
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023 667

SCEMA: An SDN-Oriented Cost-Effective
Edge-Based MTD Approach

Amir Javadpour , Forough Ja’fari, Tarik Taleb , Senior Member, IEEE,

Mohammad Shojafar , Senior Member, IEEE, and Bin Yang

Abstract— Protecting large-scale networks, especially
Software-Defined Networks (SDNs), against distributed
attacks in a cost-effective manner plays a prominent role in
cybersecurity. One of the pervasive approaches to plug security
holes and prevent vulnerabilities from being exploited is Moving
Target Defense (MTD), which can be efficiently implemented
in SDN as it needs comprehensive and proactive network
monitoring. The critical key in MTD is to shuffle the least
number of hosts with an acceptable security impact and keep
the shuffling frequency low. In this paper, we have proposed
an SDN-oriented Cost-effective Edge-based MTD Approach
(SCEMA) to mitigate Distributed Denial of Service (DDoS)
attacks at a lower cost by shuffling an optimized set of hosts that
have the highest number of connections to the critical servers.
These connections are named edges from a graph-theoretical
point of view. We have proposed a three-layer mathematical
model for the network that can easily calculate the attack
cost. We have also designed a system based on SCEMA and
simulated it in Mininet. The results show that SCEMA has
lower complexity than the previous related MTD field with
acceptable performance.

Index Terms— Software-defined networking (SDN), moving
target defense (MTD), distributed denial of service (DDoS), cost-
effective, edge-based shuffling, low complexity.

I. INTRODUCTION

SOFTWARE Defined Networks (SDNs) are an evolving
trend in computer network technology that effectively

Manuscript received 10 April 2022; revised 4 September 2022 and
18 October 2022; accepted 21 October 2022. Date of publication 9 November
2022; date of current version 19 December 2022. This work was supported
in part by the European Union’s Horizon 2020 Research and Innovation
Program through the Inspire5GPlus Project under Agreement 871808, in part
by the Academy of Finland 6Genesis Project under Grant 318927, and in part
by the Academy of Finland IDEA-MILL Project under Grant 352428. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. George Theodorakopoulos. (Corresponding authors:
Amir Javadpour; Bin Yang.)

Amir Javadpour is with the Faculty of Information Technology and
Electrical Engineering, University of Oulu, 90570 Oulu, Finland (e-mail:
a.javadpour87@gmail.com).

Forough Ja’fari is with the Department of Computer Engineering,
Sharif University of Technology, Tehran 11155-8639, Iran (e-mail:
azadeh.mth@gmail.com).

Tarik Taleb is with the Faculty of Information Technology and Electrical
Engineering, Oulu University, 90570 Oulu, Finland, and also with the
Department of Computer and Information Security, Sejong University, Seoul
05006, South Korea (e-mail: talebtarik@gmail.com).

Mohammad Shojafar is with the 5GIC & 6GIC, Institute for Communication
Systems (ICS), University of Surrey, GU27XH Guildford, U.K. (e-mail:
m.shojafar@surrey.ac.uk).

Bin Yang is with the School of Computer and Information Engineering,
Chuzhou University, Chuzhou, Anhui 239000, China, and the MOSA!C
Laboratory, 02150 Espoo, Finland (e-mail: yangbinchi@gmail.com).

Digital Object Identifier 10.1109/TIFS.2022.3220939

improves many network services such as management
and monitoring, virtualization, distribution and integration.
In SDNs, controlling the network traffic is assigned to
a logically centralized component called a controller. The
controller can create appropriate policies and set related
rules on the switches to forward network traffic [1], [2].
However, SDNs are facing different security challenges,
among which are Distributed Denial of Service (DDoS)
attacks. DDoS attacks are sophisticated and deleterious
cyber threats categorized as powerful large-scale distributed
attacks [3]. They are becoming bigger and more common
for extortion and malicious activities. AWS [4] reported that
a DDoS attack was observed in 2020, which was 44%
larger than the previously detected ones. Akamai [5] also
reported that more than 3000 distinct DDoS attacks were
observed only in the gaming industry in a year. These
threat reports emphasize an essential need to perform security
countermeasures against DDoS attacks.

Moving Target Defense (MTD) is one of the strategies
to protect valuable assets from being compromised by
DDoS. MTD intends to confuse the adversary by changing
the attack space (e.g. by shuffling network addresses) and
aims to invalidate the information gathered during network
reconnaissance [6]. The advantages of MTD compared
to other security mechanisms are (1) their scalability,
(2) almost removing the need for threat detection, and
(3) frustrating the adversary. Developing a network that
can change its configuration and implement MTD methods
is challenging. However, as SDN provides a dynamic
manageable framework, it is a deserving environment for
implementing dynamic security mechanisms [7] such as MTD
approaches.

There is a trade-off between implementing a defensive
approach and its cost. In some cases, the cost of improving
security is too high, which dissuades the network admin from
implementing security strategies. An ideal MTD approach
keeps the number of reconfigurations and the algorithm
complexity low while bringing an acceptable security level [8].
To the best of our knowledge, the execution time of all the
previous MTD approaches grows as the network gets larger.
This shortcoming was a motivation for us to work on simpler
algorithms that can reduce both the number of reconfigurations
and the complexity.

We proposed an MTD shuffling algorithm that finds the
lowest-cost hosts to compromise and then shuffles them. The
feature that helps us find low-cost hosts is the number of
connections between the host and the critical servers. Since

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4932-1660
https://orcid.org/0000-0003-1119-1239
https://orcid.org/0000-0003-3284-5086
https://orcid.org/0000-0001-6509-4173

668 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

the connections are modeled with edges in a graph, we call the
connections between the hosts and the servers edges. Shuffling
these important hosts takes lower cost and brings a higher
effect. Our proposed method is an SDN-oriented Cost-effective
Edge-based MTD Approach, and we call it SCEMA. We have
also designed a system that implements SCEMA. The main
contributions of this paper are as follows.

1) Introducing a revised model for the networks under
DDoS attacks. This model has three layers and uses
Petri nets better to show the different states of the
critical servers. It also contains mathematical relations
for computing the attack’s cost. In this model, we can
effectively defend against the attacks considering the
lowest attack cost.

2) Proposing a low-complexity shuffling method, SCEMA,
considers the number of connections between the hosts
and the servers (i.e., edges) as the main feature of
importance. By shuffling the hosts with the highest
number of edges, we can reduce the shuffling frequency
while keeping the security level high.

3) Theoretically proving that SCEMA can achieve a higher
or equal level of security compared with related MTD
methods in specific networks.

4) Proposing a system that implements SCEMA and
simulating it using Mininet. Two types of scanning
methods, sequential and uniform random, are considered
in the simulations. We also present the experimental
results that show the effectiveness of SCEMA.

5) Presenting related metrics for measuring design goal
achievement and comparing SCEMA with the related
MTD approaches. The algorithm complexity is the
metric for measuring MTD cost, and the adversary’s
success rate and the rate of the compromised server are
the metrics for measuring security level.

The remainder of this paper is as follows. section II reviews
the previous works in the field of deploying MTD methods
in SDN. In section III the threat model, the adversary’s
behavior, and the goal of an MTD approach to preventing it are
presented. section IV is concerned with the network model and
its mathematical representation. section V explains the details
of the proposed method and section VI proposes a system
architecture that indicates how to implement our proposed
method in an SDN environment. section VII represents the
numerical results of simulating the proposed system. And,
finally, section VIII gives the conclusion.

II. RELATED WORK

In this section, we briefly describe the previous works about
using MTD methods in SDN to mitigate cybersecurity attacks.
The summary of these works is shown in Table I.

Rawski et al. [9] provided a platform for implementing
MTD methods in SDNs. Topology mutation is the MTD
technique used in this paper. Steinberger et al. [10]
also implemented MTD methods in a collaborative SDN
environment that reduces the success rate of a DDoS attack.
Luo et al. [11] proposed a combined method of MTD and
honeypot to improve network security against DDoS attack.
Dynamic virtual IP addresses are assigned to the devices.

Macwan and Lung [12] also used virtual IP addresses to hide
the real ones through an MTD approach.

Aydeger et al. [13] introduced an optimal MTD strategy to
mitigate DDoS attacks. The MTD strategy is modeled as a
signaling game. Zhou et al. [14] also proposed a signaling
game for defending DDoS attacks in a cost-effective way.
Game theory is also used by Zhou et al. [15] and the MTD
approach is modeled as a trilateral game. To solve the trade-
off problem between MTD cost and its effectiveness, Markov
decision processes are employed for adopting the optimal
MTD algorithm, which is called TGCESA (Trilateral Game
Cost-Effective Shuffling Algorithm).

