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Explicit Wiretap Channel Codes via Source Coding,
Universal Hashing, and Distribution Approximation,
When the Channels’ Statistics are Uncertain

Rémi A. Chou

Abstract—We consider wiretap channels with uncertainty on
the eavesdropper channel under (i) noisy blockwise type II,
(ii) compound, or (iii) arbitrarily varying models. We present
explicit wiretap codes that can handle these models in a uni-
fied manner and only rely on three primitives, namely source
coding with side information, universal hashing, and distri-
bution approximation. Qur explicit wiretap codes achieve the
best known single-letter achievable rates, previously obtained
non-constructively, for the models considered. Our results are
obtained for strong secrecy, do not require a pre-shared secret
between the legitimate users, and do not require any symmetry
properties on the channel. An extension of our results to com-
pound main channels is also derived via new capacity-achieving
polar coding schemes for compound settings.

I. INTRODUCTION

The wiretap channel [2] is a fundamental primitive to
model eavesdropping at the physical layer [3], [4]. Beyond
theoretical results that characterize the secrecy capacity for this
model, significant progress has been made in the development
of explicit wiretap codes for Wyner’s wiretap channel [2].
Specifically, coding schemes based on low-density parity-
check codes, e.g., [5]-[7], polar codes, e.g. [8]-[14], and
invertible extractors, e.g., [15]-[17], have been successfully
developed for Wyner’s model [2] or some of its special cases.

An assumption made by all the above references is that
the eavesdropper channel statistics are perfectly known by
the legitimate users. To model uncertainty, several models
have been introduced: Type II models [18]-[20], where the
eavesdropper can learn an arbitrary and unknown part of the
legitimate sender codeword, and models where the eavesdrop-
per channel statistics are not perfectly known but only known
to belong to a given set. These latter models are useful when
the physical location of the eavesdropper is uncertain from the
point of view of the legitimate users, and include compound
models [21], [22], where the channel statistics are known to be
fixed for all channel uses, and arbitrarily varying models [23],
[24], where the channel statistics change at each channel use.

Our contributions are summarized as follows. (i) We
construct explicit wiretap codes that achieve the best
known single-letter achievable rates, previously obtained non-
constructively, when uncertainty holds on the eavesdropper
channel under a noisy blockwise type II, compound, or ar-
bitrarily varying model. (ii) We prove the sufficiency of three
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primitives to construct such wiretap codes: source coding with
side information, universal hashing, and distribution approxi-
mation. (iii) We extend our results to the case where uncer-
tainty holds on the main channel according to a compound
model. (iv) We demonstrate that all the models considered in
this paper can be handled in a unified manner by the same
encoding and decoding schemes, up to an appropriate choice
of parameters. We stress that our results are obtained for
strong secrecy, do not require a pre-shared secret between the
legitimate users, and do not require any symmetry properties
on the channel.

Our approach consists in separately handling the reliability
constraint and the security constraints. The reliability con-
straint is handled via a combination of source coding with
side information and distribution approximation implemented
with polar codes. The security constraints are handled with a
combination of universal hashing and distribution approxima-
tion implemented via two-universal hash functions and polar
codes, respectively. The main difficulty in our approach is
to combine universal hashing and source coding with side
information such that (i) non-symmetric and non-degraded
channels can be handled, and (ii) the analysis of the security
of the overall coding scheme is possible. (i) is performed via
the idea of block-Markov coding as introduced in [25], [26]
with the following two important modifications to enable (ii):
(1) Each encoding block of the block-Markov construction
is constructed from L sub-blocks in which all the involved
random variables have the same joint distribution across all
sub-blocks. (2) The construction of each encoding block is
such that the encoder output distribution approaches a fixed
target distribution. In particular, these two points are key to
analyzing the security of universal hashing via the leftover
hash lemma [27], whose application in our analysis raises
several additional challenges. First, while the leftover hash
lemma proves a security guarantee on the output of a hash
function, in our coding scheme, we need to prove a security
guarantee on a message M that is not obtained as the output
of a hash function. To circumvent this difficulty, we prove
the statistical equivalence between our coding scheme and
another coding scheme where the message M is obtained as
the output of a hash function. Second, because of the block-
Markov construction, a precise study of the inter-dependencies
between the encoding blocks is needed to evaluate the overall
leakage when considering all the blocks jointly.

In Section III, we formally describe the model considered
in this paper. In Section IV, we state our main results. In



Section V, we describe our proposed coding scheme. The
analysis of our coding scheme is presented in Sections VI, VII,
VIIIL. In Section IX, we present an extension of our results to
the case where uncertainty holds on the legitimate user channel
under a compound model [3], [22]. Finally, in Section X, we
provide concluding remarks.

II. NOTATION

For a,b € R,, define [a,b] = [la],[b]] N N. The
components of a vector X'V of size N are denoted with
superscripts, i.e., X"V £ (X%);cpy vy For any set A C
[1, N, let XN [A] be the components of X 'V whose indices
are in A. For two distributions pxy and ¢xy defined over
X x ), define the variational distance between px and gx as
V(px.ax) 2 Y ,exlpx(x) — ax(z)|, the Kullback-Leibler
divergence between py and qx as D(px||qx), and the con-
ditional Kullback-Leibler divergence between py|x and gy |x
as By [D(pyxllav x)] £ X, cx Px (2)D(py|x=s gy |x=2)-
Unless otherwise specified, capital letters denote random
variables, whereas lowercase letters designate realizations of
associated random variables, e.g., = is a realization of the
random variable X . Let 1{w} be the indicator function, which
is equal to 1 if the predicate w is true and O otherwise. For any
r € R, define [x]T = max(0, x). Finally, GF(2"V) denotes a
finite field of order 2%.

III. MODEL AND KNOWN RESULTS

Consider the finite alphabets X = {0,1}, ), and (Z,)scs,
where G is a finite set. Consider also the conditional prob-
abilities (py z(s)|x)ses- A wiretap channel is defined as a
discrete memoryless channel with transition probability for
one channel use pyz(s)x(y,z(s)|x) where x € X is the
channel input from the transmitter, y € ) is the channel output
observed by the legitimate receiver, z(s) € Z; is the channel
output observed by the eavesdropper, s € & is arbitrary,
unknown to the legitimate users, and can potentially change for
each channel use. In the following, we omit the index s € &
whenever |&|= 1. Moreover, when the codeword X 'V is sent
over the channel, in addition to the channel output Z'V (s),
s € GY, the eavesdropper has access to XV [S] & (X);cs,
where S C [1, N] is chosen by the eavesdropper and such
that |S|2 aN for some «a € [0, 1].

Definition 1. For B € N, define B = [1, B]. For b € B and
Ry > 0, define R £ %", s Ry/B. A (2V%, N, B) code has
a rate R, operates over B encoding blocks, and consists for
each encoding Block b € B of

o A message set My = [1,2NFe],

o A stochastic encoding function f, : My — XN, used
by the transmitter to encode a message My, uniformly
distributed over My, into X g:N 2 fy(My). The messages
Mg & (My), g are assumed mutually independent.

o A deterministic decoding function used by the legitimate
receiver g, : YN — My, to form M, an estimate of
]\/./le given the channel outputs Ybl:N . We write My.5 £

(Mp)bes-

Definition 2. A rate R is achievable if there exists a sequence
of (2NE N, B) codes such that

N—o00

P[Mi.p # M5 =0,
. 71:N 1:N N~>oo)
seglzggi\eg (M35 215 (5), Xai [A]) 0

where A ={(Ap)pes : Ay C [1, N] and |Ay|= aN,Vb € B},
(ZLEN (sp), XEN[Ap]) corresponds to the random variables
in Block b € B for A = (Ay)pes € A and s, € &Y,
XIB A & (XN A)ves, and Z{i5 (s) 2 (Z)™ (s0))ves
for s = (sp)pen € GNE.

The supremum of such achievable rates is called secrecy
capacity and denoted by Cs.

When o = 0 and |S|= 1, our model recovers Wyner’s
wiretap channel [2]. When a = 0 and s = (s3)pes € GV is
unknown to the legitimate users but all the components of s,
b € B, are identical, our model recovers a wiretap channel with
a compound model for the eavesdropper’s channel [21], [22];
the general model, as introduced in [21], with compound mod-
els for both the eavesdropper’s channel and the main channel
is treated in Section IX. When o = 0 and s = (s} )pe5 € GNP
is unknown to the legitimate users, our model recovers a
wiretap channel with an arbitrarily varying eavesdropper’s
channel [23]. When a > 0 and |S|= 1, our model recovers
a special case of the wiretap channel of type II [18] when
pzix = pz and py|x(ylz) = L{y = a},V(z,y) € X x Y,
a special case of the wiretap channel of type II with noisy
main channel [19] when pz x = pz, and a special case of
the hybrid Wyner’s/type II wiretap channel [20]. Specifically,
the difference between our model and the models in [18]—[20]
is that, in our model, the eavesdropper observes a fraction «
of each codeword Xbl:N, b € B, whereas in [18]-[20], the
eavesdropper would be able to observe a fraction o of all
the codewords considered jointly, i.e., (X}*)pes. While the
original type II constraint of [18] is stronger than a blockwise
type II constraint, the latter constraint is relevant to model
side-channel attacks where the eavesdropper is able to learn a
bounded fraction of each codeword sent over the channel.

We now review the best known achievable rates for special
cases of our model.

Theorem 1 ([2], [28]). Suppose that |S|= 1, and o = 0.

Then, the secrecy capacity is
IU;Y)-1(U;2)".
p_pax HUY) = 1U; 2)]
ZINEY

s =

Theorem 2 ([18]). Suppose that |&|= 1, pz x = pz, and for
any x € X, y € Y, py|x (ylz) = 1{y = x}. Then,

Ci=1-a.

