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The Impact of Side Information on Physical Layer
Security under Correlated Fading Channels

Farshad Rostami Ghadi, F. Javier López-Martı́nez, Wei-Ping Zhu, and Jean-Marie Gorce

Abstract—In this paper, we investigate the impact of side
information (SI) on the performance of physical layer security
(PLS) under correlated fading channels. By considering non-
causally known SI at the transmitter and exploiting the copula
technique to describe the fading correlation, we derive closed-
from expressions for the average secrecy capacity (ASC) and
secrecy outage probability (SOP) under positive/negative depen-
dence conditions. We indicate that considering such knowledge at
the transmitter is beneficial for system performance and ensures
reliable communication with higher rates, as it improves the SOP
and brings higher values of the ASC.

Index Terms—Physical layer security, side information, average
secrecy capacity, secrecy outage probability, correlated fading.

I. INTRODUCTION

The broadcast nature and the inherent randomness of wire-
less channels have always made information security vulner-
able to eavesdropping and jamming attacks. Therefore, the
issues of reliability and security are momentous challenges
in designing future wireless networks such as sixth-generation
(6G) technology [1]–[3]. One of the alternative approaches to
protect information from unauthorized access and guarantee
secure communication instead of applying traditional crypto-
graphic algorithms is physical layer security (PLS). The princi-
ple of PLS was first proposed by Shannon [4] and then studied
by Wyner [5] for a basic wiretap channel exploiting Shannon’s
notion of perfect secrecy. In Wyner’s proposed model, a
transmitter wants to send a confidential message to a legitimate
receiver through a discrete memoryless channel (DMC) while
the eavesdropper attempts to decode the message. In this state,
Wyner defined the maximum rate of reliable communication
from the transmitter to the legitimate receiver as the secrecy
capacity (SC), and showed that perfect secrecy could be
achieved when the legitimate receiver has a better channel than
the eavesdropper. Later, Csiszár and Körner extended Wyner’s
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result to non-degraded broadcast channels with confidential
messages and showed that positive SC is always achievable
if the main channel (transmitter-to-legitimate receiver) is less
noisy [6]. Leung-Yan-Cheong and Hellman also generalized
Wyner’s studies to the Gaussian wiretap channel and defined
the SC as the difference between capacities of the main and
eavesdropper channels (transmitter-to-eavesdropper) [7]. On
the other hand, due to the provable effects of the side infor-
mation (SI) in reducing destructive effects of the interference
and guaranteeing reliable communication with higher rates,
Mitrpant et al. [8] analyzed the Gaussian wiretap channel with
SI. Besides, by considering the Gaussian channel with known
SI at the transmitter, Costa [9] described a dirty paper model
in order to examine how much information can be reliably
sent, assuming that the recipient cannot distinguish between
ink and dirt. Costa’s analysis showed that the dirty channel
model has the same capacity as the Gaussian model so that
SI does not affect the channel capacity. Exploiting the similar
approach of writing on dirty paper, Chen and Vink [10] studied
the impact of SI on the Gaussian wiretap channel to find out
how much secret information can be reliably and securely sent
to the legitimate receiver without leaking information about
the secret message to the eavesdropper. They showed that
the SI at transmitter provides a larger SC and guarantees a
more secure communication. Moreover, Chia and El Gamal
[11] provided a lower bound of SC for the wiretap channel
with SI available causally at both encoder and decoder, where
they showed the lower bound in this case is strictly larger
than that for the non-causal case obtained by Liu and Chen
[12]. However, it is worth noting that the assumption of non-
causally available SI at the transmitter is inherent to the dirty
paper channel introduced by Costa [9], and is a key building
block in information theory. According to Jafar’s work [13],
capacity advantage of non-causal SI overcausal SI is bounded
by the number of genie bits required to make the transmitter
SI available to the receiver as well, which can be none in
some cases, e.g., when SI at the transmitter is a deterministic
function of the SI at the receiver. [14]. In any case, the
consideration of non-causal SI is of interest for bench-marking
purposes as a reference scenario, compared to the case with
causal SI.

From the physical layer viewpoint, the received signal at
the legitimate receiver and eavesdropper are different due to
propagation environment effects such as large-scale and small-
scale fading. Furthermore, the main channel and eavesdropper
channel are practically correlated due to the physical limitation
of antenna spacing or one physical environment, the proximity
of the legitimate receiver and eavesdropper, and the presence
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or absence of scatters around them [15]. For this purpose,
several works have analyzed secrecy metrics of PLS over var-
ious correlated fading blank (i.e., without SI) wiretap channels
in recent years: The upper bound of SC and the asymptotic
behavior of outage probability for a correlated Rayleigh fading
wiretap channel were respectively studied in [16], [17]; closed-
form expressions for the average secrecy capacity (ASC) and
secrecy outage probability (SOP) over correlated Log-normal
fading channels were obtained in [18]; SOP performance over
correlated composite Nakagami-m/Gamma fading channels
including shadowing and multi-path fading was investigated in
[19]; compact expressions for the ASC and SOP in correlated
α − µ fading channels were derived in [20]. Moreover, only
recently, the effect of fading correlation on the performance
of PLS by exploiting copula theory was addressed in [21]
and [22] again for the case of blank wiretap channels. Copula
theory is a plausible approach to incorporate arbitrary depen-
dence structures, that has recently become quite popular in the
context of performance analysis of wireless communication
systems [23]–[28]. In [21], the authors derived closed-form
expressions for the ASC, SOP, and secrecy coverage region
(SCR) over correlated Rayleigh fading channel using Farlie-
Gumbel-Morgenstern (FGM) copula, while the authors in [22]
represented the upper and lower bound of SOP for the same
fading channel.

Motivated by the significant role of SI in providing a
larger SC and rate equivocation region in wiretap channels, in
this paper, we extend the dirty paper model of the Gaussian
wiretap channel considered in [10], to wireless fading com-
munications, in order to understand the behavior of important
secrecy performance metrics under the assumption of SI at
the transmitter. We also generalize [21] by considering a
correlated wiretap fading channel and generate arbitrary mul-
tivariate coefficients of the main and eavesdropper channels by
copula theory. Then, considering non-causally known SI at the
transmitter under correlated Rayleigh fading wiretap channel,
we exemplify how closed-form expressions for the ASC and
SOP can be obtained for the case of using the FGM copula.
Therefore, the main contributions of our work are summarized
as follows:

• We provide an information-theoretical copula-based for-
mulation of the secure communication model over correlated
wireless fading channels assuming non-casually SI at the
transmitter and review the concept of copula theory and
corresponding points.

