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Abstract— Bias and fairness of biometric algorithms have been
key topics of research in recent years, mainly due to the societal,
legal and ethical implications of potentially unfair decisions
made by automated decision-making models. A considerable
amount of work has been done on this topic across different
biometric modalities, aiming at better understanding the main
sources of algorithmic bias or devising mitigation measures.
In this work, we contribute to these efforts and present the
first study investigating bias and fairness of sclera segmentation
models. Although sclera segmentation techniques represent a key
component of sclera-based biometric systems with a considerable
impact on the overall recognition performance, the presence
of different types of biases in sclera segmentation methods is
still underexplored. To address this limitation, we describe the
results of a group evaluation effort (involving seven research
groups), organized to explore the performance of recent sclera
segmentation models within a common experimental framework
and study performance differences (and bias), originating from
various demographic as well as environmental factors. Using five
diverse datasets, we analyze seven independently developed sclera
segmentation models in different experimental configurations.
The results of our experiments suggest that there are significant
differences in the overall segmentation performance across the
seven models and that among the considered factors, ethnicity
appears to be the biggest cause of bias. Additionally, we observe
that training with representative and balanced data does not
necessarily lead to less biased results. Finally, we find that
in general there appears to be a negative correlation between

Manuscript received 21 March 2022; revised 13 July 2022 and 31 August
2022; accepted 4 October 2022. Date of publication 21 October 2022; date
of current version 7 December 2022. This work was supported in part by
the ARRS Research Program P2-0250(B) through Metrology and Biometric
Systems and the ARRS Research Program P2-0214 through Computer Vision,
in part by the National Natural Science Foundation of China under Grant
62106015, in part by the BUCEA Research Capacity Promotion Program
for Young Scholars under Grant X21079, and in part by the Pyramid Talent
Training Project of BUCEA under Grant JDYC20220819. The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Emanuele Maiorana. (Corresponding author: Matej Vitek.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by the
Research Data Handling Committee (KRRP) at the Faculty of Computer and
Information Science, University of Ljubljana.

Please see the Acknowledgment section of this article for the author
affiliations.

This article has supplementary downloadable material available at
https://doi.org/10.1109/TIFS.2022.3216468, provided by the authors.

Digital Object Identifier 10.1109/TIFS.2022.3216468

the amount of bias observed (due to eye color, ethnicity and
acquisition device) and the overall segmentation performance,
suggesting that advances in the field of semantic segmentation
may also help with mitigating bias.

Index Terms— Biometrics, sclera segmentation, ocular biomet-
rics, bias, fairness.

I. INTRODUCTION

OCULAR biometrics represents a branch of biometric
recognition technology that exploits various charac-

teristics of the eye for automatic identity inference [1].
Recognition techniques based on ocular traits have been
successfully applied for access control applications, user-
friendly verification schemes on mobile devices, as well as
large scale identity-management programs, e.g., Aadhaar [2].
Research on ocular biometrics has long been focused on
iris recognition technology, but more recently also expanded
into other (visible) ocular modalities, such as the periocular
region [3] and the vasculature of the sclera [4]. The sclera
in particular has seen considerable interest, mainly due to its
appealing characteristics, i.e.: (i) unlike iris recognition, sclera
recognition performs best in the visible spectrum [5], and,
hence, does not require any specialized acquisition hardware;
and (i i) the vasculature of the sclera is considered to be highly
discriminative and stable over time, (i i i) while the presence
of contact lenses can (purposely/inadvertently) degrade the
performance of recognition techniques based on the iris or
the periocular region, it has only a limited effect on sclera
recognition models [5], [6].

A typical sclera recognition procedure consists of four
main steps: sclera segmentation, vessel enhancement, feature
extraction and matching. Each of these steps is critical for
the overall accuracy and trustworthiness of the recognition
procedure and has to ensure consistent performance across
diverse data characteristics, e.g., gender, ethnicity, acquisition
device, gaze direction. The recent interest in sclera biometrics
has led to considerable advances with all four steps and
among others resulted in powerful segmentation models [7],
[8], [9], novel recognition techniques [4], [5], [10], but also
multi-biometric systems with impressive performance charac-
teristics [11], [12]. However, to the best of our knowledge, the
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literature fails to address an important issue in this field: the
bias and fairness of sclera-oriented biometric algorithms [13].

To address this gap, we describe in this paper a group
evaluation effort, organized as a follow-up event to the
2020 edition of the annual Sclera Segmentation Benchmarking
Competition (SSBC) [1], which focuses on the assessment
of one of the key components of sclera-based recogni-
tion systems, i.e., sclera segmentation models. While SSBC
2020 studied the performance of modern sclera-segmentation
models in mobile environments, the goal of the group eval-
uation was to benchmark segmentation performance across
more diverse image characteristics, but more importantly to
explore in a comprehensive manner the bias and fairness of
contemporary sclera-segmentation techniques. This is a vital
venue of research as questions of unfair treatment and bias
in automated decision-making models have recently been a
highly controversial and heavily researched topic in academia,
industry, as well as society in general. Bias in machine learning
algorithms has also been highlighted as one of the key topics of
future research in various national and international strategies
and acts [14]. It is, therefore, paramount to understand what
kind of performance differentials can be expected from current
state-of-the-art segmentation models, as this may impact the
bias and fairness of all downstream tasks, including the final
decisions made. Motivated by the importance of this topic, the
group evaluation aimed at investigating the effect of different
demographic and environmental characteristics, as well as the
impact of training data on segmentation performance. Multi-
ple segmentation models were developed for the evaluation,
including extensions of some models that took part in SSBC
2020, but also novel approaches, developed specifically for
the group evaluation. The models were benchmarked under a
common experimental framework to provide answers to the
following research questions:

• Q1: How well do contemporary models perform in
the task of sclera segmentation with diverse input
images?

• Q2: Which subject/data characteristics represent the most
critical source of bias for sclera segmentation models?

• Q3: What impact do training data characteristics have on
the bias exhibited by the segmentation models?

• Q4: Can we mitigate the bias exhibited by the segmen-
tation models without losing segmentation accuracy?

The combined research efforts of multiple research groups
helped provide answers to these questions and led to the
following contributions that are presented in this work:

• A report on the current state-of-the-art in sclera seg-
mentation, with a rigorous (independent) analysis of the
main factors affecting segmentation performance of a
representative sample of current segmentation models
over five datasets with diverse image characteristics.

• A comprehensive evaluation of (algorithmic and rep-
resentation) bias (and fairness) of sclera segmentation
models across two environmental and two demographic
factors. This includes novel performance measures for
quantifying bias and a novel (public) dataset of ocular
images.

• The introduction of several new (sclera) segmentation
models developed exclusively for the group evaluation.

II. BACKGROUND AND RELATED WORK

A. Bias and Fairness in Biometrics

Automated biometric recognition techniques can today be
found in a variety of application areas that have an immediate
impact on people’s lives, including online banking, health-
care, access control, or surveillance and security [13], [15].
Because the (automated) decisions made by biometric systems
have potentially critical consequences for individuals, it is
paramount that the recognition techniques be free of biases
and render fair decisions for all. While there is no (single)
established definition of bias and fairness in the literature,
we provide here the formulation of Drozdowski et al. [13],
who defines an algorithm as being biased if it leads to
significant performance differences for different subsets of
data, where the subsets can be based on subject-specific (e.g.,
pose, expression), demographic (e.g., age, gender, ethnicity),
or environmental (e.g., illumination, capture device) factors.
The concept of fairness, on the other hand, can be viewed
as an algorithmic property related specifically to demographic
bias and is defined by Mehrabi et al. [15] as “the absence
of prejudice or favoritism toward an individual or group
based on their innate or acquired characteristics”. Studies on
bias and fairness in biometrics have been a central research
topic in recent years [13], largely due to societal, legal and
ethical implications of potentially unfair decisions made by
automated machine learning models [16].

A considerable amount of work has been done to investigate
(demographic) bias and fairness in face recognition systems,
e.g., [17], [18], and [19], and potentially sensitive face-
related tasks, such as age estimation [20], face image quality
assessment [21], privacy protection [22], and face-morph
detection [23] to name a few examples. Similar studies were
also presented for fingerprints [24], [25], finger vein [26],
and palm print [27] recognition systems among others. While
much of this work aimed at identifying the presence of bias
in various (learning-based) biometric systems and algorithms
(e.g., [17], [20], [24], and [26]), a small number of works
also tried to investigate causes of the observed performance
differentials for different data groups, e.g., [19] and [28].
The insight and observations made by these studies provided
critical understanding of the bias-related behavior of existing
biometric algorithms and contributed towards various bias
mitigation measures, e.g., [29], [30], and [31].

There has also been work exploring bias in the context of
ocular biometrics. Krishnan et al., for example, investigated
the presence of age and gender bias in recognition systems
relying on the periocular regions in [32] and [33], respectively.
Fang et al. [34] aimed at quantifying demographic bias in
presentation attack detection (PAD) aimed at iris recogni-
tion systems, and Gorodnichy and Chumakov [35] explored
age-induced performance differentials in biometric systems
based on the iris. While these works presented empirical
studies on the bias and fairness of different algorithms related
to ocular biometrics, they have been limited to the iris
and the periocular region only. Studies related to emerging
ocular modalities, such as the sclera, on the other hand,
are still largely missing from the literature. Given this lim-
itation, we present a comprehensive analysis in this paper,
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focused on the overall performance but most of all bias of
sclera segmentation models w.r.t. different demographic and
environmental factors. Such segmentation models represent
key components of sclera-based recognition systems and are,
therefore, expected to have a considerable impact on their
recognition performance.

