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PAST-AI: Physical-Layer Authentication of Satellite
Transmitters via Deep Learning

Gabriele Oligeri

Abstract— Physical-layer security is regaining traction in the
research community, due to the performance boost introduced
by deep learning classification algorithms. This is particularly
true for sender authentication in wireless communications via
radio fingerprinting. However, previous research mainly focused
on terrestrial wireless devices while, to the best of our knowledge,
none of the previous work considered satellite transmitters. The
satellite scenario is generally challenging because, among oth-
ers, satellite radio transducers feature non-standard electronics
(usually aged and specifically designed for harsh conditions).
Moreover, the fingerprinting task is specifically difficult for
Low-Earth Orbit (LEO) satellites (like the ones we focus in
this paper) since they feature a low bit-rate and orbit at about
800 Km from the Earth, at a speed of around 25, 000 Km/h, thus
making the receiver experiencing a down-link with unique atten-
uation and fading characteristics. In this paper, we investigate
the effectiveness and main limitations of Al-based solutions to
the physical-layer authentication of LEO satellites. Our study
is performed on massive real data—more than 100M I-Q
samples—collected from an extensive measurements campaign
on the IRIDIUM LEO satellites constellation, lasting 589 hours.
Our results show that Convolutional Neural Networks (CNN) and
autoencoders (if properly calibrated) can be successfully adopted
to authenticate the satellite transducers, with an accuracy
spanning between 0.8 and 1, depending on prior assumptions.
However, the relatively high number of I-Q samples required by
the proposed methodology, coupled with the low bandwidth of
satellite link, might prevent the detection of the spoofing attack
under certain configuration parameters.

Index Terms— Physical-layer security, satellite systems secu-
rity, applications of artificial intelligence for security, wireless
security.

I. INTRODUCTION

HYSICAL-LAYER authentication relies on detecting and
identifying unique characteristics embedded in over-the-
air radio signals, thus enabling the identification of the
hardware of the transmitting source [1], [2]. Wireless Physical-
layer authentication is also known as radio fingerprinting when
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referring to the challenge of both detecting and extracting
features from the received signal (fingerprint), which can
uniquely identify the transmitting source [3], [4].

Physical-layer authentication can significantly enhance the
security and privacy of wireless channels in two adver-
sarial scenarios: (i) spoofing; and, (ii) replay attacks. The
former involves a rogue transmitting source attempting to
impersonate a legitimate one, while the latter assumes the
adversary being able to re-transmit previously eavesdropped
messages [5]. Despite spoofing detection can be achieved by
authenticating the transmitting source with standard crypto-
graphic techniques (e.g., digital signatures), in many scenarios
involving massive deployments (e.g., IoT), difficult to reach
devices (e.g., satellites), or when the cryptography-induced
overhead is considered excessive, digital signatures might
be inefficient [6]. Alternative solutions could involve crowd-
sourcing, i.e., cross-checking context information to validate
the transmitting source [7], [8]. Replay attacks can be even
more difficult to detect, being dependent on specific pro-
tocol flaws: the adversary re-transmits encrypted informa-
tion, which will be considered as valid if not timestamped.
Both spoofing and replay attacks can be prevented if the
receiver can authenticate the hardware of the transmitting
source [9].

Many researchers have already undertaken the challenge
of extracting unique fingerprints and developing effective
detection algorithms to extract and match the fingerprints
(see Sec. VII for an overview). The cited tasks have been
mainly achieved by resorting to dedicated hardware at the
receiver side, featuring high sampling resolution and bet-
ter signal quality. Indeed, Software-Defined Radios (SDRs)
played a major role as an enabling technology for radio
fingerprinting. Specifically, SDRs provide both high-resolution
bandwidth (thus exposing the features of the transmitting
source) and high signal-to-noise ratio (thus facilitating the
extraction of the features to the back-end algorithms). Unfor-
tunately, radio noise still represents the major issue for all
the state-of-the-art solutions. Indeed, the fingerprint of the
transmitting source is mixed—drown, in many cases—with
the noise of the radio channel. Therefore, discriminating
between the needed features and the noise brings back the
problem of developing effective algorithms to achieve the cited
objective.

Recently, Convolutional Neural Networks (CNNs) have
been used for radio fingerprinting in several scenarios, such
as ADS-B, WiFi, and Zigbee [10], [11], [12], [13]. The idea
behind the adoption of CNNs relies on exploiting their mul-
tidimensional mapping during the learning process to detect
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and extract reliable radio fingerprints. However, all of the
recent contributions took into account terrestrial links, only.
Recent results [13] based on real measurements on terrestrial
wireless links confirmed that the wireless channel significantly
impacts the classification accuracy (up to 80%), thus con-
firming the need for more effective classification techniques.
It is worth noting that no prior contribution has been made
up to date to the physical layer authentication of satellite
transmitters (in particular, the IRIDIUM constellation), given
their intrinsic challenges [14]. Indeed, LEO satellites, which
IRIDIUM constellation is part of, are characterized by unique
features: the satellite transmitter is at around 800 Km from
the earth and moves at about 7 Km/s with a pass duration
of about 8 minutes [8]—involving a radio link (quality) that
significantly changes over the time. Indeed, we observe that
attenuation and multi-path fading can significantly change
when the satellite is either on top of the receiver or far away,
just over the horizon (before disappearing). Therefore, the
noise affecting the satellite link makes radio fingerprinting
in satellite a unique, more challenging scenario, requiring
additional research.

Contribution. We provide the following contributions:

o« We introduce PAST-AI i.e., a set of methodologies to
perform radio fingerprinting over LEO satellite links.

o We prove that Convolutional Neural Network (CNN) and
autoencoders can be effectively adopted to fingerprint
radio satellite transmitters.

o« We propose two different classification scenarios, i.e.,
intra-constellation satellite authentication and satellite
authentication in the wild, which fit the adopted clas-
sification algorithm and their assumptions.

« We provide several insights to properly calibrate the algo-
rithm parameters, achieving overwhelming performance,
i.e., an accuracy greater than 0.8 for the former scenario
and average Area Under the Curve (AUC) equal to 1 for
the latter (i.e., the vast majority of the satellites).

o We compare the adopted neural network, i.e., ResNet-
18, with other neural networks typically used for the
same problem, showing the existing trade-off between
classification accuracy and training overhead.

o We experimentally demonstrate the limitations of
physical-layer authentication via radio fingerprinting in
satellite networks, showing through real data the impact
of the bandwidth and the received signal strength on
satellite links.

Paper organization. The rest of this paper is organized
as follows. Sec. II introduces background notions; Sec. III
illustrates the data acquisition campaign and the initial data
processing; Sec. IV introduces the PAST-AI methodology;
Sec. V focuses on the intra-constellation satellite authentica-
tion scenario; Sec. VI details the authentication scenario with
minimal satellites’ knowledge; Sec. VII reviews related work;
and, finally, Sec. VIII tightens the conclusions.

II. BACKGROUND AND ADVERSARY MODEL

In this section, we describe both background notions and
the assumed adversary model.
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Fig. 1. Modulation and Demodulation of a digital signal represented by its
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Fig. 2. QPSK modulation example: from bit sequence b to the in-phase i (z)
and quadrature ¢(#) components.