• We represent a general formulation to describe the ar-
bitrary dependence between fading channels coefficients and
corresponding signal-to-noise ratios (SNRs). Then, by exploit-
ing the compact probability density function (PDF) obtained
by the FGM copula for Rayleigh fading coefficients, we
derived the closed-from expression of ASC and SOP.

• Finally, we analyze the impact of non-casually known SI
at the transmitter on the performance of ASC and SOP by
changing the SI values and the dependence parameter within
the defined range.

The rest of this paper is organized as follows. Section II
describes the system model considered in our work. In section
III, we characterize the SC of our proposed model. In section

Fig. 1. System model depicting a correlated fading wiretap channel with SI
at the transmitter.

IV, we briefly review the concept of copula and provide the
copula-based multivariate distribution, and then present the
main results of secure communication with SI under correlated
Rayleigh fading wiretap channel. We derive the exact closed-
form expression of ASC and SOP in subsections V-A and V-B,
respectively. In section VI, the validity of analytical results is
illustrated numerically. Finally, the conclusions are drawn in
section VII.

II. SYSTEM MODEL

We consider a wireless wiretap channel with the non-
causally known SI Si, 1 ≤ i ≤ n at the transmitter1 as shown
in Fig. 1. In this scenario, the legitimate transmitter (Alice)
sends the confidential message to the legitimate receiver (Bob)
through the main channel (transmitter-to-receiver), while the
eavesdropper (Eve) attempts to decode the message from its
received signal through the eavesdropper channel (transmitter-
to-eavesdropper). Let Xn be the input set, Ynm be the output
set of the legitimate receiver, Yne be the output set of the
eavesdropper, and S be the finite set of SI at the transmit-
ter. Specifically, we assume the transmitter wants to send a
message W k ∈ Wk = {1, 2, ...,M} to the legitimate receiver
in n uses of the channel. Since the SI is considered to be
non-causally known at the transmitter, Alice encodes W k and
Sn ∈ Sn into a codeword Xn ∈ Xn for transmission over
the main channel in a dirty paper fashion. Bob decodes the
received signal Y nm ∈ Ynm by making an estimate Ŵ k (Y nm)
of the message W k, while Eve received the signal Y ne ∈ Yne .
Therefore, the received signals by Bob Ym(i) and by Eve Ye(i)
can be determined as follows:

Ym(i) = hm(i)X(i) + S(i) + Zm(i), (1)

Ye(i) = he(i)X(i) + S(i) + Ze(i), i = 1, ..., n, (2)

where S(i) are the non-causally known SI at the transmitter,
with variances Q (S ∼ N (0, Q)) which are independently
and identically distributed (i.i.d) with probability distribution
p(s). The terms Zm(i) and Ze(i) correspond to i.i.d. additive
white Gaussian noise (AWGN) with zero mean and variances
Nm and Ne at the legitimate receiver and eavesdropper,
respectively. Finally, hm(i) and he(i) are the corresponding

1We assume that the interfering sequence Si available as SI at the
transmitter is injected from an external dominant source that exhibits a strong
line-of-sight condition with reduced fading fluctuation [29, Fig. 5]. Hence,
we use this unfaded counterpart approximation for the fading coefficients
corresponding to the interfering signals in our analysis.
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block fading channel coefficients and hence, the channel power
gains are gm(i) = |hm(i)|2 and ge(i) = |he(i)|2, where the
fading process hm(i) and he(i) are correlated. We suppose that
both the main channel and eavesdropper channel are quasi-
static fading channels, meaning that the fading coefficients,
albeit random, are constant during the transmission of an entire
codeword (i.e., hm(i) = hm and he(i) = he,∀i = 1, ..., n)
and independent from codeword to codeword. We also assume
that the channel input, the channel fading coefficients, and the
channel noises are all independent. Furthermore, we consider
that the codewords sent by transmitter over the channels are
subject to the average power constraint as follows:

1

n

n∑
i=1

E{|X(i)|2} ≤ P. (3)

Therefore, the instantaneous random SNR at the legitimate
receiver and eavesdropper are given by γm = P |hm|2

Nm
and

γe = P |he|2
Ne

, respectively, while their corresponding average

value are defined as γ̄m = PE{|hm|2}
Nm

and γ̄e = PE{|he|2}
Ne

.
In the proposed system model, it is assumed that W k

is uniformly distributed on {1, 2, ...,M} as in 10. Thus,
the transmission rate to the legitimate receiver is defined
as R = H(W k)/n = logM/n, and the equivocation rate
of the eavesdropper which indicates the secrecy level of
confidential messages against the eavesdropper is denoted as
Req = H

(
W k|Y ne

)
/n, where H

(
W k|Y ne

)
is the remaining

entropy of W k conditioned on the value of Y ne . Besides, the
average error probability is defined as:

PE =
1

M

M∑
i=1

Pr
(
Ŵ k (Y nm) 6= |W k = i

)
. (4)

Consequently, the secrecy rate Rs is defined to be achiev-
able, if there exist a code

(
2nRs , n

)
such that for all ε > 0 and

sufficiently large n, PE ≤ ε and Req ≥ Rs − ε. So, the SC
Cs can be defined as the supremum of achievable transmission
rate Rs:

Cs
∆
= sup
PE≤ε

Rs. (5)

III. SECRECY CAPACITY DEFINITION

In this section, first, we introduce the SC definition for the
discrete memoryless wiretap channel (DMWC) with SI at the
transmitter. Then, we exploit this definition to derive the SC
of the considered model in a wireless scenario.

