) is

used and ‖PNP ′N‖2 ∈ [0, 1].

Remark 1. The robust MTD algorithm (16) requires sufficient
placement of D-FACTS devices (as a planning stage problem)
to guarantee k = 0, e.g., using the ‘D-FACTS placement for
the complete MTD’ algorithm in [19].

C. Robust MTD for the Grid with Incomplete Configuration

The robust MTD in (16) is not tractable for power system
with incomplete MTD configuration. As k 6= 0, θ1 ≡ 0
and ‖PNP ′N‖2 ≡ 1 no matter how ∆x is designed. Fig. 3
shows a three-dimensional incomplete-MTD case. The attack
aN in green shows a random attack attempt with non-zero
λ. However, the weakest point Col(u1) is not trivial. As the
attacker can possibly target Col(u1), the worst-case detection
rate is constantly equal to FPR. In addition to θ1, every attack
in U1 is undetectable. The intersection can be regarded as the
space of the weakest points, whose dimension is calculated as
k = 2n − rank([JN ,J

′
N ]) 6= 0. Therefore, the smallest non-

zero principal angle (which also corresponds to the weakest
point in JN \ (J ′N ∩ JN )) can be found as θk+1 in line 5
of Algorithm 1 with the minimum detection rate calculated
in line 7. Meanwhile, U1, corresponding to the subspace that
cannot be detected, is calculated in line 11.

To solve the intractable problem, the following design
principles are considered which can improve the robust per-
formance of MTD with incomplete configuration:

Principle 1: Minimise k, the dimension of the intersection.
Principle 2: The attacker shall not easily attack on the

intersection subspace U1 by chance.

𝒖𝟏 = 𝑷𝑵# 𝒖𝟏

𝜆$%& = 0

𝒥!

𝒥!"

𝒂𝑵

𝑷𝑵
# 𝒂𝑵

𝜆

Figure 3: An illustration on the grid with incomplete config-
uration, JN ,J ′N ⊂ R3.

Principle 3: Maximise θk+1, the minimum nonzero princi-
pal angle in (JN ,J ′N ).

Each of the principles is discussed as follows.
Principle 1: The idea of Principal 1 is to minimise the

attack space that can never be detected by MTD so that the
probability of detectable FDI attacks increases. Minimising
k is a planning stage problem as the rank of the composite
matrix is almost not related to the perturbation amount of
the D-FACTS devices once they have been deployed [18].
In this paper, we propose a new D-FACTS device placement
algorithm to achieve the minimum k. Compared with the
existing work [17]–[19], our algorithm uses the BLOSSOM
algorithm [35] to find the maximum cardinality matching
[36] of G(N , E), which can reach all necessary buses with
the smallest number of D-FACTS devices. More details are
presented in Appendix E.

Principle 2: From the robust consideration, the following
lemma is derived for the attacks targeting on the weakest
point(s) for the grid with incomplete MTD configuration.

Lemma 1. Let U = (U1,U2,3) where U2,3 is the collection
of columns in U2 and U3. Let aN = U1c1 + U2,3c2,3 with
c1 ∈ Rk and c2,3 ∈ Rr+l. The detection rate on aN does not
depend on the value of c1.

Proof. Please refer to Appendix F.

Although the attackers cannot immediately know the exact
x′ (Assumption 1), Lemma 1 suggests that the MTD algorithm
should be designed such that the attackers cannot easily attack
on U1 by chance. Specifically, considering the attack targeting
a single state i, if Col(JN (:, i)) ⊆ U1, the single-state attack
on the bus i can bypass the MTD while any attack involving
bus i can be detected ineffectively. To avoid ineffective MTD
on this attack, the following constraint is considered.