Narantuya et al. [16] used multiple controllers to improve
both the security and the performance of an MTD approach.
Each host has several random virtual IP addresses which
are altered over time. Karim et al. [17] proposed a random
route mutation method to distribute a flow between different
paths and make it complicated to find which hosts are in
a specific path. Liu et al. [18] proposed a hopping strategy
in which the switches change the ports of the packets to
confuse the adversary. Chowdhary et al. [19] also employed
a port hopping MTD strategy to mitigate multi-stage attacks.
The ports of the virtual machines with the highest level of
vulnerabilities are changed. Shi et al. [20] proposed a flexible
MTD method in which the obfuscation level is variable. Some
decoy servers are placed in the network to delay the attacks,
and they are all obfuscated using mutation. Debroy et al. [21]
proposed a frequency minimization MTD approach to
defense cloud-based applications in SDN against DDoS
attacks.

Hyder and Ismail [22] used port and IP shuffling to
improve the security of SDN. Medina-López et al. [23]
used MTD approaches, by which when the messages are
exchanged between hosts, their IP address is changed. So,
the intermediary hosts are unaware of the real address.
Chang et al. [24] proposed a cost-effective MTD method in
SDN which randomizes the IP addresses and synchronizes
different MTD phases. Chowdhary et al. [25] used an SDN
controller to mitigate cloud network attacks through network
reconfiguration. The attack graph of network vulnerabilities
plays the main role in analyzing the network security level.

A three-tier model called TAG is proposed by Yoon
et al. [26], which is used to reduce MTD cost in SDN
by finding an optimal set of hosts for shuffling. A greedy
Backward Attack Path (BAP) prediction algorithm is proposed
in this work to find optimal hosts to shuffle. In BAP, k
most vulnerable attack paths from the adversary to the critical
servers are selected, and the hosts in these paths are shuffled.
The vulnerability of each path is calculated using attack
graphs.

Only a few works have considered both MTD cost and
DDoS attacks. These works have some limitations, such
as being appropriate for only cloud networks with virtual
machines and high complexity in game theory and hash-based
approaches that may cause delay and processing overhead on
the controller. So, we decided to improve one of the mentioned
cost-effective works that do not consider DDoS attacks but is
capable of being extended and improved. The algorithm and
network model proposed by Yoon et al. [26] (BAP and TAG)

JAVADPOUR et al.: SCEMA: AN SDN-ORIENTED COST-EFFECTIVE EDGE-BASED MTD APPROACH 669

TABLE I

THE SUMMARY OF RELATED WORK

can potentially be improved for mitigating DDoS attacks with
an optimal MTD approach.

III. THREAT MODEL

In a general computer network, there are multiple hosts and
critical servers, and the hosts communicate with the servers
to use their services. We have considered that the adversary’s
target is running a DDoS attack on all the critical servers,
which are more than one. Our defined threat model assumes
that the adversary is an active internal or external intruder,
who can probe the hosts and compromise them in order to
create an army that launches a DDoS attack against all the
critical servers under his/her command.

As it is shown in Figure 5, an insider adversary is located
on one of the hosts and connects to the other hosts through
the internal connections in the network. This happens when a
malicious user is illegally authorized as one of the network
members and has complete access to one of the hosts.
An external adversary connects to the hosts from outside of the
network. This type of adversary can only communicate with
the hosts that are permitted to connect to external nodes or the
Internet. However, in our threat model, we have considered
that all the hosts have Internet access.

The adversary first scans the network to probe the
vulnerable hosts and then utilizes various intrusion tools to
exploit their vulnerabilities and obtain special privileges to
send traffic. When the adversary gains the related privilege in
a host, that host becomes compromised and follows his/her
commands. After the scanning/probing phase, the adversary’s
army is created, and he/she can send them an attack command
as well as the address of the critical servers that must be
targeted.

Before compromising the targets, the adversary scans the
network to recognize network topology and to find vulnerable
hosts. This is the reconnaissance phase and can be performed
in two main methods [7]. Sequential Scanning and Uniform
Random Scanning are different methods commonly used by
the adversary to scan the network. In the sequential scanning
method, the adversary probes the hosts sequentially in a linear

way. All the addresses in the address space are probed one
after the other. But in the random scanning method, the hosts
are randomly probed. Random addresses within the address
space are selected and probed. In the defined threat model,
the adversary can perform both sequential and uniform random
scanning techniques.

It is worth noting that all the hosts are not directly connected
to all the servers in a network. Each server has a specific access
list that controls who can communicate with them. On the
other hand, the vulnerability levels of the hosts are not the
same, and some of them are hard to be compromised. As a
result, the adversary attempts to compromise an optimal set
of hosts, compromising which is not resource consuming, and
moreover, they are in the access list of the target servers. For an
MTD approach deployed to prevent this threat, the question is
“shuffling which hosts, based on their different features, causes
the greatest impact on decreasing the number of critical servers
that have become unavailable”.

IV. NETWORK MODEL

We have modified TAG model to design a new network
model which is more suitable for the networks under DDoS
attacks. Our model consists of three layers. The first layer is an
undirected graph that shows the connections between different
nodes of the network. The second layer is a weighted Directed
Acyclic Graph (DAG) which shows the vulnerabilities of the
hosts and their exploiting cost. This layer is the combination of
the second and third tiers of TAG. The key difference between
our model and TAG is in the third layer. The third layer of our
model consists of Petri nets for each critical server. Petri net is
a principal modeling concept for studying distributed events.
It is a directed bipartite graph with two types called places
and transitions. All the edges in Petri nets are directed from
places to transitions and vice versa. Each place contains zero
or more tokens and different system states can be explained as
different distributions of tokens among the places. A transition
in a Petri net can be fired only if its input places contain a
specific number of tokens. By firing a transition, the specified
tokens are removed from input places and added to output

670 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

places. Using Petri nets helps us modeling different states of
the critical servers facing DDoS attacks, including safe and
dangerous conditions.

According to our model, a network can be modeled as N =
({C}, {V,H}, {S}), where C represents the first layer as an
adjacency matrix of the network, V and H construct the second
layer and indicate the adjacency matrix of vulnerabilities and
the set of typical hosts, respectively, and S is the set of critical
servers as the third layer. We assume that we have H typical
hosts and S critical servers. So, H = {h1, h2, . . . , h H } and
S = {s1, s2, . . . , sS}. hi indicates the i th host and si indicates
the i th critical server in the network.

A. First Layer

C is a symmetric square matrix of size (H + S + 1) and
the element in its i th row and j th column is indicated by
ci, j . In general, ci, j is one when ci and c j are connected
and otherwise it is zero. The explanation of ci is shown in
Equation 1

ci =

⎧⎪⎨
⎪⎩

The adversary if i = 1

hi−1 if 1 < i ≤ H + 1

si−H−1 otherwise

(1)

For example, if c1,2 is 1, it means that the adversary is directly
connected to the first host in the network. It is worth noting
that based on our defined threat model (section III), the value
of c1,i for 1 < i ≤ H + 1 is always 1, meaning that the
adversary can establish a connection with all of the hosts.

B. Second Layer

We assume that there are V vulnerabilities in the
network. Some of them are called remote, and they can be
exploited directly by the adversary. Some others are the local
vulnerabilities, and they can perform DDoS attack to the
critical servers when exploited. The other vulnerabilities are
intermediary, and they are exploited by remote vulnerabilities
to exploit the local ones. All types of vulnerabilities are
modeled as a weighted DAG and the edge weights are the cost
of successfully exploiting them. If the probability of exploiting
a vulnerability is p, we assumed that its exploiting cost is
1− p. The exploiting cost is fixed for each vulnerability, and
can be calculated by Common Vulnerability Scoring System
(CVSS) [27].

The logical structure of V is similar to C. It is a square
matrix of size (V + 2), and the element in its i th row and j th

column is named vi, j . The value of vi, j is defined in different
cases as follows:
• In the case that i = 1 and 1 < j ≤ V + 1, vi, j

is the probability that the adversary can exploit the
(j − 1)th vulnerability (v j−1) directly without exploiting
other vulnerabilities. Hence, if it is zero, it means that the
adversary has to first exploit other vulnerabilities. As an
example, if v1,2 is 0.5, the adversary can directly exploit
v1 without exploiting any other vulnerabilities with a
probability of 0.5.

• In the case that 1 < i ≤ V + 1 and 1 < j ≤ V +
1, vi, j is the probability of successfully exploiting the

(j − 1)th vulnerability (v j−1) provided that the (i − 1)th

vulnerability (vi−1) is currently exploited.
• In the case that 1 < i ≤ V + 1 and j = V + 2, vi, j is

the probability of successfully launching a DDoS attack
against the critical servers, provided that the (i − 1)th

vulnerability (vi−1) is currently exploited. For example,
if v2,V+2 is zero, the adversary cannot launch a DDoS
attack only by exploiting v1.