Theorem 3 ([19]). Suppose that |&|= 1, and pyx = pz.

Then,
U-Y) — al(U: X+
Cs = max [I(U;Y)—al(U; X)]".

U— —
<[ x|



Theorem 4 ([20]). Suppose that |S|= 1. Then,
Cs = [[(U;Y) —al(U; X) — (1 —a)I(U; 2)]".

max
U—-X—(Y,Z)
U<
Theorem S ([21], [22]). Consider the wiretap channel with
compound eavesdropper channel statistics, i.e., assume that
s = (sp)pes € GNP is unknown to the legitimate users but
all the components of sy, b € B, are identical. Assume also
that a = 0. Then,

min [[(U;Y) — I(U; Z(s))] .

Cs > max
V€S, U—X—(Y,Z(s)) s€&
[U|<| x|

Moreover, for a degraded channel, i.e., when for all s € G,
X —-Y — Z(s), we have
Cs = maxmin I(X;Y1|Z(s)).
px sE€EG

Theorem 6 ([23], [24]). Consider the wiretap channel with
arbitrarily varying eavesdropper channel, i.e., assume that
s € GNB is unknown to the legitimate users. Assume also that
a = 0. Define & as the set of all the convex combinations
of elements of G. If there exists a best channel for the
eavesdropper, i.e., 3s* € 6,Vs € &, X — Z(s*) — Z(s), then

Ci>  max min [[(U;Y) — I(U; Z(3))] .
V5eG,U-X—(Y,Z(5)) 5€6
ui<| x|

Moreover; if there exists a best channel for the eavesdropper
and for all 5 € &, X —Y — Z(5), then
Cs = maxmin I (X;Y|Z(5)).
PX 5e6

Note that [20]-[24] prove the existence of coding schemes
that achieve the rates in Theorems 3-6 but do not provide
explicit coding schemes. To the best of our knowledge, no
explicit coding schemes that achieve the secrecy rates in
Theorems 3-6 have been previously proposed.

More specifically, [12], [13], [29] provided polar coding
schemes that achieve the strong secrecy capacity for Wyner’s
wiretap channel, i.e., Theorem 1, with the following caveats:
a pre-shared secret with negligible rate is required in [13],
[29], no efficient method is known to construct the codebooks
in [12], and the existence of certain deterministic maps is
needed in [13], similar to [30, Theorem 3]. Note that a
main tool in [13], [29] is block-Markov coding to support
non-degraded and non-symmetric channels. Using techniques
similar to [12], [13], [29], including block-Markov coding,
and ideas for compound channels without security constraints
in [25], [31], it is unclear to us how to extend existing polar
coding schemes to the wiretap channel models of Theorems 2-
5 and Theorems 7, 8, 11 because of the uncertainty on the
eavesdropper’s observations.

A different approach than polar coding to obtain wire-
tap codes for Wyner’s wiretap channel is provided in [15],
[16], [32]. Specifically, these works construct wiretap codes
using (i) capacity-achieving channel codes (without security
constraint), and (ii) universal hashing [33], and have been
the first works to provide efficient codes that asymptotically
achieve optimal secrecy rates and strong secrecy for additive or

symmetric and degraded wiretap channels. [34] subsequently
extended these constructions to any wiretap channels as in
Theorem 1.

It is also worth noting that [35] proposed wiretap channel
coding for Wyner’s model using source coding with side
information and universal hashing. It is, however, unclear to
us how to directly translate the scheme of [35] to an efficient
code construction without employing block-Markov coding for
the part of the coding scheme that involves source coding with
side information.

Our approach in this paper departs from the works in [15],
[16], [32], [34] because, instead of relying on channel codes,
we rely on source codes to handle the reliability constraint,
which allows us to use a block-Markov coding approach
to handle non-symmetric and non-degraded channels. Our
approach also departs from existing polar coding schemes, as
our construction solely relies on polar coding results for source
coding with side information, does not require the existence
of certain maps, and does not require a pre-shared key to
ensure strong secrecy. In addition to proposing the first explicit
coding schemes that achieve the secrecy rates in Theorems 3-
6 and Theorems 7, 8, 11, our coding approach also proves
that all the models considered in this paper can be treated
under a unified framework that only requires three primitives:
(i) source coding with side information, (ii) universal hashing,
and (iii) distribution approximation.

IV. STATEMENT OF MAIN RESULTS

Our main results are the following theorems.

Theorem 7. If all the components of sy, b € B, are identical,
then the coding scheme of Section V achieves the secrecy rate

+
max | [(U;Y) —al(U; X) — (1 —a)max I (U; Z(s))| ,
U seS
where the maximum is taken over U such that Vs € &,U —
X = (¥, 2(s)) and [U|< |X].

Theorem 8. Assume that the components of sy, b € B, are
arbitrary. If there exists a best channel for the eavesdropper,
then the coding scheme of Section V achieves the secrecy rate

+
max IU;Y)—al(U; X) - (1 —o)max I (U; Z(5))| ,
5¢6
where the maximum is taken over U such that ¥5 € &,U —
X = (Y, 2()) and [U|< |X].

The proof of Theorem 7 is presented in two parts. First,
in Section VI, the initialization phase, i.e., Algorithms 1, 2, is
ignored and Theorem 7 is proved under the assumption that the
legitimate users have a pre-shared key whose rate is negligible.
Next, in Section VII, Theorem 7 is proved without this
assumption by considering the initialization phase combined
with Algorithms 3, 4. The proof of Theorem 8 is similar to
the one of Theorem 7 and is discussed in Section VIII.

Finally, from Theorems 7 and 8, we conclude that the
secrecy rates of Theorems 1-6 are achieved.

Note that we will also extend Theorem 7 to the case of a
compound main channel in Theorem 11.



V. CODING SCHEME

Our coding scheme consists of two phases: An initialization
phase presented in Section V-B, and the actual secure com-
munication phase presented in Section V-C. The initialization
phase allows the legitimate users to share a secret key which
is used in the second phase of the coding scheme. Both phases
rely on three primitives presented in Section V-A.

In this section, for s € &, we consider an arbitrary joint
distribution quxy z(s) £ QUxPyz(s)|x With [U|= |X|= 2
and such that U — X — (Y, Z(s)). Let K be a power of two,
let (UK X1K) be distributed according to qpi:x x1x =
HffquX, and define AVK & UBKG, VK £ XTKG

® log K

where G £ “ ﬂ is the matrix defined in [36]. Define
also for 65 225", 3.€]0,1/2[, the sets
Vo £ {i€[1,K]: HAAY" ) > 1 -6k},
Hy = {z €1, K] : H(A}AY¥ 1) > 5K},
Vo £ {i € [LK]: HA|AY Y TR) > 1 -6k}
Huy £ {z €[1,K]: H(A AV 1y Ky > 5K} ,
Vx 2 {i e [LK]: HVI|V¥" 1) >1—-06k},
Vxw £ {i € [LK]: HVI VY TUM) > 1 -6k}
A. Primitives used in the coding scheme
Primitive 1: Source coding (SC) with side information for
the source (U x ), quy) [36]. Define the encoder fS¢ £
(f2€, f5€) with

1SC(AI:K) A AI:K

2SC(A1:K) A Al:K

[VU\Y]v
Huy \Vuyl-

Then, define QS as the successive cancellation decoder of [36]
such that if ARE & gSC(fSC(ALE) SCALKY) Yy 1K) then

P[AVE £ AVK] < Kb (1)

Remark 1. We decompose f5€ in two parts f5¢ and f5€
because f3C(AYK) can be shown to be almost uniform in
divergence, e.g., [37, Lemma 8], which will be a useful
property in our coding scheme analysis. Note, however, that

the distribution of (fS€(AVE)|| f5€(AYE)) is not necessarily
close to a uniform distribution.

Primitive 2: Universal hashing (UH) [38]. Let ¢,d € N such
that d < ¢, and define S = {0,1}°\{0}. Then, define for
SeS, Te{o1} Re{0,1}4, R €{0,1}c¢
fSU(R,R)) £ 571 © (R|R),
ST, d) £ (SO T)a,

where ® is the multiplication in GF(2°) and (-)4 selects the
d most significant bits, such that

[SJH(ng(Rv R/)v d) =R.

By [16], F 2
hash functions.

{9} ses is a family of two-universal

Primitive 3: Distribution approximation (DA) for gu:x,
the distribution of A¥X £ ULEGL, where UMY follows

quix 2 T, qu. Let THV0l be a sequence of uniformly
distributed bits over {0, 1}/VvI. Then, define A'¥ according
to the distribution p41.x = Hf{zl Pas|ari—1 with

_ . 1{a? =TV if j € Vy
pAJ|A1:j71(aj|a1'j h& { }j 11y g .
qu‘Al:j—l(a \a ) lfj S VU

2)

We write AXK = fPA(TLVul) Moreover, we have

K
Z]Equj 1 D(qasiari-1||paijari-1)

® Z

J€VU

where (a) holds by the chain rule, (b) holds by (2), (¢) holds
by the definition of V.

D(QA1=K ||5A1 K

()
H(A| A7) < Kéxe, (3)

Variant of Primitive 3: Channel prefixing (CP) for the
distribution qx1.xp1x 2 HzK:l gxu. Given UMK distributed
according to qg1:x, define VX according to the distribution
ﬁUlzkvl:K £ qui:K Hj:l ]7‘/”‘/1;_7‘—1(]1:}( with

By (07 [0 9T 1)

a 1/2 if j € VX|U
B qu‘VlzjflUlzK(Uj|/l/1:j_1ﬂ1:K) if j € V§<|U

= fCP(UEK). Moreover, we have

“4)

We write V1K

]D)(quszl:K HﬁUl:KVLK)

a) .
= ZEquszlzj—lD(qvj‘vl’jflUl:K||ij|V1:j*1U1:K)

j=1
) ) (c)
YOS - BEIVETUNR) < Kok, )
JEVx U

where (a) holds by the chain rule, (b) holds by (4), (¢) holds
by the definition of Vx |y .