A. I-Q (de)Modulation

Digital modulation schemes involve the processing of a (low
frequency) baseband signal, i.e., a bit sequence b; € {0, 1} with
i € [1, N], to make it suitable for transmission in the RF spec-
trum (high frequency). While several techniques to achieve
the aforementioned result are available, I-Q modulation is the
most adopted due to practicality: efficient I-Q (de)modulators
are available as inexpensive System on Chips (SoC). Fig. 1
shows the block diagram of a typical communication system
involving I-Q modulation, RF transmission, and I-Q demodu-
lation. A sequence of bits should be preliminary converted into
I-Q symbols, i.e., i(t) and ¢(¢) in Fig. 1. Different families of
modulation schemes are possible, e.g., Amplitude Shift Keying
(ASK), Frequency Shift Keying (FSK), or Phase Shift Keying
(PSK), depending on how the sequence of bits is converted
to the in-phase i(t) and quadrature q(t) components (recall
Fig. 1).

As a toy example, we consider the Quadrature Phase
Shift Keying (QPSK)—very similar to the one adopted by
Iridium. QPSK maps pair of bits into (four) I-Q sym-
bols, i.e, {1,1} — so, {0,1} — 1, {0,0} — s, and
{1,0} — s3, as in Fig. 2. Note that the aforementioned
mapping can be easily achieved by setting i(t) = {—1, 1}
and g(t) = {—1,1}, as depicted in Fig. 2. For instance,
the bit string b [0,1,0,1,0,0,0,1,1,0,0,1,0,1, 1, 1]
becomes the sequence of symbols [s1, 51, 52, 51, 53, S1, 1, 501,
thus obtaining the in-phase i(¢#) and quadrature ¢(¢) signal
components. For the sake of completeness, we highlight that
both i(t) and ¢(¢) should be subject to other filtering stages
and they cannot be directly used as mentioned in Fig. 1, since
the sharp level changes will eventually cause s(f) to have a
very large bandwidth [15].

i(t) and ¢(¢t) components are modulated adopting an in-
phase (cos2z f.t) and a quadrature (sin2x f.t) signal at the
reference frequency f. (carrier). The resulting signals are
summed up to obtain the actual RF signal s(r). Fig. 1 takes
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into account also propagation phenomena, such as fading and
attenuation, that may affect the received signal, and therefore
r(t) # s(t). The demodulation block is the reciprocal of
the modulator: the received signal r(¢) is multiplied by both
an in-phase and a quadrature signal at frequency f., and
then, low-pass-filtered to remove the unwanted upper side-
bands. The final result consists of i’(r) and ¢’(z), which
can be arbitrarily different from the original i(¢) and ¢(¢)
components. The greatest source of difference usually comes
from RF propagation, which affects i(¢) and g(f) so badly
to make the symbol recovery impossible. When the signal-to-
noise ratio is large enough, the symbols are evenly distributed
and the information recovery becomes feasible. Further, there
are also minor effects that introduce small offsets in the I-Q
symbols. A typical example is constituted by impairments
and biases introduced by small differences in the electronics
components that, although being mass-produced by controlled
and standardized assembly lines, are still characterized by
imperfections at nano-scale, that affect the displacement of the
symbols. The analysis introduced in later sections proves that
the symbols’ displacement is systematic, thus being at least
theoretically possible to detect it, measure it, and eventually
leverage it to identify the hardware generating it.

B. Autoencoders

Autoencoders are artificial neural networks whose goal is to
learn an optimal representation (i.e., encoding) of a training
set from which it is possible to accurately reconstruct the input
data. Although it may seem trivial (i.e., the mere copy of the
input data to the output may easily lead to an outstanding
accuracy), to identify useful features, the internal function
responsible for the research of good encoding candidates is
usually constrained. For instance, the autoencoder may be
forced to find an encoding smaller than the input data (i.e.,
undercomplete autoencoder). This unsupervised technique has
been widely used for dimensionality reduction and feature
learning, since it may be tuned to generate smaller encoding,
similar to the original input. Recently, autoencoders are also
being put to the forefront of generative modeling [16]. The
more similar the output to the training set, the more likely
the autoencoder represents input data. In case the encoding
is (parametrically) smaller than the input data, the feature
reduction phase is successful. Different autoeconder models
are available, such as the regularized autoencoders, able to
learn the most salient features of the data distribution [16],
and variational autoencoders, providing a framework to learn
deep latent-variable models and the corresponding inference
models [17]. Autoencoders usually include four components:
(1) an encoder, allowing to learn the features; (ii) a bottleneck,
identified as the layer containing the encoding of the training
set; (iii) a decoder, allowing the model to learn how to
reconstruct the input data from the encoding; and, (iv) the
reconstruction error function, measuring the performance of
the model during training. Autoencoders have been applied
for intrusion detection tasks [18], anomaly detection [19], and
DDoS attack detection [20].

In this paper, we rely on autoencoders to perform the
one-class classification task on the IRIDIUM satellites. The

intuition is the following: starting from a distribution X, the
reconstruction of input data drawn from X is easier (i.e., the
error metric is reduced) than the reconstruction of input data
drawn from any other distribution Y, with ¥ # X.

C. Convolutional Neural Networks

A CNN is a Deep Neural Network (DNN) having at least
one convolutional layer, i.e., a layer performing convolutional
operations. A convolutional operation, in turn, is the math-
ematical combination of two functions that produces a third
function, being the expression of the change of shape caused
by the application of one function to the other. For CNNs,
a convolution consists of a slide of a parametric-sized filter
(also known as operator) over the input representation. Being
the filter smaller compared to the input representation, it is
applied to different overlapping input portions, thus generating
a feature map. Different filters allow to catch different patterns
within the input representation (i.e., in case the input is
represented as an image, operators can be used to highlight
edges, corners, and possibly other patterns). A typical CNN is
composed of three types of layers: (i) convolutional layers,
to build the feature map of the input; (ii) pooling layers,
to reduce the number of learnable parameters and discretize the
input; and, (iii) fully-connected layers, to hold the high-level
features found during the convolutions and to learn non-linear
combinations of them. Nowadays, CNN applications can be
found in handwriting recognition, face detection, behavior
recognition, recommendation systems, speech recognition,
image classification, and Natural Language Processing [21].

D. Transfer Learning

Until a few years ago, conventional ML algorithms have
been designed to work in isolation, trained every time from
scratch to solve specific tasks. However, training a network
from scratch may be cumbersome, since the available datasets
may not be rich enough to effectively capture the features.
As a result, the resulting classifier could not generalize prop-
erly when applied in the wild. Conversely, transfer learning
takes advantage of the knowledge learned while solving a
task in a particular domain, to simplify the learning phase
for a task in another domain. As highlighted in [22], transfer
learning is particularly advantageous in situations where the
model related to the source task has been trained on a
training set bigger or approximately of the same dimension
of the one of the destination task. In such situations, transfer
learning helps mitigating overfitting, producing a more reliable
model. In this paper, to perform multi-class classification on
the IRIDIUM satellites, we used the Resnet-18 CNN, pre-
trained on the popular ImageNet dataset. Resnet, introduced
in 2015, proved to be very performant, since it is structured
in a way to achieving deeper architectures with a reduced
number of parameters [23]. We provide more details on these
in Sec. V-A.