• In other cases, the value of vi, j is zero, because it
indicates an impossible event. For example, the value of
v1,V+2 is 0, because the adversary is unable to directly
launch a DDoS attack without exploiting any of the
vulnerabilities.

V is not a symmetric matrix, and therefore, the values of vi, j
and v j,i are not always equal. We have certainly assumed that
if a vulnerability can perform a DDoS attack to a specific
server, it can also attack the other servers.

Each host, hi , can be shown as hi = {v i
1, v

i
2, . . . , v

i
Vi
},

where v i
j is the index of the j th vulnerability that exists in

hi , and 1 ≤ v i
j ≤ V . For example, if h1 = {1, 3}, the first

host in the network suffers from v1 and v3 as the security
vulnerabilities.

C. Third Layer

The servers are modeled as Petri nets. Each server has
three states. Safe, Warning, and Dangerous. When less than
μ neighbor hosts of a server are compromised, the server is
in a Safe state. If more than μ hosts and less than μ + ρ
neighbor hosts are compromised, the server is in a Warning
state. If more than μ + ρ neighbor hosts are compromised,
the server is in a Dangerous state. According to these states,
we have assumed that μ < ρ. These states are equivalent
as three places in a Petri net. So, each server, si , can be
shown as si = (P,T ,Mi) where P = {P, P ′, P ′′} is the
set of three places of the Petri net, T = {T, T ′, T ′′} is the
set of three transitions, and Mi is the initial marking of si .
P , P ′, and P ′′ are the places in which, the server is in Safe
state, Warning state, and Dangerous state, respectively. T is
the transition from P to P ′ and fires when μ neighbor hosts
are compromised. The transition from P ′ to P is T ′ and it fires
when the compromised hosts are recovered by performing a
shuffling procedure. T ′′ is the transition from P and P ′ to P ′′
and fires when μ + ρ neighbor hosts are compromised and
can cause a DDoS attack.

For each server i , the initial marking Mi indicates the
number of tokens in each place at the initial state. As all the
hosts are initially uncompromised, all of them are in P . So,
we have Mi = (ni , 0, 0), where ni is the number of hosts
which are directly connected to si and are considered as its
neighbors. ni can be calculated as ni =∑H+1

j=2 ci+H+1, j .
Each Petri net has an incidence matrix, D. Its rows are

associated with the transitions and its columns are associated
with the places of the Petri net. The element in the i th row and
the j th column shows the number of tokens that are added to
the j th place after the i th transition firing. As the value of μ
and ρ are considered to be the same for all the servers, D is

JAVADPOUR et al.: SCEMA: AN SDN-ORIENTED COST-EFFECTIVE EDGE-BASED MTD APPROACH 671

Fig. 1. A sample server shown as the proposed Petri net model. (a) In safe mode. (b) In warning mode. (c) In dangerous mode.

similar for the servers and is shown in Equation 2.

D =
⎡
⎣−μ +1 0
+μ −1 0
−ρ −1 1

⎤
⎦ (2)

A sample server modeled with a Petri net is shown in
Figure 1. Three different states for this server are illustrated,
and the value of μ and ρ are 5 and 2, respectively.

D. Cost Calculations

In a DDoS attack, the adversary selects one or more targets
in the network and commands his army to perform the attack
against them. The cost of performing a DDoS attack, which
we call Attack Cost (AC), includes managing the attack and
compromising the army. The cost of compromising the army
is the cost of exploiting related vulnerabilities of the hosts.
Compromising Cost (CC) is a metric that can guide the
defensive method to find the most desirable targets for the
adversary’s army. We also call the cost of exploiting the
vulnerabilities of a host an Exploiting Cost (EC).

Using an MTD strategy is costly, and the cost of shuffle-
based approaches includes Implementation Cost (IC) and
Shuffling Cost (SC). IC consists of the complexity of executing
the defensive strategies. For example, implementing an MTD
mechanism in SDN brings IC for the controller and the extra
time consumption for the SDN controller is considered as IC.
SC is the cost relating to the reconfiguration of the hosts,
and it has a direct relation to the number of shuffled hosts.
Shuffling the network leads to several configuration changes,
and these changes are considered as a cost. While IC and
EC are important for evaluating an MTD approach, there is
not general rule to theoretically calculate IC and EC. They
are commonly measured based on the simulation results or
real testbed reports. We have also calculated the complexity
order of the proposed method in section VI-C. In this section,
we focus on theoretically calculating EC, CC, and AC.

We define the EC value of a vulnerability, as the minimum
cost that the adversary must pay to exploit that. The costs
which are presented in V are not always the exact EC
of a vulnerability. Some vulnerabilities have prerequisites
vulnerabilities. So, the adversary must first pay the cost for
the prerequisites ones and then exploit that vulnerability.
The set of prerequisites vulnerabilities indices for the j th

vulnerability in the i th host (vv i
j
) is shown as pr(i, j). For

example, if pr(1, 1) = {v1
2, v1

3}, the adversary must exploit
one of v2 or v3 to exploit v1 in the first host. v i

k is in

pr(i, j) if and only if vv i
k+1,v i

j+1 �= 0. There may be several
ways to exploit a vulnerability, but the adversary tries to use
the way with the lowest EC. We define coEC(i, j) as the
lowest EC of the j th vulnerability of the i th host (v i

j) to
be exploited, and it can be calculated by Equation 3, where
α(i, j) = min(

⋃
v i

k∈pr(i, j){coEC(i, k)+ (1− vv i
k+1,v i

j+1)} and

β(i, j) = min({1− v1,v i
j+1, α(i, j)}).

coEC(i, j) =

⎧⎪⎪⎨
⎪⎪⎩
∞, if v1,v i

j+1 = 0 and pr(i, j) = φ

α(i, j), if v1,v i
j+1 = 0 and pr(i, j) �= φ

β(i, j) otherwise
(3)

Now the CC of a host can easily be calculated as the
minimum cost of the local vulnerabilities of that host.
We name the set of local vulnerability indices of hi as lo(hi).
For example, if lo(h1) = {2, 3}, the local vulnerabilities of
the first host are v2 and v3. v i

j is in lo(hi) if and only
if vv i

j+1,V+2 is not zero. The cost of compromising hi ,

coCC(hi), can be calculated as Equation 4, where γ (i) =
min(

⋃
v i

j∈lo(hi)
{coEC(i, j)+ (1− vv i

j+1,V+2)}.

coCC(hi) =
{
∞ if lo(hi) = φ

γ (i) otherwise
(4)

Now we can calculate the cost of firing T ′′ to find out the
attack cost (AC). The AC value of a DDoS attack to si is equal
to the cost of firing T ′′ in our model. A transition cost can be
calculated as the sum of the total cost of its previous transitions
and the total cost of its input tokens. T ′′ can be fired only if
T is fired. The cost of T is equal to its input tokens which is
compromising μ hosts connected to a single server. In addition
to firing T , T ′′ needs another ρ host to be compromised. So,
if the adversary selects a set of μ + ρ hosts, Ai , which are
connected to si , the cost of his attack that is firing T ′′ is
shown by coAC(Ai). The adversary’s goal is attacking to all
the servers, and the final attack cost is coAC (A). We have
coAC(Ai) =∑

a∈Ai
coCC(a), and coAC (A) can be calculated

as Equation 5.

coAC (A) = coAC (

S⋃
i=1

Ai) (5)

V. PROPOSED METHOD (SCEMA)

The main problem which we aim to propose a solution for is
how to optimally shuffle the hosts to reduce SC while keeping

672 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

the security level high. In this section, we present the main
idea of this research and a numerical example of that. We also
explain the proof of its superiority over the previous works.

A. SCEMA Approach

In distributed attacks, such as DDoS, the adversary creates
an army of compromised hosts and then sends a command to
that army to make all of them perform an attack on a specific
target within a specific time interval. Since the adversary tries
to perform the attack with the possible lowest AC, he/she
searches for the minimal set of hosts which can join his army
and which is enough to run the attack. We name the set of
selected hosts by the adversary as A. We should find out a
metric that can lead to the lowest cost A. Other MTD solutions,
such as BAP [26], believe that this metric is the CC value of
the host. It is assumed in BAP that the adversary wishes to fill
A with the hosts that have the lowest cost of compromising.
Hence, they shuffled the hosts with the lowest CC to bring
security to the network. The process of finding these hosts
is time-consuming and can be more complex in larger
networks.