Theorem 1. The SC bounds for the DMWC with non-causally
known SI at the transmitter was defined in [10] as follows:

Rls ≤ Cs ≤ Rus , (6)

where

Rls = max
U→(X,S)→Ym→Ye

I(U, Ym)−max{I(U ;S), I(U ;Ye)},

(7)

Rus = min{Cm, Re}, (8)

Re = max
U→(X,S)→Ym→Ye

[I(U ;Ym)− I(U ;Ye)], (9)

U is a auxiliary random variable so that U → (X,S) →
Ym → Ye forms a Markov chain, Re is an ancillary secrecy
rate, and Cm is the capacity of the main channel with consid-
eration of SI that is defined as:

Cm = max
U→(X,S)→Ym→Ye

[I(U ;Ym)− I(U ;S)] . (10)

Theorem 1 shows the bounds for the SC of DMWC in
the presence of non-causally known SI at the transmitter. In
contrast to the method of proving the SC of the blank DMWC
(i.e., the difference between the main and eavesdropper chan-
nels), in which only two extreme points were proved for the
achievable region [7], this technique provides a more general
case of proving achievable region by defining an auxiliary
parameter U [10]. Thus, in order to determine the exact
expression of the SC for the corresponding wiretap channel
in some specific scenarios of considering SI, we introduce the
following corollaries.

Corollary 1. According to Theorem 1, if there is an auxiliary
parameter Um so that
1) Um → (X,S)→ Ym → Ye forms a Markov chain,
2) I(Um;Ym)− I(Um;S) = Cm,
3) I(Um;S) ≥ I(Um;Ye),
then the SC Cs is equal to Cm.

Corollary 2. According to Theorem 1, if there is an auxiliary
parameter Ue so that
1) Ue → (X,S)→ Ym → Ye forms a Markov chain,
2) I(Ue;Ym)− I(Ue;Ye) = Re,
3) I(Ue;Ye) ≥ I(Ue;S),
then the SC Cs is equal to Re.

Proof. The details of the proof are in Appendix A.

According to (8) and the conditions in Corollaries 1 and 2,
the SC for a DMWC could be Cm or Re. Now, by extending
Theorem 1 to the Gaussian wiretap channel and assuming the
auxiliary random variable U = X + αS, where α is a real
number and X is independent of S, the SC can be determined.
Since the information rate from the transmitter to the receiver
must be larger than 0 for practical reasons, the third condition
in both Corollaries 1 and 2 should be considered. To this end,
the following lemma is considered to specify the range of
parameter α and find the optimal value of α for a transmission
with maximum possible rate.

Lemma 1. The conditions for Corollaries 1 and 2 are explic-
itly realized based on the system model parameters as:

I(U ;S) ≥ I(U ;Ye)⇐⇒ α ≥ α0 or α ≤ α−0, (11)
I(U ;S) < I(U ;Ye)⇐⇒ α−0 < α < α0, (12)

where

α0 =
P

P +Ne

(
1 +

√
P +Q+Ne

Ne

)
, (13)

α−0 =
P

P +Ne

(
1−

√
P +Q+Ne

Ne

)
. (14)
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Proof. The details of the proof are in Appendix B.

From an information theoretic perspective, the result in
Theorem 1 can be also extended to the continuous alphabets
and average input constraints by using the standard argument
as in [30], and also can be extended to the wireless channels
by considering the propagation environment effects such as
fading, shadowing, path-loss, etc [31]. Hence, by considering
Lemma 1 and Corollaries 1 and 2, SC for the block fading
wiretap channel with non-causally known SI at the transmitter
is defined as the following theorem.

Theorem 2. The SC Cs for the block fading wiretap channel
with non-causally known SI at the transmitter is determined
as:

Cs =

{
log2 (1 + γm) , if Corollary 1

log2

(
1+γ̄ms+γm
1+γ̄es+γe

)
, if Corollary 2

, (15)

where γ̄ms = Q
Nm

and γ̄es = Q
Ne

.

Proof. The details of the proof are in Appendix C.

IV. COPULA-BASED MULTIVARIATE DISTRIBUTION

Since the fading channel coefficients are assumed correlated
in the considered model, we need to generate the correspond-
ing multivariate distribution of the random SNRs. Therefore,
in this section, we first briefly review the concept of copula
theory [32], and then we determine the joint PDF of the
main channel and eavesdropper SNRs. As mentioned in the
literature, copula theory is a flexible approach to generate
the multivariate distribution of correlated random variables
(RVs) by only using their corresponding marginal distribu-
tions. Besides, copulas are defined by a particular dependence
parameter which indicates the intensity of dependency for
unknown RVs.

Definition 1 (Two-dimensional copula). Let V = (V1, V2) be
a vector of two RVs with marginal cumulative distribution
functions (CDFs) F (vb) = Pr(Vb ≤ vb) for b = 1, 2,
respectively, and relevant bivariate CDF F (v1, v2) = Pr(V1 ≤
v1, V2 ≤ v2). Then, the copula function C(u1, u2) of V =
(V1, V2) defined on the unit hypercube [0, 1]2 with uniformly
distributed RVs Ub := F (vb) for b = 1, 2 over [0, 1] is given
by

C(u1, u2) = Pr(U1 ≤ u1, U2 ≤ u2). (16)

Theorem 3 (Sklar’s theorem). Let F (v1, v2) be a joint CDF
of RVs with margins F (vb) for b = 1, 2. Then, there exists one
copula function C such that for all vb in the extended real line
domain R̄,

F (v1, v2) = C (F (v1), F (v2))) . (17)

Corollary 3. By applying the chain rule to (17), the joint PDF
f(v1, v2) is derived as:

f(v1, v2) = f(v1)f(v2)c (F (v1), F (v2)) , (18)

where c (F (v1), F (v2)) = ∂2C(F (v1),F (v2))
∂F (v1)∂F (v2) is the copula

density function and f(vb) for b = 1, 2 are the marginal PDFs,
respectively.