B. Coding scheme: Phase I - Initialization

The legitimate users create a secret key with length [y,
which will be be specified later in Section VII-B, with Al-
gorithms 1 and 2, which operate over By blocks of length
N £ KL, where LK € N, and K is a power of
two. We define By 2 [1,Bo] and £ = [1,L]. In each
Block b € By, the encoder forms the key Key, with length
l{(ey £ lkey/ Bo, as described in Algorithm 1. The encoder uses
the following randomization sequences: R £ (Rib“il‘/)le c
where R})“}t, l € L, is a sequence of uniformly distributed
bits over {0, 1}/HvivI=Vuivl] Rinit i5 a sequence of uniformly
distributed bits over R™' £ {O 1}¥\{0}. The encoder also
uses the local randomness (R}j’j)le r, where Ri"j, le L, is a
sequence of uniformly distributed bits over {0,1}Vvl,

Remark 2. In Line 10 of Algorithm 1, note that the channel
code [39] requires a uniformly distributed message. While

e Al [’Hmy} is not a sequence of uniformly distributed



Algorithm 1 Initialization at the transmitter
( R})ni[)beBo

Require: Randomization and

(RN )pes,
1: for Block b € B,y do
for Sub-block I € £ do
Define A} = fDA(Rl"C)
Define 61; A ye K
Define V1 i £ fCP( K
Define Xl} lK VbllKGK
end for
Transmit X LN &

sequences

A A

| X5
lec
||£Yz>1,iK» ZyN(sp) =

over the channel

| Zpi (sp0)
leL

9: Let f/bl:N £

€
denote the channel outputs
10:  Transmit with a channel code [39]

Db L SC Avl: 1n1t ,
[t e By ) 1500
where @ denotes modulo 2 addition

11:  Define U}N 2 |
leL

122 Define Key, = gR,n,[(U;}:N
13: end for

) lkey)

Algorithm 2 Initialization phase at the receiver

Require: (R"),cp, and (RM)ep,

1: for Block b € By do

2:  Form an estimate D; of D,

3. for Sub-block [ € L do

4: Given (Dy, RM™") and Line 10 of Algorithm 1, form
an estimate of (f$C(A}K), QSC(ZilK)) and denote
this estimate by (gile[me],E}JEZK[HUW\VU‘Y])

5: Form an estimate of E})ZK as

A;:{(égSC(AI%:lK[VUWLAl%,:lK[HUW\VU\Y]a%l,l:K)

6: Form U N A1 K@ an estimate of U}
7. end for R o
8:  Form UM £ || U)i" an estimate of U}*N
o ec
9:  Form Key, =g R,ml(U N, li.y) an estimate of Key,

10: end for

bits, Dy is a sequence of uniformly distributed bits over
[[172L‘HU\Y|]]_

High-level description of the initialization phase: The
initialization phase is depicted in Figure 1 and consists in
Bp communication blocks. All the communication blocks are
independent, and each Block b € By will lead to the exchange
of a key Key, between the legitimate users, which will be
shown to be secret from the eavesdropper. Additionally, B
is chosen such that the length of the keys (Key,)pen, is
sufficiently large to be used in the main coding scheme, which
is described in the next section and allows the exchange of a
secret message between the legitimate users. It will also be
shown that the initialization phase considered jointly with the
main coding scheme has a negligible effect on the overall

( Public transmission )

Db Db

ALK Universal
ALK (A5 e Hashing
b,L I
AH o
AN (¢
Ay Yo
Universal Channel
Hashing Prefixing
' '
Keyb X;'N_ Ybl.N
Encoder | . Decoder |
Fig. 1. Initialization phase for Block b € Bp. The encoder creates A1 N,

which is made of L sub-blocks (A% E)1ec. Then, from A1 N the encoder

creates Key (by universal hashing), and the codeword X 1 N (via channel
prefixing), which is sent over the channel and whose noisy observation by the
legitimate receiver is ?bl’N . The decoder creates an estimate of gé:N from
Y1 N and an estimate of Dj, which is sent to him via a channel code as
descrlbed in Line 10 of Algorithm 1. Finally, the decoder creates Keyb, an
estimate of Keyy, from his estimate of A1 N,

communication rate and the overall information leakage to
the eavesdropper.

Consider Block b € By in Algorithm 1. As described in
Lines 3-4, the encoder creates (U}}),c. such that the distri-
bution of (ﬁbl:lK )iz is close to the product distribution gy 1.~ .
Then, as described in Lines 5-6, channel prefixing is performed
to create from (Ubl )ier the codewords (XbJ )ier that
are sent over the channel, and whose noisy observations at

the legitimate receiver are (YbllK )iec. Additionally, the key
Key, is formed from (ﬁbllK )iec through universal hashing, as
described in Line 12. As shown later, secrecy of the key is
ensured via an appropriate choice of the hash function output
length. As described in Line 10, the encoder sends D, to
the legitimate receiver using a regular channel code (without
security guarantees) - see also Remark 2.

Finally, as described in Lines 2-7 of Algorithm 2, upon
estimating Dy, the legitimate receiver forms an estimate of
(Upi)iec from (Y,i%)ic.. Then, as described in Line 9 of
Algorithm 2, from the estimate of (ﬁbl’:lK )ier, the legitimate
receiver creates an estimate of Keyy,.

C. Coding scheme: Phase II - Secure communication

The encoding scheme operates over B blocks of length
N £ KL, where L,K € N and K is a power of two.
We define B = [1, B]] and £ £ [1,L]. Encoding at the
transmitter and decoding at the receiver are described in
Algorithms 3 and 4, respectively. In each block b € B, the



transmitter encodes, as described in Algorithm 3, a message
M, uniformly distributed over [1,2/*!] and represented by a
binary sequence with length

. 1A ifb=1
| M| = ,
|M1|—L|Vyy| otherwise

Algorithms 3 and 4 depend on the parameter
2 [ M), (©)

which will be specified later.

In each block b € B, as described in Algorithm 3, the
encoder uses the local randomness Rg, a binary randomization
sequence uniformly distributed over [1, Q‘Ri‘]}. The sequences
Rz = (R)) pes are mutually independent. The length of the
sequences (R}), p is defined for b € B as |Ry|£ L|Vy|—r.
In each block b € B, the encoder also uses, as described in
Algorithm 3, R, a binary randomization sequence with length
L|Vy|, uniformly distributed over R £ {0,1}FVvi\{o}.
The sequences Ri.z = (Ry),c are mutually independent.
Moreover, it is assumed that Mi.p, Ri.p, and R’L g are
mutually independent.

Remark 3. In Algorithm 3, observe that TbLWUIL, bebB,is
uniformly distributed over {0,1}YVUIE because (My||M]||R),)
is uniformly distributed over {0,1}VU' and independent
of Ry. Hence, the L random variables (Tb{ }lvU‘)leg are
uniformly distributed over {0,1}Vv| and independent. When
the elements of sy are all equal to s, then, by construction,

the conditional probability ]721«( vl is the same for
b,l

all | € L, and the L pairs ((Tb,l‘vu‘,Zg:lK(s)))leg are
independently and identically distributed according to the joint
distribution ﬁlewU\leK(S).
Remark 4. In Algorithm 3, consider X} K[Ap1], be B, | €
L, where for all 1 € L, Ay C [1, K] and YoicclAvil=aN
such that XN [Ay] £ |l€£Xb,z [Ap,1] corresponds to the aN
symbols of the codewords emitted at the transmitter that the
eavesdropper has chosen to have access to. Similar to Re-
mark 3, the L triplets ((T, T W”' X1 K[-Ab,l]a Zl}:lK(SbJ)))leﬁ
are independent, however, they are not necessarily identically
distributed because the components of sy, are arbitrary, and
because the sets (Ap;)icc are arbitrarily chosen by the
eavesdropper.

High-level description of the coding scheme: We depict
in Figure 2 how codewords are created at the transmitter. Note
that there exists an interdependence between two consecutive
encoding blocks since My, b € [2, B], used in Block b, is
obtained from Block b — 1, as described in Line 3 of Algo-
rithm 3.

Consider Block b € B of Algorithm 3. The encoder starts
by creating T1 VUL via universal hashing applied on the
sequence created by M), the secret message M;, and the
local randomness R{), as described in Line 4. Next, T1 VoL
is broken down into L pieces with same length in L1ne 6,
from which the encoder creates L sub-blocks (A}/)cz, as

described in Line 7. Then, from (EélK )ier, the codewords

Algorithm 3 Encoding

Require: Randomization sequences (Rp)vep, (R )ven, and
messages (Mp)pen
1: Define M| = ()
2: for Block b € B do
3 Define M} 2 Hcff‘c (ngg,l) ifb#£1
le

4 Define Ty V0P 2 fUB(AL M| RY)
5. for Sub-block [ € L do

6: Consider the notation TLWU‘ £ Tb(l_l)WU‘Jrl:lWU|
7: Define A1 K & fDA ( " WU')
LK & J1K
8 Define Ubl Abl Gk
9: Define Vbl)lK £ fcp (UZ}JK)
10: Define X35 £ VEKG

11:  end for _
122 Transmit X}V2 || (nglK ) over the channel
lel
Nise) = Il Z33" (sv)

130 Let VBN £ || YLK, Z)
lel

denote the channel outputs
14: end for
15: Using a pre-shared secret, apply a one-time pad to
( QSC(Alle))leL,bEZSH and ( ?C(A}éll())leﬁ, then transmit
the result with a channel code [39].’