We introduce another metric that can be measured in lower
complexity and get acceptable or even better results in many
cases. The adversary’s willingness to find the minimal army
and the behavior of distributed attacks motivate us to design
a low-complexity MTD method that shuffles only the hosts
which have a higher number of connections to the critical
servers. In other words, we believe that the metric which can
attract the adversary’s attention in many cases is the number of
neighbor servers (edges) for each host. In distributed attacks,
the group of hosts are more important than the individual ones.
Therefore, we should concentrate on the connections between
the hosts and the critical servers (i.e., the edges) instead of
the CC value of each host. The hosts which are connected
to more critical servers are the best targets for the adversary’s
army. Compromising a host which is connected to three critical
servers is much easier than compromising three hosts which
are connected to only one server.

Figure 2 shows an example that compares SCEMA and
BAP. The cost of compromising each host and performing
DDoS attack on each critical server is shown in the nodes.
In BAP, the CC value of each host is important, but in
SCEMA the number of connections is important. This example
illustrates that performing a DDoS attack on all the servers
using our defensive method is impossible. However, using
BAP can cause an attack.

We define a shuffling degree for each host. This degree is
related to the number of servers that are directly connected to
that host. The number of neighbor servers for hi (i.e., its edges)
is shown as ne(hi), and we have ne(hi) = ∑H+S+1

j=2+H ci+1, j .
The shuffling degree of hi (di) is calculated as Equation 6.
We can say that di is the normalized value of ne(hi).

di = ne(hi)∑H
j=1 ne(h j)

(6)

B. Proof

In this section, we present a theoretical proof of a theorem
that says SCEMA achieves a higher or equal security level

Fig. 2. Comparing the effectiveness of SCEMA and BAP in a sample
network. (a) BAP solution: shuffling the hosts regarding their compromising
cost (CC). (b) SCEMA solution: shuffling the hosts regarding the number of
their connections to the servers.

Fig. 3. The general schema of bipartite networks.

compared with BAP. For simplicity in this section, we change
the name of AB AP and ASC E M A into A1 and A2, respectively,
and also use co() instead of coAC .

In homogeneous networks, the hosts are similar and
their vulnerabilities are nearly identical. Most of the time,
some hosts are more critical, and the network adminis-
trator performs security mechanisms to protect them and
improve their safety. As a result, these hosts are more
connected to the servers and can be used for serious
tasks. On the other hand, the remained hosts are more
vulnerable and treated as public hosts. We define these
types of networks in Definition 1 and call them bipartite
networks.

Definition 1: A network, N , is bipartite if all its hosts, H,
can be partitioned into two sets, x and X, where all the
following conditions are satisfied

1) H = x ∪ X
2) x ∩ X = φ
3) ∃m > 0 : ∀i ∈ x : coCC(hi) = m
4) ∃M > 0 : ∀i ∈ X : coCC(hi) = M
5) 0 < m < M
6) ∃d > 0 : ∀i ∈ x : 1 ≤ ne(hi) ≤ d
7) ∃D > 0 : ∀i ∈ X : D ≤ ne(hi) ≤ S
8) 0 < d < D ≤ S
According to Definition 1, we can write x as

⋃d
i=1 xi , where

xi is the set of hosts, such as h, that ne(h) = i . We can also
write X as

⋃S
i=D X S , where Xi is the set of hosts, such as h,

that ne(h) = i . The general schema of bipartite networks is
shown in Figure 3.

JAVADPOUR et al.: SCEMA: AN SDN-ORIENTED COST-EFFECTIVE EDGE-BASED MTD APPROACH 673

The adversary tries to find the optimal set of host,
Aadversary, that has the lowest attack cost and also has μ+ ρ
connections to each server. BAP and SCEMA algorithms try to
find Aadversary by their own mechanisms. The sets which are
selected by BAP and SCEMA can be defined as Definition 2
and Definition 3, respectively.

Definition 2: A set, A1, is BAP selected, if all of the
following conditions are satisfied.

1) A1 ⊆ x ∪ X
2) �i < d : xi ∩ A1 �= φ ∧ xi+1 � A1
3) �i < S : Xi ∩ A1 �= φ ∧ Xi+1 � A1
4) �i ≤ S : Xi ∩ A1 �= φ ∧ x � A1
Definition 3: A set, A2, has SCEMA selected if all of the

following conditions are satisfied.
1) A2 ⊆ x ∪ X
2) �i < S : Xi ∩ A2 �= φ ∧ Xi+1 � A2
3) �i < d : xi ∩ A2 �= φ ∧ xi+1 � A2
4) �i ≤ d : xi ∩ A2 �= φ ∧ X � A2
We have considered two assumptions mentioned in

Assumption 1 and Assumption 2.
Assumption 1: We assume that m

M ≥ d
D , or in other words,

m D ≥ Md.
Assumption 2: We assume that the sum of ne() for all the

hosts in A1 and A2 are exactly S(μ + ρ). In other words,
we assume that ne(A1) = ne(A2).

The number of connections to each server from hosts in
Aadversary is greater than or equal to μ+ρ. By Assumption 2,
we have assumed that all the servers are connected to exactly
μ + ρ hosts in both A1 and A2. There are S servers in the
network. So, the value of ne(A1) and ne(A2) is S(μ+ ρ).

Both BAP and SCEMA claim that their selected sets are the
optimal set which is selected by the adversary (Aadversary).
The number of connections to the servers for A1 and A2 is
satisfied as mentioned in Assumption 2. But the attack cost
is not checked yet. In Theorem 1 we define a theorem that
says in bipartite networks, SCEMA is more precise in finding
Aadversary than BAP.

Theorem 1: In all bipartite networks under Assumption 1
and Assumption 2, the attack cost of each possible BAP
selected set is greater than or equal to each possible SCEMA
selected set. In other words, co(A1) ≥ co(A2).

To prove Theorem 1, first we define a lemma (Lemma 1)
and prove it.

Lemma 1: If p ≤ q ≤ r and p′ ≤ q ′ ≤ r ′ then
m
r

∑q
i=p i |xi |− M

p′
∑r ′

i=q ′ i |Xi | ≤ m
∑q

i=p |xi |−M
∑r ′

i=q ′ |Xi |.
Proof: As r is greater than or equal to all the numbers

from p to q , we can say that for all i between p and q , i ≤ r .
By multiplying a positive number, such as |xi |, the inequality
remains valid. So, we have i |xi | ≤ r |xi | for all i between p
and q , and we can say that

∑q
i=p i |xi | ≤ ∑q

i=p r |xi |. Since
r is fixed and independent from the values of i , we can say
that

∑q
i=p i |xi | ≤ r

∑q
i=p |xi |. Now multiply both sides of

this inequality by a positive number, m
r , leads to Equation 7.

m

r

q∑
i=p

i |xi | ≤ m
q∑

i=p

|xi | (7)

On the other hand, p′ is smaller than or equal to all the
numbers from q ′ to r ′. So, we can say that for all i between q ′

and r ′, p′ ≤ i . By multiplying a positive number, such as |Xi |,
the inequality remains valid. So, we have p′|Xi | ≤ i |Xi | for
all i between q ′ and r ′, and we can say that

∑r ′
i=q ′ p′|Xi | ≤∑r ′

i=q ′ i |Xi |. As p′ is fixed and independent from the values of

i , we obtain p′
∑r ′

i=q ′ |Xi | ≤ ∑r ′
i=q ′ i |Xi |. Now we multiply

both sides of this inequality by a negative number, −M
p′ , and

change the sign to get Equation 8.

−M

p′
r ′∑

i=q ′
i |Xi | ≤ −M

r ′∑
i=q ′
|Xi | (8)

Using Equation 7 together with Equation 8, we can easily
reach m

r

∑q
i=p i |xi | − M

p′
∑r ′

i=q ′ i |Xi | ≤ m
∑q

i=p |xi | −
M

∑r ′
i=q ′ |Xi |. �

We also suggest Remark 1 and Remark 2 to better show the
steps of the proof. To find co(Aadversary) we need to find the
number of hosts from x that are in Aadversary and multiply it
by m. Then we have to find the number of hosts from X that
are in Aadversary and multiply it by M . Finally, by adding up
the obtained values, we can reach co(Aadversary). If yi and Yi
are xi ∩ Aadversary and Xi ∩ Aadversary, respectively, the total
number of hosts from x and X are

∑d
i=1 |yi | and

∑S
i=D |Yi |,

respectively. So, the attack cost of Aadversary can be calculated
as Remark 1.

Remark 1: If yi = xi∩Aadversary and Yi = Xi∩Aadversary,
then we have co(Aadversary) = m

∑d
i=1 |yi | + M

∑S
i=D |Yi |.