E. Iridium Satellite Constellation

The IRIDIUM satellite constellation was conceived in
1987 and first operated in 1993 by IRIDIUM SSC, founded by



OLIGERI et al.: PAST-AI: PHYSICAL-LAYER AUTHENTICATION OF SATELLITE TRANSMITTERS VIA DEEP LEARNING 277

Motorola [24]. The constellation is constituted by a set of Low-
Earth Orbit (LEO) satellites, orbiting 800 km above the Earth
surface, and arranged so that they can guarantee full Earth
coverage at any time. The name of the satellite constellation
is inspired by the originally-planned number of satellites,
i.e., 77, coincident with the atomic number of the IRIDIUM
chemical element. However, to minimize deployment costs
while still guaranteeing Earth coverage, only 66 satellites are
operational nowadays. IRIDIUM radio signals are transmitted
in the L-band, in the frequency range [1,616—1, 626.5] MHz.
On the ground, IRIDIUM subscribers can receive such signals
as well as transmit by using dedicated mobile satellite devices,
provided by companies such as Motorola and Kyocera. Today,
IRIDIUM is mainly used on-board of vessels, to initiate and
receive calls when located off-shore. In this context, starting
from January 2020, the International Maritime Organization
(IMO) has certified IRIDIUM as an approved Global Maritime
Distress and Safety System (GMDSS) service provider for ves-
sels. However, IRIDIUM transceivers are also used in the avia-
tion, railway, and critical infrastructures domains, and recently
they have received significant attention also in the emerging
satellite-Internet of Things (IoT) application domain [25].
Each IRIDIUM satellite includes an array of antennas, hereby
referred to as beams, that widens the transmission range of the
satellite at the ground. Overall, each satellite has 48 beams
and an additional antenna dedicated to the identification of
the satellite. Note that the transmission power adopted by the
satellite antenna is higher than the one used by the beams,
so that any receiver that could decode the signal emitted by
a beam can also receive the information about the satellite
itself. Overall, two channels categories are available, i.e.,
system overhead channels and bearer service channels. In this
paper, we focus our attention on one of the system overhead
channels, i.e., the IRIDIUM Ring Alert (IRA) broadcast chan-
nel. It is a broadcast, unencrypted, downlink-only channel,
operating at the center frequency of 1,626.27 MHz, and
used to deliver information useful for handover operations at
the ground. IRA messages are characterized by a 12 bytes
preamble, encoded according to the Binary-Phase Shift Keying
(BPSK) modulation scheme, while the rest of the information
(103 bytes) follows the Differentially-encoded Quadrature-
Phase Shift Keying (DQPSK) modulation. Such information
includes the ID of the satellite emitting the packet, the specific
transmitting beam (the beam ID is 0 in the case the transmitter
is the one identifying the satellite), the position of the satellite
(expressed in latitude, longitude, and altitude), and further
information used for handover, e.g., the Temporary Mobile
Subscriber Identity (TMSI) of any user subject to handover.
Note that IRA packets can have different sizes, depending on
the amount of TMSIs included in the message, as well as the
presence of additional specific paging information. Previous
contributions [8] used the information included within IRA
messages to reverse-engineer several system parameters of the
IRIDIUM constellation, such as the speed of the satellites,
the coverage at the ground, the arrangement of the beams,
and the satellite pass duration. In this paper, we further extend
those results, by providing hints on the time needed to observe
a specific satellite, the distribution of I-Q samples, the effect

Fig. 3.  Measurement Setup: we adopted an active (pre-amplified) Iridium
antenna (Beam RST740) connected to a USRP X310 Software Defined Radio.

of the noise, and the expected number of [-Q samples per
satellite pass (see Sec. III. This information is instrumental to
the scope of our work, i.e., the authentication of the IRIDIUM
satellite at the physical-layer, by using raw [-Q samples.

F. Adversary Model

We assume an adversary whose main objective is to spoof
satellite transmissions. Generally speaking, satellite communi-
cations can be authenticated by resorting to traditional protocol
level services. Nevertheless, authentication is not provided by
all the satellite networks, e.g., as in the case of GPS and
Galileo. Moreover, the secret material (enabling the authenti-
cation process) can be leaked, thus enabling a wide area to be
under the control of the adversary—a LEO satellite can easily
cover a country-wide area. This makes the satellite network a
critical infrastructure, requiring multiple authentication layers.
We assume our adversary can both transmit fresh messages and
re-transmit previously recorded ones. Moreover, we assume
the receiver cannot resort to any protocol level authentication
service to verify the identity of the actual transmitter, being
either the real satellite or a terrestrial transducer set up by the
adversary.

In the remainder of the manuscript, we consider real data
acquired through a large experimental acquisition campaign,
and we will show that we are able to discriminate single
satellites transmitting exactly the same data, even if they come
from the same manufacturer and same satellite constellation.
Thus, being able to discriminate the actual satellite in such a
set, implicitly, we are also able to discriminate transmissions
originated from a low-end terrestrial spoofing device, being
this latter a weaker adversarial model.

III. IRIDIUM DATA ACQUISITION AND PROCESSING

In this section, we first describe the equipment (hardware
and software) adopted for our measurements. Then, we show
how we reverse-engineered the architectural parameters of the
IRIDIUM constellation and, finally, we introduce how we used
the I-Q samples to authenticate the satellite transmitters.

A. Measurement Set-up
The measurement setup is illustrated in Fig. 3. The hardware
used to acquire IRIDIUM signals consists of a dedicated
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TABLE I
EXCERPT OF THE COLLECTED DATASET

Time (s) Time (ms) SatI(;;llte B:;m Latitude Longitude Safr-lgles

1580712040 000000739 115 0 25.22 27.66 0.03+0.3j, ...
1580712040 000004519 115 0 25.72 27.66 0.02-0.4j, ...
1580712040 000005059 115 0 26.24 27.67 -0.07+0.8j, ...
1580712040 000005599 115 0 26.39 27.67 -0.2-0.4j, ...
1580712040 000008839 66 0 26.75 27.69 0.03+0.3j, ...
1580712040 000013159 66 0 26.90 27.69 0.03+0.3j, ...
1580712040 000013699 66 0 27.25 27.69 0.03+0.3j, ...

L-Band IRIDIUM antenna, connected to a general-purpose 0.03

Ettus Research X310 SDR. The antenna is an IRIDIUM 0025

Beam Active Antenna, model RST740, commonly used by )

commercial IRIDIUM transceivers [26]. The antenna is con- 002}

nected through an SMA cable to the Ettus X310 SDR [27], %

integrating the UBX 160 daughterboard [28]. In turn, the SDR g0015¢

is connected via Ethernet to a Laptop Dell XPS15 9560, ® ool

equipped with 32GB of RAM and 8 Intel Core i7700HQ '

processors running at 2.80 GHz. On the software side, we used 0.005

the well-known GNURadio development toolkit. Specifically,

we adopted the gr-iridium module to detect and acquire
IRIDIUM messages [29]. In addition, we used the iridium-
toolkit tool to parse IRA messages [30]. In detail, we modified
the gr-iridium module in a way to log the I-Q samples of
all the valid IRIDIUM packets, i.e., the ones containing the
12 bytes BPSK-modulated preamble, typical of the IRIDIUM
messages. For each of these packets, we logged the values
of the I-Q samples after the filtering and synchronization
performed by the Phased Locked Loop (PLL). Next, we used
the iridium-toolkit tool to log only valid IRA packets. Our
measurement campaign has been carried out in very harsh
conditions, i.e., by exposing the IRIDIUM antenna out of
the window of an apartment. This is a worst-case scenario,
since part of the open sky is obstructed by the wall of the
building, attenuating and deviating the signal coming from
the satellites. Note that this is not a limitation of our study.
Conversely, the high-level performance achieved in such a
disadvantaged scenario paves the way for further improvement.
Overall, we continuously acquired IRIDIUM signals for about
589 hours (24 days), gathering 102,318, 546 1-Q samples
(1,550, 281 per satellite, on average). An excerpt from the
dataset is reported in Tab. I. Specifically, for each received
IRA packet we log the reception timestamp on the SDR,
both in seconds and in milliseconds, the satellite ID, the
beam ID, the latitude, longitude, and altitude coordinates of
the emitting satellite, and the raw I-Q samples included in
the IRA packet. As recently discussed by the authors in [8],
any IRIDIUM satellite is equipped with a total number of
49 radios, where 48 represent the radio of the beams and the
remaining one reports the whole satellite ID, characterized by
the beam numbered 0. For our work, we further restricted the
analysis to satellite IRA packets, i.e., the one having beam
ID 0. Finally, we implemented the classification algorithms
(Convolutional Neural Network (CNN) and autoencoders) in
MATLAB R2020a. The training, validation, and testing have
been carried out by a server featuring 64 cores, 512GB RAM,

-10 -5 0 5 10 15
SNR [dB]

Fig. 4. Signal to Noise Ratio (SNR) computed on all the satellite I-Q samples.

and 4 GPUs Nvidia Tesla M40. The collected data are released
open source [31].