Algorithm 4 Decoding

Require: (Ry)ses, (f5€(AY))iccpes, (FFC(AEN )iee
1: Define EE,IZ(D)UD/] = fc(ngIl{) forany [ € £
2: for Block b€ Bfromb=Btob=1do
3: forle L do _
4 Form an estimate of A}'/* as

AlK £ (Abl Vuyl,

SC(AN), YVili™)

5:  end for

From Line 7 in Algorithm 3, determine an estimate of
Tl | Vu|L
b as

71 Vu|L ~.

Ty e | A ]

el

7:  From Line 4 in Algorithm 3, form an estimate of
(Mp| Mg By as

(My|| M| R,) & Ry © Ty V01E

in Algorithm 3 and ]\//.7’, form

(Aé % l))le[:

8: From Line 3

(gzljfg,z[vmy])lec

9: end for

an estimate of (
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Fig. 2. In Block b € B, Al*N is made of L sub-blocks (A}f)iec,
which are constructed from Rj (randomness for universal hashing), My
(secret message), Mé (a part of A})ﬁ\g from Block b — 1), and Rg (local
randomness). The construction of Mé in Line 3 of Algorithm 3 creates a
dependency between Block b € [2, B] and Block b — 1. In Block b € B,
the codeword X I}:N , to be sent over the channel, is then obtain via channel

prefixing from gi:N .

Ry LVol - 1k r7 1K 1K
Tb,l Ab,l Ub,l Vb,l Xb,l

Mb I ° . . .

M ¢ — ¢ ¢ « .

b 1:Vul ALK LK LK v 1K
Rf) Tb,L Ab,L Ub,L Vb, Xb,L
—_— — —_— —m—
Universal =~ Distribution Polarization Channel Polarization

Hashing Approximation  Line 8 Prefixing Line 10
Line 4 Lines 6-7 Line 9
Fig. 3. Summary of the steps in Algorithm 3 to obtain the codeword

X;:N = HleL(Xbl,:lK) from Rj (randomness for universal hashing), M
(secret message), Mé (a part of Block b — 1), and Rg (local randomness).
Line 7 (distribution approximation) describes the creation of the L sub-blocks
(g,%f( )ier from Tb1 “VUlL and ensures that their distribution is close to
the product distribution g 41:~, which will be a crucial fact to analyze the
information leakage of the coding scheme.

()? LY e, are obtained via channel prefixing, as described

in Lines 8-10. The codewords (X}/X),c. are sent over
the channel and their noisy observations at the legitimate
receiver are denoted by (Y;'i%),c.. Note that the L sub-

blocks (A}ZK )ier are created such that their distribution is
close to the product distribution g41:~v. A crucial point to
ensure this property comes from the uniformity of M/, ', le.,
the uniformity of Ag:_ﬁ,l[VU‘y], ! € £, which follows from
Line 7 and the property Vy7|y C Vy. Finally, as described in
Line 15, using a pre-shared secret (obtained from the initial-
ization phase in Section V-B), the encoder applies a one-time
pad to (A} f[Huy \Vuiy]iecves, and (AT Vuy])iec,
and sends the result to the legitimate receiver with a chan-
nel code [39]. This step is done for technical reasons:
(All)le[,HU‘y\VU|yDleg,beB are not uniformly distributed and
could not be included in the definition of M;, b € B, as our
analysis relies on the uniformity of Mj], b € B. However,

as shown later, the length of (gé:lK['HU\Y\VUW])ZGE,beB is
negligible compared to N B such that the overall commu-
nication rate is not affected. It will also be shown that this
has a negligible effect on the overall information leakage to
the eavesdropper.

In a given block b € B, we depict in Figure 3 a summary
of the different phases in Algorithm 3 through which the
encoder output is obtained from the local randomness Rg,
the secret message Mj, the randomness R;, used for universal
hashing, and M. Note that R, needs to be shared between
the legitimate users but does not need to be secret from
the eavesdropper, and can be recycled over several blocks
so that the exchange of necessary randomness for universal
hashing between the legitimate users does not affect the overall
communication rate.

At the decoder,~the legitimate receivgr first estimates
(AT e from (ARS[Huy])iee and (YA )ies, as de-
scribed in Lines 2-4 of Algorithm 4 for Block B. Then,
from this estimate of (A5%),c ., the legitimate receiver forms
an estimate of Mp and M B/, as described in Lines 6-7 of
Algorithm 4 for Block B. Next, to estimate the message
Mp_1 and M ,’3_1, the legitimate receiver uses the estimate of

My along with (A%, [Huyy \Vojy])iec, and (Y55 )iec,
as described in Lines 2-7 of Algorithm 4 for Block B — 1.
Hence, the legitimate receiver can estimate all the messages
(Mp)pep starting from the last block and iterating through the
previous blocks via the loop in Line 2 of Algorithm 4.

Note that in the analysis of the coding scheme secrecy rate,
one needs to account for (¢) the one-time pad in Line 15 of
Algorithm 3, (i¢) the transmission of the randomness (Ry)1.5
that is used in Algorithms 3 and 4, and (477) the initialization
phase (Algorithms 1 and 2). We will show that (), (i7), and
(#i7) are done with a negligible impact on the secrecy rate in
Sections VI-C, VI-G, and VII-C, respectively.

VI. PROOF OF THEOREM 7 WITH A PRE-SHARED KEY

In this section, we prove Theorem 7 when the legitimate
users have access to a pre-shared secret key whose rate is
negligible. Hence, we ignore in this section the initialization
phase, i.e., Algorithms 1, 2. We also assume in this section
that all the components of s;, b € 3, are identical and equal
to s. To simplify notation, we write s instead of sy, b € B.

A. Characterization of the distribution induced by the encoder

Let pyv xinypnv z1:v () denote the distribution induced
by the encoding scheme described in Algorithm 3. Lemma 1
gives an approximation of ﬁUI}:N XINY LN ZIN (o) in terms of
the distribution gy xy z(s) defined in Section V-A. This result
will be useful in our subsequent analysis.

Lemma 1. For b € B, we have
D(quzNXLNyLNZLN(S)HﬁU;;NXg;NYbl;NZ;;N(S)) < 2LK5K,

h 211
wnere qu:NXlzNyl:Nzl:N(S) = Hi:l qUXyz(S).

Proof. See Appendix A. [



B. Reliability

We now show that the receiver is able to recover the
orlglnal message with a vanishing error probability. Define
M.p 2 (Mb)beg Define for b € B, AlN = ||l€£A§lK,
AIN A Hle[lAblK’ AIN A AILK gbi _{AlN#AlN}
and £4, = {(YlN,AlN) # (VBN AN For b € B,
consider a coupling [40, Lemma 3.6] between ’pVYbLN ALN
and Gy 1N ALN such that ]P)[SAE)} = V(ﬁyblzNAi:N,qulzNAi:N).
For b € B, consider (AN, VN AFN yIN) distributed
according to this coupling, then

P [1/\/[\1:13 # Ml:B}

<ZP{J/\4\b7AMb}

beB

T [Vu|L 1:[Vu|L
<<%%P[ #T, }
<Y R[A £ 2]
beB
<y [p [,Z;W # AN |Es 55} +P[E4, U gb]}
beB

Iy

beB

SOP A # AY|ES, 0 & + PlEa,] + PIE)]
Liel
d

<> [KLok + V2ln2y2LKs + P [N # AN ]|

beB

(©) = [
< ) |(KLok + vV2In2/2LK6k)(B

beB

= (KLSx + V2In2/2LKéx)B 1)/2, 7
where (a) holds by Line 7 in Algorithm 4, (b) holds by Line 6
in Algorithm 4, (¢) holds by the union bound, (d) holds be-
cause P {A})IK # ALEIES, N 5;} < K&k by (1) and because

]P)[EAb] = V(ﬁYbI:NAll;N,qul:NA}):N) < WV 21n 2/ 2LK§K by
Lemma 1 and Pinsker’s inequality, (e) holds by induction.

—
=

—b+1ﬂ

C. Pre-shared key rate

The coding scheme described in Algorithms 3
and 4 involves a one-time pad to securely transmit
( QSC(A;[K))ZELbGB, and ( fC(Agff))leg, which requires a
pre-shared key with length lorp = LB|Hyy \Vuy [+L|Vuy |
and rate

lotp _ Huy |=Voy|  Vuyl
NB K KB
< [ Hoy[=Vuy| L L
K B
=J4(K)+1/B,
where §(K) is such that limg ,d(K) = 0
since  limg oo Hyy|/K = HUIY) [36], and

limK—>oo|VU\ﬂ/K = H(U|Y) [30], [41].

D. Blockwise Security Analysis

We prove in this section that security holds in each block b €
B individually. We use a series of lemmas to obtain this result
and determine acceptable values for the parameter r defined
in (6). For (X, Z) distributed according to px z, defined over
the finite alphabet X x Z, recall that the e-smooth min-entropy
of X given Z is defined as [27]

pz(2)

max min  minlog —————,
TXZ(:E7Z)

i s
oo(pXZ|pZ) rxz€B(pxz) 2€Supp(pz) TEX

where Supp(pz) £ {z € Z : pz(2) > 0} and B(pxz) =
{(rxz : X xZ—=[0,1]) : V(pxz,7xz) < €}. We will also
need the following version of the leftover hash lemma.

Lemma 2 ([27]). Let T and Z be distributed according to
prz over T x Z. Consider F : R x {0,1}¥ — {0,1}", where
the first input, denoted by R, is uniformly distributed over R
to indicate that F is chosen uniformly at random in a family
of two-universal hash functions. Then, for any € € [0,1],

< 2+ V2r—H& (przlpz)

where py, and py, are the uniform distribution over {0,1}"
and R, respectively.