B. Sclera Segmentation

The goal of sclera segmentation is to identify the region-of-
interest (ROI) in the input image as accurately as possible, and,
consequently, to ensure that all downstream tasks are applied
only to relevant parts of the image that contain (discriminative)
vascular patterns needed for identity inference. Several specific
challenges make sclera segmentation a difficult task, including:
(i) the low contrast between the foreground (i.e., the sclera)
and the background (i.e., the surrounding region), which
makes using traditional binarization techniques infeasible,
(i i) the wide range of appearance variations caused by
subject-specific and demographic factors such as eye color,
ethnicity, sex/gender, or health; and (i i i) the effects of external
factors, e.g., the imaging device or ambient lighting.

Initial studies on sclera biometrics were mainly based
on manual segmentation procedures [38], [39], but later
evolved into automatic techniques designed around vari-
ous clustering algorithms [40], [41], region-growing proce-
dures [42], convex-hull based algorithms [12] and similar
ad-hoc approaches [43]. While these techniques provided the
basis for early sclera-based biometric systems, recent work
is looking increasingly at deep learning models that have
been shown to provide excellent segmentation performance
for highly diverse input images. Examples of techniques from
this group include convolutional neural networks (CNNs) with
an encoder-decoder design [5], [9], [44], fully convolutional
models [45], densely connected convolutional networks [46],
generative networks [1], and other (custom) deep learning
approaches [47], [48].

The evolution of sclera segmentation models has been docu-
mented and largely driven by a series of Sclera Segmentation
Benchmarking Competitions (SSBC), held as part of major
biometrics-oriented meetings and conferences [1], [48], [49],
[50], [51], [52]. These competitions introduced segmentation
benchmarks for the community [49], [50], examined seg-
mentation performance under changes in gaze direction [51],
in cross-sensor and cross-resolution settings [48], [52], and
in mobile environments [1]. Segmentation models for the
sclera (as well as for the pupil and iris) were also studied
in the scope of Facebook’s OpenEDS challenge [47], which
aimed to compare existing models with data collected using
head-mounted displays. In this paper, we further contribute
to these efforts through a group assessment organized during
2021 as a follow-up to the 2020 edition of SSBC. As sclera
segmentation models have matured and are now used in real-
world applications, the goal of the evaluation was not only
to investigate the performance of state-of-the-art models in
various settings but also to better understand their behavior in
terms of bias and fairness.

III. BENCHMARKING METHODOLOGY

A comprehensive experimental framework was designed
to facilitate the group evaluation. This included the

selection/collection of suitable datasets and the definition of
common experimental protocols and appropriate performance
measures. In this section we describe this experimental frame-
work and provide details on the benchmarking methodology
used throughout the group evaluation.

A. Datasets

Five dedicated datasets were utilized for the group evalua-
tion. The datasets contain ocular images that differ in terms of
acquisition device, gaze direction, ambient conditions, image
quality, and demographics, and, hence, allow investigating
various aspects of the developed segmentation models. Details
on the datasets are given below.

• The Multi-Angle Sclera Dataset (MASD) [36] contains
2624 RGB images of 164 eyes from 82 different subjects,
captured using a DSLR camera (specifically, NIKON
D800 with 28-300 lenses). The images were manually
cropped to a resolution of 7500 × 5000 pixels to extract
the relevant region of interest (ROI). The images in
MASD were acquired under 4 different gaze directions
(left, right, straight, and up) and with 4 distinct images
per gaze direction for each subject. The dataset contains
images of male and female subjects captured in different
lighting conditions and at different times of the day. It is
annotated with high-quality manually generated sclera
masks and is publicly available.1

• The Sclera Mobile Dataset (SMD) [37] contains 500
RGB images of 50 eyes from 25 subjects (10 images
per eye) acquired with an 8MP (3264 × 2448) mobile
phone (Micromax Canvas Knight A350) rear camera. The
dataset is approximately gender-balanced with 12 male
and 13 female subjects and comes with variations in
the age and skin color of the subjects. Images in the
dataset were captured in different lighting conditions and
with image noise to more accurately represent realistic
scenarios in which sclera segmentation methods need
to operate. SMD ships with manually generated sclera
annotations and is also publicly available1.

• The Sclera Liveness Dataset (SLD) represents a novel
dataset, captured specifically for the group evaluation, and
consists of 108 genuine RGB images from both eyes of
27 individuals (in other words 54 different eyes). For each
eye 2 sample images were captured. The dataset contains
blurred images and images with blinking eyes. It includes
both male and female subjects, of different ages and
different skin tones. The images in SLD were taken at
different times of the day to model natural environment-
induced variations. Differences in image quality (blur,
lighting condition, etc.) and acquisition conditions were
included intentionally in the dataset to facilitate inves-
tigations into the performance of the segmentation
models in non-ideal scenarios. High-resolution images
(3264 × 2448) are included in the dataset. All images
were captured using a mobile phone (Lenovo K3 Note)
with an 8MP rear camera and are stored in JPEG format.
SLD is publicly available1.

• The Sclera Blood Vessels, Periocular, and Iris (SBVPI)
[5], [9] dataset consists of 1858 RGB images of 110 eyes

1MASD, SMD and SLD are publicly available on request. Please contact
abhijitdas2048@gmail.com for more information.



VITEK et al.: EXPLORING BIAS IN SCLERA SEGMENTATION MODELS: A GROUP EVALUATION APPROACH 193

Fig. 1. Example images and corresponding ground truth annotations from the five datasets used in the group evaluation. The datasets contain images with
diverse characteristics in terms of image quality, capture device, demographics, blur, gaze direction, eye color and others. The datasets are publicly available
for research purposes1,2.

(i.e., 55 subjects) captured with a DSLR camera (specif-
ically, Canon EOS 60D with macro lenses). The images
were manually cropped to extract the desired ROI
while maintaining their aspect ratio, then rescaled to
3000 × 1700 pixels to maintain a consistent image size
across the entire dataset. Images in the dataset were
captured at the highest resolution and quality settings
available in the camera and in a laboratory environment.
Similarly to MASD, the dataset contains images taken
under 4 different gaze directions, with a minimum of
4 images per direction for each subject. The appearance
variability in SBVPI is due to identity, eye color, gender,
and age. Manually generated markups of the sclera and
periocular regions are present for all images. SBVPI is
publicly available for research purposes.2

• The Mobile Ocular Biometrics In Unconstrained
Settings (MOBIUS) [1] dataset comprises 16717 RGB
images of 200 eyes from 100 subjects. The images
were manually cropped to obtain the relevant ROI and
resized to a resolution of 3000 × 1700 pixels to keep
a consistent image size across the dataset. A subset of
3542 images from 35 subjects (70 eyes) is designated for
segmentation research and contains high-quality manu-
ally generated (and later cleaned with a semi-automatic
correction procedure [53]) annotations of the sclera, iris,
and pupil regions. The dataset again contains 4 gaze
directions for each eye, but exhibits a significantly higher
degree of variability than other datasets due to the use
of 3 different mobile phone cameras (Sony Xperia Z5
Compact, Apple iPhone 6s, and Xiaomi Pocophone F1)
for image capture, and 3 ambient settings (i.e., sunny
outside; inside with good illumination; and inside with
poor illumination). Additionally, data about the subjects
(e.g., identity, gender, eye color, age, eyewear, eye condi-
tions and allergies) is also available to facilitate research
into various data characteristics and their impact on
segmentation performance2.

We note that all datasets were collected with consenting sub-
jects. A few illustrative example images from the experimental
datasets and the corresponding sclera masks are presented in
Fig. 1. A high-level comparison is given in Table I.

2The SBVPI and MOBIUS datasets are publicly available on request for
research purposes. For more information visit sclera.fri.uni-lj.si.

B. Evaluation Setup

1) Experimental Protocols: The research groups participat-
ing in the evaluation were given access to images from all
five datasets. For the MASD, SMD, and SBVPI datasets both
the raw images and the ground truth segmentation masks
were made available, whereas only the raw images were made
public for SLD and MOBIUS, while the ground truth remained
sequestered. Based on this data, the participants were asked
to develop sclera segmentation models under two distinct
experimental protocols, i.e.:

• The Complete Training Data (CTD) protocol, where the
segmentation models were trained on the full MASD,
SMD, and SBVPI datasets (for a total of 4982 images
from 162 subjects). The results for the group evaluation
under this protocol were generated on the SLD and
MOBIUS datasets. Since different datasets were used for
training and testing in all experiments conducted under
this protocol, there was no overlap in subjects between
the training and testing data.

• The Limited Training Data (LTD) protocol, where it was
only allowed to use specific training data to learn the
models and results needed to be generated on predefined
test datasets. This protocol resulted in multiple models
with different train-test data configurations, depending on
the bias aspect being explored in a given experiment.
Details about the specific training and testing data used
under various configurations of this protocol are provided
in Section V.

The above protocols were designed for the analysis of different
aspects of the developed segmentation models, as detailed in
the experimental section.