B. Reverse-Engineering IRIDIUM Constellation Parameters

In this section, we derive important parameters of the
IRIDIUM constellation, functional to the subsequent analysis.
We consider the Signal-to-Noise Ratio (SNR) associated with
the collected I-Q samples, the waiting time between two
consecutive passes of a specific satellite and, finally, the
number of I-Q samples that can be collected per single satellite
pass.

1) Signal-to-Noise Ratio (SNR): We start the analysis by
considering the quality of the collected samples, in terms of
SNR. We considered the signal /i%(t) + ¢%(¢) and we com-
puted the associated periodogram (over a sequence of 1,000
samples), while evaluating the SNR as the difference between
the power level of the main component (first harmonic) and
the power level of the other ones [32]. Figure 4 shows the
probability mass function associated with the SNR values
computed from all the collected satellite I-Q samples. We
observe that there are SNR values significantly high, i.e.,
spanning between —15 dB and 15 dB: this is mainly due to our
measurement set-up, featuring a pre-amplified ad-hoc antenna.
Moreover, the SNR values are mainly grouped around two
reference values, i.e., —5dB and 9dB. While the former are
related to satellite trajectories close to the horizon, the latter
ones are from the satellite trajectories crossing on top of the
antenna.

2) Waiting Time Between Consecutive Satellite Passes:
We also investigate in Fig. 5 the time an observer (on the
ground) has to wait to see again the same satellite. We can
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explain these results by recalling that a satellite can pass over a
specific location in two directions, either north-south or south-
north. Indeed, each satellite passes over the same location
twice every 90 minutes: up to two consecutive passes can
be detected from the same position. Subsequently, after a full
Earth revolution, the satellite returns to the same location after
about 560 minutes from the opposite direction. Higher waiting
times (in Fig. 5), e.g., 560 4+ 90 ~ 650 minutes, are due to
passes that have not been detected by the receiver.

3) I-Q Samples Per Satellite Pass: Another important para-
meter for the subsequent analysis is the number of collected
I-Q samples per satellite pass, i.e., the number of I-Q samples
that can be collected by a receiver during a single satellite
pass. Firstly, we consider the inverse cumulative distribution
function associated with the number of received I-Q samples
(N) per satellite pass, as depicted in Fig. 6, i.e., P(N > x),
where x represents a predefined value of I-Q samples. The
overall trend is linear up to 50, 000 samples: it is worth noting
a probability of 0.7 and 0.5 to have at least 10,000 and
20, 000 samples per satellite pass, respectively.

The inset of Fig. 6 shows the time required to collect the I-Q
samples. For instance, 10,000 and 20, 000 I-Q samples can
be collected by satellite passes lasting for 7 and 8 minutes,
respectively. The satellite passes last maximum 9 minutes
(median value of the maxima); during this period, we were
able to collect between 30,000 and 80,000 I-Q samples.
We explain this wide range of values due to the varying noise
conditions during the measurement campaign. Finally, note

the trend between 0 and 30, 000 I-Q samples, characterized
by satellite pass length between 3 and 8 minutes. We consider
these events to be associated with passes close to the horizon,
where the satellite appears just for a short amount of time.
Note that one of the main challenges in physical-layer
authentication is to distinguish between the intrinsic features of
the transmitters’ electronic components and the environmental
effects affecting the communication link, such as the Doppler
shift and ionosphere effects, to name a few.
In our measurement campaign, we took care of these aspects in
two different ways. First, we acquired data (I-Q samples) from
IRIDIUM satellites for a long period of time, lasting approx.
589 hours. Considering that a generic IRIDIUM satellite
passes twice on the same location at least approx. every
654 minutes (see Fig. 5), we gathered at least 54 passes of
the same satellite, on average, in different time windows. Such
extended period is not continuous, but spans across multiple
non-consecutive time periods, to make our data representative
of a large time window and independent from the specific
acquisition time (and atmospheric effects experienced by the
communication link at that time).
Second, as for the independence of our data from the specific
location of transmitter and receiver, note that LEO satel-
lites continuously move while emitting signals, at a speed
of approx. 800 km/h. Therefore, consecutive I-Q samples,
transmitted even shortly after than the previous ones, expe-
rience different communication links, relative locations, and
channel conditions, intrinsically experiencing the multitude of
conditions needed to allow the classifier to reject temporary
effects.

C. Transmitting-Source Authentication via I-Q Samples

Fig. 7 shows the received In-Phase i’(r) and Quadrature
q'(t) components of 679,740 samples gathered from the
Satellite with ID 7. Note that the ideal I-Q constellation (recall
Fig. 2) is significantly different from the one experienced
in real down-link satellite communications. Red circles in
Fig. 7 highlight the ideal positions of the I-Q samples and
identify the four Cartesian quadrants adopted for the decision
(recall Fig. 2), i.e., the received I-Q sample (black dot) is
mapped to the corresponding red circle as a function of the
Cartesian quadrant on which it lies. The received I-Q samples
are affected by different phenomena that displace their original
positions. As for the bit error rate, as long as the samples
remain in their intended quadrants, the error rate remains
zero. In this contribution, we are not interested in the link
error rate; instead, we focus on the phenomena behind the I-Q
samples’ displacement. In general, a received (satellite) signal
is affected by the following phenomena:

o Fading. Iridium satellites are LEO satellites, hence
located at a height of approximately 780 Km, thus being
affected by a significant signal attenuation. Note that
Fig. 7 is the result of a post-processing amplification,
where the samples are stretched to fit the Cartesian plane
[—1,1] x [—1,1].

o Multipath. Multipath is caused by multiple replicas of
the transmitted signal reaching out the receiver through
different paths, summing up at the receiver with different
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Fig. 7. Received In-Phase i’(¢) and Quadrature ¢’(t) components of 679,740
samples from Satellite with ID 7.

phases. Since the phase shift is random, the attenuation
can be arbitrarily large, causing a destructive interference
that can significantly affect the signal quality.

o Doppler shift. Doppler shift represents the change of
frequency (shift) of the received signal as a function of the
relative speed between the transmitter and the receiver at
the ground. The satellite scenario is particularly challeng-
ing, since the Doppler shift is maximum when the satellite
is at the receiver’s horizon, while becoming minimum at
the receiver’s zenith.

o Hardware impairments. Although mass-produced, any
two radio transceivers are not identical. Indeed, the
discrete components can be affected by small physical
differences at the micro and nano scale (e.g. material
impurity), which are reflected in variations of capacitance,
resistance, and inductance, eventually leading to small
signal artifacts and I-Q unbalances. While the cited
imperfections do not affect communication performance,
they make the transmitted signal unique, thus enabling
the identification of the transmitting source. Unfortu-
nately, such small I-Q unbalances are hidden by all the
previously-discussed phenomena—each of them having
a remarkable impact on the [-Q unbalancing. In the
following, we will discuss an Al-based methodology to
detect and extract such imperfections. We will prove
our approach being robust to noise, and able to identify
a specific satellite transmitter among the 66 that make
up the Iridium constellation—thus enabling the physical
authentication of the transmitting source.