‖P i
NP

′
N‖2 ≥ γi, ∀i ∈ N c (17)

where P i
N =

(
JN (:, i)TJN (:, i)

)−1
JN (:, i)JN (:, i)T is the

orthogonal projector on Col(JN (:, i)).N c represents the index
set of buses that are included in at least a loop1 of G. Since
‖P i

NP
′
N‖ ∈ [0, 1] and 1 is achieved when Col(JN (:, i)) ⊆ U1,

the threshold γi can be set close but not equal to 1.
Notice that the constraint in (17) cannot eliminate the

weakest point(s) nor improve the worst-case detection rate on
U1, but it can restrict the attacker’s knowledge on the weakest
point(s). Rewriting λ as λ = ‖(I −P ′N )

∑n
i=1 JN (:, i)c(i)‖22,

1As proved by [37], if a bus is not included in any loop, attacks on this
bus cannot be detected regardless of the MTD strategies.
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constraint (17) ensures that (I − P ′N )JN (:, i)c(i) 6= 0,
∀i ∈ N c. To have low MTD detection rate, the attacker has
to coordinate the attack strength on at least two buses to have
low λ which is only possible if x′ is known. As long as the
attacker cannot easily attack U1, the probability of having the
worst case is low and the MTD strategy is still effective from
a robust point of view.

Remark 2. To fulfill constraint (17), all buses in N c should be
incident to at least a branch equipped with D-FACTS devices,
which can be achieved by the proposed D-FACTS devices
placement algorithm in Appendix E.

Principle 3: Although the chance of the worst-case attack
is minimized by Principle 1-2, it does not necessarily imply a
high detection rate when aN /∈ U1. Similarly to (12), the
minimum non-zero principal angle θk+1, which represents
the weakest point in subspace JN \ (J ′N ∩ JN ) should be
maximised by

min∆x cos θk+1

s.t. (4a)− (4b), (17)
(18)

where cos θk+1 is the (k + 1)th largest singular value.
To our knowledge, there is no direct method to solve (18) as

finding the singular value at a certain position requires solving
the SVD of PNP ′N and locating the 1th to kth singular vectors.
Therefore, we propose an iterative Algorithm 2 to solve (18).
In line 1 of Algorithm 2, a warm start ∆x0 is firstly found
by minimising the Frobenius norm ‖ · ‖F , which is shown to
be an upper bound to cos θk+1.

min∆x ‖PNP ′N‖F
s.t. (4a)− (4b), (17)

(19)

For a given warm-start perturbation ∆x0, the intersec-
tion subspace U1 can be located by Algorithm 1. Denoting
U1(∆x0) as U0

1 , the t-SVD (15) can be rewritten as

PNP
′
N =

(
U0

1 ,U2,3

)(I 0

0 Γ2,3

)(
V 0T

1

V T
2,3

)
= U0

1U
0T
1 +U2,3Γ2,3V

T
2,3

where I is the identity matrix of dimension k; Γ2,3 =
diag([cos(θk+1), · · · , cos(θn])) with θk+1 6= 0. Note that
U0

1 = V 0
1 = J ′N ∩ JN .

Therefore, the following optimisation problem can be for-
mulated to minimise cos θk+1:

min∆x ‖PNP ′N −U0
1U

0T
1 ‖2

s.t. (4a)− (4b), (17)
(20)

Denoting the optimal value of (20) as ∆x1, a new inter-
section subspace U1

1 = U1(∆x1) can be located. As ∆x1 is
solved with fixed U0

1 , U1
1 may not be the same as U0

1 . After
finding the new intersection subspace from ∆x1, (20) can be
iteratively solved until convergence, as shown by line 3-11 in
Algorithm 2.

To sum up, Algorithm 2 limits the chance of attacking
on J ′N ∩ JN (Principal 1-2) and guarantees the worst-case
detection rate in JN \ (J ′N ∩JN ) (Principal 3 and (19)-(20))
for the grid with incomplete configuration.