2) Result Generation: Two types of results were requested
for the analysis: (i) binarized (black-and-white) segmentation
masks, with white pixels corresponding to the sclera region
and black pixels to other image areas, and (i i) probabilistic
segmentation maps, with the pixel intensities corresponding to
the “probability” that the pixels belongs to the sclera region.
Both types of results were submitted for all models trained
under the CTD and LTD experimental protocols. A sample
submission is shown in Fig. 2. These results were ultimately
compared to the (sequestered) ground truth information for
scoring purposes. In all experiments, the scoring was done
with fixed-size images and ground truth masked, rescaled to
480 × 360 pixels, to ensure a common evaluation setting.
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TABLE I

HIGH-LEVEL COMPARISON OF THE DATASETS AND EXPERIMENTAL PROTOCOL USED IN THE GROUP EVALUATION

Fig. 2. Illustration of the results generated for the group evaluation. For
each input image (left), a probabilistic (middle) and binary segmentation mask
(right) had to be generated and submitted for scoring.

C. Scoring Criteria

The main goal of the group evaluation is to analyze two key
aspects of recent (sclera) segmentation models: (i) the overall
segmentation performance, and (i i) the exhibited biases. Two
sets of performance indicators are, therefore, used to report
results of the group evaluation.

1) Overall Segmentation Performance: In accordance with
standard evaluation methodology [1], [48], we use the follow-
ing indicators to score segmentation performance:

• Precision, i.e., the proportion of correctly identified sclera
pixels in relation to all pixels determined as belonging to
the sclera by a given model: ( T P

T P+F P ) [54].
• Recall, i.e., the number of correctly identified sclera

pixels in relation to all pixels marked as belonging to
the sclera region in the ground truth: ( T P

T P+F N ) [54].
• F1- score, i.e., the harmonic mean between precision and

recall: (2 · precision·recall
precision+recall ) [1].

• Intersection over Union (IoU) or Jaccard index, i.e.,
the quotient between the size of the intersection of the
predicted and actual sclera regions, and the size of the
union of the two, computed as: ( T P

T P+F P+F N ) [1].

Here, T P , F P , and F N stand for the number of true positives,
false positives and false negatives generated by the models
with respect to the ground truth. Additionally, we report
complete precision-recall (PR) curves [55], [56] based on
the computed probabilistic predictions and the corresponding
Area Under the precision-recall Curve (AUC) [57] as another
aggregate performance indicator that provides a more holistic
view on the performance of the evaluated models.

2) Bias Evaluation: Bias is commonly quantified through a
measure of performance (or error) dispersion across differ-
ent subgroups of the evaluation data [18], [29]. Following
this established practice, we report the standard deviation
(STD) and mean absolute deviation (MAD) of the com-
puted performance indicators as two measures of bias in our
experiments [30], i.e.:

• Standard Deviation (STD), defined as the square root of
the average squared deviation between the performance of
specific subgroups pg and the mean performance across

all groups p:

STD =
√√√√ 1

G

G∑
g=1

(
pg − p

)2
. (1)

• Mean Absolute Deviation (MAD), defined as the aver-
age absolute deviation between the performance on spe-
cific subgroups pg and the mean performance across all
groups p:

MAD = 1

G

G∑
g=1

∣∣pg − p
∣∣. (2)

In the above equations G refers to the number of different sub-
groups in the data, pg denotes the group-specific performance
(in our case the F1 score), and p = 1

G

∑G
g=1 pg. While the

two measures capture similar aspects of the bias, STD gives
larger importance to outliers (worst case scenario), whereas
MAD is influenced more by the majority of subgroups.

In general, STD and MAD quantify the performance varia-
tions across different data subgroups (i.e., bias) but ignore the
innate variations of the data that also cause performance dif-
ferences. Based on this observation and the insights from [58]
we, therefore, propose and introduce two disparity measures
that weigh the computed group-specific dispersion against the
observed dispersion on some reference data:

• Control Group Disparity (CGD), which we define as the
ratio between the standard deviation of the performance
scores between different data subgroups and the corre-
sponding standard deviation computed on control groups:

CGD = STD√
1
G

∑G
c=1 (pc − pC)

2
, (3)

where there are G control groups in total, and each
control group c matches the size of one of the original
attribute-specific data subgroups, but contains randomly
chosen samples. Additionally, pC = 1

G

∑G
c=1 pc.

• Fisher Disparity (FSD), which we define as the ratio
between the standard deviation of the performance scores
across different data subgroups and the mean standard
deviation within the subgroups, i.e.:

FSD = STD

1
G

∑G
g=1

√
1

ng

∑ng
i=1

(
pi − pg

)2
, (4)

where pi is the performance on the i -th data instance
(i.e., a single image) and ng is the number of images in
the g-th subgroup.

Both FSD and CGD consider reference variations when
quantifying bias, but do so based on different assumptions,
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TABLE II

HIGH-LEVEL COMPARISON OF THE SEGMENTATION MODELS DEVELOPED FOR THE GROUP EVALUATION. THE MODELS EXHIBIT DIVERSITY ACROSS
THE BASE ARCHITECTURE USED, THE FORMAT OF THE INPUT DATA, THE USE OF AUGMENTATION STRATEGIES, NORMALIZATION PROCEDURE,

PROBLEM FORMULATION, LEARNING OBJECTIVE AND COMPLEXITY

and, therefore, provide complementary information w.r.t. the
observed performance differences across data subgroups.

IV. SUMMARY OF DEVELOPED MODELS

Seven research teams developed segmentation models for
the group evaluation, i.e., the Chinese Academy of Sciences
(CAS), the Democritus University of Thrace (DUTH), the
Warsaw University of Technology (WUT), the Federal Uni-
versity of Parana (UFPR), the Hochschule Darmstadt (HDA),
Fraunhofer IGD (IGD), and the Norwegian University of Sci-
ence and Technology (NTNU). More details on the submitted
models are provided in the following section, along with
links to the corresponding source code repositories, to ensure
reproducibility of the results and to provide additional imple-
mentation details on all developed segmentation approaches.

A. Model Descriptions

ScleraSegNet3 (CAS). The CAS group designed an
attention-assisted U-Net-based [59] model for sclera seg-
mentation [60], called ScleraSegNet. The model incorporates
modules for channel- and spatial-attention into both the central
bottleneck, as well as the skip-connection part of the base
U-Net architecture. This helps improve the sensitivity of the
model to foreground/background pixels and also alleviates
the interference of noise factors. ScleraSegNet is trained
with images resized to a width of 600 pixels (regardless of
the original size of the images in the training data), while
maintaining the original aspect ratio. Heavy data augmentation
is performed, including random resizing, blurring, translating,
flipping, rotating and cropping (to 321 × 321 pixels) to
avoid overfitting. Binary cross-entropy is utilized as the loss
function in training. When generating the binary masks for the
evaluation, the binarization threshold is set to 0.5.

ScleraU-Net24 (DUTH). The DUTH group developed
a novel U-Net-inspired model based on the ScleraU-Net
architecture designed initially for the SSBC 2020 competi-
tion [1]. Compared to the original U-Net, ScleraU-Net2 has a
reduced number of convolutional layers and, therefore, exhibits
decreased network complexity. This leads to a more light-
weight architecture that is better tailored towards the sclera
segmentation problem. Specifically, ScleraU-Net2 comprises
8 filter kernels in its first convolutional layer, compared to
the 64 kernels of the original U-Net. For the subsequent
layers the number of filters is doubled after every pooling
operation. Another key improvement in ScleraU-Net2 is the

3ScleraSegNet is available from github.com/xiamenwcy/ScleraSegNet.
4ScleraU-Net2 link: github.com/georgezampoukis/ScleraU-Net2_SSBC.

use of Group Normalization (GN) after each convolutional
layer. Group normalization [61] is used as a replacement
for Batch Normalization (BN) and is paramount for models
trained with relatively small batch sizes, where BN layers may
fail to properly capture the distribution parameters, resulting
in poor normalization with adverse effects on generalization.
Finally, the activations of all convolutional layers are replaced
with GELUs [62], for which improved performance across
many vision tasks has been reported in the literature. Training
is performed with a fixed learning rate of 10−4 and a batch
size of 6. Data augmentation is applied in an online fashion,
by random horizontal flipping and a limited amount of rotation
and shear. The probability maps are converted to binary maps
by a fixed-value thresholding of 0.5.

MU-Net5 (WUT). The main idea behind the approach of the
WUT group is to utilize a light-weight architecture designed
for mobile-computing that allows for efficient learning of
segmentation models with limited training data. Along these
lines, the WUT group designed a U-Net-like encoder-decoder
model, named MU-Net, with a MobileNetV2 [63] encoder
pretrained on ImageNet. The model is fine-tuned for sclera
segmentation using the provided training data, augmented
with horizontal flips, and the standard binary cross-entropy
learning objective. Because the encoder model, MobileNetV2,
has fewer parameters than the encoder of the original U-Net,
the entire model converges quickly, while also ensuring high
segmentation accuracy and good generalization. The model
produces a probabilistic segmentation prediction for each pixel
location. A binarisation threshold is, therefore, chosen by
iterating over the validation images and fixing the threshold
at the value that achieves the highest F1-score to produce
the binary segmentation results required for the evaluation.