Theorem 4 (Fréchet-Hoeffding bounds). For any copula
function C : [0, 1]2 → [0, 1] and any (u1, u2) ∈ [0, 1]2, the
following bounds hold: C− ≺ C ≺ C+; where C1 ≺ C2 if
C1(u1, u2) ≤ C2(u1, u2)∀(u1, u2) ∈ [0, 1]2, and

C−(u1, u2) = max (u1 + u2 − 1, 0) , (19)
C+(u1, u2) = min (u1, u2) . (20)

The upper and lower bounds model extreme dependence
structures. If C = C− the pair of RVs are said to be
countermonotonic, whereas C = C+ means that both RVs are
comonotonic. The copula function for the independent case
C⊥(u1, u2) = u1u2 defines the limit between positive and
negative dependence. Let us assume two Copulas that verify:
C− ≺ C1 ≺ C⊥ ≺ C2 ≺ C+. Then, C1 models a negative
dependence and C2 a positive dependence.

Note that the above definitions are valid for any arbitrary
choice of fading distributions as well as copula functions. We
will now indicate how the secrecy performance metrics can
be characterized in the closed-form expression under corre-
lated Rayleigh fading channels, exploiting the FGM copula.
The main advantage of FGM copula is that it can describe
both positive and negative dependencies between RVs, while
offering good mathematical tractability.

Definition 2. [FGM copula] The FGM copula with depen-
dence parameter θ ∈ [−1, 1] is defined as:

CF (u1, u2) = u1u2 (1 + θ(1− u1)(1− u2)) , (21)

where θ ∈ [−1, 0) and θ ∈ (0, 1] denote the negative and
positive dependence structures respectively, while θ = 0
indicates the independence structure.

Since we assume the channel fading coefficients follow
Rayleigh distribution, the corresponding random SNRs γm >
0 and γe > 0 are exponentially distributed with following

marginal distributions: f(γj) = 1
γ̄j

e
−
γj
γ̄j , F (γj) = 1 − e

−
γj
γ̄j

for j ∈ {m, e}, respectively.

Lemma 2. The joint PDF of γm and γe based on FGM copula
is determined as:

f(γm, γe) =
e−

γm
γ̄m
− γeγ̄e

γ̄mγ̄e

[
1 + θ

(
1− 2e−

γm
γ̄m

)(
1− 2e−

γe
γ̄e

)]
.

(22)

Proof. By applying the partial derivatives in (21), inserting it
into (18), and then considering the SNRs marginal distribution,
the proof is completed.

Remark 1. It is possible incorporate the effect of fading
severity into the analysis, i.e., to consider more general fading
conditions than Rayleigh fading. This usually comes at the
price of an increased mathematical complexity. For instance,
assuming Nakagami-m fading would require the use of a
generalization of the correlated Gamma distribution (i.e. more
complex than the one in [33, Theorem 4], to include different
fading severity parameters for Bob and Eve’s channels.
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C̄1
s =

e
1
γ̄m

ln 2
E1

(
1

γ̄m

)
, (26)

C̄2
s =

1

ln 2

(
ln

(
1 + γ̄ms
1 + γ̄es

)
+ e

1+γ̄ms
γ̄m E1

(
1 + γ̄ms
γ̄m

)
− e

1+γ̄es
γ̄e

(
E1

(
1 + γ̄ms
γ̄e

)
− E1

(
1 + γ̄es
γ̄e

))

− e
1+γ̄es
γ̄e

+ 1+γ̄ms
γ̄m

(
E1

(
(γ̄m + γ̄e)(1 + γ̄ms)

γ̄mγ̄e

)
+ θ

[
E1

(
(γ̄m + γ̄e)(1 + γ̄ms)

γ̄mγ̄e

)
− e

(1+γ̄ms)
γ̄m E1

(
(γ̄m + 2γ̄e)(1 + γ̄ms)

γ̄mγ̄e

)

− e
(1+γ̄es)
γ̄e E1

(
(2γ̄m + γ̄e)(1 + γ̄ms)

γ̄mγ̄e

)
+ e

(1+γ̄es)
γ̄e

+
(1+γ̄ms)
γ̄m E1

(
2(γ̄m + γ̄e)(1 + γ̄ms)

γ̄mγ̄e

)]))
. (27)

V. SECRECY PERFORMANCE METRICS: ASC AND SOP

In this section, we derive closed-form expressions for ASC
and SOP by exploiting the joint PDF obtained in section IV.

A. ASC Analysis

The ASC for considered system model based on Corollaries
1 and 2 can be defined as:

C̄1
s =

∫ ∞
0

∫ ∞
0

log2 (1 + γm) f (γm, γe) dγedγm, (23)

C̄2
s =

∫ ∞
0

∫ γ̄

0

log2

(
1 + γ̄ms + γm
1 + γ̄es + γe

)
f (γm, γe) dγedγm,

(24)

where γ̄ = γm + γ̄ms − γ̄es.

Theorem 5. The ASC for concerned correlated Rayleigh
fading wiretap channel with non-causally known SI at the
transmitter under consideration of the Corollary 1 and Corol-
lary 2 is determined as:

C̄s =

{
C̄1
s , if Corollary 1
C̄2
s , if Corollary 2

, (25)

where C̄1
s and C̄2

s are given by (26) and (27), respectively; and
E1(t) =

∫∞
t

e−z

z dz is the Exponential Integral.

Proof. The details of the proof are in Appendix D.

B. SOP Analysis

The SOP is defined as the probability that the random SC
Cs is less than a target secrecy rate Rs > 0, or:

Psop = Pr(Cs ≤ Rs) = 1− Pr(Cs > Rs). (28)

So, the SOP under consideration of Corollary 1 is defined as:

P 1
sop = 1− Pr (log2 (1 + γm) > Rs) (29)

= 1− Pr
(
γm > 2Rs − 1

)
(30)

= 1−
∫ ∞

0

∫ ∞
2Rs−1

f(γm, γe)dγmdγe, (31)

and similarly, the SOP under consideration of Corollary 2 is
given by

P 2
sop = 1− Pr

(
log

(
1 + γ̄ms + γm
1 + γ̄es + γe

)
> Rs

)
(32)

= 1− Pr
(
γm > 2Rs (1 + γ̄es + γe)− (1 + γ̄ms)

)
(33)

= 1−
∫ ∞

0

∫ ∞
γth

f(γm, γe)dγmdγe, (34)

where γth = 2Rs (1 + γ̄es + γe)− (1 + γ̄ms).