V(pr(r,1),R,2 PUPURPZ)

We now would like to use Lemma 2 to make (M, ||M}) al-
most independent from the eavesdropper channel observations.
However, in the encoding scheme described in Algorithm 3,
(My||My) is not defined as the output of a two-universal hash
function as required in Lemma 2. To overcome this challenge,
we show in the following lemma that the distribution p induced
by the encoder in Algorithm 3 also describes a process for
which (Mp||M}) is defined as (M,[|M]) 2 9T, 01 1)
where r is defined in (6). For convenience, we write in the

following F(R,, T, ™1%) £ g%?(T;:'V”‘L,m.

Lemma 3. Fix b € B. To simplify notation, we write Ty, instead
of TYVYUIE. Zy(s) instead of Z}N(s), Xy instead of XV,

and Zy(s) instead of Z} ™ (s). We also define M, £ (M| M)
such that Ty, = R, ' ® (My||R}). Next, define
ANty 7, X, 2 (5) Ry = DXy Zo ()| Ty ATo QR Aty | Ty Ry (9)

with Gr, the uniform distribution over {0,1}VvIL  Gp
the uniform distribution over R, and Ny, Vity,Vry,
Iut, 1, Ry (M [t0, 70) £ 1{my = F(rp,tp)}. Then, we have

ﬁMbTbXbe(s)Rb = aMbTbXbe(S)Rb'
Proof. See Appendix B. [

Let A, C [1,N] such that |Ay|= aN and con-
sider X}*N[A4,], the aN symbols that the eavesdropper has
chosen to have access to in Block b € B. We study,
by combining Lemmas 2, 3, the independence between
(Rp, ZEN (8), XEN[Ay)), i.e., all the knowledge at the eaves-
dropper in Block b € B, and (M, ||M;) as follows.

Lemma 4. Fix b € B. We_adopt the same notation as in
Lemma 3 and also write Xy Ap] instead of X} N[ Ap] for
convenience. We have for any v €]0,1]

V(Dr1, Ry 2y ()X, [As]» PN, DRy Zy (5) X5 [As])



< 217[]’Y + \/2T7H(Tb|fzvb(8))?b[Ab])+N6(1>(K,L)’ (10)

where 6V (K, L) 2 (K~ + 1)v2L7 -1

Proof. See Appendix C. [
Next, using Lemma 1, we lower bound the conditional

entropy in (10) in the following lemma.

Lemma 5. Fix b € B. We adopt the same notation as in
Lemmas 3, 4. We have

0 (Tb\z,(s))?b[Ab])
> N[(1 - )H(U|Z(s)) + aH(U|X) — 6 (K, L],

with 6 (K, L) 2 2¢/2In2y/2N5x (log(| X |>max.ees | Zs|) —
N~1log(v2In2v/2Ndk)) + N~1Hy(Négk) + Nox + o(1),
and Hy(-) the binary entropy.

Proof. See Appendix D. [
By combing Lemma 4 and Lemma 5 we obtain the follow-
ing result.

Lemma 6. Fix b € B. We adopt the same notation as in
Lemma 5. We have for any v €]0,1]

VD1, Ry 2y (5) X, [As]» PN, DRy 24 (5) X5 [As])
< 217" 4 \/2r-NIO—a)H(U|Z(s)) +aH(UIX)~5) (K,L)]

where §G) (K, L) £ ¢6W(K, L) + 6 (K, L), with 6V (K, L)
defined in Lemma 4 and §® (L, K) defined in Lemma 5.

Finally, we obtain security in a given block as follows.

Lemma 7. Fix b € B and £ > 0. We choose
r éN[u—a) min H(U|Z(s))+aH(U|X)-6®) (K, L)—¢
se

with §®) (K, L) defined in Lemma 6. Then, for L large enough

I (MbM,;; Zb(s)X,,[Ab]Rb) <OW (K, L,€),

N
where 8 (K, L,€) £ (27" + V27N log 52 e
Proof. We adopt the same notation as in the previous lemmas.
By definition of 7 and by Lemma 6, we have

~ ~ ~ N el /
V(prRbe(S)Xb[Ab]’prprZb(S)Xh[Ab])gzl BT VamnNe,

(11)
We thus have
I(My My; Zy(5) Xo [ As] Ry)
= I(My; Zy() Xo[Ap] Ry)
(%) f(V(ﬁNIbRbe(s)Xb[Ab]7ﬁ]\7[bﬁRbe(s)Xb[Ab]))
C F@ 4 V), (12)
where (a) holds by [42, Lemma 2.7] with f x

xlog(2"V /z), (b) holds for L large enough since f is increas-
ing for small enough values. [

E. Analysis of security over all blocks jointly
We obtain security over all blocks jointly from Lemma 7
as follows.

Lemma 8. For convenience, we define for i,j € DB,
Zl:i(i) £ (ZEN(8))bepip AXM[A] £ (XENTA e, i,
Ri.j = (Ro)veli i), and M;.; = (My)peli, 57 We have

I(My.5: Z1.5(s)X1.5]AlR1.5) < 2BSW(L, K
max max (My.p; Z1.5(s) X1.8[A]R1.B) (L, K,§),

where (L, K, £) is defined in Lemma 7.

>

Proof. For convenience, define for 7 € , L

B 2
(Zi(s), X;[A;], R;) and Ly.,; & (Zl:i(s)»Xl:i[A];Rlzi)- Then,
I(Mi.p; L1.B)

= Z I(MLB; Li+1 |L1:i)
=0

= > I(Miis; Lisa|Lsi)
=0

I(MlziMiIHLl:i; Li+1Mi+1)

< Bs (K, L, &)+ Y I(M] 15 Liv1Mit1)

3

d
@ BSW(K, L&)+ I(M{,1; Liy1|Migr)

2

< BSW(K, L&) + Y | I(Miy1 M{yy; Lita)

7

(e)
< 2BSYW(K, L,¢), (13)

where (a) holds by the chain rule and since we have
I(Mit2:8; Liv1|L1:iMuiv1) < I(Miy2.p; Liigi Misig) =
0, (b) holds by Lemma 7, (¢) holds by the chain rule and
because (My.i, L1:;) — M — (Liy1, M; 1) forms a Markov
chain, (d) holds by independence between M/, ; and M; 1,
(e) holds by Lemma 7. The lemma holds since (13) holds for

any s € G and any A € A. n

F. Secrecy Rate

The rate of the transmitted messages is
2peslM| @ 7+ (B—1)(r — LVy|v|)

BN BN
Doyl
~ N K

Y10 y) - al(U; X) - (1 - a)max! (U; Z(s))
— 8K, L) = £+ o(1),



where (a) holds by (6), (b) holds by the choice of r in
Lemma 7 and because lim Vuyl/K = H(U|Y) by [41].
—00

G. Randomness amortization

The randomness (Rp)1.p in the coding scheme of Sec-
tion V-C needs to be shared between the legitimate users.
This can be done with negligible impact on the overall
communication rate similar to [16] using an hybrid argument
by repeating the coding scheme of Section V-C with the same
randomness (Rp)1.5-

VII. PROOF OF THEOREM 7 WITHOUT PRE-SHARED KEY

The coding scheme of Section V-C requires a pre-shared
secret key between the legitimate users. We now consider the
initialization phase, described in Algorithms 1, 2, to generate
such a key with negligible impact on the overall communi-
cation rate. We study the reliability and the secrecy of the
generated key in Sections VII-A and VII-B, respectively, the
impact of the initialization phase on the overall communication
rate in Section VII-C, and the joint secrecy of the initialization
phase and the coding scheme of Section V-C in Section VII-D.
We adopt the same notation as in Section VI.

A. Key reliability

Similar to Lemma 1, we have the following result.

Lemma 9. For b € By, the distribution p induced by the
encoder of Algorithm 1 is approximated as follows.

D(qu:le:Nyl:Nzl:N(S) HﬁUl}:NXg:NthNZg:N(S)) < 2LKdk.

Then, we have

P [(Key,Jues, # (Key,)oes,|

<P Voes, # (UFY )es,)
< BoL(V2In2v/2K6x + 2Kk,

where the last inequality holds similar to (7).

B. Key secrecy

We first show secrecy in a given Block b € By. Let A, C
[1, N such that |Ay|= aN and consider X}V [A], the aN
symbols that the eavesdropper has chosen to have access to
in Block b € By. Define pyy,, the uniform distribution over

{0, 1}k . We have

V(PKebe;yﬂzb(s)Xb [Ay] Dy R » Plkey P Rinit 7, (5) X, [ A, Dy RISV )

(a) I —He (~ o | )
< e+ \ 2o =\ Puy 2,0, (anmy mp P2, 006, 1410, mp

<2 2 L”+\/2lke

(U126 () Xo[Ap] Dy REY )+ N5 (K, L)
(14)
where (a) holds by Lemma 2, (b) holds by Lemma 14 with

7 €]0, 1] as in the proof of Lemma 4 with §(!) (K, L) defined
in Lemma 4.

Lemma 10. For b € By, we have
H (T4 Zy(5) X[ 4] Dy RE™ )
NI(U;Y)—al(U; X)—(1-a)I(U; Z(s)) - 6"/ (K, L),

where §®) (K, L) 2 2/2In2v/2Ndx (log(| X |*max,cs | Z,|)—
N~'log(v2In2/2Ndx)) + o(1).