FCN86 (UFPR). Inspired by the work of Long et al. [64],
the UFPR group designed a segmentation model, FCN8,
based on a Fully Convolutional Network (FCN). Due to the
fully convolutional structure, the model is applicable with
input images of arbitrary size and produces corresponding
segmentation results. For FCN8, an architecture similar to the
one proposed by Teichmann et al. [65] is utilized and relies on
a VGG-16 model (without the FC layers) in the encoder and a
three-layer decoder for upsampling. A unique aspect of FCN8
is the design of the bottleneck module in the encoder-decoder
architecture, which retains the spatial dimension instead of
compressing all of the information of the input image into
a vectorized latent representation. This design choice allows

5MU-Net is available from github.com/Jalilnkh/MU-Net.
6FCN8 is available from github.com/diegorafaellucio/FCN8.
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for the use of a simple decoder that does not need to learn
decoding spatial information from the latent representation and
can, therefore, be trained efficiently with a limited amount of
data. FCN8 is learned with a cross-entropy training objective.

CGANs2020CL7 (HDA). The HDA group contributed an
approach that framed the sclera segmentation task as a patch-
based image-translation problem [66] and used a Conditional
Generative Adversarial Network (cGAN) as the basis for the
segmentation. The goal of the cGAN in this setting is to imple-
ment a mapping from the gray-scale real-valued (ocular image)
domain to the binary sclera domain. The backbone of the
model is a ResNet-101 [67] learned from scratch using only
the provided training data. To avoid overfitting and ensure that
a well performing model with good generalization capabilities
is learned, aggressive data-augmentation is performed using
the Imgaug library.8 Here, various augmentation strategies
were considered, including rotations, flipping, cropping, color
manipulations and others. The model is trained using a
weighted sum of the GAN and L1-reconstruction losses.

RGB-SS-Eye-MS9 (IGD). The IGD team developed a
model that extends the multi-scale eye segmentation solutions
(Eye-MS) from [68]. The model represents a convolutional
neural network (CNN) that refines segmentation progressively
using different input resolutions. Each of the refinement
modules consists of two convolutional layers, followed by
a normalization layer and a LReLU non-linearity. RGB-SS-
Eye-MS is trained with the Intersection over Union (IoU) loss
using the SGD optimizer with a learning rate of 0.1 and a
batch size of 32. Heavy data augmentation in the form of
random cropping, horizontal flipping brightness and contrast
changes, blurring and noise infusions is employed to improve
generalization. The predicted segmentation is rounded to the
nearest integer values to generate binary segmentation masks.

ScleraMaskRCNN10 (NTNU). The solution designed by
the NTNU group, called ScleraMaskRCNN, follows the
two-stage approach from Mask-RCNN originally proposed
in [69]. In the first stage, ScleraMaskRCNN generates region
proposals for the sclera in the input image and in the
second stage then classifies these proposals into the most
likely class (i.e., sclera/other). A pixel-level mask is also
computed in the second stage to facilitate the (instance)
segmentation procedure. The model uses a ResNet-101 [67] as
the backbone for feature extraction and is trained using a joint
objective that combines losses for classification/localization
and segmentation-mask prediction. No augmentation is used
during training.

B. Comparative Analysis

A high-level comparison of the developed segmentation
models is presented in Table II. In accordance with recent
trends in the segmentation literature [1], [9], [48], [70], all of
the contributed models use deep learning to efficiently cap-
ture the complex appearance variations present in the ocular
images. The majority of solutions rely on encoder-decoder

7CGANs2020CL is available from github.com/jedota/Sclera-Segmentation.
8Imgaug is available from: github.com/aleju/imgaug.
9RGB-SS-Eye-MS is available from github.com/fdbtrs/SS-Eye-MS.
10ScleraMaskRCNN link: github.com/NTNUGE/ScleraMaskRCNN.

Fig. 3. Segmentation performance of the developed models on the MOBIUS
(blue) and SLD (yellow) datasets with the CTD experimental protocol. Shown
are the average F1 scores (and corresponding standard deviations, n = 5)
computed from the binary segmentation masks. Results are sorted w.r.t. the
harmonic F1 mean over the two datasets.

architectures (e.g., U-Net-based, FCN) with an information
bottleneck as the basis for segmentation, but custom designs
(CRN) and Masked-RCNNs are also represented among the
contributed models. Noteworthy, all models learn from color
as well as texture information, except for the solution from the
HDA group that relies exclusively on texture (i.e., processes
gray-scale images). The developed models also differ in terms
of problem statement (semantic vs. instance segmentation and
segmentation vs. image translation) and corresponding learn-
ing objectives. Finally, we observe considerable differences in
the number of trainable parameters, ranging from 409K for
the most light-weight model to 138M for the heaviest one.
Overall, the developed models represent a rich and diverse set
of segmentation techniques for the group evaluation.

V. EXPERIMENTS AND RESULTS

In this section, we present the results of the group evaluation
that: (i) analyze the performance of different sclera seg-
mentation models over multiple test datasets, (i i) investigate
performance differences of the models across various data
subgroups and training configurations, and (i i i) study the cor-
relations between bias and overall segmentation performance.
We make our evaluation code publicly available to ensure the
reproducibility of our results.11

A. Segmentation Performance

In the first series of experiments, we benchmark the
developed models with respect to the overall segmentation
performance. We consider the complete-training-data (CTD)
protocol for these experiments and use the (unseen) MOBIUS
and SLD test images for scoring. We separately analyze results
based on: (i) the submitted binary segmentation masks, where
the participating groups performed the binarization procedure
on their own, and (i i) the probabilistic masks, processed
independently by the organizers of the group evaluation.

1) Results on Binary Masks: In Fig. 3 we show the average
F1 scores obtained by the developed models together with
the corresponding standard deviations computed from n = 5
(disjoint) stratified subsets of images sampled from each of the
two test datasets. These results provide insight into the perfor-
mance of the segmentation models, but also the variability of
the observed scores. More detailed results across the remaining

11The evaluation code is available from github.com/MatejVitek/GE.
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TABLE III

COMPARISON OF THE OVERALL SEGMENTATION PERFORMANCE. SHOWN ARE RESULTS FOR THE BINARISED MASKS AND PROBABILISTIC PREDICTIONS.
Fopt

1 DENOTES THE HIGHEST F1 SCORE ON THE PRECISION-RECALL CURVE. THE SECOND COLUMN BELOW EACH MEASURE IS THE HARMONIC

MEAN ACROSS THE TWO TEST DATASETS. RESULTS ARE SORTED BASED ON THE (BINARY) HARMONIC F1 MEAN

Fig. 4. Precision-recall (PR) curves of the experiments – best viewed in color and zoomed in. The optimal F1 scores on the PR curves (Fopt
1 ) are marked

with full circles, whereas the F1 points of the binary masks are marked with empty circles. Results are presented separately for the (a) MOBIUS and (b) SLD
datasets.

performance indicators are given in Table III. Here, only the
mean scores are reported to keep the results uncluttered. The
models are sorted with respect to the harmonic F1 mean
calculated across the two evaluation datasets.

As can be seen, RGB-SS-Eye-MS and CGANs2020CL
perform the best overall in this setting with harmonic F1 means
of 0.778 and 0.765, respectively, followed closely by ScleraU-
Net2 with a score of 0.742, mostly due to the more consistent
performance across both test datasets. FCN8 and ScleraSegNet
exhibit a slightly weaker performance to ScleraU-Net2 in
terms of the harmonic F1 mean with scores of 0.741 and 0.739,
respectively, but achieve the best and second best performance
on MOBIUS. MU-Net and ScleraMaskCNN yield the sixth
and seventh best results and rank behind the best performing
models with corresponding harmonic F1 means of 0.729 and
0.538. It is interesting to note that among the top performers,
models using a fixed thresholding procedure for generating the
binary masks (ScleraU-Net2 and ScleraSegNet) result in more
consistent F1 scores across the datasets than models using
dynamic thresholding (RGB-SS-Eye-MS, CGANs2020CL and
FCN8). Nonetheless, finding a good trade-off between preci-
sion and recall scores appears to be challenging for all models
regardless of the thresholding strategy used, as evidenced by
the difference between the two performance scores and their
variability across MOBIUS and SLD in Table III. Overall,
we observe that 6 of the 7 submitted models are within
a performance difference of less than 0.05 in terms of the
harmonic F1 mean. However, larger performance variations are

observed with other (individual) performance scores (recall,
precision, IoU) over each of the two datasets.

2) Results on Probabilistic Masks: To get better insight
into the performance of the segmentation models, we generate
precision-recall curves from the probabilistic segmentation
masks and show these together with the optimal operating
point in terms of F1 score in Fig. 4. Additionally, we also
visualize the operating points that correspond to the binary
masks in the same graph. Numerical results computed based
on the curves are summarized in the right part of Table III.
Several observations can be made based on these results:

• Binarization. Using an optimal threshold for generating
segmentation masks from the probabilistic predictions in
general improves results for all models in terms of the
harmonic F1 mean. Additionally, the binary operating
points are often not located on the PR curves due
to different strategies used for either producing the
probabilistic predictions or determining the binarization
threshold. This suggests that even with fixed segmentation
models, efficient mechanisms for segmentation mask gen-
eration are critical for performance and suitable trade-offs
between precision and recall scores.