Algorithm 2: Robust MTD for the Grid with Incom-
plete Configuration

Input : grid topology G(N , E), terminating tolerance tol,
maximum iteration number max_ite

Output: reactance perturbation ∆x1

1 Find the warm start point ∆x0 by solving (19);
2 Find the intersection subspace U0

1 by Algorithm 1;
/* iteration until convergence. */

3 while step < max_ite do
4 Find ∆x1 by solving (20);
5 Find the intersection subspace U1

1 by Algorithm 1;
6 if ‖U1

1 −U0
1 ‖2 ≤ tol then

7 break; /* converged. */
8 else
9 U0

1 := U1
1 ;

10 end
11 end

D. Discussions on Full AC Model Design

In previous sections, we theoretically established the robust
MTD algorithm based on the simplified AC model (5)-(7).
There exists similar concept on the weakest point in the
original AC settings (1)-(2). Let h′−1(·) represent the result
of state estimation in (2). The estimated state on attacked
measurement is written as ν̂′a = h′−1(z′a) and the residual
is γ′a = ‖R− 1

2 (z′a − h′(ν̂′a))‖22. The weakest point can be
defined as a unitary attack vector such that γ′a is minimised.
However, there are several obstacles to analytically writing its
expression. Firstly, recall that a = h(ν′ + c) − h(ν′) which
is non-linearly dependent on the post-MTD state ν′ and the
state attack vector c. Note that ν′ is dependent on x′ which
cannot be determined in advance. Second, h′−1(·) requires an
iterative update, such as the Gauss-Newton or Quasi-Newton
algorithm. Although it is possible to reformulate AC-SE as
semi-definite programming [38], it lacks of analytical solution
in general. Third, it is difficult to define the concept of angles
between subspaces defined by two functions h(·) and h′(·).
Consequently, we theoretically derived the robust algorithm
based on the simplified AC model and numerically verify the
performance on AC-FDI attacks in simulation. We found out
that the MTD designed by the sufficient separation between the
subspaces between the real-time Jacobian matrices can provide
effective detection in the full AC model.

V. SIMULATION

A. Simulation Set-ups

We test the proposed algorithms on IEEE benchmarks case-
6, case-14, and case-57 in MATPOWER [39]. AC-OPF is
solved using the Python package PYPOWER 5.1.15. and the
nonlinear optimisation problems are solved using the open
source library SciPy. More simulation setups are given below.

1) Attack Pools and BDD Threshold: Firstly, we define the
attack strength with respect to the noise level as:

ρ =
‖a‖2√∑m

i σ
2
i

(21)

We consider three types of attacks for the simplified AC
model. 1). Worst-case attack where the attacker attacks on
the weakest point uk+1 of a given MTD strategy according to
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Figure 4: ADPs on simplified case-6 system.

Algorithm 1; 2). Single-state attack where the attacker only
injects on single non-reference phase angle; and 3). Random
attack where the attack vector a is randomly generated as
follows. First, the number of attacked state ‖c‖0 = q is drawn
uniformly from set {1, 2, . . . , n}. c is then sampled from
multivariate Gaussian distribution with q non-zero entries.
Second, the attack vector is found as a = Jc and rescaled
by different ρ = 5, 7, 10, 15, 20 according to (21). To simplify
the analysis, the measurement noise is set as σi = 0.01p.u.,∀i
in all case studies. In this case, to have β-MTD, the necessary
condition is ρ ≥

√
λc(β)/m according to Proposition 2.

In the original AC model, the measurement consists of Pi,
Qi, Pk:i→j , and Qk:i→j (1), which are nonlinearly dependent
on θ. Therefore, we randomly sample c from uniform distribu-
tion and classify a = h′(ν′+c)−h′(ν′) into one of the ranges
{[5, 7), [7, 10), [10, 15), [15, 20), [20, 25), [25,∞)} by (21).

We sample no_load=50 load conditions on a uniform
distribution of the default load profile in MATPOWER [39] for
each grid. We then set the D-FACTS devices using different
MTD algorithms and simulate the real-time measurements.
Under each load condition, we generate no_attack=200 at-
tack attempts for each of the attack types. The BDD threshold
τχ(α) is determined with α = 5% FPR.