Theorem 6. The SOP for concerned correlated Rayleigh
fading wiretap channel with non-causally known SI at the
transmitter under consideration of the Corollary 1 and Corol-
lary 2 is given by

Psop =

{
P 1
sop, if Corollary 1
P 2
sop, if Corollary 2

, (35)

where P 1
sop and P 2

sop are expressed as follows:

P 1
sop = 1− e−

(2Rs−1)
γ̄m , (36)

P 2
sop = 1−

[
γ̄me

−γ̄th
γ̄m

γ̄m + 2Rs γ̄e
+ θ

(
γ̄me

−γ̄th
γ̄m

γ̄m + 2Rs γ̄e
− γ̄me

−2γ̄th
γ̄m

γ̄m + 2Rs+1γ̄e

− 2γ̄me
−γ̄th
γ̄m

2γ̄m + 2Rs γ̄e
+

γ̄me
−2γ̄th
γ̄m

γ̄m + 2Rs γ̄e

)]
, (37)

and γ̄th = 2Rs (1 + γ̄es)− (1 + γ̄ms).

Proof. The details of proof are in Appendix E.

VI. NUMERICAL RESULTS

In this section, the analytical expressions previously derived
and Monte-Carlo (MC) simulation for the ASC and SOP are
presented, with the special focus on comparing the perfor-
mances in the presence/absence of SI and fading correlation.
It should be noted that for the case of analyzing ASC under
correlated fading, additional simulations are included using
the Frank copula [32] to extend the analytical results obtained
with the FGM copula to a wider range of values for both
positive and negative dependencies by exploiting Frank’s
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Fig. 2. The ASC versus γ̄m for selected values of γ̄e, a target secrecy rate
Rs = 1.5 bits, the FGM dependence parameter θ = 1, and given values of
SI γ̄ms = 5 dB, γ̄es = −10 dB.

copula parameter ζ ∈ R\{0}. Fig. 2 shows the impact of
SI on the performance of ASC C̄s based on the variations
of the average main channel SNR γ̄m for selected values of
the average eavesdropper channel SNR γ̄e and given values
of SI under positive dependence structure. It can be seen
that SI does not affect the performance of the ASC under
consideration of Corollary 1 since C1

s is independent of SI
and only depends on γm based on SC definition in (15). On
the other hand, it is observed that the SI has positive effects
on the behavior of the ASC under Corollary 2, so that for
the low SNR regime the efficiency of SI is more tangible as
compared with the high SNR regime. To further evaluate the
impact of SI, the behavior of ASC based on the SI ratio (i.e.,
γ̄ms/γ̄es) for three different scenarios γ̄m > γ̄e, γ̄m = γ̄e, and
γ̄m < γ̄e under positive dependence structure is illustrated in
Fig. 3. It is clear that for all three scenarios, C̄1

s is constant
during the changes of the SI ratio and only depends on the
values of γ̄m. On the other side, C̄2

s continuously increases
by increasing the SI ratio for all scenarios. The interesting
point is that even under the condition that the main channel
is worse than the eavesdropper channel (i.e., γ̄m < γ̄e), C̄2

s

still grows and the ASC is achievable. In Fig. 4, the effect
of SI on the performance of SOP based on the variations of
γ̄m for selected values of γ̄e and given values of SI under
positive dependence structure is provided. It can be seen that
P 1
sop provides the lowest values of SOP and it is independent

of the SI and γ̄e. In contrast, considering SI at the transmitter
has constructive effects on the performance of P 2

sop so that for
all selected values of γ̄e, a lower value of SOP is achievable as
compared to the case where there is no SI. From a correlation
viewpoint, we evaluate the impact of fading correlation on the
performance of ASC and SOP in the presence of SI in Figs. 5
and 6. In these cases, we have modeled the correlated fading
channels based on the copula approach where the dependence
parameter shows the measure of dependency. In this regard,
it should be noted there is a relation between the linear
correlation coefficient ρ ∆

= cov[γmγe]/
√

var[γm]var[γe] and
the copula dependence parameter. Therefore, to have a clearer
insight with conventional correlation, we also approximate
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Fig. 3. The ASC versus γ̄ms/γ̄esfor a target secrecy rate Rs = 1.5 bits,
the FGM dependence parameter θ = 1, and different scenarios when, (a) the
main channel’s condition is better than the eavesdropper’s (γ̄m > γ̄e), (b) the
main channel’s condition is the same as eavesdropper’s (γ̄m = γ̄e), and (c)
the main channel’s condition is worse than the eavesdropper’s (γ̄m < γ̄e).
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Fig. 4. The SOP versus γ̄m for selected values of γ̄e, a target secrecy rate
Rs = 1.5 bits, the FGM dependence parameter θ = 1, and given values of
SI γ̄ms = 5 dB, γ̄es = −5 dB.

the corresponding values of ρ for the considered copula
dependence parameters. Fig. 5 shows the behavior of ASC
in terms of γ̄m under correlated Rayleigh fading channels for
selected values of the dependence parameters and SI. Given
the independence of C̄1

s from correlation and SI, it is clear that
C̄1
s gains higher values in terms of ASC during the changes of
γ̄m. In contrast, it can be observed that the correlation effect
is gradually eliminated in the high SNR regime in terms of
P 2
sop. We also see that positive dependence worsens the ASC

performance compared to the independent fading case since
as the channels become more correlated, they tend to behave
more similarly, and thus the chances for the transmitter to
transmit at a high secrecy rate decreases. It should be noted
that the Fréchet-Hoeffding bounds are not symmetric w.r.t.
ρ = 0, but they tend to ±1. Therefore, we observe that the
Frank copula gets close to the Fréchet-Hoeffding bounds for
ζ = ±35 in Fig. 5, which exhibits a non-symmetric behavior.
We also see that correlation for the case with FGM copula
is now symmetric since such copula only can model weak
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Fig. 5. The ASC versus γ̄m for selected values of γ̄e, a target secrecy rate
Rs = 1.5 bits, the FGM dependence parameter θ = ±1 (ρ ≈ ±0.25), ζ =
±35 (ρ ≈ [−0.63, 0.92]) and given values of SI γ̄ms = 5 dB, γ̄es = −10
dB.