• Generalization and Calibration. We observe that com-
parable performances can be achieved on both datasets
with an optimal binarization threshold. Except for RGB-
SS-Eye-MS and MU-Net, where the harmonic Fopt

1
means still exhibit a larger difference, all other models
generalize well across MOBIUS and SLD. The results
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Fig. 5. Qualitative comparison of the (binary) segmentation results on the samples from the MOBIUS and SLD datasets that resulted in some of the best
segmentation performance across the different models. The 3 rows at the top half of the figure show MOBIUS samples captured in different lighting conditions,
specifically in top-to-bottom order: with natural lighting, indoor lighting, and poor lighting. The F1 scores achieved are superimposed. The columns represent:
(a) the original image; (b) the ground truth mask; and the predicted binary masks for: (c) CGANs2020CL, (d) FCN8, (d) MU-Net, (e) RGB-SS-Eye-MS,
(f) ScleraMaskRCNN, (g) ScleraSegNet, and (h) ScleraU-Net2. Best viewed zoomed-in.

generated from the binary masks, on the other hand,
vary wildly and in general correspond to higher precision
scores with lower recalls compared to the optimum on
MOBIUS and the other way around on SLD.

• Ranking. Compared to the binary results from Fig. 3,
we notice a change in the ranking of the models, where
CGANs2020CL and FCN8 are now the clear top perform-
ers with harmonic Fopt

1 means of 0.863 and 0.856 across
the two datasets, respectively. ScleraSegNet ranks third
with a score of 0.830, whereas the rest perform weaker.
These results suggest that mechanisms that allow for
efficient training with limited training data (e.g., heavy
augmentation, use of pretrained models) lead to the most
competitive segmentation performance.

3) Qualitative Results: In Figs. 5 and 6 we visualize
the (binary) segmentation masks generated by the evaluated
models for a few example images from the two experimental
datasets that produced the best and the worst segmentation
results across the evaluated models. We can see that for
the well-performing samples in Fig. 5, all evaluated models
generate competitive results and generalize well across differ-
ent gaze directions. For the more challenging samples from
Fig. 6, on the other hand, the segmentation models result
in very different errors. While some are able to reasonably
well identify the sclera region in the presence of partially
closed eyes and eyelash occlusions (e.g., see the results for
CGANs2020C and FCN8), others struggle to locate parts of
the sclera region or introduce visible artifacts.

B. Bias Analysis

As emphasized by Mehrabi et al. in [15], biases come
in various shapes and forms and may raise issues related
to the fairness of automated decisions made by machine
learning algorithms. To better understand the behavior of
sclera segmentation models in this regard, we explore two
types of biases in this section, i.e.:

• Algorithmic Bias: The first type of bias originates
from the machine learning algorithms and is typically

associated with the design choices made, the optimiza-
tion objective used, the regularizations considered and
similar algorithm-specific characteristics [71]. We study
algorithmic bias in the following sections by comparing
the developed models on subgroups of the test samples
with fixed and predefined training data.

• Representation/Sampling Bias: The second type of bias
stems from the way the data is sampled from a population
during the data collection process [15], [71]. Unrepre-
sentative training data or potential biases in the data are
typically inherited by the machine learning models and
(may) eventually lead to unfair decisions. We investigate
representation bias within the group evaluation by ana-
lyzing models learned with different sets of training data.

To ensure a comprehensive analysis, experiments are con-
ducted with subgroups defined based on different data charac-
teristics. Specifically, we consider subgroups generated based
on demographic (eye color and ethnicity) as well as environ-
mental factors (acquisition device and gaze direction), which
represent two of the main groups of data characteristics most
critical from a bias perspective according to [13]. The selection
of characteristics is also motivated by the annotations available
in the datasets utilized for the group evaluation. We note that
all experiments are performed with stratified subgroups to
mitigate issues related to different sample sizes.

1) Algorithmic Bias: When investigating algorithmic bias,
we consider F1 scores computed from the binary segmentation
masks as the basis for the analysis. The binarization threshold
is, thus, set automatically during training, similarly to a
real-world operational scenario.

Eye-Color Bias. An important ocular characteristic, also
often associated with race, is the eye color of the individuals.
The vast majority of people of Asian and African origins, for
example, have brown eyes, whereas people of Caucasian origin
typically exhibit a wider spectrum of eye colors. To explore the
impact of eye color on segmentation performance, we conduct
an analysis on the test images from the MOBIUS dataset with
(stratified) subgroups that correspond to subjects with brown,
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Fig. 6. Qualitative comparison of the (binary) segmentation results on samples from the MOBIUS and SLD datasets that resulted in the worst performance
across the different models. The 3 rows in the top half of the figure show MOBIUS samples captured in different lighting conditions, specifically in top-
to-bottom order: with natural lighting, indoor lighting, and poor lighting. The images additionally have their corresponding F1 scores superimposed. The
columns represent: (a) the original image; (b) the ground truth mask; and the predicted binary masks for: (c) CGANs2020CL, (d) FCN8, (e) MU-Net,
(f) RGB-SS-Eye-MS, (g) ScleraMaskRCNN, (h) ScleraSegNet, and (i) ScleraU-Net2. Best viewed zoomed-in.

Fig. 7. Differential performance and bias scores with respect to eye color evaluated on the MOBIUS dataset. For the disparities in (a) the best score is
presented in bold, the second best is underlined. In (b), the disparities (CGD and FSD) are normalized to the range of STD and MAD for visualization
purposes. The mean value of each bias score is shown as a dashed line and lower values imply better performance/behavior, i.e., ↓. The figure is best viewed
electronically and in color.

green, blue and gray eyes. The models scored in the analysis
are trained using the CTD protocol, so all eye colors are well
represented in the training data.

Fig. 7(a) shows that all models underperform with green
eyes, where green-color-specific Feye

1 scores between 3.4%
(ScleraU-Net2) and 14.8% (ScleraMaskRCNN) below the
average performance across all images Fall

1 are observed,
and Feye

1 scores between 8.4% (ScleraU-Net2) and 22.0%
(ScleraMaskRCNN) below the best performing eye-color are
seen. The (differential) results for the remaining eye-colors
are closer in general, with blue and gray eyes consistently
yielding the highest scores for all tested models and brown
eyes resulting in somewhat lower but still above average
Feye

1 values. These systematic performance differentials are
unexpected, especially given the fact that the blue- and
gray-colored eyes are less represented in the provided training
data than the gray and brown eyes, suggesting that eye-color
represents a critical image characteristics with considerable
impact on the segmentation performance and fairness of
the evaluated models, regardless of their design. While
the presented F1 scores provide an initial idea about the
performance differentials due to eye color, they are based

on selected subgroup samples that may contain additional
sources of variability that affect performance [19]. Since these
sources cannot be easily accounted for (as they are in general
unknown), we report the proposed bias disparities, CGD and
FSD, in the right part of Fig. 7(a). As can be seen, all
models exhibit a CGD score above 1, suggesting that the
variability in segmentation performance due to color variations
is larger (even though moderately so) than the variability
seen in randomly sampled subgroups. The lowest performance
differentials are seen with the ScleraU-Net2 model with a
CGD score of 1.64 and the largest for the CGANs2020CL
approach with a CGD value of 8.23. Interestingly, this model
is also the only one trained on gray-scale images. The fact
that the only model working with gray-scale images exhibited
by far the highest degree of eye-color bias suggests that using
color information (for training and at run-time) is beneficial
for stable results across different eye colors. A similar ranking
can also be observed when normalizing the bias scores using
within-group variations in FSD. Here, MU-Net and ScleraU-
Net2 exhibit the most stable performance across the eye-
color subgroups, whereas CGANs2020CL again results in the
largest performance differences. In Fig. 7(b) we compare the
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Fig. 8. Differential performance and bias scores with respect to ethnicity on a chimeric test dataset (MOBIUS+SMD+SLD). The best disparity score in
(a) is presented in bold, the second best is underlined. In (b), the disparities (CGD and FSD) are normalized to the range of STD and MAD for visualization
purposes. The mean value of each bias score is shown as a dashed line and lower values imply better performance/behavior, i.e., ↓. The figure is best viewed
electronically and in color.

Fig. 9. Illustration of MOBIUS images captured with three different
acquisition devices in an indoor setting. Note that the devices produce images
of different characteristics in terms of color tone, sharpness, and focus.

segmentation models with respect to all four bias scores and
relative to the average performance across models (dashed
line). In this relative comparison, MU-Net and FCN8 are
the only two models that yield below-average bias scores
across all performance indicators. On the other end of the
spectrum are the CGANs2020CL and ScleraSegNet models,
which exhibit above-average bias scores with all considered
measures, exceeding the bias scores of the best performing
models by a factor of more than 2×.

Ethnicity Bias. The datasets used for the group evalu-
ation contain individuals of different ethnicities. MOBIUS
predominantly consists of Caucasian (white) subjects, whereas
SMD and SLD contain subjects of Indian descent. To explore
ethnicity-related bias, we construct a chimeric dataset from
the test images in the MOBIUS, SMD and SLD datasets.
We note that the three datasets also differ to some extent
in image characteristics other than ethnicity (e.g., due to the
capturing equipment and lighting), so cross-talk from other
attributes may be present in the reported results. This cross-talk
needs to be taken into account when interpreting results, but is
accounted for (partially) by the disparity measures. To ensure
that there is no overlap between the training and testing
images, we use the limited-training-data (LTD) protocol for
the analysis with MASD and SBVPI (having a total of 4482
images from 137 distinct subjects) serving as the training data.