2) Metrics and Baselines: The key metric to evaluate the
MTD detection performance is the true positive rate, also
known as the attack detection probability (ADP), which is the
ratio between the number of attacks that are detected by the
MTD detector and the total number of attacks.

The max-rank MTD algorithm modified from [17]–[20]
is compared as the baseline where reactances are randomly
changed with µminxi ≤ |∆xi| ≤ µmaxxi. Note that each
reactance is perturbed by µmin > 0 to fulfil the max-rank
condition on the composite matrix. For each attempt of attack
no_attack, we simulate no_maxrank = 20 MTDs of max-
imum rank to evaluate their average detection performance.

B. Verification of Theoretical Analysis on Simplified AC Model

In the first case study, we verify the theoretical analysis of
robust MTD algorithms and demonstrate their effectiveness in
the simplified AC model (5)-(7).

First, the ADPs of case-6 with complete configuration are
illustrated in Fig. 4 for both worst-case attacks and random
attacks. The reactances are changed with τ = 0.2. Meanwhile,
µmin = 0.05 and µmax = 0.2 in the max-rank MTD. In Fig.
4(a), the simulation result on the ADPs of robust MTD is
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Figure 5: ADPs on simplified case-14 system.

the same as the theoretic detection rate f(λmin) calculated
by Proposition 3, which verifies the theoretic analysis and the
design criteria. In addition, the robust MTD algorithm shows
much higher ADPs than the max-rank MTD on the worst-
case attack. Although the max-rank MTD’s performance may
approach the robust MTD in some cases, its average ADP is
similar to the FPR as the worst-case performance cannot be
explicitly considered under the noiseless setting.

In Fig. 4(b), the max MTD is added by solving (9) with
the assumption that the attack vector aN is known, which
represents the performance upper-bound of any MTD design.
As shown by Fig. 4(b), the robust MTD algorithm, not only
guarantees the worst case condition, but also outperforms the
max-rank MTD by 10%-45% on random attacks with different
ρ. Moreover, the gap between robust MTD and max MTD
algorithms is smaller than 25% and approaches to zero when
ρ ≥ 15. However, comparing Fig. 4(a) and Fig. 4(b), it is
worth noting that the major improvement of robust MTD over
max-rank MTD still lies in the worst-case attacks.

Fig. 5 investigates the performance on the case-14 system
with incomplete configuration. By Algorithm 1, the minimum
k is equal to 6 and the worst point in JN \ (J ′N ∩ JN ) is
at u7. Assume that all branches are equipped with D-FACTS
devices and the maximum perturbation ratio is set as τ = 0.2.
Although the detection rates on attacks in U1 are equal to α
according to Lemma 1, the ADP on u7 is nonzero by imple-
menting Algorithm 2 and increases as the strength of the attack
increases. Similar to Fig. 4(a), although the max-rank MTD
algorithm can, by chance, give a high detection rate against
the worst-case attack, its average detection rate is extremely
low. In Fig. 5(b), the gap between the max MTD and the
robust MTD is also small (5%-30%). The results demonstrate
that robust design can also effectively improve the detection
performance for the grid with incomplete configuration.

To further investigate on the weakest points in U1, we
generate single-bus attack with ρ = 10 and record the ADPs
in Fig. 6 with and without Principle 2 (17). First, attacks
targeting bus-8 can only be detected by 5%. This is because
bus-8 is a degree-one bus which is excluded by any loop.
Second, with Principle 2 considered, the robust MTD can
give more than 90% ADPs for all buses. In contrast, there
are attacks against certain buses, e.g. bus-7, 10, 11, and 13
can be barely detected without Principle 2. Consequently,
the simulation result verifies that Principle 2 can sufficiently
reduce the chance of attacking on the weakest points.
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Figure 6: ADPs on single-state attacks of case-14 system.

Table I: Average ADPs on random AC-FDI attacks. Max-
Rk represents the max-rank MTD, and Robust represents the
robust MTD.