0 5 10 15 20 25 30 35 40

Average main channel SNR, γ̄m (dB)

10
-3

10
-2

10
-1

10
0

S
O
P
,
P

s
o
p

γ̄e = 5 dB

γ̄e = 10 dB

γ̄e = 15 dB

Theory, P 1
sop

Simulation, P 1
sop

Theory, P 2
sop

, θ = −1

Simulation, P 2
sop

, θ = −1

Theory, P 2
sop

, θ = 0

Simulation, P 2
sop

, θ = 0

Theory, P 2
sop

, θ = 1

Simulation, P 2
sop

, θ = 1

Fig. 6. The SOP versus γ̄m for selected values of γ̄e, a target secrecy rate
Rs = 1.5 bits, the FGM dependence parameter θ = ±1 (ρ ≈ ±0.25), ζ =
±35 (ρ ≈ [−0.63, 0.92]) and given values of SI γ̄ms = 5 dB, γ̄es = −5
dB.

dependences, and hence is distant to the Fréchet-Hoeffding
bounds, thus not reaching the maximum permissive range of
±1 for ρ.

In Fig. 6 the performance of SOP in terms of γ̄m under
correlated Rayleigh fading channels for selected values of
dependence parameters and SI is represented. As expected,
P 1
sop provides the lowest values of SOP during γ̄m variations

regardless the correlation effects. In contrast, it can be seen that
when the main channel is better than the eavesdropper channel
(γ̄m > γ̄e), P 2

sop will be achieved less than 0.5, while under
the condition that γ̄m ≤ γ̄e, P 2

sop becomes greater than 0.5. In
this case, we can see that the positive dependence improves
the SOP performance as compared with the independent fading
case when P 2

sop < 0.5, since if γ̄m > γ̄e, then the larger the
correlation level, the higher the probability of having γm > γe.

VII. CONCLUSION

In this paper, we analyzed the impact of SI on PLS
performance under correlated fading channels. To this end,
we derived the closed-from expressions for ASC and SOP by

exploiting copula theory in the presence of SI and fading cor-
relation. We proved that considering the SI at the transmitter,
compared with the blank fading wiretap channel considered
in [21], improves the efficiency of the system model in terms
of ASC and SOP. Hence, an increase in SI provides a higher
value of ASC as well as a lower SOP. We also showed that
for a fixed SI, an increment in the correlation decreases the
ASC in the low SNR regime, while improves the performance
of SOP in the specific cases. The extension of these results
to consider different interfering sources affecting Bob and
Eve, their impact on the system’s SI, the effect of causal
SI knowledge, and the consideration of more general fading
conditions are potential lines for future research activities.

APPENDIX A
PROOF OF COROLLARIES 1 AND 2

Regarding the definition of Rs and Re, we have Rs ≤ Re.
Besides, since I(Ue;Ye) ≤ I(Ue;S) and Ue maximizes
I(Ue;Ym)− I(Ue;Ye), it follows that:

Re = I(Ue;Ym)− I(Ue;Ye) (38)
= I(Ue;Ym)−max {I(Ue;S)− I(Ue;Ye)} ≤ Rs. (39)

Thus, we have Rs = Re. On the other hand, it is known that
Cs ≥ Rs = Re. Hence, it is only needed to prove Cs ≤ Re.
For this purpose, by exploiting the data processing theorem
and Fano’s inequality, we have:

H
(
W k|Y nm, Y ne

)
≤H

(
W k|Y km

)
≤ H

(
W k|Ŵ k

)
(40)

≤ h (PE) + nRPE , (41)

where h(.) is the binary entropy function. Now, using the
definitions R = H

(
W k
)
/n and d = H

(
W k|Y ne

)
/H
(
W k
)
,

nRd can be determined as:

nRd = H
(
W k|Y ne

)
(42)

≤ H
(
W k|Y ne

)
−H

(
W k|Y nm, Y ne

)
+ h (PE) + nRPE (43)

(a)

≤
n∑
i=1

I
(
W k;Ymi |Y i−1

m1
, Y ne

)
+ h (PE) + nRPE (44)

(b)
=

n∑
i=1

I
(
W k;Ymi |Y i−1

m1
, Y ne , S

i−1
1 , Sni+1

)
+ h (PE) + nRPE

(45)
(c)

≤
n∑
i=1

I (Ui;Ymi |Yei) + h (PE) + nRPE (46)

(d)
=

n∑
i=1

[I (Ui;Ymi)− I (Ui;Yei)] + h (PE) + nRPE , (47)

where (a) is obtained from the fact of chain rule for
information, (b) is followed from the fact that Sn is
independent of W k, (c) is achieved from the assump-
tion that Ui =

(
W k, Y i−1

m1
, Y i−1
e1 , Y nei+1

, Si−1
1 , Sni+1

)
, and

(d) is followed from the fact that (Ui, Si) → Ymi →
Yei forms a Markov chain. Now, by choosing i∗ to be
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the index i such that I (Ui∗ ;Ymi∗ ) − I (Ui∗ ;Yei∗ ) =
max
l∈[1,n]

{I (Ul;Yml)− I (Ul;Yel)}, we have:

Rd ≤ I (Ui∗ ;Ymi∗ )− I (Ui∗ ;Yei∗ ) +
h (PE)

N
+RPE (48)

≤ Re +
h (PE)

N
+RPE . (49)

So, noting that Cs is the maximum value of R when d ap-
proaches to 1, we have Cs ≤ Re+ h(PE)

N +RPE . Consequently,
Cs ≤ Re and the proof is completed.