Proof. We have
H (041 Zy(5) Kol Au] Do RE™ )
= H (T3] Zo(s) Kol As]) — 1 (DoRE" s Ubl Zo(5) X))
H (03l Zo(5) XoliAs] ) = Loy [+ Moy Vo )

S 1 (0uZu(5) Kol ) — NHUIY) - oK L)

®)
> N1—-a)H(U|Z(s)) + NaH((U|X)
- No®/(K, L),
where (a) holds because limx oo |Hy |y |/ K = H(U|Y') [36],
and limg ,oo[Vyy|/K = H(UJY) [30], [41], (b) holds
similar to the proof of Lemma 5. L]

— NH(U|Y)

Next, we choose

ey 2 N[I(U;Y) — al(U; X) —
- 6(1)(}(’ L) - 6(5)(1(7 L) - E]a

(1 - ajmaxI (U; Z(s))

with £ > 0. By (14) and Lemma 10, we obtain for b € By,

V(pKebeig)‘i[Z}] () Xp[Ap] Dy Rinit/ 7puKepri;)‘iLZb () Xp[Ap] Dy Rig‘i[/ )

<2270 4 V/2-Ne, (15)
Lemma 11. We have for L large enough
I (Keyb; Zy(s) Xy [Ab]DbR},“itR},“it’) <SW(K, L),
log|KCo| —H (Key,) < 8 (K, L,€),
with Ky, = {0, 1}”@ and 69 (K, L, £) defined in Lemma 7.

Proof. The first inequality holds as the proof of Lemma 7
by using (15) in place of (11). The second inequality holds
by [42, Lemma 2.7] and (15). ]

By mutual independence of all the B blocks of the initial-
ization phase, we obtain from Lemma 11 the following result.

Lemma 12. Define Key =
/Cfo. Let Zi““(s) denote all the knowledge of the
eavesdropper  related to the initialization phase, i.e.,
Z"(s) 2 (Zy(s), Xp[Ap), Dy, RM R, 5. Then, for K
large enough

(Key,)oen, and K £

I (K Znit ) < BodW(K, L, ),
max max I { Key; (s) 00"( £)

log|K|—H (Key) < Bod™ (K, L, ¢).



C. Impact of the initialization phase on the overall communi-
cation rate

The initialization phase requires pN By channel uses, for
some fixed p € N, to generate the secret key and transmit
(Dy, RB™, R™ )ben,- We choose By such that

where lorp = o(N B) represents the key length necessary to
perform the one-time pad that appears in Algorithms 1, 2.
Hence, the impact of the initialization phase on the overall

communication is
lorp \
- =
lkey

We deduce from (16) that the communication rate of the
coding scheme of Section V-C and the initialization phase
(considered jointly) is the same as the communication rate
of the coding scheme of Section V-C alone.

O(NB)
/N

pNBy < pN (1 o(NB). (16)

key

D. Security of Algorithms 3, 4 and the initialization phase
when considered jointly

Let Motp be the sequence that needs to be secretly transmit-
ted with a one-time pad in Algorithm 3. Let C' £ Mqrp @ Key
be the encrypted version of Morp using Key, obtained in the
initialization phase. Let Zz(s) £ (Z1.5(s), X1.8[A], R1.B)
denote all the observations of the eavesdropper related to the
coding scheme of Section V-C, excluding C. Let Z™Mt(s),
defined as in Lemma 12, denote all the observations of the
eavesdropper related to the initialization phase. The following
lemma shows that strong secrecy holds for the coding scheme
of Section V-C and the initialization phase considered jointly.

Lemma 13. We have

maxe [(Mi.; CZp(5) 2™ (5)) < 2(B+Bo)o™ (K, L),
s€6,AcA

where Y (K, L, ) is defined in Lemma 7.
Proof. We have
I(My.5; CZg(s) 7™ (s))
@ 1(Mi.p; Zs(s)) + I(Ma.3 C\ Zs(5) 27 (5))
< I(My.p; Zs(s)) + I(Mr.p Zs(5) 2™ (5); C)
= I(Ml .51 Zp(s)) + 1(C; My.p Z(s))
+1(C; Z™(5)|M1.5 Z8(s)),
where (a) holds by
I(My:p; Z™(s)|Z5(s))
Next, we have
I(C; My, Zg(s))
< log|K|—H (C| M. Z5(s))
< log|K|—H (Key @ More| More M1 Z5(s))
H(
H(

a7

the chain~ rule ~and because
< I(Mi.pZp(s); Z™(s)) = O.

= log|K|—H (Key| Morp M. BZB( )

= log| K|~ H (Key). (18)

We also have
I1(C; Zi"it(S)|M1:BZB(5))
I(CMOTP;Zinit(s)‘MlzBZB(s))
= I(KeyMorp; Z™'(s)|M1.5Z5(s))

—~
=
=

I(Key; Z™(s)| MorpMi.5 Z5(s))

< I(KeyMore My Z(s); Z™(s))

© I(Key; Z"(s)), (19)
where  (b)  holds by the chain rule and
because I(Motp; Z™(s)|M1.p Z5(s)) <

I(MOTPMI:BZB(:;);Zi"“(s)) = 0, (c) holds by the chain
rule and because NI(MOTPMLBZB( s); Z‘"“( )| Key) <
I(MorpMy.5Zp(s); Z™'(s)Key) = 0. By combining (17),

(18), and (19), we obtain I(Mi.p;CZp(s)Z™(s)) <
I(My.p; Zg(s)) + I(Key;Z™(s)) + log|K|—H (Key).
Finally, we obtain the lemma with Lemmas 8 and 12. ]

VIII. PROOF OF THEOREM 8

We assume in the following that there exists a best channel
for the eavesdropper [23], i.e., 3s* € &,Vs € &, X — Z(s*) —
Z(s). Similar to the proof of Theorem 7, we proceed in two
steps. We first ignore the initialization phase and assume that
the legitimate users have access to a secret key to perform
the one-time pad in Algorithms 3, 4. We only show blockwise
security as the remainder of the proof is similar to the proof
in Section VI. We also omit the second step that consists in
analyzing the initialization phase jointly with Algorithms 3, 4,
as it is similar to the analysis in Section VIIL

A. Blockwise security analysis

We adopt the same notation as in Section VI. We have the
following inequality, whose proof is identical to the proof of
Lemma 1. For b € BB, we have

NG,
(20)

D(qu:NXI:NylzNZI:N(Sb) ||pUb1;NXg;NYb1:NZg;N(Sb)) <

[I>

where we have defined qpinxuNyLNZuN(s,)
Hi]il qQUXY Z(sp.:)- Next, similar to Lemma 4 using (20) in

place of Lemma 1, we have for any v €]0, 1]

VD, Ry 24 (1) X3 [As]» DL, DRy Z (5) X [As))

<27 4 2\/QT—H(Tb|Zb(sb))2b[Ab])+N5<1>(K,L)

2D
where 0(V) (K, L) is defined in Lemma 4. We then have
H (Tb|2b(sb))~(b[«4b])
> H (Uy|Zy(s5) Xo[As]) — N6@ (K, L)
> H (Uy| Zo(5*) Z(s0) X[ Ap]) — N6 (K, L)
> H (Up| Zy(s") Xp[Ap]) — N6 (K, L)
Y N1 - a)H(U|Z(s*)) + NaH(U|X) — N6® (K, L(;,Z)



where (a) holds as in the proof of Lemma 5 with 6®) (K, L)
defined in Lemma 5, (b) holds because (Up, Xp) — Zp(s*) —
Zp(sp) forms a Markov chain, (¢) holds as in the proof of
Lemma 5. Finally, from (21) and (22), we can conclude as in
Section VI-D that blockwise security holds.

IX. EXTENSION TO UNCERTAINTY ON THE MAIN CHANNEL

Assume now that uncertainty on the main channel also
holds according to a compound model, i.e., the channel of
Section III is now defined by the conditional probabilities
(Py (1) 2(s)| x )sce,tex, Where T is a finite set. Assume also
that for all channel uses s € & and ¢t € T are fixed. We
extend Theorem 7 to this setting in Section IX-C using new
polar coding schemes for source coding with compound side
information and for compound channel coding described in
Sections IX-A and IX-B, respectively.

A. Source coding with compound side information

[43] provides a polar coding scheme with optimal rate
for lossless source coding with compound side information.
However, for our purposes, we modify the coding scheme
in [43] to ensure near uniformity of the encoder output.

Consider a compound source (U % Y))jeq: (puy,)jeT)
where ¢/ £ {0,1} and J £ [1,J]. Let (tj)jes € N/
with ¢, £ 1 and define for j € J, T; £ [[/_,t; and
N; = NT};, where N is a power of two. Consider for j € J,
(UNN7, YN = (UEN, (V)FY) e, r,p distributed accord-
ing to the product distribution Py NJYl ~;. For jo € J, we

also use the notation Y = (YlIN “eeq,1- J € 12,71,

Jo,t
to indicate that Y N is made of t; blocks of length N;_

Define for ¢ € [1, Tﬂ] AFN & Uk NGN and for 0y £ 2~ Nﬁ
B €]0,1/2[, and j € J define the sets

VU—{ze[[l N]: HALAT™Y) > 1-6n},
Hupy, & {i € [LN] : HAAF ' (1Y) > 6w},
Vuyy, £ {i € [1,N] : H(A{|A}*™ 1(YJ)“V) >1-0n}.
= (U}

We also use the notation UNi )te[[l,tj]], J €
[2, J], to indicate that UYNi is made of t; blocks of length
N;_1. The encoding is described in Algorithm 5. By the
successive cancellation decoder for polar source coding with
side information [36], Decoder 1 with [e()(UYN1), Ef] =
N[Hyy,] and YN can compute a good estimate U

of UM Now, assume that when L € [1,J — 1], for
any Decoder [ € [1, L], there is a function gl(L) such that
OlNe 2 o) (L) (UNe) B Y NE) s a good estimate
of UYNt_ Then, Algorithms 6 and 7 show that any decoder
I €[1,L+1] can form a good estimate U Nt of Ve
from [ (L+1)(U1 NL+1)’ El, Yl NL+1]

The encoding and decodlng algorithms for source cod-
ing with compound side information are described in Algo-
rithms 5, 6, 7, and yield the following result.