D. I-Q Samples Pre-Processing

Noise represents a major challenge when the receiver aims
at identifying the transmitting source via the I-Q unbalances.
Over the years, several techniques have been developed to
address the above issue, and the vast majority of them achieve
great performance. Nevertheless, none of the mentioned tech-
niques considered the satellite wireless channel. Indeed, recall-
ing Fig. 7, we note that I-Q samples do not appear just around
the ideal points (red circles), but they spread all over the I-Q
plane. The “cross”-like shape can be explained by the lack of
signal amplitude normalization in the demodulation chain [33].
We will prove that the aforementioned issue does not affect
our solution, being effective also for small values of the SNR
(like the ones of a satellite link).

Our approach relies on applying state-of-the-art image pat-
tern recognition techniques to synthetically generated images
of I-Q samples. As previously discussed, hardware impair-
ments generate (consistent, though low intensity) anomalies
in the distribution of the I-Q samples. Therefore, our intuition
is to discriminate between the noise and the anomalies by
relying on the more powerful classifiers in the literature.
The aforementioned methodology requires an effective rep-
resentation of the I-Q samples in the image domain. Fig. 8
shows how we pre-processed the I-Q samples to represent
them as images. In particular, we sliced the I-Q plane into
224 x 224 tiles (details on this will be clarified later on),
and then we evaluated the deployment of different amounts
of I-Q samples (679,740 from the satellite with ID=7 in
Fig. 8). Subsequently, we computed the bivariate histogram
over the aforementioned tiles, i.e., the number of I-Q samples
belonging to the same tile. Finally, we mapped each value
into a grey-scale, i.e., [0, 255], constituting one pixel of our
grey image. Therefore, pixels with higher values (white color)
represent the tiles with a high number of I-Q samples, while
pixels with small values (black color) represent tiles with
no I-Q samples. Figure 8(b) highlights the spatial correlation
and the features embedded in an image generated as the
bi-variate histogram of I-Q samples—those characteristics will
be leveraged later on by the deep learning algorithms for
classification purposes.

IV. SATELLITE AUTHENTICATION METHODOLOGIES

In this section, we describe the methodology adopted to
authenticate satellite transmitters.

Specifically, we split the whole I-Q samples dataset in three
subsets, i.e., training (T), validation (V), and testing (S), each
subset accounting for the 60%, 20%, and 20% of the whole
dataset, respectively. Moreover, it is worth noting that the
number of I-Q samples for each satellite is evenly distributed
in each subset (i.e., the dataset is balanced by construction).
Let us define Dy the subset of I-Q samples from satellite s,
with s € C and C = {1, ..., 66} being the set of satellites in
the IRIDIUM constellation. Moreover, let D be the subset of
I-Q samples from satellite s and Dy = 73, U Vs U S where
7Ts, Vs and S are the training, validation, and testing subsets
associated with the I-Q samples from satellite s. We achieved
physical-layer satellite-authentication along two dimensions:

o Multi-class classification. We aim at being able to
correctly authenticate all the satellites in the constella-
tion. This scenario represents the worst case, involving
66 equivalent classes. We assume prior knowledge on
7s,Vs € C. Moreover, we assume the test subset Sy to
be constituted by I-Q samples from the satellite constel-
lation, i.e., x € C—although we do not know to which
satellite s the I-Q samples belong to.

« Binary classification - One-vs-Rest. We consider a can-
didate satellite s, and we combine the I-Q samples from
all the remaining satellites, thus obtaining two classes:
the class containing the reference satellite s, and the
one constituted by all the I-Q samples of the remaining
satellites, i.e., C'\ {s}. Compared to the previous scenario,
this one involves limited prior knowledge, i.e., only 7g,
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Fig. 8.

TABLE 11
CLASSIFICATION STRATEGIES

Test Subset
Any test subset of satellites
belonging to the constellation
Any test subset of satellites
belonging to the constellation

Prior Knowledge
All satellite
training subsets
Only the reference
training subsets

Multi-class

One vs Rest

with s the reference satellite. Moreover, we assume Sy to
be any test subset. Indeed, the algorithm adopted for this
categorization returns a similarity score, e.g., root mean
square, which is used to estimate the similarity of the test
subset S, against the reference training subset 7.

Tab. II summarizes our assumptions on the adopted cate-
gorization strategies. In the remainder of this paper, we refer
to intra-constellation satellite authentication as the problem
of identifying and authenticating a satellite by resorting to
a multiclass classification tool (Sec. V), while we refer to
satellite authentication in the wild when applying the one-
vs-rest classification model (Sec. VI).

V. INTRA-CONSTELLATION SATELLITE AUTHENTICATION
In this section, we focus on the intra-constellation satellite
authentication scenario. Specifically, Sec. V-A shows and
motivates the deployed CNN, Sec. V-B reports details on the
application of the described CNN to authenticate IRIDIUM
transmitters, while Sec. V-C investigates the CNN classifica-
tion performance on subsets of the satellite constellation.

A. Convolutional Neural Network Setup

In this paper, the multi-class classification task is supported
by a Deep Convolutional Neural Network (DCNN) based
on a Residual Network with 18 layers, i.e., ResNet-18. The
original ResNet-18 has its last fully connected layer com-
posed of 1,000 neurons (followed by a softmax), since it
was pre-trained on ImageNet, a 1,000-class dataset. Given
that we want to classify 66 satellites, we replaced the last
fully connected softmax layer with a fully connected layer
of 66 neurons. Then, we transferred the set of parame-
ters of the ResNet-18 convolutional layers to the layers of
our DCNN.

0.15 1400C

1200C
0.1

1000C
0.05 8000

6000

14000

Received Quadrature component - q'(t)

2000

0.1 - 0
0.1 0.05 0 0.05 0.1 0.15

Received In-Phase component - i'(t)

(b) Contour plot (magnified) associated with the histogram
of the I-Q samples.

Image representation of I-Q samples.

Note that ResNet-18 was trained using different images than
the ones created through our acquired I-Q samples. On the
one hand, we observe that we took the conservative stance of
combining common elements such as edges, blobs, patterns,
borders, etc. from standard images with new elements typical
of I-Q diagrams, with minimal intervention on the structure
of the CNN—this guaranteeing a trade-off between training
time and performance. On the other hand, training ResNet-18
from scratch might give better results. However, as highlighted
in [22], transfer learning is particularly advantageous in situ-
ations where the model related to the source task has been
trained on a training set bigger or approximately of the same
dimension of the one of the destination task. In such situations,
transfer learning helps mitigating overfitting, producing a more
reliable model. In Sec. VI-D we also report the performance
of other CNNs, justifying the selection of ResNet-18.