APPENDIX B
PROOF OF LEMMA 1

By considering the Gaussian case, we compute the values
of mutual information I(U ;S) and I(U ;Ye) as follows:

I(U ;S) = I(X + αS;S) (50)
= H(X + αS) +H(S)−H(X + αS, S) (51)

= log
(

(2πe)
2 (
P + α2Q

)
Q
)

− log
(

(2πe)
2 ((

P + α2Q
)
Q− α2Q2

))
(52)

= log

(
P + α2Q

P

)
. (53)

and

I(U ;Ye) = I(X + αS;X + S + Ze) (54)
= H(X + S + Ze)−H(X + S + Ze|X + αS) (55)
= H(X + S + Ze) +H(X + αS)

−H(X + S + Ze, X + αS) (56)

= log
(

(2πe)
2

(P +Q+Ne)
(
P + α2Q

))
− log

(
(2πe)

2
det (cov (X + S + Ze, X + αS))

)
(57)

= log

(
(P +Q+Ne)

(
P + α2Q

)
PQ (1− α)

2
+Ne (P + α2Q)

)
. (58)

Now we consider the inequality I(U ;S) ≥ I(U ;Ye), and we
have:

I(U ;S) ≥ I(U ;Ye) (59)

log

(
P + α2Q

P

)
≥ log

(
(P +Q+Ne)

(
P + α2Q

)
PQ (1− α)

2
+Ne (P + α2Q)

)
(60)

1

P
>

(P +Q+Ne)

PQ (1− α)
2

+Ne (P + α2Q)
(61)

α2Q(P +Ne)− 2PQα− P 2 > 0. (62)

Therefore, α ≥ P
P+Ne

(
1 +

√
P+Q+Ne

Ne

)
= α0 or α ≤

P
P+Ne

(
1−

√
P+Q+Ne

Ne

)
= α−0. Similarly, for inequality

I(U ;S) < I(U ;Ye) we have: P
P+Ne

(
1−

√
P+Q+Ne

Ne

)
=

α−0 < α < P
P+Ne

(
1 +

√
P+Q+Ne

Ne

)
= α0.

APPENDIX C
PROOF OF THEOREM 2

Here, exploiting the same coding method used in [10]–
[12] to achieve the SC, we prove Theorem 2 considering the
known fading coefficients hm and he. To this end, we assume
Um = X + αmS and Ue = X + αeS as used for generalized
dirty paper coding [9], where X and S are independent RVs
distributed according to N (0, P ) and N (0, Q), respectively,
and αm and αe are parameters to be later determined. So, by
considering (1), we compute the values of mutual information
I(Um;Ym) and I(Um;S) as follows:

I(Um;Ym) = I(X + αmS;hmX + S + Zm) (63)
= H(hmX + S + Zm)−H(hmX + S + Zm|X + αmS)

(64)
= H(hmX + S + Zm) +H(X + αmS)

−H(hmX + S + Zm, X + αmS) (65)

= log
(

(2πe)
2 (|hm|2P +Q+Nm

) (
P + α2

mQ
))

− log
(

(2πe)
2

det (cov (hmX + S + Zm, X + αmS))
)

(66)

= log

( (
|hm|2P +Q+Nm

) (
P + α2

mQ
)

PQ (1− |hm|αm)
2

+Nm (P + α2
mQ)

)
, (67)

and

I(Um;S) = I(X + αmS;S) (68)
= H(X + αmS) +H(S)−H(X + αmS, S) (69)

= log
(

(2πe)
2 (
P + α2

mQ
)
Q
)

− log
(

(2πe)
2 ((

P + α2
mQ
)
Q− α2

mQ
2
))

(70)

= log

(
P + α2

mQ

P

)
. (71)

Now, by inserting (67) and (71) into Cs defined in Corollary
1, we have:

Cm(αm) = log

(
P
(
|hm|2P +Q+Nm

)
PQ (1− |hm|αm)

2
+Nm (P + α2

mQ)

)
.

(72)

Consequently, by maximizing Cm(αm) over αm, the SC Cs
can be obtained as:

Cs = max
αm
Cm(αm) (73)

= log

(
1 +
|hm|2P
Nm

)
(74)

= log (1 + γm) . (75)

In order to prove the SC Cs for the second condition, we need
to calculate the values of mutual information I(Ue;Ym) and
I(Ue;Ye). Similarly, by considering (2) and Ue = X + αeS,
we have:

I(Ue;Ym) = log

( (
|hm|2P +Q+Nm

) (
P + α2

eQ
)

PQ (1− |hm|αe)2
+Nm (P + α2

eQ)

)
,

(76)
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and

I(Ue;Ye) = log

( (
|he|2P +Q+Ne

) (
P + α2

eQ
)

PQ (1− |he|αe)2
+Ne (P + α2

eQ)

)
.

(77)

Now, by substituting (76) and (77) in Cs defined in Corollary
2, we obtain:

Re(αe) =

log

((
|hm|2P +Q+Nm

) (
PQ (1− |he|αe)

2 +Ne

(
P + α2

eQ
))

(|he|2P +Q+Ne)
(
PQ (1− |hm|αe)

2 +Nm (P + α2
eQ)

) ) .
(78)

Finally, by maximizing Re(αe) over αe, the SC Cs can be
determined as:

Cs = max
αe

Re(αe) = log

(
1 + γ̄ms + γm
1 + γ̄es + γe

)
. (79)

APPENDIX D
PROOF OF THEOREM 5

Proof of C̄1
s : By substituting the joint PDF f(γm, γe) in

to (23), the ASC under condition of the Corollary 1 can be
determined as:

C̄1
s =

1

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γm) e−
γm
γ̄m
− γeγ̄e

×
[
1 + θ

(
1− 2e−

γm
γ̄m

)(
1− 2e−

γe
γ̄e

)]
dγedγm (80)

=
1

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

e−
γm
γ̄m
− γeγ̄e log2 (1 + γm) dγedγm

+ θ

[
1

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

e−
γm
γ̄m
− γeγ̄e log2 (1 + γm) dγedγm

− 2

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

e−
2γm
γ̄m
− γeγ̄e log2 (1 + γm) dγedγm

− 2

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

e−
γm
γ̄m
− 2γe
γ̄e log2 (1 + γm) dγedγm

+
4

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

e−
2γm
γ̄m
− 2γe
γ̄e log2 (1 + γm) dγedγm

]
(81)

=W1 + θ [W1 − 2W2 − 2W3 + 4W4] , (82)

where the integrals Wη , for η ∈ {1, 2, 3, 4}, are in the
following format [34]:∫ ∞

0

e−ζt ln (1 + t) dt =
eζ

ζ
E1 (ζ) . (83)

Thus, by exploiting (83), Wη can be computed, and then the
proof is completed.