ρ
case-6 case-14 case-57

Max-Rk Robust Max-Rk Robust Max-Rk Robust
[5, 7) 7.1% 13.7% 8.6% 18.1% 10.3% 30.3%
[7, 10) 12.6% 33.2% 14.4% 41.2% 15.2% 39.2%
[10, 15) 25.1% 67.3% 27.5% 63.1% 23.7% 55.9%
[15, 20) 44.5% 92.4% 43.4% 87.5% 36.0% 69.1%
[20, 25) 60.2% 98.2% 60.6% 94.5% 50.6% 81.6%

C. Simulation Results on Full AC Model

In this section, we verify the detection effectiveness of the
proposed robust MTD algorithms on FDI attacks under the
original AC settings (1)-(2).

1) Random Attack: Random attacks ADPs for the full-
AC cases-6, case-14, and case-57 systems are summarised
in Table I. Similar to studies on simplified AC models, the
proposed robust algorithms can improve ADPs by 10%-40%
compared with the max-rank algorithm. In particular, for cases
with attack strength below 20, robust MTD can almost double
the ADPs of max-rank MTD for all three systems. Therefore,
the robust MTD designed by the principal angles between the
subspaces of pre- and post- MTD Jacobian matrices are still
effective on defending AC-FDI attacks. In addition, the attacks
with larger attack strength are more likely to be detected while
the detection probability for different systems under the same
attack strength is slightly different due to their different load
levels, parameters (e.g. the reactance to resistance ratios), and
topologies. For instance, case-57 system is harder to detect as
the ADPs in both max-rank and robust MTDs are lower than
the case-6 and case-14 systems.

To confirm detection performance, the residual distributions
for the three systems are summarised in Fig. 7 where kernel
density estimation is used to smooth the histograms. The result
implies that the proposed algorithms can generalise well to
the AC-FDI attacks by sufficiently shifting the distribution
positively, which is shown to be a key property on effective
MTD with the measurement noise considered in Fig. 2. For
each sub-figure, the max-rank MTD performs worse than the
robust MTD on average as well.

2) Impact of Different Placements and Perturbation Ratios
of D-FACTs Devices: Fig. 8 records the simulation results
on AC random attacks under two different D-FACTS devices
placements and four different perturbation ratio limits. In
detail, ‘all’ represents perturbing all branches, whereas ‘part’
represents perturbing on branch- 2, 3, 4, 12, 15, 18, and 20,
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Figure 7: Residual distributions of AC-FDI attacks. The first
row: case-6 system; the second row: case-14 system; the
third row: case-57 system; the first column: attacks in range
[10, 15); the second column: attacks in range [20, 25).
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Figure 8: ADPs under different placements and perturbation
ratios of D-FACTS devices.

which is the outcome of the ‘D-FACTS Devices Placement
Algorithm’ in Appendix E. The simulation result shows that
k = 6 is achieved and all buses are covered except bus 8
in ‘part’ placement. As the maximum perturbation ratio is
reported as 50% in literature [21], τ is set as 0.2, 0.3, 0.4,
and 0.5. As a result, the grey curve in Fig. 8 is simulated
in the same settings as the robust MTD in Table I. When the
number of D-FACTS devices is limited, although the minimum
k is still met by Principle 1, the detection rate is significantly
reduced. To attain a higher detection rate, the perturbation limit
should be further increased. Notably, the dependence of ADP
on different D-FACTS device placements and perturbation
ratios can only be found when the sensor noise is considered.

3) Computational Time: The computational time of the
proposed algorithms are summarised in Table II. We test the
proposed algorithm on the MacBook Pro with Apple M1 Pro
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chip and 32 GB memory. For each system and algorithm, the
computational times under all load conditions are recorded and
averaged. The multi-run strategy is also applied to approach
the global optimum of the nonlinear optimisation problem
which is also included in Table II. Although the computation
time depends on the system scales, number of D-FACTS
devices, and algorithms, they are acceptable for real-time
applications. In practise, as attackers spend time collecting new
measurements and learning new parameters [21], the system
operator can solve robust MTD algorithms with a period much
longer than the state estimation time, e.g., several hours, or
only change the Jacobian matrix JN when the loads are
significantly changed. A flat state vector may also be a choice
to construct the Jacobian matrix if the loads change slowly.