There are mainly two ways to perform transfer learning
in deep neural networks: (i) the fine-tuning approach; and,
(ii) the freezing layers approach [34]. The fine-tuning requires
to retrain (i.e., unfreeze) the whole network parameters, with
the classification errors coming from the new training set
back-propagating to the whole network. The freezing layer
approach, instead, leaves unchanged (i.e., frozen) most of
the transferred feature layers. Generally speaking, when the
dataset is small compared to the original one (i.e., the dataset
on which the network was pre-trained), the freezing layers
approach is suggested; otherwise, the fine-tuning approach is
the most suitable. However, Yosinki et al. in [34] showed
that the freezing layers approach may lead to a drop in
performance, while the co-adaptation of the features re-learned
with the fine-tuning approach prevents this effect. Since it has
been observed that the lower layers of a CNN are able to detect
features that are usually general for each image recognition
task (e.g., curves and edges), and that fine-tuning allows
preventing accuracy drops, here we rely on a combination of
the two approaches. Indeed, instead of retraining the network
from scratch (i.e., fine-tuning approach) or keeping the layers
frozen (i.e., freezing layers approach), we fine-tune the layers
of the network with a monotonically increasing learning rate:
the deeper the layer in the CNN, the higher the learning rate.
In this way, the parameters of the first layers can still detect
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Fig. 9. Overview of the proposed architecture. ResNet-18 pre-trained layers are transferred to our DCNN, with the replacement of the fully connected layer
(i.e., from 1, 000 neurons to 66), and the fine-tuning with monotonically increasing learning rate.
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Fig. 10. Validation accuracy as a function of the number of I-Q samples per
image (or number of images per satellite).

common features in images, and we opportunely tune the
parameters of the deeper layers in a way to guarantee high
accuracy. Fig. 9 summarizes the proposed architecture.

B. Satellite Authentication via CNN

In this section, we address the problem of authenticating a
satellite by classifying the received I-Q samples. As discussed
in Sec. III-D, I-Q samples are pre-processed and converted
to 224 x 224 grey-scale images. Grouping the [-Q samples
into images involves the following trade-off: on the one hand,
increasing the number of I-Q samples enriches the information
possibly conveyed by a single image; on the other hand, the
number of available images is reduced, this latter one being
the actual input for the classification algorithm (typically,
classification techniques performs better as the size of its
input increases). Fig. 10 shows the validation accuracy as
a function of the number of I-Q samples per image (or the
number of images per satellite). Each circle is the result
of a single training and validation process, while varying
the number of I-Q samples per image. We recall that, for
each satellite, 60% of the subset have been used for training

and 20% for validation. First, we notice that the validation
accuracy increases significantly only by increasing the overall
number of samples used to build the corresponding images.
Conversely, training the CNN with images constructed using
the number of samples contained in a single message leads
to very low validation accuracy. This is a finding which
leads us to conclude that the I-Q samples corresponding to
specific pieces of information in the packet, such as the
satellite identifier, are not affecting the validation accuracy
of PAST-AI (see the findings recently reported by the authors
in [35]). The number of I-Q samples per image is an important
parameter, to be evaluated in conjunction with Fig. 6. Indeed,
the number of I-Q samples per image should be matched
to a single satellite pass. We could consider waiting for
multiple satellites’ passes, but this approach would involve
long waiting times, i.e., at least 92 minutes for the satellite
to appear again (recall Fig. 5. Therefore, as a reference
parameter, we decided to consider 10,000 I-Q samples per
image (leading to 155 images per satellite), guaranteeing a
validation accuracy of about 0.83. Note that the probability to
experience at least 10,000 I-Q samples is about 0.7. Based
on the results in Fig. 10, we use 10,000 samples per image
and an overall number of 155 images. On the one hand,
we notice that it is always possible to acquire more I-Q
samples (IRA packets), and increase the number of available
images while not reducing the number of samples per image.
On the other hand, processing images composed by a higher
number of samples would require additional processing power
and computation time. Based on all the motivations discussed
above, we selected 155 and 10, 000 as the most reasonable
values for the number of images and the number of I-Q
samples per image, respectively.

Testing. We run 30 iterations of the training, validation,
and testing sequence by randomly choosing the images from
the dataset. We computed the mean of the resulting confusion
matrices from the testing procedure—results in Appendix. The
confusion matrix is sorted according to the values in the
diagonal, i.e., best performance (31) in the top left part of
the matrix, being 31 images (20% of total 155 images per
satellite) the size of the test set for each satellites’ image.
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Fig. 11. Hit and Miss rates (mean values) for 30 runs of the CNN classi-
fication algorithm. For each run, we consider the whole training, validation,
and testing procedures.

We define the hit rate as the ratio between the total number
of hits (true positive) and the test subset cardinality, yielding:
TP
TP+ FN
We also define miss rate the ratio between the total number of
misses (false negative) and the test subset cardinality, yielding:
FN
TP+ FN
Fig. 11 shows the hit and miss rates for each satellite, extracted
from previous results (see Appendix). Note that 24 satellites
(more than 36% of the constellation) experience a hit rate

higher than 0.9, while only 4 satellites have a hit rate less
than 0.5.

hit rate =

miss rate =

C. Authentication of Satellite Subsets

Driven by the results of Sec. V, we investigate the CNN
classification performance on subsets of the satellite constel-
lation. The intuition relies on removing satellites character-
ized by high miss rates, which are intrinsically difficult to
classify, thus constituting a source of mis-classification for
the remaining ones. Therefore, we systematically removed the
worst satellites (in terms of hit rate) from the dataset, and we
subsequently re-evaluated the performance of the classifier.

Fig. 12 shows the accuracy associated with the testing
procedure as a function of the number of excluded satellites
(the next satellite to be removed is the one with the poorest
hit rate among the ones left). The analysis confirms that
the image-based classification of I-Q samples is an effective
solution. Indeed, CNN classification guarantees a baseline
accuracy above 0.82, which can be made arbitrarily high by
removing a few satellites—for instance, removing the worst
9 satellites, the accuracy is higher than 0.9.

VI. SATELLITE AUTHENTICATION IN THE WILD

In this section, we tackle the challenge of authenticating
a satellite with minimal prior knowledge, i.e., only one of
its training subset. Our intuition is to train a model with a

Accuracy

. . . . . .
o 10 2 30 W 50 60
Number of excluded satellites - Worst before

Fig. 12. Testing accuracy as a function of the number of excluded satellites.
The removed satellites are the ones with worse performance in terms of hit
rate.

reference training subset, and to challenge it with a random
test subset. We define a metric, i.e., reproduction error, and we
estimate the deviation of a synthetically-generated subset from
the original one. The reproduction error implies a threshold,
under which all the samples are considered as belonging to
the satellite to be authenticated.

The most suitable algorithms for this strategy are autoen-
coders. Indeed, after the training phase, the autoencoders
are biased towards the training subset. Therefore, we expect
that a synthetically-generated test subset will be characterized
by a higher reproduction error, thus being discarded as not
belonging to the satellite to be authenticated. We selected
the reproduction error coincident with the mean square error
(m.s.e.). In the remainder of this section, we first discuss the
architecture of the deployed autoencoders (Sec. VI-A). Then,
we consider two scenarios: One-vs-Rest (Sec. VI-B) and One-
vs-One (Sec. VI-C). The former undertakes the challenge of
authenticating the I-Q samples from a reference satellite when
compared with I-Q samples coming from a set of sources (the
other satellites from the constellation). The latter refers to
the classification of I-Q samples coming from two different
sources, i.e., the satellite to be authenticated and another (ran-
dom) one from the constellation. We stress that our test subset
is constituted by I-Q samples belonging to the IRIDIUM
constellation, only. We consider this assumption the worst-case
scenario, i.e., the test subset has the same characteristics as the
training subset, in terms of technology, scenario, and noise
pattern. Moreover, our solution is agnostic to both the content
of the messages (bit-string) and the appearance order of the
I-Q samples, since we collect and classify the I-Q samples
independently of their mapping to the bit values.