Theorem 9. The algorithms 5, 6, 7 perform source cod-
ing with compound side information on sequences with
length Ty N with optimal rate max;c s H(U|Y;) and encod-
ing/decoding complexity T;NO(log N).

Note that the encoding is different than in [43] as the
encoder output is split into £/ and E’, however, the decoder is
equivalent to the one in [43]. Consequently, the probability
of error in the reconstruction of the source asymptotically
vanishes by [43]. Additionally, remark that the rate of E’
is negligible compared to N; because for any j € J,
Moy, \Vuy; |= [Hupy; |=Voyy;|= o(N) by [36] and [29,
Lemma 7]. Hence, the coding scheme rate is the same as
in [43] but now can also be used to ensure a near uniform
encoder output by one-time padding E’ with a sequence of
|E'| uniformly distributed bits shared by the encoder and
decoder. Note that it generalizes the polar coding schemes for
source coding with nearly uniform output [44] in [37], [45].

Algorithm 5 Encoding

Require: Assume that the sequence to compress is U1/
1: Define the function e : UYNt s AN [V v, ]
2: for j=1to J—1do
3 Define [0 UN = (AN Vypy,  Diepry)
4. Define the function /1) which maps UlNi+1 to

[e(j)(UlﬁN) (e (J)( ) a9 (U}
f(j)(UtJ_H )ia

(if the two sequences have different lengths, then the
shorter sequence is padded with zeros)
5: end for
6: Define E £ (/) (UTN7)
7: For j € J, define E} £ (APN
and E' £ (Ef)jcy.
8: return (E,E')

>)t€ii17tj+1*1]]7

Huy, \Vuy,Deenn 15

Algorithm 6 Decoder jy € [1, L]
Require: (B, ') and Y, V- *!
731 L .
t Form 0340 £ g} Ne), gy v
eMN(UFY s obtalned from el (U1Nr41)
: for Block t =2 to Block t = tr41 do
L . :
w o Form Duih 2 gl (0P @ FOWLY) @
f( (UJOtLl) Eéoa}/;otl/)
end for R
5: return UJ1 Ne+1 & (U.“;’L
Y Jo,
UlNe+1

) , where

N

»

)te[[l,tL_H]], an estimate of

B. Compound channel coding from source coding

We now propose a capacity-achieving compound channel
coding scheme from source coding with compound side infor-
mation via a technique similar to the one in [26] used to obtain
channel coding from source coding with side information.

Consider a compound channel (x, (py;1x)jeqs Vi)jes)
where X £ {0,1} and J £ [1,J]. Consider an arbitrary
distribution px on X and define for j € J, pxy, = poYj|X
Consider for j € J, (XEV, le’N ) distributed according to



Algorithm 7 Decoder L + 1

Algorithm 8 Encoder

Require: (E, E’) and YLlﬂL“
1: With the successive cancellation decoder for source coding
with side information [36], form Ui;erLtHl from

(f(L) (UtlLi\,llL )7 Ei+17 Y[};{\{ft[‘+1)

: for Block t = t141 —Al to Block t =1 do
32 Form an estimate f(X) (U} of fE)(U}FNE) with

(3]

FO@E)
£ fOWEN) 6 DY) & PO )

4:  With the successive cancellation decoderA for source
coding with side information [36], form Ui_{_vlﬂ from

(Jt/‘\(L)(Utl:NL)’ E; ., YLlﬁLt)
5: end for

. S1:Np41 & (771:Np
6: return U, ;" = (UL+1,t)tE[[1,tL+1]]

the product distribution py1.vy1:v. Define VEN & X1NGy
and for d £ 2_NB, B €]0, 1/2][, and j € 7, define the sets
Vx £{i € [Il,N]: HV V¥ 1) >1-6yn},
Hxpy, £{i € [LN]: HV VYY) > 65}
Vxpy, 2 {i € [LLN]: HVIVY YNy > 165}

Let (t;)jes € N7 with t; £ 1 and define for j € J,
T; £ [[)_,t; and N; £ NT;. We use the same notation
as in Section IX-A. Let |E| be the length of the output F in
the encoder of source coding with compound side information
described in Algorithm 5. By Euclidean division, there exist
g € Nand r € [1,7T; — 1] such that |E|= T;q + r. For
t € [1,r], consider an arbitrary set .A; C Vx such that
|A¢|= q+1, and, for ¢t € [r+1,Ty], consider an arbitrary set
A; C Vx such that |A;|= ¢. Hence, 7, | A|= |E].

The encoding and decoding algorithms for compound chan-
nel coding are described in Algorithms 8 and 9, and yield
the following result, whose proof is similar to [46]. Note that
other capacity-achieving polar coding schemes had also been
proposed for compound symmetric channels in [25], [31].

Theorem 10. Algorithms 8 and 9 perform compound chan-
nel coding over B blocks of length T;N with optimal
rate max,, minjc s I(X;Y;) and encoding/decoding com-
plexity O(BT N log N).

Remark 5. We do not write the dependence of the estimates
with respect to j € J in Algorithm 9 to simplify notation.

C. Extension to compound uncertainty on the main channel

Using the preliminary results of Section IX-A and IX-B, an
immediate extension of Theorem 7 is as follows.

Theorem 11. Assume that in the coding scheme of Sec-
tion V the primitive source coding with side information is
replaced by source coding with compound side information
Jrom Section IX-A. Assume also that instead of channel coding

Require: Ey £ (Eo.)ie,7,], Where Eoy, t € [1,T,], is
a sequence of |.A;| uniformly distributed bits (local ran-
domness). Messages (My,t)ve[1,B],te1,,]» Where My,
b € [1,B],t € [1,Ty], is a sequence of |Vx\A:
uniformly distributed bits

1: for Block b =1 to Block b = B do
for Sub-block ¢t = 1 to Sub-block ¢t = T'; do

: 1N : N ~ ‘ .
3 Define Vi according to szlpvlg’t‘vb{:trl with
5o . J g lid—1
Pyj vyt (Vhelvpy )
]l{vi’t = Mg’t} if j € Vx\ A,
A ] ] . .
=4 W, =E]_,} if je A
joplg—1y e
ij\Vlzjfl(Ulj),th,tj ) if j € V)c(

: Send X}V £ ViV Gy over the channel.
5:  end for
Define (E;, E}) as the output of the encoder described
in Algorithm 5 (for the compound source (pxv;);ecs)
applied to XNV 2 ()Z—(};tN)te[[l,TJ]]
7. Break down E} into T; sequences (Eb,t)te[[l,TJ]]’ such
that |Ej ¢|= | A, t € [1,T].
8: end for
9: Do a one-time pad with (E})ycp1,5) and Ep to ensure
uniformity (similar to Algorithm 3) and send it to the
receiver via channel codes [39] for each Dy;1xsJ € J

Algorithm 9 Decoder j € J

Require: Channel output 57;:3 Ny , estimate EB of Eg, and

estimate (E)peq1,57 of (E})bef1,B]

1: for Block/\b = B to Block b=1do

2. Use (Ey, E;) with Decoder j in Algorithms 6, 7
to create an estimate )A(;:N" = ()?l},:tN)tE[[l,TJ]] of
XN 2 (XN ey

3 for Sub-block t =1 to Sub-bl/(\)ck t="1T;do

4 Form an estimate V,';¥ 2 X"NGy of V,';V

5; Form an estimate J\/Zb’t e IA/bl,;N Vx\ A of My,

6 Form an estimate qu,t £ %{;N [Ai] of Ep_14

7. end for R

8. Form Ey_1 = (Eb—1,t)teq,1,] an estimate of £,y

9: end for

10: return (Mp ¢ )peB tcf1,1)]

in Lines 10 and 15 of Algorithm 1 and 3, respectively, we
use compound channel coding from Section IX-B. Then, the
following secrecy rate is achieved

+
max |min [(U; Y () —al(U; X)—(1—a) max I(U; Z(s))

te¥ s€6

where the maximum is over random variables U such that
Vte X, Vse 6, U—-X —(Y(t),Z(s)), and U|< | X|.



X. CONCLUDING REMARKS

We constructed explicit wiretap codes that achieve the best
known single-letter achievable rates, previously obtained non-
constructively, when uncertainty holds on the eavesdropper
channel under a (i) noisy blockwise type II, (ii) compound, or
(iii) arbitrarily varying model. Our construction solely relies
on three primitives: source coding with side information,
universal hashing, and distribution approximation. We also
extended our result to the case where uncertainty holds on
the legitimate user channel under a compound model. This
extension can thus be applied to the problem of secret sharing
from correlated randomness. Specifically, it can directly be
applied to the case of a discrete channel model as in [47,
Section II], and adapted to the case of a discrete source
model with a single dealer, as in [48], [49], for arbitrary
access structures. The case of Gaussian channels or sources,
e.g., [47], [50], is, however, more challenging as quantization
may be needed. The case of rate-limited communication for
source models is also more challenging as vector quantization
is needed and requires other proof techniques [51].

We anticipate that our code construction can be generalized
to the broadcast channel with confidential messages and the
multiple access wiretap channel when uncertainty holds on the
eavesdropper’s channel according to a compound model, using
a distributed version of the leftover hash lemma akin to [52].
Such results would generalize known constructions based on
polar codes, e.g., [11], [29], [53], that require a seed for strong
secrecy and assume perfect knowledge of the eavesdropper’s
channel statistics. An open problem is to provide explicit
coding schemes to handle an arbitrarily varying main channel
as, for instance, in the models in [23], [24], [54], [55].