The value of ne(Aadversary) is the sum of ne(h) for all the
hosts in Aadversary. So, if zi is the set of all the hosts in
Aadversary that have i connections to the servers, we can
say that ne(Aadversary) = ∑D

i=1 i |zi |. Now, we can calculate
ne(Aadversary) as Remark 2.

Remark 2: If yi = xi∩Aadversary and Yi = Xi∩Aadversary,
then we have ne(Aadversary) =∑d

i=1 i |yi | +∑S
i=D i |Yi |.

Now we start proving Theorem 1. We consider all possible
cases for BAP and SCEMA selected sets, A1 and A2, and
prove Theorem 1 for each case. If in all possible cases the
theorem is proved, we can say that it is completely proved.
According to Definition 1, we have only four possible cases
as follows.

Case 1: We have A1 = x ′a ∪
⋃d

i=a+1 xi and A2 = X ′′b ∪⋃S
i=b+1 Xi where 1 ≤ a ≤ d, x ′a �= φ, x ′a ⊆ xa, D ≤ b ≤ S,

X ′′b �= φ, and X ′′b ⊆ Xb.
Case 2: We have A1 = x ′a ∪

⋃d
i=a+1 xi and A2 = X ∪ x ′′b ∪⋃d

i=b+1 xi where 1 ≤ a ≤ d, x ′a �= φ, x ′a ⊆ xa, 1 ≤ b ≤ d,
x ′′b �= φ, and x ′′b ⊆ xb.

Case 3: We have A1 = x ∪ X ′a ∪
⋃S

i=a+1 Xi and A2 =
X ′′b ∪

⋃S
i=b+1 Xi where D ≤ a ≤ S, X ′a �= φ, X ′a ⊆ Xa,

D ≤ b ≤ S, X ′′b �= φ, and X ′′b ⊆ Xb.
Case 4: We have A1 = x ∪ X ′a ∪

⋃S
i=a+1 Xi and A2 =

X ∪ x ′′b ∪
⋃d

i=b+1 xi where D ≤ a ≤ S, X ′a �= φ, X ′a ⊆ Xa,
1 ≤ b ≤ d, x ′′b �= φ, and x ′′b ⊆ xb.

The four possible cases are shown Figure 4. We have proved
Theorem 1 for all these cases, but only the proof for Case 1
is presented in this section. The other cases are proved in
a similar way, and a sketch of their proof is presented in
section VIII. These proofs demonstrate that SCEMA has a

674 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 4. Possible cases of BAP and SCEMA selected sets in a bipartite
network.

higher or equal security level compared with BAP in all
bipartite networks.

Now let us start the proof of Case 1. We have Equation 9
in consequence of Remark 2 and Assumption 2.

ne(A1) = a|x ′a| +
d∑

i=a+1

i |xi |, ne(A2) = b|X ′′b | +
S∑

i=b+1

i |Xi |

⇒ a|x ′a| +
d∑

i=a+1

i |xi | = b|X ′′b | +
S∑

i=b+1

i |Xi |

⇒ m

d

d∑
i=a+1

i |xi | = mb

d
|X ′′b | −

ma

d
|x ′a|

+m

d

S∑
i=b+1

i |Xi | (9)

Recalling Remark 1, the attack cost of A1 and A2 can be
calculated as Equation 10.

co(A1) = m(|x ′a| +
d∑

i=a+1

|xi |), co(A2)

= M(|X ′′b | +
S∑

i=b+1

|Xi |) (10)

Now let α = co(A1) − co(A2). If α ≥ 0, we can say
that co(A1) ≥ co(A2). So, we compare the cost of A1 and
A2 by subtracting co(A2) from co(A1). This subtraction uses
Equation 10 and results in Equation 11.

α = m(|x ′a| +
d∑

i=a+1

|xi |)−M(|X ′′b | +
S∑

i=b+1

|Xi |)

⇒ α = m|x ′a| + m
d∑

i=a+1

|xi | − M|X ′′b | − M
S∑

i=b+1

|Xi |

(11)

From Lemma 1, we obtain m
d

∑d
i=a+1 i |xi | −

M
D

∑S
i=b+1 i |Xi | ≤ m

∑d
i=a+1 |xi | − M

∑S
i=b+1 |Xi |.

Now together with Equation 11 we have Equation 12.

α ≥ m|x ′a| − M|X ′′b | +
m

d

d∑
i=a+1

i |xi | − M

D

S∑
i=b+1

i |Xi | (12)

Now we can replace the value of m
d

∑d
i=a+1 i |xi | in

Equation 12 with its value in Equation 9 to obtain Equation 13.

α ≥ m|x ′a| +
mb

d
|X ′′b | −

ma

d
|x ′a| +

m

d

S∑
i=b+1

i |Xi | − M|X ′′b |

+ −M

D

S∑
i=b+1

i |Xi |

⇒ α ≥ md − ma

d
|x ′a| +

mb − Md

d
|X ′′b |

+m D − Md

d D

S∑
i=b+1

i |Xi | (13)

We know that a ≤ d . So, ma ≤ md and ma−md ≥ 0. So,
we obtain Equation 14.

md−ma ≥ 0
d > 0
|x ′a| ≥ 0

⎫⎬
⎭⇒ md − ma

d
|x ′a| ≥ 0 (14)

We also know that b ≥ D. So, mb ≥ m D. From Assumption 1
we have m D ≥ Md . Hence, mb ≥ Md and mb−Md ≥ 0.
Now we obtain Equation 15.

mb−Md ≥ 0
d > 0
|X ′′b | ≥ 0

⎫⎬
⎭⇒ mb − Md

d
|X ′′b | ≥ 0 (15)

According to Assumption 1, m D ≥ Md and m D−Md ≥ 0.
We also know that both d and D are positive and all the values
of |Xi | are non-negative. So, we reach Equation 16.

m D−Md ≥ 0
d D > 0

S∑
i=b+1

i |Xi | ≥ 0

⎫⎪⎪⎬
⎪⎪⎭⇒

m D − Md

d D

S∑
i=b+1

i |Xi | ≥ 0 (16)

At last, according to Equation 14, Equation 15, and
Equation 16, we find out that the right-hand side of
Equation 13 is non-negative. So, we obtain Equation 17.

md − ma

d
|x ′a| +

mb − Md

d
|X ′′b | +

m D − Md

d D

S∑
i=b+1

i |Xi | ≥ 0

⇒ α ≥ 0⇒ co(A1)− co(A2) ≥ 0⇒ co(A1) ≥ co(A2)

(17)

�

C. Numerical Example

In this section, we consider a sample software-defined
network, NE , and present the numerical model for it. The
network topology of NE is shown in Figure 5 and its schematic
diagram regarding our model is shown in Figure 6. Note that
the connection between the hosts is not shown in Figure 6 for
simplicity. But the details are in model numeric representation.

JAVADPOUR et al.: SCEMA: AN SDN-ORIENTED COST-EFFECTIVE EDGE-BASED MTD APPROACH 675

Fig. 5. NE topology with two critical servers and six typical hosts.

Network NE has two servers as S = {s1, s2}. The first server
is s1 = (P,T ,M1), where M1 = (5, 0, 0) and the second
server is s2 = (P,T ,M2), where M2 = (4, 0, 0). C and the
relation between the vulnerabilities and their EC is specified
in Equation 18 and Equation 19.

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 0 0
1 0 1 0 0 1 0 1 0
1 1 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1 1
1 0 0 0 0 1 0 1 1
1 1 0 0 1 0 0 1 1
1 0 1 0 0 0 0 0 1
0 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 .4 .1 0 0 .2 .5 0 0 0
0 0 0 0 .3 .5 0 0 0 0
0 0 0 .3 .1 0 0 0 0 0
0 0 0 0 0 0 0 .7 0 0
0 0 0 0 0 0 0 0 .4 0
0 0 0 0 .3 0 0 0 .1 0
0 0 0 0 0 0 0 0 .3 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 .6
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

There are six hosts in NE and we have H =
{h1, h2, h3, h4, h5, h6}. The numerical representation of each
host is shown in Equation 20.

h1 = {1, 2, 3, 7}, h2 = {2, 4, 8}, h3 = {1, 5, 6, 8},
h4 = {1, 4, 6, 8}, h5 = {5, 8}, h6 = {2, 4, 5, 8} (20)

We consider that μ = 2 and ρ = 1. So, according to
Equation 2, D is specified as Equation 21.

D =
⎡
⎣−2 +1 0
+2 −1 0
−1 −1 1

⎤
⎦ (21)

Using Equation 4 we can calculate the CC value of each host.
These costs are shown in Equation 22.

coCC(h1) = ∞, coCC(h2) = 1.2, coCC(h3) = 0.9,

coCC(h4) = 1.4, coCC(h5) = 0.9, coCC(h6) = 0.9 (22)

Fig. 6. Proposed model for the numerical example (NE).