A. Satellite Authentication via Autoencoders

We considered the MATLAB implementation of the Sparse
Autoencoder to perform the one-vs-rest and one-vs-one classi-
fication. A sparse autoencoder is an autoencoder whose train-
ing involves a penalty (also known as sparsity penalty). Several
previous works, such as [36], observed that classification tasks
may see their performance considerably improved when the
representations are learned in a way that encourages sparsity
(e.g., by adding a regularizer to the cost function).
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TABLE III
TRAINING OPTIONS OF OUR AUTOENCODER

Parameter Value
HiddenSize 1,024
MaxEpochs 100
EncoderTransferFunction logsig
DecoderTransferFunction logsig
L2WeightRegularization 0.001
SparsityRegularization 1
SparsityProportion 0.05
LossFunction msesparse
TrainingAlgorithm trainscg
ScaleData true
0.25 T T
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Fig. 13.  Distribution of the m.s.e. for training, validation, and testing
with autoencoders (One-vs-Rest scenario for satellite with ID 25). The inset
highlights the ROC curve and the optimal point.

B. One-vs-Rest

In this section, we consider the One-vs-Rest scenario: the
reference satellite (to be authenticated) versus the rest of the
constellation. Fig. 13 resumes the results of our methodology
for the case of the satellite with s = 25. We trained the
autoencoder with the training subset, constituted by the 80%
of the subset samples from satellite 25. Then, we used the
trained autoencoder to generate a training subset and we
estimated the m.s.e. between the two subsets, i.e., the original
one and the generated one. The circles in Fig. 13 identifies
the probability density function associated with the m.s.e.
computed over the original training subset and the generated
one. We performed the same procedure on the validation
subset (remaining 20% of the samples from satellite 25),
and we computed the probability density function associated
with the m.s.e. between the original validation subset and the
generated one, as depicted by the distribution identified by the
crosses in Fig. 13. It is worth noting that the two distributions
(the one associated with the training subset and one associated
with the validation subsets) are characterized by the same
m.s.e., in the range between 0.2 and 0.5.

We applied the same process to a test set, constructed by
considering all the satellites from the IRIDIUM constellation,
but the one with ID 25. We consider the previous one as
the worst-case scenario, since we considered the I-Q samples
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Fig. 14. Optimal operating points of the ROC curves for each satellite when
testing (with autoencoders) one satellite against the whole constellation dataset
(one-vs-rest).

originated from transceivers belonging to the same owner,
all of them deployed within a short time delay, and hence
very likely featuring the same hardware. Asterisks in Fig. 13
identifies the distribution associated with the m.s.e. computed
between the generated test and training subset. The test subset
is characterized by m.s.e. values in the range between 0.7 and
1.4, with only a few values less than 0.5. By defining a
threshold thr in the range between 0.2 and 1.5, and assuming
as legitimate the m.s.e. values less than thr, we can experience
different False Positive (FP) and False Negative (FN) events.
The trade-off between FP and FN can be evaluated by resorting
to the associated ROC curve, as shown in in the inset of
Fig. 13, where the True Positive Rate (TPR) is evaluated
as a function of the False Positive Rate (FPR), with TPR
and FPR being TPZ%, and %, respectively. In optimal
conditions, i.e., TPR = 1 and FPR = 0, the AUC should
be equal to 1; in our case, for the developed example related
to the satellite with ID 25, we report an AUC of about 0.98.
Finally, we considered the optimal point of the ROC curve,
i.e., the best cut-off with the highest TPR and the lowest FPR,
and we reported this value as the red circle in the inset of
Fig. 13, with coordinates [0.048, 1]. We applied the aforemen-
tioned procedure for all the satellites in the constellation, thus
evaluating the optimal operating point in the ROC curve for
each of the investigated satellites, as depicted in Fig. 14. The
66 dots identifying the optimal operating points of the ROC
curves (one per satellite) are very close to each other, and in
turn, very close to the optimal point TPR =1, FPR = 0.
Finally, Fig. 15 shows the sorted AUC values for all IRIDIUM
satellites. AUC values are characterized by very high values
(greater than 0.93).

C. One-vs-One

In this section, we consider the One-vs-One scenario: the
reference satellite (to be authenticated) versus each satellite
in the constellation. We followed the same methodology of
Sec. VI-B, by considering the generation of a training and
test subset and their comparison in terms of m.s.e. values.
Finally, we considered different thresholds, and we evaluated
the AUC for each satellite pair in the IRIDIUM constellation.
Indeed, for each considered reference satellite, we evaluated
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Fig. 15. AUC for each satellite in the constellation when performing One-
vs-Rest classification.
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Fig. 16.  Error-bars (quantile 5, 50, and 95) associated with the AUC for
each satellite in the constellation, when performing One-vs-One classification.

66 classifications and the related AUC. Fig. 16 shows the error-
bars (quantile 95, 50, and 5) associated with each considered
reference satellite. We adopted the same order as before,
i.e., satellites are sorted by performance (best on the left)
considering the median value. We observe that the quantile
95 and the median are coincident and equal to 1 for almost
all the satellites, while only a few satellites are characterized
by a quantile 5 below 0.99. This is due to a few satellite-
to-satellite classifications experiencing lower performance, but
still characterized by AUC values greater than 0.96.

Note that, in line with related works on ADS-B signals
fingerprinting, the satellite transmitters are already moving
while emitting signals. Thus, our results already take into
account the variability of the communication channel between
the transmitter and the receiver, and the models we built are
able to implicitly compensate such phenomena.

D. Discussion and Limitations

1) CNN Impact: Here, we discuss preliminary results about
the impact of the network type on the classification accuracy.
We considered three well-known CNNs: AlexNet, ResNet-18
(the one adopted in this paper), and Inception-v3. Table IV
reports their most important parameters. Figure 17 shows the

TABLE IV

COMPARISON OF ALEXNET, RESNET-18, AND INCEPTION-V3 IN TERMS
OF DEPTH, SIZE, NO. OF PARAMETERS, AND INPUT SIZE

Network Depth Size Parameters Ill;lalglf
etwo p [MB] | [Milions] Si‘; .
AlexNet 8 227 61 227x227
ResNet-18 18 44 11.7 224x224
Inception-v3 48 89 239 299x299

0.82
Inception-v3
0.81F o
0.8
3079t
e
= Resnet-18
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Fig. 17. Accuracy as a function of the duration of the training process for
AlexNet, ResNet-18, and Inception-v3.

classification accuracy we obtained on our dataset, as a func-
tion of the duration of the training when considering the three
CNNs. We observe that the network structure significantly
affects the performance, although other parameters should be
taken into account when selecting a specific network, such
as the time for the training process and the size of the
network, which might not fit the hardware requirements of
a real deployment. The choice of ResNet-18 emerges as a
trade-off between overhead (training time and network size)
and accuracy, although more work is required on this topic
in order to properly choose the network that perfectly fits the
requirements of a real deployment, maximizing the accuracy.
2) Rogue Packets Injection: Finally, we study the problem
of an adversary injecting less than 10, 000 I-Q samples, i.e.,
the number of [-Q samples constituting an image. Indeed,
10, 000 I-Q samples correspond to 20, 000 bits (2, 500 bytes).
The rationale behind the study in this section is that an
adversary might successfully inject less information than
2,500 bytes, while trying to pass the tests described in
previous sections. Therefore, hereafter we provide the analysis
about the behaviour of our solution under such assumption.
We consider the One-vs-One problem from Section VI-C,
taking into account the satellites 6 and 36 (the ones report-
ing the best performances from Fig. 16). We trained the
autoencoder with the images associated with the satellite 36,
and subsequently, we generate a test set by mixing the I-Q
samples coming from the same satellite (36) and another one,
i.e., the satellite 6. We consider a mixing factor spanning
from 0 (no I-Q samples coming from satellite 6) to 1 (all
the considered I-Q samples are coming from satellite 6).
Figure 18 shows the errorbars (quantile 0.01, 0.5, and 0.99)
associated with the m.s.e. as a function of the mixing factor,