APPENDIX A
PROOF OF LEMMA 1

Let b€ B and [ € L. By (3), we have

D(garxllpays) < Kok, (23)

we can indeed apply (3) because the bits gélK V] are
uniformly distributed, which is a consequence of the definition

of A [Vy] in Line 7 of Algorithm 3 using the fact that the
bits T;WU‘L = R, 'O (M, M]||R}) are uniformly distributed
since the bits (M||M[||Ry},) are uniformly distributed. Next,

we have
D(quiscyx ||17Ul};;< VK )

(a) ~ ~
= Bopr e D(qvripn [Py o) + Do [Prye)

() ~
S Egpux D(gy:x ||va{=lK|U;;lK) + Kok

(e)
< 2Kk, (24)

where (a) holds by the chain rule for relative entropy [56], (b)
holds by (23) because D(qyr1:x [|pypx) = D(qarr [[pay:r) by
invertibility of G, (¢) holds by (5). Then, ’

D(quszl:NylzNzl:N(s) HﬁUblzNXg:NYbl:NZg:N(S))

(@ ~

= Z ]D)(qu:lezkyl:Kzl:K(s) ||pUl},:lKXl},:lKYb1:lKZt},:lK(S))
lec '

(b) ~

= 2 iecDlguux xux ”pUz}fzKXz}fzK)

+ED(gy 1z () o xux [Py s ) o x )]

(¢) ~
= Z D(qu:le:K HpUhl’:lKXg:lK)
el

(@
< Z 2Kéx = 2LK g,
leL

where  (a) holds  because the random variables
(Ui, X35 V5, Z1 K (s)) across the different sub-blocks
Il € L are independent by construction (see Algorithm 3
and Remark 3), (b) holds by the chain rule for relative
entropy [56] and the expectation is over g1k x1:x, (¢) holds

Pyl ziE Xy =
QYI:KZI:K(S)‘XI:K = qYI:KZI:K(S)lUl:KXI:K,
holds by (24) because D(qri:x xix |[Pyass xp:¢)
]D)(qULKVl;K ||§Ub1;lKVb1:LK) by invertibility of Gk 7

because Py, K ()| UL X3

—
U
=

APPENDIX B
PROOF OF LEMMA 3

For any (mwy, ty, Tp, 25(8), ), We have

P, Ty X, 2y (s) Ry (7005 Ty Ty 26(8), 76

(a) ~ -~ o~
= Dx, 2z, ()| (o, 26(8)|t6) D iz, (M6) PR (T6)

X ZT;J PR (Té)ﬁmR;,MbRb (to|ry, M, 6)

®) ~ AN
= Dx, 2 (o)1 (Tos 25(8)[t6) 27| R|

% Zr’ {ty=r; 'O(ms|Iry)}

2—r+|VylL

= D,z ()73 (T, 2(8) 1) 27 VU [ R
X 3y Wre Oty = (m|r)}

() ~ _ _ _
= DX, 20 ()17 (T, 25(8)[t) 27 VORI TL{F (r, 1) = 17y}

@ AN, Ty X0 Zs (5) Ry (005 Tos Toy 26(8)5 70)

holds  because  Djz,7,x,2, R, =
DXy 2 |T Pir, DRy DT, NIy R, and Rp s independent
of (My,Rp), (b) holds by uniformity of My, Ry,
R;, and by definition of T3, (c) holds because
(F(Tb,tb) = mb) — (Er{) ]1{7“1, Oty = (mb,rlﬁ)} = 1)
(because 3! 7, € {0,1}V0IL=" such that 1, © ty, = (p|1}))
and (F(ry, ty) 7 my) == (3, W{re Oty = (my, 1)} = 0),
(d) holds by definition of g.

where  (a) =

APPENDIX C
PROOF OF LEMMA 4

We have
V(ﬁMbRbe(s)Xb[Ab] ) ﬁMbﬁRbe(S)Xb[.Ab])

(@ .
= V(Gr(Ry,Ty) Ry 2y (5) X6 [ Ab]» AN, ARy A2 (5) X[ As])

< -5 (7 7 )
< 2€ 4+ \/ 27 Hoo\PTy 2 () X3 [A ] 1P 2y () X [ Ay )

(2 9.97L7 4 \/Qer(Tb\Z,,(s))?b[Ab])JrLé(O)(K,L)




g 2.9°L7" 4 \/21'7H(T;,\Z;,(s)f(b[A;,])+N6(1)(K,L)7

where (a) holds by Lemma 3 and the definition of g, (b)
holds by Lemmas 2 and 3, (c) holds by Lemma 14 below,
which can indeed be applied by Remark 4, with ¢ £ 2L,
§ON(K,L) 2 V2L = 1log(2Vv| 4 3), (d) holds by choosing
SO(K,L) 2 (K~ +1)vV20-1 > §O(K,L)/K.

Lemma 14 ( [57] ). Let pxiy 2 ]2 px.z be a
probability distribution over X% x ZY. For any 6 >
0, HS (XLlesz > H(XZL) — Lo , where ¢ &

6
9 210g2(|X[+3) |

Remark 6. An argument similar to [58, Lemma 10] to lower
bound the min-entropy would require adding an extra round
of reconciliation to the coding scheme as in [59]. Lemma 14
appears to be a simpler alternative here.

APPENDIX D
PROOF OF LEMMA 5

We first introduce some notation for convenience. Define
for any Z C [1,K], AfZ] = (A4 [Z])icc and Ay =
(All,le)leg. For b € B, consider (Ubl,:lK7Xb1:lK,Z,}:IK(s))leL

distributed according to qrriv x1v z1v(s) = Hi]iquXZ(s)
Ubl;lK Gg. Next, de-

and define for | € L, A;lK £
fine for any Z C [1,K], Ay[Z] = (A;;lf([z])leﬁ and

Ay 2 (Ap)iec. Define Up[Ay)] £ (U5 [Avi))iec
Up[A5] = (USS[AS Diees U & (Upi )i, Xp[As] =
(X [Avaiec, X [A7] = (XA Diees Xp 2
(X3 iecs Zo(s)[A] = (Zz}fzK(S)[Abl])lec, Zy(s)[A5] =
(Zb,z (s )[Abz])leﬁ’ Zy(s )é( 1717K( s))iec- Then, we have
H(AL[VU)|Zy(s) X[ A]) — H(Ab[Vul| Zo(5) Xo [ Ab))
= H(AVu)Zy(s )Xb[AbD H(Ao[Vu|Zb(s)Xp[Ab])
+ H(Zp(s) Xp[Ap]) — ( ) X3 [As))
—2v2In24/2LKdk log ————— YPlZ.)"
\/2111 V2LKéx
—2v2In2v/2LK 5y (LK log( |X\2rsnea6x|25|)
—log(V2In2y/2LKék)) = — (25)
where the first inequality holds by [42,
Lemma 2.7] applied twice because for N large
enough, V(QAb[VU]Zb(s)Xb[AbbﬁAb[VU]Zb(s)Xb[Ab])

<
V210 2/D(qa, (Vi1 20 (5) X5 [As] [P A [Ver] Zs (5) X0 [As]) <
vV 21n 2\/]D)(qU1:le:Nyl:Nzl:N(s) ||§Ub1:NX;:NYb1:NZé:N(S)) <

V2In2+/2LKdx where we have used Pinsker’s inequality,
the chain rule for divergence, positivity of the divergence,
and Lemma 1. Then, we have

H (T3] Z(5) %l A4))
< H (Ao Zo() Kol i)

Y H (4V0]| Zu(s) Kol As)) — 57
= H (Ay[Hu]|Zb(s) Xp[Ab])

— H (Ap[Hu\Vul| As[Vu] Zs(s) Xp[Ab]) —

> H (Ay[Hul| Zo(5) Xp[Ap]) — LIHu\Vu|—0"
D H (A [H0)|Z(5) Xp[As]) — o( LK) — 6*
— H (Ao[Hu]Us| Zo(5) Xp | As))

- H (Ub‘Ab['HU]Zb(S)Xb[Ab]) - O(LK) — 0

H (Ao[Hu]Us| Zo(s) Xo[As])

— Hy, (LKdg) — (LK)?0x — o(LK) — 6*
H (Uy| Zy(s) X3 Ap))

— Hy (LKdg) — (LK)*0x — o(LK) — 6*

(©) H (Up| Zy(s)[A5] Xp[Ab])

— Hy, (LKdg) — (LK)?6x — o(LK) — 6%,  (26)

where (a) holds by definition of A,[Vy], (b) holds by (25),
(¢) holds because limg_,o0|Hy|/K = H(U) by [36], and
limg 00| Vu|/K = H(U) by [30], [41], (d) holds by Fano’s
inequality since the error probability in the reconstruction
of Uy from Ap[Hy] is upper-bounded by LKdx by the
result for source coding with side information from [36],
reviewed in (1), and the union bound, (e) holds because
Uy — (Zy(s)[Ag], Xp[Ap]) — Zp(s)[Ap] forms a Markov chain.
Next, we have

H(Up|Zp(s)[Ap] X[ Ap))
= H(Ub[A}]| Zb(s)[Ap] Xb[Ab])
+ H(Uy[Ap)|Up [ A7) Z1 () [A5] X [Ab])
@ H (U, A7) Z0(5)145])
+ H (Up[Ap] X [Ap]|Up[A7] Z5(s) [Ap])
— H (Xp[Ap]|Up[Ap] Zs(5)[A7])

D H (U, [A5)1 Zo ()| AF]) + H(Uy Ay X5 [ As]) — H(Xp[Ay))
= H(Up[ A3 Zp(s5)[Ap]) + H (Up[Ap]| X5 [As])
9 N1 - ) H(U|Z(s)) + NaH(U|X), 27)

where (a) holds because X,[Ap] is independent of
(U A5, Zy(3)[Ag]). (b) holds because (Up[Ap], Xp[Ap)) is in-
dependent of (Up[Af], Z(s)[Ag]) and X3[A,] is independent
Of(Ub[.Ag], Zb(S)[.Az]), (C) holds because qUUN XN Z1:N () =
Hi]il qux z(s)- We obtain the lemma from (26) and (27).
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