From the results in Fig. 8(a)12 we observe that several
of the tested models produce considerable performance dif-
ferences for subjects of different ethnicities. RGB-SS-Eye-
MS, ScleraU-Net2, and ScleraSegNet, for example, show a
difference of 29.9%, 37.2% and 41.8% in the ethnicity-

12The MU-Net model appears to have not been trained well using the limited
amount of data available in this configuration and is, therefore excluded from
the analysis.

specific Fetn
1 scores, respectively. The most stable models in

terms of performance differentials, CGANs2020CL and FCN8,
on the other hand, generate Fetn

1 differences between the
two ethnicities of below 5%. When looking at the disparity
measures, we notice that ethnicity induces significantly larger
performance variations than eye color on average, with CGD
scores reaching values above 10 for most models and FSD
scores above 0.5. While the performance of the fairest (most
unbiased) model, CGANs2020CL, is comparable to the best
model from Fig. 7, we still observe performance differentials
that are larger than in the control group. As illustrated in
Fig. 8(b) three (valid) models achieve below-average per-
formance differences across the ethnicities when consider-
ing all four bias scores, i.e., CGANs2020CL, FCN8 and
ScleraMaskRCNN. It needs to be noted, though, that the
overall segmentation performance is quite different for the
three models, with Fall

1 scores of 0.666, 0.770 and 0.597 for
CGANs2020CL, FCN8 and ScleraMaskRCNN, respectively.

Acquisition-Hardware Bias. Next, we focus on perfor-
mance differentials induced by the acquisition devices. For this
part of the analysis, we again consider the test images from
the MOBIUS dataset, which come from three different mobile
phones. We use the CTD protocol to make sure examples from
all capture devices are present in equal amounts in the training
data. We note that, in general, all acquisition devices generate
images of reasonable quality but with differences in color tone,
sharpness and focus, as shown in Fig. 9.

The results in Fig. 10(a) show that the performance dif-
ferences due to the capture device are overall larger than
those originating from eye-color, but are below the differentials
observed for ethnicities. In general, most models (except RGB-
SS-Eye-MS) perform strongest with images from the Xiaomi
phone, whereas the other two acquisition devices produce
mixed rankings across the models. We see performance dif-
ferences in the range of 5.1% (RGB-SS-Eye-MS) to 15.4%
(CGANs2020CL) between the best and worst device-specific
Fhdw

1 scores and observe that even when normalized against
reference data variations (in CGD and FSD), the acquisition
device still has a considerable impact on segmentation perfor-
mance. When comparing the models in terms of all four bias
scores in Fig. 10(b), we notice below-average performance
differentials in terms of all four scores for the RGB-SS-Eye-
MS and ScleraU-Net2 models and above-average differentials
for the CGANs2020CL and ScleraSegNet models. Both of the
strongest models in this experiment frame the sclera segmen-
tation task as a semantic segmentation problem and are among
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Fig. 10. Differential performance and bias scores w.r.t. acquisition hardware on the MOBIUS dataset. The best disparity CGD and FSD scores in (a) are
presented in bold, the second best are underlined. In (b), the disparities (CGD and FSD) are normalized to the range of STD and MAD for visualization
purposes. The mean value of each bias score is shown as a dashed line and lower values imply better performance/behavior, i.e., ↓. The figure is best viewed
electronically and in color.

Fig. 11. Differential performance and bias scores with respect to eye gaze evaluated on the MOBIUS dataset. For the disparities in (a) the best score is
presented in bold, the second best is underlined. In (b), the disparities (CGD and FSD) are normalized to the range of STD and MAD for visualization
purposes. The mean value of each bias score is shown as a dashed line and lower values imply better performance/behavior, i.e., ↓. The figure is best viewed
electronically and in color.

the lighter models in terms of trainable parameters, which
helps to generate stable segmentation results with limited
performance variations across different capture devices.

Gaze-Direction Bias. Another potential source of differ-
ences in segmentation performance is the gaze direction,
in which the eye was imaged. To explore the impact of gaze on
segmentation performance, we conduct an analysis on the test
images from the MOBIUS dataset with (stratified) subgroups
that correspond to images captured with subjects looking up,
left, straight, and right. The models scored in the analysis are
trained using the CTD protocol, so all gaze directions are well
represented in the training data, as both the MASD and SBVPI
datasets (which form the majority of the training data in the
CTD protocol) contain images with varying gaze directions –
refer to Table I for details on the dataset characteristics.

The results in Fig. 11(a) show that the worst perfor-
mance is fairly consistently achieved with the straight gaze
direction, where straight-gaze-specific Fgaze

1 scores between
2.5% (MU-Net) and 19.5% (ScleraU-Net2) below the average
performance across all images Fall

1 are observed. Note that
this result appears despite the fact that the straight gaze
direction is slightly overrepresented in the provided training
data (since the 500 images in SMD are captured in the straight
gaze direction only). The upwards gaze direction consistently
results in the best segmentation performance, with upward-
gaze-specific Fgaze

1 scores between 6.1% (ScleraU-Net2) and
21.4% (ScleraMaskRCNN) above Fall

1 . The left and right
directions result in roughly equivalent performances across
the board, mostly falling between the performances on the
upwards- and the straight-gaze direction.

The (poor) results with the straight-gaze direction can be
attributed to the fact that under this direction, the sclera
commonly appears in the form of two distinct areas of roughly
the same size with possibly different brightness values – due

to the external illumination conditions. This also explains why
the worst individual performances were observed with the
sunny and well-lit samples in Fig. 6, even though the images
captured in sunny weather and well-lit rooms achieve better
segmentation performance than images captured in poorly-lit
rooms on average [1]. Conversely, with the upwards-gaze
direction the sclera typically takes the form of a single
contigous area with potential gradual changes in illumination
and contrast, leading to above-average segmentation results.
The weaker results with the straight-direction images are
somewhat in conflict with the feature extraction stage, where
matching with the straight-gaze direction images was shown to
lead to better recognition results than matching with other gaze
direction images [5]. This implies that in real-world scenarios,
where sclera segmentation is still a relatively difficult problem
(unlike in the laboratory conditions explored in [5]), a balance
in the performance of the methods addressing these two steps
has to be achieved for a successful overall recognition pipeline.

As all models exhibit a CGD score significantly above 1,
we can conclude that the variability in segmentation perfor-
mance due to gaze variations is larger than the variability
seen in randomly sampled subgroups. The lowest performance
differentials are seen with the FCN8 model with a CGD score
of 4.42 and the largest for the ScleraU-Net2 approach with a
CGD value of 18.9. A similar ranking can also be observed
when normalizing the bias scores using within-group varia-
tions in FSD. Here, MU-Net and ScleraMaskRCNN exhibit the
most stable performance across the gaze-direction subgroups,
whereas ScleraU-Net2 again results in the largest performance
differences. In Fig. 11(b) we compare the segmentation models
with respect to all four bias scores and relative to the average
performance across models (dashed line). In this relative
comparison, FCN8 and ScleraSegNet are the only two models
that yield below-average bias scores across all performance
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TABLE IV

DIFFERENTIAL PERFORMANCE WITH RESPECT TO CHANGES IN THE
TRAINING DATA (SBVPI VS. MASD+SBVPI). RESULTS ARE COM-

PUTED FROM THE BINARY SEGMENTATION MASKS AND PRE-
SENTED IN THE FORM Fetn

1 (F1 − Fetn
1 ). RESULTS ARE

REPORTED WITH THE IMAGES FROM MOBIUS, SMD, AND
SLD SERVING AS THE TEST DATA

indicators. On the other end of the spectrum is ScleraU-Net2,
which exhibits above-average bias scores with all considered
measures, exceeding the bias scores of the best performing
models by a factor of 4×.

2) Representation Bias: Performance differentials across
different data subgroups are often ascribed to biased (or
unbalanced) training data [13], [15]. To provide insight into
this issue, we study the representation (or sampling) bias in
the context of performance differentials induced by ethnici-
ties in the next series of experiments. For the analysis we
consider two configurations of the limited-training-data (LTD)
experimental protocol: (i) in the first configuration, the SBVPI
data, with exclusively Caucasian subjects, (i.e., 1858 images
from 55 subjects) is used as the training data, and (i i) in
the second configuration, MASD (having exclusively Indian
subjects) as well as SBVPI (for a combined 4482 images from
137 subjects) are utilized for training. The test set consists of
images from the MOBIUS, SMD and SLD datasets, which
were not seen during training. We note that the MU-Net model
did not converge properly using the limited amount of training
data available in this experiment and is, therefore, excluded
from the following analysis.