286 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

. . . . . .
0 0.2 0.4 0.6 0.8 1
Mixing factor

Fig. 18. Mixing I-Q samples coming from different satellites: mse of the
reconstructed image versus the original one with a growing mixing factor,
considering the satellite 36 as the reference and mixing samples from the
satellite 6.

where the m.s.e. has been computed considering the images
from the original (mixed) test-set and the ones re-constructed
adopting the model trained on the images generated from the
satellite 36. The m.s.e. (quantile 0.99) is less than 1.4 when
the mixing factor is less than 0.5, i.e., the illegitimate I-Q
samples (the ones coming from satellite 6) are less than 5, 000.
Conversely,when the mixing factor is greater than 0.5, the
m.s.e. (quantile 0.01) is greater than 1.5 and our solution
detects that the image (and the associated I-Q samples) are
not coming from the purported satellite (36). We observed
similar results also for other couples of satellites, indepen-
dently from the performance of the single trained model. The
analysis shows that, in the satellite scenario, physical-layer
authentication is effective only when the adversary injects
a number of I-Q samples higher than a half of the ones
constituting the generated images—this value selected as a
function of the desired accuracy (see Fig. 11). Considering the
parameters of the IRIDIUM constellation, i.e., D-QPSK and
230 bits per packet (IRA messages), one image is constituted
by 20, 000 bits (2, 500 bytes) or 87 packets.

The above considerations highlight that performing physical-
layer authentication at packet level is not feasible, but multiple
packets (87) should be considered. The detection process
becomes not effective if the adversary injects a number of
packets equal or less than 44. This result is a limitation of the
physical-layer authentication process, specific of the satellite
scenario. Indeed, the combination of the low SNR of the
received signals and the reduced bit-rate of the communication
link force the system to work on multiple packets, making the
authentication of the single packet challenging.

3) Comparison: Some solutions in the literature consider
raw 1Q samples, i.e., they provide the 1Q samples directly
to the CNN, modified on purpose to accept IQ sequences
despite images. We compare our solution with [37], focusing
only on the best 5 satellites, i.e., the ones reporting the
best performance from the table in Appendix. To guarantee
a fair comparison, we considered the same batch size of
IQ samples assumed in this paper, training both the neural
network (AlexNet) in [37] and ours with sequences of 10,000
1Q samples. We report the results in Figure 19 (a) for [37] and

2 41.3% 58.7%.

275%

(a) (b)

Fig. 19. Classification of 5 satellites, with data batches of 230 IQ samples
(one satellite packet). We report the confusion matrix of (a) the approach
in [37], and (b) PAST-AL

Figure 19 (b) for PAST-AI. PAST-AI achieves a staggering
accuracy of 0.98, against 0.81 of the competing solution.

VII. RELATED WORK

Physical-layer authentication solutions based on the analysis
of raw I-Q samples have gained significant popularity in the
last years, and they have been adopted in several scenarios.

For instance, as for mobile cellular networks, the authors
in [38] proposed FBSLeuth, a framework able to identify
rogue 2G base stations through hardware impairments. To this
aim, they used the Support Vector Machines (SVM) algo-
rithm. In the same context, the authors in [39] relied on
Differential Constellation Trace Figure (DCTF)-based features
and CNNs to identify mobile phones. Similarly, the authors
in [40] first distinguished among Commercial Off-The-Shelf
(COTS) WiFi devices and SDRs emitting WiFi-compliant
signals. Using a CNN operating on raw [-Q samples, they
precisely identified the transmitter among 16 other SDRs. The
authors further extended their work in [11], showing how
the classification accuracy can reach over 99% by smartly
removing the noise effects of the wireless channel. The impact
of the wireless channel on wireless radio fingerprinting has
been specifically studied in [13]. They evaluated the accuracy
of CNN in several conditions, i.e., in an anechoic chamber,
in the wild, and using cable connections, analyzing both WiFi
and Automatic Dependent Surveillance - Broadcast (ADS-B)
signals (employed in the aviation domain). They revealed
that the wireless channel can severely affect the accuracy of
the radio fingerprinting, degrading the classification accuracy
up to the 85% in low-SNR regime. At the same time, they
showed that equalizing I-Q data can slightly enhance the
accuracy. By working on the same dataset, the authors in [41]
confirmed that partial equalization of the samples can improve
the accuracy. ADS-B signals were investigated also in [12].
Specifically, the authors compared three DNNs, with different
number of hidden layers and nodes, and they showed that
the performance slightly decreases when aircraft increases.
Recently, the authors in [10] demonstrated that stacked autoen-
coders can be used to enhance I-Q fingerprinting, especially in
low-SNR scenarios. They used 27 CC2530 micro-controllers,
and they were able to distinguish each of them with accuracy
over 90 % starting from 5 dB SNR. Autoencoders were
successfully used also by the authors in [42] for WiFi devices
fingerprinting and by the authors in [43], for anomaly detection
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Fig. 20. Confusion matrix of the classification accuracy of the deployed autoencoder in the 1-vs-rest scenario.

of unknown transmitters. However, at the time of this writing, considered. Indeed, being satellites located at a significant alti-
their application to satellites has not been explored. tude, the signals are typically characterized by a low SNR, thus

Despite the large amount of research on I-Q fingerprint- making the fingerprinting task challenging. At the time of this
ing [10], [44], [45], [46], the satellite scenario has not yet been  writing, the only contribution working on the fingerprinting
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of satellites is [47]. The authors identify Global Positioning
System (GPS) spoofing attacks by analyzing the received
I-Q samples, using a statistical approach based on scores
computed over characterizing Multi-Variate Normal (MVN)
distributions. However, they extracted the I-Q samples after
the I-Q demodulation at the Radio-Frequency (RF) front-end.
Therefore, their solution does not act on raw I-Q samples and
applies only to US GPS satellites. Finally, the authors focused
on the detection of GPS spoofing attacks, and they distinguish
SDRs from legitimate satellites, not the specific transmitting
satellite. Conversely, in this paper, we identify the specific
transmitting satellite, considering raw 1-Q samples, before
any demodulation operation. As a result, our methodology
applies to a wider set of scenarios than spoofing attacks, and
it is potentially applicable to all LEO satellites constellations
adopting Phase Shift Keying (PSK) modulation techniques.

VIII. CONCLUSION

We presented PAST-AI, a methodology for physical-layer
authentication of satellite transmitters that leverages the power
of deep learning classifiers, such as CNNs and autoencoders,
applied to the generated I-Q samples. To the best of our
knowledge, we are the first to investigate the effectiveness and
limitations of radio fingerprinting for the satellite domain—
in particular, for LEO constellations—characterized by high
attenuation, multi-path fading, strong Doppler effect, and short
link duration. We investigated the challenges associated with
two scenarios: (i) intra-satellite classification; and, (ii) satellite
classification in the wild. We validated our methodology
on a dataset generated from a real measurement campaign,
involving more than 100M I-Q samples collected from the
IRIDIUM constellation. We achieved an accuracy between
0.8 and 1, depending on the scenario. We also demonstrated
experimentally the impact of multiple network classifiers,
as well as the impact of both the high number of required I-Q
samples per image and the limited bandwidth of satellite links
on packet-level authentication capabilities. We believe that the
novelty of the introduced scenarios, the detailed methodology,
and our results will pave the way for future research.
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