The shuffling degrees of the hosts are calculated according to
Equation 6 and are shown in Equation 23.

d1 = 1

9
, d2 = 1

9
, d3 = 2

9
, d4 = 2

9
, d5 = 2

9
, d6 = 1

9
(23)

BAP suggests selecting the hosts for shuffling among the
most vulnerable ones to prevent the attack. So, h3, h5, and
h6 are selected. But s1 has still three unblocked connections.
So, another host which is connected to s1 must be shuffled.
As h2 has the lowest cost, it will be selected. Now the
set of hosts for shuffling is AB AP = {h2, h3, h5, h6}. But
SCEMA selects the hosts with the highest shuffling degree.
So, we have ASC E M A = {h3, h4, h5} and the hosts in this
set can prevent the attack (s1 and s2 have less than three
unblocked connections). The cost of these two sets, regarding
to Equation 5 are shown in Equation 24.

co(AB AP) = 1.2+ 0.9+ 0.9+ 0.9 = 3.9,

co(ASC E M A) = 0.9+ 1.4+ 0.9 = 3.2 (24)

We can see that SCEMA finds a lower-cost set of hosts.

VI. SYSTEM ARCHITECTURE

We have designed a system in SDN that implements
SCEMA. This system, which is shown in Figure 7, contains
four main components. Critical servers, typical hosts, network
devices, and an SDN controller. Critical servers are the
valuable assets in the network and the network admin tries
to prevent DDoS attacks against them. The typical hosts
are the vulnerable nodes in the network that the adversary
attempts to compromise to create his army for performing a
DDoS attack. The hosts and the servers are connected through
network devices, which are OpenFlow switches in our case.
The forwarding rules and management messages are sent to

676 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 7. Proposed system architecture.

the network devices by an SDN controller. The controller uses
five modules to implement SCEMA and manage the network.
NTD, SDC, IAS, SID, and FEG. The modules are described
as follows.

A. Network Topology Discoverer (NTD)

NTD module uses OpenFlow Discovery Protocol (OFDP)
to figure out the current state of the network and its topology.
The different network nodes and their connections are found
and C can be generated. The network admin also provides the
vulnerabilities and their relations and also the list of critical
servers. Finally, the NTD module generates the network
model, N , and passes this model to the SDC module. This
module is triggered by network startup. Then the network
topology is discovered and passed to the SDC module.

B. Shuffling Degree Calculator (SDC)

The SDC module is responsible for finding the shuffling
degree of each host in the network. This module gets the
network model from the NTD module and generates the
shuffling degrees of each host. di for every i is calculated
in this module using the information about the connection
provided in C. The algorithm performed by shuffling degree
calculator module is shown in Algorithm 1. The list of
shuffling degrees is then passed to the SID module.

Algorithm 1 SDC Module Procedure
ne← a list of H zeros � A list storing ne(hi) for each host
sum ← 0 � A variable storing the sum of all the members in ne
for i ← 1 to H do � A loop on all the hosts to calculate ne(hi)

for j ← 1 to S do
if ci+1, j+H+1 = 1 then � If there is a connection

ne[i] ← ne[i] + 1
sum ← sum + 1

d ← a list of H zeros � A list storing di for each host
for i ← 1 to H do � A loop on all the hosts to calculate di

d[i] ← ne[i]/sum

Fig. 8. Shuffled hosts in continuous intervals of SCEMA for NE with δ = 3.

C. Shuffling Interval Detector (SID)

SID finds the hosts that must be shuffled, according to
SCEMA. The required information is received from the SDC
module. All the reconfigurations and shuffling processes are
performed at the beginning of a shuffling interval. Each
shuffling interval in our system is a fixed period of time and
lasts σ seconds. We have proposed two types of shuffling
intervals. Soft intervals and Hard intervals. In Soft intervals,
each host has a probability of being shuffled which is its
shuffling degree. So, hi is shuffled with a probability of di .
In Hard intervals, all the first μ+ρ hosts that have the highest
value of di are shuffled. So, we make sure that all the important
hosts are shuffled. Each Hard interval comes after δ − 1 Soft
intervals. By changing the value of δ, we can change the level
of security. Figure 8 shows the first six intervals of the sample
network mentioned in section V-C and the shuffled hosts in
each interval are illustrated. The value of δ is three in this
example. In Hard intervals, three hosts with the highest degree
are always shuffled. But in Soft intervals, the hosts are with
the probability of their shuffling degree. For example, h2 is
shuffled in the first interval but not in the second interval.

A flow entry timeout notifies the SID module about shuffling
interval shifting. Hence, IDS checks the type of current interval
and generates the set of hosts that have to be shuffled in
that interval. We name this set as λ. λ is then passed to
the FEG module for setting the related flow entries. The
OpenFlow message that indicates flow entry timeout is called
OFPT_FLOW_REMOVED. The algorithm of the SID module
is shown in Algorithm 2.

Algorithm 2 SID Module Procedure
top← an empty list � A list storing μ+ ρ highest degree hosts
while top has less member than μ+ ρ do � A loop to create top

max ←−1
for i ← 1 to H do � Finding host with highest degree

if i is not in top then
if max = −1or d[i] > d[max] then

max ← i
add max to top

ints ← 0 � A variable storing the number of intervals
for each shuffling interval do

ints ← ints + 1
λ← an empty list � A list storing hosts for shuffling
if ints mod δ = 0 then � Hard interval

for h ∈ top do � Adding all the hosts in top to λ
add h to λ

else � Soft interval
for i ← 1 to H do

r ← a random number between 0 and 1
if r < d[i] then � The hosts with di probability

add i to λ

As long as the network configuration has not changed, the
shuffling degrees are fixed, and hence, there is no need for
repeating Algorithm 1. This is the same for the first part
of Algorithm 2, where the hosts are sorted based on their

JAVADPOUR et al.: SCEMA: AN SDN-ORIENTED COST-EFFECTIVE EDGE-BASED MTD APPROACH 677

shuffling degree. The second part of Algorithm 2, where the
hosts to be shuffled are selected, is repeated during time
intervals. So, there are two parts to the whole procedure of
the proposed method. The first fixed part is of O(S × H),
and the second repeated part is of O(H). The procedure of
most of the MTD methods can be also divided into the same
parts, where the second part is of O(H). In the fixed part,
the degrees/scores of the hosts are calculated, and then in the
second part, which is repeated in each interval, the hosts to
be shuffled are selected. By this division, we can compare
the computational complexity of different MTD methods by
focusing on the first part. We can say that the IC of SCEMA is
O(S×H). The fixed part of BAP (i.e., its IC) is of O(S×k×o),
where o is the complexity of finding the vulnerable attack path
from the critical server to one of the hosts in the network. The
value of o is completely dependent on the network topology
and the attack path length. The worst case for BAP is when
all the hosts are connected to all the other hosts (i.e., a mesh
topology). Since, in this case, for each hop in the attack path,
all the hosts are considered, o is H 2, and the total complexity
of BAP is O(S×k×H 2). In the best case for BAP, the length
of the attack path is one, and we have o = H . As a result,
the best complexity of BAP is O(S× k× H), and it is higher
than the complexity of SCEMA in any case. Moreover, the
complexity of SCEMA is independent of the attack path, k.

D. IP Address Selector (IAS)

IAS module keeps a pool of IP addresses in the network
address range. Each address in the pool has a flag that avoids
conflicts between the used addresses. When a shuffling process
is performed and the hosts need another IP address, the IAS
module selects a random address among the addresses in its
pool and its flag is not set. The random addresses are passed
to the FEG module, and their flag is set.

E. Flow Entry Generator (FEG)

When a shuffling interval is detected by the SID module, the
FEG module gets the host information from the SID module
and then requests new IP addresses equal to the number of
hosts in λ, from the IAS module. Finally, the FEG module
generates appropriate flow rules according to the information
received from SID and IAS and sets them on network switches.

VII. EVALUATION RESULTS

We have compared SCEMA with BAP [26] and
TGCESA [15] as they are comparable with SCEMA. But our
main focus is on comparing SCEMA with BAP.

A. Evaluation Metrics

Our design goals are reducing the defense cost and retaining
network security. So, we need to measure appropriate metrics
to clarify high-goal achievement. The selected metrics are
described in the following.

1) Algorithm Complexity: To measure our algorithm
complexity, we have calculated the time required for finding
the important hosts. Time complexity and space complexity
can be used to measure this metric, such as the IC.

Fig. 9. Three of the simulated networks topologies. (a) A network with a
single server. (b) A network with two servers. (c) A network with four servers.