Table II: Computational Time (averaged by no_load runs).

Case No. D-FACTS Algorithm Time (s)
case-6 11 (16) 0.022

case-14
20 Algorithm 2 1.925
20 Algorithm 2 without (17) 0.325
7 Algorithm 2 0.532

case-57 78 Algorithm 2 9.357

VI. CONCLUSIONS

In this paper, we address the real-time robust implementa-
tion of MTD against unknown FDI attacks. Using the concept
of angles between subspaces, we theoretically prove that the
weakest point for any given MTD strategy corresponds to the
smallest principal angle and the worst-case detection rate is
proportional to the sine of this angle, with the impact of
measurement noise being explicitly considered. These novel
findings can help evaluate the effectiveness of any MTD
strategy. Moreover, a robust MTD algorithm is proposed by
increasing the worst-case detection rate for the grid with
complete MTD configuration. We then demonstrate that the
weakest point(s) of incomplete MTD always exist and cannot
be improved. Therefore, robust MTD is proposed for the grid
with incomplete configuration by refraining from the ineffec-
tive MTD operation and improving the worst-case detection
rate in the detectable subspace. The simulation results on
standard IEEE benchmarks verify the effectiveness of real-time
detection in AC-FDI attacks, compared with the baseline. In
the future, we would like to cooperate the proposed robust
MTD algorithm with hiddenness being considered. Mean-
while, a constrained optimisation problem can also be derived
to minimise the usage of D-FACTS devices.

APPENDIX

A. Proof of Proposition 1

The composite matrix of the original and perturbed Jacobian
matrix (6) is written as:

(
J J ′

)
= V

(
B −G B′ −G

)

Acos
r 0

Asin
r 0

0 Acos
r

0 Asin
r



Given the property of the matrix product, the rank of the
composite matrix satisfies rank((J J ′)) ≤ min{m,m, 2n}.
If m < 2n, rank((J J ′)) ≤ m < 2n no matter how the
D-FACTS devices are altered. Therefore, the MTD cannot be
complete if m < 2n.

B. Normalised Measurement Vectors and Matrices

We consider measurement noise follows independent Gaus-
sian distribution which is not necessarily isotropic. Let zN =
R−

1
2 z, eN = R−

1
2 e, and JN = R−

1
2J . The measurement

equation becomes zN = JNθ + eN . PJ , which is defined
on 〈 , 〉

R−
1
2

, now becomes PJN = JN (JTNJN )−1JTN , defined
on 〈 , 〉. Similarly, SJN = I − PJN . It is easy to show
that R−

1
2SJ = SJNR

− 1
2 . As a result, r(zN ) = SJNeN

follows (approximately) standard normal distribution r(zN ) ∼
N (0, I). For convenience, we write PJN and SJN as PN and
SN in short.

C. Proof of Proposition 2

First, a β-MTD has ‖S′NaN‖2 ≥
√
λc(β). The necessary

condition then follows from ‖S′NaN‖2 ≤ ‖SN‖2‖aN‖2 =
‖aN‖2.

Moreover, as aN = R−
1
2a, it also gives

‖S′N‖2‖R−
1
2 ‖2‖a‖2 = ‖R− 1

2 ‖2‖a‖2 ≥
√
λc(β).

As ‖R− 1
2 ‖2 = maxσ(R−

1
2 ) = σ−1

min, it can be
derived that ‖a‖2 ≥ σmin

√
λc(β). Furthermore,

if R = diag([σ, σ, · · · , σ]) is isotropic, it gives
‖R− 1

2a‖2 = σ−1‖a‖2 ≥
√
λc(β). Let ρ = ‖a‖2/

√∑m
i σ

2
i .