Several observations can be made from the results in
Table IV: (i) The segmentation performance increases for
both ethnicities in terms of Fetn

1 scores when adding more
training data for the majority of models, i.e., SBVPI →
MASD+SBVPI, suggesting that the added training samples
contribute towards better segmentation results. (i i) The per-
formance with Caucasian subjects is consistently higher for all
models regardless of the training data used. The only notable
exception here is ScleraMaskRCNN, which performs better
with Indian subjects when the mixed-ethnicity data is used
for training. (i i i) While the performance differentials between
the two ethnicities range between 7.5% (FCN8) and 32.2%
(ScleraU-Net2) in terms of Fetn

1 scores when the models
are trained on the SBVPI data, the range of performance
differentials changes to between 1.65% (CGANs2020CL) and
41.8% (ScleraSegNet), when both MASD and SBVPI are
utilized for the training procedure. As also seen from Fig. 12,
where differences in the bias scores due to the training data
are presented, i.e., Bias� = ψmasd+sbvpi − ψsbvpi ; ψ ∈
{STD,MAD,CGD,FSD}, several models (CGANs2020CL
and FCN8) are able to significantly reduce the performance
differences with more representative training examples in addi-
tion to improving their overall F1 scores, whereas others (e.g.,
RGB-SS-Eye-MS, ScleraU-Net2, and ScleraSegNet) improve
segmentation performance but also increase the differences

Fig. 12. Differences in the ethnicity-induced bias scores generated with
two different training configurations, one containing only Caucasian subjects,
and the other containing Caucasian as well as Indian subjects. Positive
values imply larger bias scores were observed with the mixed-ethnicity
training configuration, while negative values mean that larger bias scores were
observed with the Caucasian-only training configuration.

in the ethnicity-specific Fetn
1 values. This observation is

consistent with prior work studying representation bias in other
problem domains, e.g., [72] – informative training data may
help to reduce performance differentials with well-designed
and trained models, but this is by no means guaranteed.

C. Bias vs. Segmentation Performance

In the final analysis we investigate the relationship between
algorithmic bias across eye color, gaze direction, ethnicity, and
capture device and the overall segmentation performance. The
analysis for each of the four factors is conducted with the same
experimental setup in terms of training and testing data as in
the corresponding experiments from Section V-B. Thus, all
models are trained on the same data to ensure a fair evaluation.

In Fig. 13 we plot the calculated CGD disparities against
the F1 scores for each experiment and as a function of the
model size, i.e., the number of model parameters. The figure,
thus, captures the trade-off the developed models offer in terms
of bias, segmentation performance and model footprint. In an
ideal setting, the models would have low bias (CGD scores on
the y-axis), high performance (F1 scores on the x-axis) and
a low parameter count (circle areas), and would as such be
located at the lower right in the presented graphs. To capture
the relationships between the bias and performance scores,
we fit a line to the data points in a least-squares manner. Since
certain models performed much worse on certain training
configurations, possibly due to insufficient training or errors in
training data handling (see for instance Fig. 8(a) and Table IV),
we eliminate outliers with an F1 z-score above 2 (i.e., models
with an F1 score that is more than 2 standard deviations from
the mean F1 score) and fit the line to the remaining data.

As can be seen, there is a weak but consistent negative
correlation between the performance differentials and overall
segmentation performance for all considered factors. This
suggests that better performing models tend to produce smaller
performance differences over data subgroups. With improve-
ments in visual segmentation techniques, reductions in the
performance differentials may, therefore, also be expected.
Active research on reducing bias with existing models is
nevertheless a key concern going forward. If we look at
the performance-bias trade-off from the perspective of model
size, we observe that the largest model, FCN8, is consis-
tently among the best models located at the bottom right of
Fig. 13, while the smaller models (MU-Net, CGANs2020CL,
and ScleraU-Net2) trend more toward the left (low perfor-
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Fig. 13. Scatter plots of the CGD disparities relative to the F1 values achieved
by the models. Lines fitted to the points in the graphs are also shown, along
with their corresponding R2 scores. The areas of the circles around the points
represent the model sizes in terms of the number of parameters.

mance) and top (high bias) of the graphs. This observation
may suggest that model scaling can also have a beneficial
impact on the segmentation models, similarly to what has
been observed recently in other areas, where larger models
were found to have a significant edge over their smaller
counterparts [73], [74], [75].

VI. DISCUSSION

The following observations were made based on the avail-
able sample of models with respect to the research questions
laid out in the introductory section of the paper.

Q1: How well do contemporary sclera-segmentation
models perform with diverse input images?

Significant performance differences were observed across
the evaluated models. While many of the best performing
models (RGB-SS-Eye-MS, CGANs2020CL, FCN8, ScleraU-
Net2 or ScleraSegNet) achieved F1 scores above 0.7 on
the challenging MOBIUS dataset (mobile setting, different
devices, gaze directions and environments), some of the
weaker models yielded F1 scores closer to 0.5. Similarly,
on the newly collected SLD dataset, F1 scores varied from
above 0.8 for the strongest models to 0.55 for the weakest one.
Nonetheless, the results suggest that given the current state of
technology, it is possible to train segmentation models that
generalize well across data characteristics and produce usable
segmentation results even with challenging input images.

Q2: What are the most critical sources of bias?
Different characteristics were taken into account when

exploring algorithmic bias with the developed segmentation
models, including eye color, ethnicity, acquisition hardware
and gaze direction. The largest performance differences were
observed across ethnicities, where 6 out of 7 tested models
exhibited a clear preference for Caucasian subjects, despite the

fact that the ethnicity groups were equally represented in the
training data (with a slight under-representation for Caucasian
subjects). The bias due to eye color was overall the lowest in
our experiments. Nonetheless, all 7 models performed worst
with green eyes and 6 out of the 7 models performed best with
gray eyes, suggesting that eye color represents a systematic
(yet limited) source of algorithmic bias in sclera segmentation
models. The bias scores observed with different acquisition
devices were overall higher than what was observed due to eye
color in the experiments, but the ranking w.r.t. devices was not
consistent across the segmentation models. While all 7 models
performed best with images captured by the Xiaomi phone, the
ranking on the other two phones was mixed, implying that,
while the acquisition hardware is still a significant source of
bias, various segmentation methods respond differently to the
image characteristics introduced by the capturing hardware.
The bias scores observed for gaze directions were comparable
to the scores observed for the acquisition devices, with 6 out of
7 models exhibiting the worst performance with the straight-
gaze directions, and similarly 6 out of 7 performing best for
the upwards-gaze direction, again pointing to the presence of
systematic bias with respect to gaze directions.

Q3: What impact do training data characteristics have
on the bias exhibited by the segmentation models?

To study the impact of training data characteristics on
the segmentation accuracy and ethnicity bias, two different
training configurations were explored: (i) one that contained
only Caucasian subjects, and (i i) another one that contained
an approximately balanced number of images of Indian
and Caucasian subjects. Two main observation were made.
The overall segmentation performance of 6 of the 7 models
improved with the larger, more representative training dataset.
However, only 3 out of the 7 models managed to also reduce
the performance differences between the Caucasian and Indian
subjects, for 2 models the results were mixed, whereas for the
last 2, the bias in fact increased with the balanced dataset. This
confirms prior observations [29], [72] that balanced datasets do
not automatically lead to unbiased performance, as algorithmic
bias is not necessarily related only to unbalanced training data.

Q4: Can we mitigate algorithmic bias without degrading
segmentation performance?

There appeared to be a consistent (albeit weak) negative
correlation between segmentation accuracy and the CGD
bias score across all of our bias experiments. This implies
that improving the overall segmentation performance of the
models also simultaneously reduces its inherent bias on
average. Advances in semantic segmentation can therefore be
expected to also address bias and fairness issues to a certain
degree.

VII. CONCLUSION

In this paper, we presented the results of a group evaluation,
organized to benchmark the performance and bias of sclera
segmentation models under a common experimental setting.
Seven research groups participated in the effort and contributed
seven distinct models to the evaluation for scoring.

The results of the group evaluation suggest that con-
temporary models are able to ensure useful segmentation
performance with diverse input images and that more accu-
rate models consistently also achieve lower bias scores with
respect to different factors. Increasing the model complexity
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was also observed to lead to better performance and lower
bias. Given such results, recent advances in modern model
architectures (such as transformers) may help provide better
performance-bias trade-offs in the future. However, note that
the improvement in this case may come at the cost of
higher memory usage and computational intensity, which
could be problematic for applications running on less-capable
hardware.

As part of our future work, we plan to explore
correlation-based measures for quantifying bias, applicable
to groups of (machine learning) models. Such measures are
expected to ensure additional insights into the behavior of
the models and help identify important trends and model/data
characteristics affecting performance and performance differ-
entials across subgroups of data.
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“Deep sclera segmentation and recognition,” in Handbook of Vascular
Biometrics. Cham, Switzerland: Springer, 2020, pp. 395–432.

[10] D. Riccio, N. Brancati, M. Frucci, and D. Gragnaniello, “An unsu-
pervised approach for eye sclera segmentation,” in Proc. Iberoamer-
ican Congr. Pattern Recognit. New York, NY, USA: Springer, 2017,
pp. 550–557.

[11] A. Das, U. Pal, M. A. Ferrer, and M. Blumenstein, “A decision-level
fusion strategy for multimodal ocular biometric in visible spectrum
based on posterior probability,” in Proc. IEEE Int. Joint Conf. Biometrics
(IJCB), Oct. 2017, pp. 794–798.

[12] V. Gottemukkula, S. Saripalle, S. P. Tankasala, and R. Derakhshani,
“Method for using visible ocular vasculature for mobile biometrics,”
IET Biometrics, vol. 5, no. 1, pp. 3–12, 2016.

[13] P. Drozdowski, C. Rathgeb, A. Dantcheva, N. Damer, and C. Busch,
“Demographic bias in biometrics: A survey on an emerging challenge,”
IEEE Trans. Technol. Soc., vol. 1, no. 2, pp. 89–103, Jun. 2020.

[14] EuropeanCommission. (Apr. 2021). The Artificial Intelligence Act.
[Online]. Available: https://artificialintelligenceact.eu/the-act/

[15] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A
survey on bias and fairness in machine learning,” ACM Comput. Surv.,
vol. 54, no. 6, pp. 1–35, Jul. 2022.