2) End-to-End Delay: An efficient security mechanism is
one which does not significantly increase the end-to-end delay
between the hosts. We have considered end-to-end delay as a
metric that can show the SC. Since shuffling a host changes
the forwarding paths of the network packets, we expect an
extra end-to-end delay when an MTD approach is deployed.

3) Adversary’s Success Rate: The adversary’s success rate
is the ratio of the number of experiments in which the
adversary reaches his goal to the total number of experiments.
A lower rate for the adversary’s success shows a better security
performance in SCEMA.

4) Compromised Servers Rate: Even though the adversary’s
success is reached only when all the servers in the network
are compromised, the number of compromised servers is also
important in measuring the security level of the network. The
compromised servers rate can be calculated as the ratio of the
number of compromised servers to the total number of servers.

B. Simulation Environment

We have simulated our system, implementing SCEMA,
with different network scenarios in Mininet. The hosts are
connected through OpenVSwitches and the switches are
controlled by a single POX controller. We have used Ubuntu
18.04 operation system, and the simulation machine has 16 G
RAM, and an Intel i7 processor running at 3.2 GHz.

We have defined multiple different network topologies, in all
of which, the adversary’s node is directly connected to all the
host nodes. Three of these networks are shown in Figure 9.

The vulnerabilities of the hosts in the first network are
shown in Equation 25.

h1 = {1, 2, 3}, h2 = {2, 3}, h3 = {2, 4, 5}, h4 = {1, 2, 4},
h5 = {2, 3, 4}, h6 = {4, 6}, h7 = {4, 5, 6}, h8 = {1, 2} (25)

678 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 10. Comparing SCEMA with BAP regarding their complexity. (a) Time
complexity. (b) Space complexity.

Fig. 11. Comparing the complexity of SCEMA, BAP, and TGCESA. (a) Time
complexity. (b) Space complexity.

The first eight hosts in the second simulated network are
the same as what is mentioned in Equation 25, and its other
hosts are represented in Equation 26.

h9 = {3, 5, 6}, h10 = {2, 6}, h11 = {3, 4, 6}, h12 = {1, 4, 6}
(26)

The first 12 hosts in the third network are similar to the
second network. The other hosts are mentioned in Equation 27.

h13 = {1, 2, 3}, h14={2, 5}, h15={1, 4, 5}, h16 = {1, 2, 4},
h17 = {2, 3, 4}, h18={3, 6}, h19={4, 5, 6}, h20 = {2, 4},
h21 = {1, 5, 6}, h22 = {2, 6}, h23={3, 4, 6}, h24 = {2, 4, 6},
h25 = {1} (27)

The value of V for all the simulated networks is the same, and
it is shown in Equation 28.

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.8 0.6 0 0.7 0.6 0 0
0 0 0 0 0 0 0 0.8
0 0 0 0.7 0.4 0 0.8 0.6
0 0 0 0 0 0 0 0.6
0 0 0 0 0 0 0.3 0.7
0 0 0 0 0 0 0 0.5
0 0 0 0 0 0 0 0.9
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

In the simulation scenarios, if one-third of the hosts
connected to a critical server is compromised, the adversary
can perform a successful DDoS attack against that server.
It means that the values of μ and ρ are different in each
scenario. The adversary probes five hosts in each scan, and
the scanning interval is 15 seconds on average. To prepare a
fair condition for comparing different methods with SCEMA,
we have considered a fixed number of shuffles in each interval
of all the simulation scenarios. We have considered both

Fig. 12. Comparing the average end-to-end delay in the simulated network
deploying no MTD approaches (Normal), SCEMA and BAP.

sequential and uniform random scanning methods in our
simulations, based on the defined threat model in section III,
to find out how our solution can protect the network against
different types of scanning strategies.

C. Simulation Results

The obtained results of each metric mentioned in
section VII-A are presented in this section.

1) Algorithm Complexity: The time and space complexity
of executing BAP and SCEMA are shown in Figure 10. In
all the cases, the complexity of our proposed algorithm is less
than BAP. k is the number of hosts that are shuffled in an
interval. The diagram indicates that the time complexity of
BAP is markedly increased as both k and network size are
increased. But our proposed algorithm is almost independent
of the network size. For comparing the complexity of SCEMA,
BAP, and TGCESA, all together, we have executed them on
different networks. Since the complexity of BAP grows as k
gets higher, we have only presented the results for BAP with
k = 1. TGCESA focuses on shuffling the servers instead of the
hosts. So, its complexity gets higher as the number of servers
grows. The time and space complexity are shown in Figure 11.
We can see that the complexity of BAP and TGCESA grows
as the number of servers increases. BAP and TGCESA also
become more complex when the number of hosts is increased.
The hosts which are connected to the shuffled server must be
migrated to another server in TGCESA. So, the growth in
TGCESA complexity is reasonable in the case the hosts are
growing. The space complexity of SCEMA is not growing
heavily. Because only a simple array of size H + S can
handle its implementation. The time complexity of SCEMA
has almost a linear growth.

2) End-to-End Delay: The average values of end-to-end
delay in all scenarios are shown in Figure 12. As the graph
illustrates, when an MTD approach is not deployed, the
end-to-end delay is lower than in the cases with shuffling
scenarios. However, the point is to consider the trade-off
between the end-to-end delay and the security level. BAP and
SCEMA cause extra delay, however, the security they bring
is acceptable. Moreover, we can see that there is only a small
difference between the average delay in BAP and SCEMA
scenarios, which indicates that SCEMA does not produce extra
delay compared with BAP, and the SC of the proposed method
is acceptable.

JAVADPOUR et al.: SCEMA: AN SDN-ORIENTED COST-EFFECTIVE EDGE-BASED MTD APPROACH 679

Fig. 13. The evaluation results regarding the adversary’s success rate. (a) All scenarios. (b) Sequential scanning. (c) Random scanning.

Fig. 14. The evaluation results regarding the rate of the compromised server. (a) All scenarios. (b) Sequential scanning. (c) Random scanning.

3) Adversary’s Success Rate: Figure 13 illustrates the
adversary’s success rate in different scenarios. In the simulated
scenarios, the results of which are presented in Figure 13a, the
number of shuffled hosts is not the same, and it grows as the
number of hosts increases. We have shuffled one-third of the
hosts in these scenarios to make some changes in the scale of
MTD and the network. So, in the networks with 9 and 48 hosts,
the number of shuffled ones is 3 and 16, respectively. We have
considered this situation to make the results independent from
the shuffled set size. However, the adversary’s resources are
fixed in the simulation scenarios. Hence, its impact on large-
scale networks is low. In other words, in both networks with
h and h′ hosts, where h < h′, the adversary can only probe
H hosts. As a result, the army sizes in different networks are
almost the same, and in large-scale networks, the army size
is too small compared with the network size and has not had
enough power to reach the goal. This is why a descending
graph in Figure 13a. About the general results, we can say
that it is obvious that in a defenseless network, which we call
Normal, the adversary’s success rate is higher than the cases
utilize a defensive method. Moreover, in all the scenarios, the
adversary is more successful when he/she probes a network
that deploys BAP compared with SCEMA. This demonstrates
that SCEMA is effective in reducing the adversary’s success
rate.

Another point to mention is that the adversary who uses a
sequential scanning method may experience higher success
in the presence of an MTD mechanism. When a random
scanning method is adopted, the adversary is scanning both
valid and invalid hosts, and the valid ones are shuffled before
the adversary can create a collaborated army.

4) Compromised Servers Rate: The compromised servers
rate is shown in Figure 14. Again, we see that a Normal
network (i.e., without any defensive methods) has a higher

number of compromised servers compared with the other
cases. In addition, even though our goal is not to reduce the
number of compromised servers, we can see that this metric
also has a lower amount in SCEMA against BAP.

VIII. CONCLUSION

This paper proposed an SDN-oriented Cost-effective Edge-
based MTD Approach, SCEMA, to efficiently mitigate DDoS
attacks. SCEMA finds an optimal set of hosts for shuffling
to reduce the cost of implementing MTD with acceptable
performance. The main idea of SCEMA is to shuffle the hosts
with more connections to the critical servers. We propose
a three-layer network model to present different security
states of the network using Petri nets. We also provide a
system architecture that implements SCEMA and simulates
this system in Mininet. We observe that SCEMA has lower
complexity than previous related MTD methods, and its
complexity is independent of the attack path. Thus, it is a cost-
effective solution and can easily develop large-scale networks.
The results also show that with our approach, the security
level is kept high with a low shuffling cost. We plan to
extend SCEMA in virtual networks [28]. Virtualization can
split the network into small parts and reduce the cost of
implementing the MTD approach. Furthermore, virtualization
has the potential to confuse the attacker. Hence, implementing
SCEMA in a virtual network may lead to gaining a
higher security level. Moreover, we have planned to improve
SCEMA’s performance by focusing on the shuffling intervals
in our future research. We can utilize machine learning models
in order to find the optimal shuffling intervals. In other words,
we planned to answer these two questions in future works on
SCEMA using learning approaches: (1) how frequent the hosts
must be shuffled, and (2) when the shuffling process must be
started.