Proof of C̄2
s : By applying Lemma 2 to ASC definition in

(24) and exploiting the linearity rules of integration, (24) can
be decomposed as:

C̄ =
1

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γ̄ms + γm) e−
γm
γ̄m
− γeγ̄e

×
[
1 + θ

(
1− 2e−

γm
γ̄m

)(
1− 2e−

γe
γ̄e

)]
dγedγm

− 1

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γ̄es + γe) e−
γm
γ̄m
− γeγ̄e

×
[
1 + θ

(
1− 2e−

γm
γ̄m

)(
1− 2e−

γe
γ̄e

)]
dγedγm

= K −M, (84)

where γ̄ = γm + γ̄ms − γ̄es,

K =
1

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γ̄ms + γm) e−
γm
γ̄m
− γeγ̄e dγedγm

+ θ

[
1

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γ̄ms + γm) e−
γm
γ̄m
− γeγ̄e dγedγm

− 2

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γ̄ms + γm) e−
2γm
γ̄m
− γeγ̄e dγedγm

− 2

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γ̄ms + γm) e−
γm
γ̄m
− 2γe
γ̄e dγedγm

+
4

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γ̄ms + γm) e−
2γm
γ̄m
− 2γe
γ̄e dγedγm

]
(85)

= K1 + θ [K1 − 2K2 − 2K3 + 4K4] , (86)

and

M =
1

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γ̄es + γe) e−
γm
γ̄m
− γeγ̄e dγedγm

+ θ

[
1

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γ̄es + γe) e−
γm
γ̄m
− γeγ̄e dγedγm

− 2

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γ̄es + γe) e−
2γm
γ̄m
− γeγ̄e dγedγm

− 2

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γ̄es + γe) e−
γm
γ̄m
− 2γe
γ̄e dγedγm

+
4

γ̄mγ̄e

∫ ∞
0

∫ γ̄

0

log2 (1 + γ̄es + γe) e−
2γm
γ̄m
− 2γe
γ̄e dγedγm

]
(87)

=M1 + θ [M1 − 2M2 − 2M3 + 4M4] . (88)

The integrals Kη and Mη , for η ∈ {1, 2, 3, 4}, are in the
following formats [34]:∫

e−ζt ln (1 + κ+ t) dt

= −1

ζ

[
eζ(1+κ)E1 (ζ (1 + κ+ t)) + e−ζt ln (1 + κ+ t)

]
,

(89)∫ ∞
0

e−ζt ln (1 + κ+ t) dt

=
1

ζ

[
eζ(1+κ)E1 (ζ (1 + κ)) + ln (1 + κ)

]
, (90)
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∫ ∞
0

e−ζtE1 (δ + νt) =
1

ζ

[
E1 (δ)− e

ζδ
ν E1

(
δ(ζ + ν)

ν

)]
.

(91)

Therefore, by utilizing the integral formats in (89)–(91) and
conducting the required simplifications, K, M, and then C̄2

s

are computed.

APPENDIX E
PROOF OF THEOREM 6

First, we prove the SOP under condition of the Corollary
1. By applying Lemma 2 to (31), P 1

sop can be rewritten as:

P 1
sop = 1−

∫ ∞
0

∫ ∞
2Rs−1

e−
γm
γ̄m
− γeγ̄e

γ̄mγ̄e

×
[
1 + θ

(
1− 2e−

γm
γ̄m

)(
1− 2e−

γe
γ̄e

)]
dγmdγe (92)

= 1−

[∫ ∞
0

∫ ∞
2Rs−1

e−
γm
γ̄m
− γeγ̄e

γ̄mγ̄e
dγmdγe

+ θ

(∫ ∞
0

∫ ∞
2Rs−1

e−
γm
γ̄m
− γeγ̄e

γ̄mγ̄e
dγmdγe

− 2

∫ ∞
0

∫ ∞
2Rs−1

e−
2γm
γ̄m
− γeγ̄e

γ̄mγ̄e
dγmdγe

− 2

∫ ∞
0

∫ ∞
2Rs−1

e−
γm
γ̄m
− 2γe
γ̄e

γ̄mγ̄e
dγmdγe

+ 4

∫ ∞
0

∫ ∞
2Rs−1

e−
2γm
γ̄m
− 2γe
γ̄e

γ̄mγ̄e
dγmdγe

)]
(93)

= 1− [I1 + θ (I1 − 2I2 − 2I3 + 4I4)] , (94)

where the integrals Iη , for η ∈ {1, 2, 3, 4} can be solved easily
by performing simple calculations, and then P 1

sop is obtained
as (36).

Similarly, by inserting the joint PDF f(γm, γe) into (34),
P 2
sop can be obtained as:

P 2
sop = 1−

∫ ∞
0

∫ ∞
γth

e−
γm
γ̄m
− γeγ̄e

γ̄mγ̄e

×
[
1 + θ

(
1− 2e−

γm
γ̄m

)(
1− 2e−

γe
γ̄e

)]
dγmdγe (95)

= 1−

[∫ ∞
0

∫ ∞
γth

e−
γm
γ̄m
− γeγ̄e

γ̄mγ̄e
dγmdγe

+ θ

(∫ ∞
0

∫ ∞
γth

e−
γm
γ̄m
− γeγ̄e

γ̄mγ̄e
dγmdγe

− 2

∫ ∞
0

∫ ∞
γth

e−
2γm
γ̄m
− γeγ̄e

γ̄mγ̄e
dγmdγe

− 2

∫ ∞
0

∫ ∞
γth

e−
γm
γ̄m
− 2γe
γ̄e

γ̄mγ̄e
dγmdγe

+ 4

∫ ∞
0

∫ ∞
γth

e−
2γm
γ̄m
− 2γe
γ̄e

γ̄mγ̄e
dγmdγe

)]
(96)

= 1− [J1 + θ (J1 − 2J2 − 2J3 + 4J4)] , (97)

where γ̄th =
(
2Rs (1 + γ̄es)− (1 + γ̄ms)

)
. The integrals Jη ,

for η ∈ {1, 2, 3, 4}, can be computed by some simple calcula-
tions. Then, after conducting the required simplifications, the
proof is completed.
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