[16] O. A. Osoba and W. Welser, An Intelligence in Our Image: The Risks
of Bias and Errors in Artificial Intelligence. Santa Monica, CA, USA:
Rand Corporation, 2017.

[17] P. Grother, M. Ngan, and K. Hanaoka, Face Recognition Vendor Test
(FVRT): Part 3, Demographic Effects. Gaithersburg, MD, USA: NIST,
2019.

[18] J. P. Robinson, C. Qin, Y. Henon, S. Timoner, and Y. Fu, “Balancing
biases and preserving privacy on balanced faces in the wild,” 2021,
arXiv:2103.09118.

[19] V. Albiero, K. Zhang, M. C. King, and K. W. Bowyer, “Gendered
differences in face recognition accuracy explained by hairstyles, makeup,
and facial morphology,” IEEE Trans. Inf. Forensics Security, vol. 17,
pp. 127–137, 2021.

[20] A. Puc, V. Struc, and K. Grm, “Analysis of race and gender bias in
deep age estimation models,” in Proc. 28th Eur. Signal Process. Conf.
(EUSIPCO), Jan. 2021, pp. 830–834.

[21] Z. Babnik and V. Struc, “Assessing bias in face image quality assess-
ment,” in Proc. Eur. Signal Process. Conf. (EUSIPCO), 2022, pp. 1–5.

[22] B. Meden et al., “Privacy–enhancing face biometrics: A comprehensive
survey,” IEEE Trans. Inf. Forensics Security, vol. 16, pp. 4147–4183,
2021.

[23] R. Ramachandra, K. Raja, and C. Busch, “Algorithmic fairness in face
morphing attack detection,” in Proc. IEEE/CVF Winter Conf. Appl.
Comput. Vis. Workshops (WACVW), Jan. 2022, pp. 410–418.

[24] S. K. Modi, S. J. Elliott, J. Whetsone, and H. Kim, “Impact of age
groups on fingerprint recognition performance,” in Proc. IEEE Workshop
Autom. Identificat. Adv. Technol., Apr. 2007, pp. 19–23.



VITEK et al.: EXPLORING BIAS IN SCLERA SEGMENTATION MODELS: A GROUP EVALUATION APPROACH 205

[25] S. Yoon and A. K. Jain, “Longitudinal study of fingerprint recognition,”
Proc. Nat. Acad. Sci. USA, vol. 112, no. 28, pp. 8555–8560, Jul. 2015.

[26] P. Drozdowski et al., “Demographic bias: A challenge for fingervein
recognition systems?” in Proc. EUSIPCO, 2021, pp. 825–829.

[27] A. Uhl and P. Wild, “Comparing verification performance of kids
and adults for fingerprint, palmprint, hand-geometry and digit-
print biometrics,” in Biometrics: Theory, Applications, and Systems
(BTAS). Piscataway, NJ, USA: IEEE Press, 2009. [Online]. Available:
https://ieeexplore.ieee.org/document/5339069

[28] H. Wu, V. Albiero, K. S. Krishnapriya, M. C. King, and K. W. Bowyer,
“Face recognition accuracy across demographics: Shining a light into
the problem,” 2022, arXiv:2206.01881.

[29] S. Gong, X. Liu, and A. K. Jain, “Jointly de-biasing face recognition
and demographic attribute estimation,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2020, pp. 330–347.

[30] P. Terhörst, “Mitigating soft-biometric driven bias and privacy concerns
in face recognition systems,” Ph.D. dissertation, Dept. Comput. Sci.,
Univ. Darmstadt, Darmstadt, Germany, 2021.

[31] A. Das, A. Dantcheva, and F. Bremond, “Mitigating bias in gender,
age and ethnicity classification: A multi-task convolution neural network
approach,” in Proc. ECCV Workshops, Aug. 2018, pp. 1–5.

[32] A. Krishnan, A. Almadan, and A. Rattani, “Investigating fairness of
ocular biometrics among young, middle-aged, and older adults,” in Proc.
Int. Carnahan Conf. Secur. Technol. (ICCST), Oct. 2021, pp. 1–7.

[33] A. Krishna, “Probing fairness of mobile ocular biometrics methods
across gender on VISOB 2.0 dataset,” in Proc. Int. Conf. Pattern
Recognit. (ICPR), 2021, pp. 229–243.

[34] M. Fang, N. Damer, F. Kirchbuchner, and A. Kuijper, “Demographic
bias in presentation attack detection of iris recognition systems,” in Proc.
28th Eur. Signal Process. Conf. (EUSIPCO), Jan. 2021, pp. 835–839.

[35] D. O. Gorodnichy and M. P. Chumakov, “Analysis of the effect of age-
ing, age, and other factors on iris recognition performance using Nexus
scores dataset,” IET Biometrics, vol. 8, no. 1, pp. 29–39, Jan. 2019.

[36] A. Das, U. Pal, M. A. F. Ballester, and M. Blumenstein, “Multi-
angle based lively sclera biometrics at a distance,” in Proc. IEEE
Symp. Comput. Intell. Biometrics Identity Manag. (CIBIM), Dec. 2014,
pp. 22–29.

[37] A. Das, “Towards multi-modal sclera and iris biometric recogni-
tion with adaptive liveness detection,” Ph.D. dissertation, School Inf.
Commun. Technol., Griffith Univ., Brisbane, QLD, Australia, 2017.
[Online]. Available: https://www.griffith.edu.au/griffith-sciences/school-
information-communication-technology/contact-us

[38] R. Derakhshani, A. Ross, and S. Crihalmeanu, “A new biometric
modality based on conjunctival vasculature,” in Proc. Artif. Neural Netw.
Eng., 2006, pp. 1–8.

[39] R. Derakhshani and A. Ross, “A texture-based neural network classifier
for biometric identification using ocular surface vasculature,” in Proc.
Int. Joint Conf. Neural Netw., Aug. 2007, pp. 2982–2987.

[40] S. Crihalmeanu, A. Ross, and R. Derakhshani, “Enhancement and
registration schemes for matching conjunctival vasculature,” in Proc. Int.
Conf. Biometrics. Cham, Switzerland: Springer, 2009, pp. 1240–1249.

[41] S. P. Tankasala, P. Doynov, R. R. Derakhshani, A. Ross, and
S. Crihalmeanu, “Biometric recognition of conjunctival vasculature
using GLCM features,” in Proc. Int. Conf. Image Inf. Process.,
Nov. 2011, pp. 1–6.

[42] A. Das, U. Pal, M. A. F. Ballester, and M. Blumenstein, “A new
method for sclera vessel recognition using OLBP,” in Proc. Chin. Conf.
Biometric Recognit., 2013, pp. 370–377.

[43] K. Oh and K.-A. Toh, “Extracting sclera features for cancelable identity
verification,” in Proc. 5th IAPR Int. Conf. Biometrics (ICB), Mar. 2012,
pp. 245–250.

[44] R. A. Naqvi and W.-K. Loh, “Sclera-net: Accurate sclera segmentation in
various sensor images based on residual encoder and decoder network,”
IEEE Access, vol. 7, pp. 98208–98227, 2019.

[45] D. R. Lucio, R. Laroca, E. Severo, A. S. Britto, and D. Menotti, “Fully
convolutional networks and generative adversarial networks applied to
sclera segmentation,” in Proc. IEEE 9th Int. Conf. Biometrics Theory,
Appl. Syst. (BTAS), Oct. 2018, pp. 1–7.

[46] J. E. Tapia, E. L. Droguett, A. Valenzuela, D. P. Benalcazar, L. Causa,
and C. Busch, “Semantic segmentation of periocular near-infra-red eye
images under alcohol effects,” IEEE Access, vol. 9, pp. 109732–109744,
2021.

[47] S. J. Garbin, Y. Shen, I. Schuetz, R. Cavin, G. Hughes, and S. S. Talathi,
“OpenEDS: Open eye dataset,” 2019, arXiv:1905.03702.

[48] A. Das et al., “Sclera segmentation benchmarking competition in cross-
resolution environment,” in Proc. Int. Conf. Biometrics, 2019, pp. 1–7.

[49] A. Dasa, U. Palb, M. A. Ferrerc, and M. Blumensteina, “SSBC 2015:
Sclera segmentation benchmarking competition,” in Proc. IEEE 7th Int.
Conf. Biometrics Theory, Appl. Syst. (BTAS), Sep. 2015, pp. 1–10.

[50] A. Das, U. Pal, M. A. Ferrer, and M. Blumenstein, “SSRBC 2016: Sclera
segmentation and recognition benchmarking competition,” in Proc. Int.
Conf. Biometrics (ICB), Jun. 2016, pp. 1–6.

[51] A. Das et al., “SSERBC 2017: Sclera segmentation and eye recognition
benchmarking competition,” in Proc. Int. Joint Conf. Biometrics (IJCB),
2017, pp. 742–747.

[52] A. Das et al., “SSBC 2018: Sclera segmentation benchmarking compe-
tition,” in Proc. Int. Conf. Biometrics (ICB), 2018, pp. 1–4.

[53] O. Golob, P. Peer, and M. Vitek, “Semi-automated correction of
MOBIUS eye region annotations,” in Proc. IEEE Int. Electrotech.
Comput. Sci. Conf. (ERK), Dec. 2020, pp. 344–347.
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