We can result in ρ ≥
√
λc(β)/

√
m.

D. Proof of Proposition 3

According to Definition 1, the weakest point j∗N ∈
JN , ‖j∗N‖2 = 1 can be derived by

j∗N = arg min jN∈JN
‖jN‖2=1

√
λeff

= arg min jN∈JN
‖jN‖2=1

‖jN−P ′NjN‖2
‖jN‖2

= arg min jN∈JN
‖jN‖2=1

sin∠{jN ,P ′NjN}
(A.1)

Note that the triangle relationship within the sides ‖jN‖,
‖P ′NjN‖, and ‖jN − P ′NjN‖ and the ratio in (A.1) is the
sine of the angle between the vectors jN and P ′NjN . Basing
on the definition of principal angle (11), the sine of the
angle is minimized when ∠{jN ,P ′NjN} = θ1. The minimum
principal angle is achieved when jN and P ′NjN are reciprocal
such that jN = u1 and P ′NjN = P ′Nu1 = cos θ1v1 [34], [40].

Moreover, the worst-case detection rate is achieved when
attacking on u1 such that

λmin = ‖au1 − a cos θ1v1‖22 = a2 sin2 θ1

E. D-FACTS Devices Placement

A modified minimum edge covering algorithm is proposed
to find the smallest number of D-FACTS devices covering
all buses while satisfying the minimum k condition. The
pseudocode is given by Algorithm 3. In detail, the inputs
to the proposed MTD deployment algorithm are the grid
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information G(N , E) and the output is branch set ED. On
lines 1-2, CB represents the function to calculate the set of
cycle bases of a given graph. The algorithm 3 then removes
any buses that are not included by cycle basis (thus not in
any loops) and the corresponding branches from the grid
G. In line 3-4, the minimum edge covering (MEC) problem
is solved. Given the power grid topology, MEC firstly runs
the maximum (cardinality) matching algorithm to find the
maximum branch set whose ending buses are not incident
to each other [36]. The maximum matching is found by
Edmonds’ BLOSSOM algorithm where the size of the initial
empty matching is increased iteratively along the so-called
augmenting path spotted by blossom contraction [36]. After
constructing the maximum matching, a greedy algorithm is
performed to add any uncovered buses to the maximum
matching set. The resulting set of branches becomes ED, the
minimum edge covering set where each bus is connected to
at least one branch. Lines 5-15 guarantee the minimum k
requirement where it breaks the edge in any identified cycle
bases in G2. At last, line 11-13 is added to avoid adding any
new loop in G1.

Algorithm 3: D-FACTS Devices Placement Algorithm
Input : grid topology G(N , E)
Output: branch set with D-FACTS devices ED

1 L = CB(G); /* find the circle basis */
2 Find buses N1 not in L. Remove N1 and the incident branches

from G. Name the resulting graph as G(N , E);
3 Emin = MEC(G), construct G1(N , Emin) and G2(N , Er) with
Er = E \ Emin;

4 L2 = CB(G2) /* loops in non D-FACTs graph */
5 for loop in L2 do
6 for e in loop do
7 Construct G1(N , Emin) and G2(N , Er) where

Emin ← Emin + e and Er ← Er − e;
8 L1 = CB(G1);

/* loops in D-FACTs graph */
9 if L1 = ∅ then

10 break
11 else
12 G1(N , Emin) and G2(N , Er) where

Emin ← Emin − e and Er ← Er + e;
13 end
14 end
15 end

F. Proof of Lemma 1

Rewrite the non-centrality parameter as
√
λ = ‖(I − V V T )Uc‖2

= ‖(U − V Γ)c‖2
= ‖ ((U1,U23)− (V1Γ1,V23Γ23)) c‖2

(A.2)

As U1 = V1 and Γ1 = I , (A.2) can be reduced to
√
λ =

(U23 − V23Γ23)c23 which does not depend on c1.
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