680 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

APPENDIX

The steps of proving Theorem 1 for Case 1 are explained in
section V-B. Proving this theorem for the other cases follows
similar steps, and we present a sketch of these proofs in
this section. We partition these cases into multiple covering
subcases and then prove the theorem for all of these possible
cases. Hereafter in this section, α is co(A1)− co(A2).

A. The Proof for Case 2 When a = b

In this case, we have α = m
a

∑S
i=D i |Xi | − M

∑S
i=D |Xi |,

and based on Assumption 2, we conclude |x ′a| − |x ′′a | =
1
a

∑S
i=D i |Xi |. Hence, we have Equation 29.

α ≥ m D − Ma

a D

S∑
i=D

i |Xi | (29)

Since α is greater than a non-negative number, it is not
negative, and we conclude that co(A1) ≥ co(A2). �

B. The Proof for Case 2 When a < b

There exists a positive number where b = a + k. Now,
we have two conditions: k = 1 and k > 1. Now we prove the
theorem for both conditions.

When k = 1, we have α = m(|x ′a| − |x ′′a+1| +
|xa+1|)−M

∑S
i=D |Xi |, and based on Assumption 2, we con-

clude
∑S

i=D i |Xi | = a|x ′a| + (a + 1)|xa+1| − (a + 1)|x ′′a+1|.
Hence, we reach Equation 30.

α ≥ m(|x ′a| − |x ′′a+1| + |xa+1|)− M

D

S∑
i=D

i |Xi | (30)

Moreover, we know that x ′′a+1 ⊆ xa+1. So, |xa+1|−|x ′′a+1| ≥ 0,
and we obtain Equation 31.

m D − M(a + 1)

D
(|xa+1| − |x ′′a+1|) ≥ 0 (31)

The summation of two non-negative numbers is not negative.
Hence, we have α > 0, and we conclude that co(A1) ≥
co(A2). �

When k > 1, there exists a positive number, q , where
k = q + 1, and so, b = a + q + 1. We have α = m|x ′a| −
m|x ′′a+q+1| + m

∑a+q+1
i=a+1 |xi | − M

∑S
i=D |Xi |, and based on

Assumption 2, we have
∑S

i=D i |Xi | = a|x ′a|+
∑a+q+1

i=a+1 i |xi |−
(a + q + 1)|x ′′a+q+1|. Hence, we obtain Equation 32.

α ≥ m D − Ma

D
|x ′a| +

m D − Md

d D

a+q∑
i=a+1

i |xi |

+ m D − M(a + q + 1)

D
(|xa+q+1| − |x ′′a+q+1|) (32)

We know that x ′′a+q+1 ⊆ xa+q+1 and then, |x ′′a+q+1| ≤|xa+q+1|. So, we obtain Equation 33.

m D − M(a + q + 1)

D
(|xa+q+1| − |x ′′a+q+1|) ≥ 0 (33)

Finally, according to the summation of non-negative numbers,
we have α ≥ 0, and hence, co(A1) ≥ co(A2). �

C. The Proof for Case 2 When a > b

We prove that a > b is impossible by contradiction. Assume
for contradiction that a > b is a possible subcase. If a > b,
there exists a positive number, k, that a = b + k. Based
on Assumption 2, we get (b + k)|x ′b+k| =

∑S
i=D i |Xi | +∑b+k

i=b+1 i |xi |+b|X ′′b |. As x ′b+k ⊆ xb+k , we conclude |x ′b+k | ≤|xb+k| and so, (b + k)|x ′b+k | ≤ (b + k)|xb+k|. As a result∑b+k
i=b+1 i |xi |, that contains (b + k)|xb+k|, is greater than

or equal to (b + k)|x ′b+k|. That means (b + k)|x ′b+k| ≤∑b+k
i=b+1 i |xi |. Since

∑S
i=D i |Xi | is non-negative, we conclude

Equation 34.

S∑
i=D

i |Xi | ≥ 0⇒ b|X ′′b | ≤ 0 (34)

But we know that b > 0 and |X ′′b | > 0, because |X ′′b | =
0 means that X ′′b = φ which is a contradiction to the condition
of Case 2). So, b|X ′′b | > 0, which gives a contradiction to
Equation 34. �

D. The Proof for Case 3 When a = b

According to Assumption 2, we have
∑d

i=1 i |xi | = a(|X ′′a |−
|X ′a|), and moreover, α is m

∑d
i=1 |xi | + M(|X ′a | − M|X ′′a |).

As a result, we conclude Equation 35.

α ≥ ma − Md

d
(|X ′′a | − |X ′a|) (35)

Again, based on Assumption 2, a(|X ′′a |−|X ′a|) is not negative.
Consequently, we have α ≥ 0, and hence, co(A1) ≥ co(A2).
�

E. The Proof for Case 3 When a > b

There exists a positive number, k, that a = b + k. So,
we have two conditions: k = 1 and k > 1. Their proof is
as follows.

When k = 1, Assumption 2 leads to
∑d

i=1 i |xi | = b|X ′′b | +
(b+1)|Xb+1|−(b+1)|X ′b+1|. On the other hand, the value of α

is m
∑d

i=1 |xi |+M|X ′b+1|−M|X ′′b |−M|Xb+1|. So, we obtain
Equation 36.

α ≥ mb − Md

d
|X ′′b | +

m(b + 1)− Md

d
(|Xb+1| − |X ′b+1|)

(36)

Since Xb+1 ⊆ X ′b+1, we have |Xb+1| ≥ |X ′b+1|. So,
we conclude that α is non-negative, and co(A1) ≥ co(A2).
�

When k > 1, a positive number, say q , exists that k = q+1.
We have α = m

∑d
i=1 |xi | − M

∑b+q
i=b+1 |Xi | − M|Xb+q+1| +

M|X ′b+q+1| − M|X ′′b |, and based on Assumption 2, we have∑d
i=1 i |xi | = b|X ′′b | − (b + q + 1)|X ′b+q+1| +

∑b+q+1
i=b+1 i |Xi |.

Combining these two statements, we obtain Equation 37.

α ≥ mb − Md

d
|X ′′b | +

m D − Md

d D

b+q∑
i=b+1

i |Xi |

+ m(b + q + 1)− Md

d
(|Xb+q+1| − |X ′b+q+1|) (37)

JAVADPOUR et al.: SCEMA: AN SDN-ORIENTED COST-EFFECTIVE EDGE-BASED MTD APPROACH 681

We know that X ′b+q+1 ⊆ Xb+q+1, and so, |Xb+q+1| −
|X ′b+q+1| ≥ 0. Consequently, α is the summation of three
non-negative numbers, and hence co(A1) ≥ co(A2). �

F. The Proof for Case 3 When a < b

We prove that a < b is impossible. Assume for
contradiction that a < b is a possible subcase. So, there exists
a positive number, k, where b = a+k. Based on Assumption 2,
we have (a+ k)|X ′′a+k| =

∑d
i=1 i |xi |+a|X ′a|+

∑a+k
i=a+1 i |Xi |.

As X ′′a+k ⊆ Xa+k , we obtain (a + k)|X ′′a+k| ≤ (a + k)|Xa+k |.
As a result, (a + k)|X ′′a+k| is smaller than or equal to∑a+k

i=a+1 i |Xi | which contains (a + k)|Xa+k|. Hence, we have
(a + k)|X ′′a+k | ≤

∑a+k
i=a+1 i |Xi |. Again from Assumption 2,

we obtain
∑d

i=1 i |xi | + a|X ′a| ≤ 0. Since
∑d

i=1 i |xi | is non-
negative, we reach Equation 38.

d∑
i=1

i |xi | ≥ 0⇒ a|X ′a| ≤ 0 (38)

But since X ′a �= φ according to Case 3, a|X ′a| > 0, and it
gives a contradiction to Equation 38. �

G. The Proof for Case 4 When a = D and b = 1

According to Assumption 2, we have |x1| − |x ′′1 | =
D(|X D | − |X ′D|). Moreover, α is (m D − M)(|X D | − |X ′D|).
Now, since X ′D ⊆ X D , α is the multiplication of two non-
negative numbers, and hence, co(A1) ≥ co(A2). �

H. The Proof for Case 4 When a = D and b > 1

There exists a positive number, k, where b = k +
1. We have also α = m

∑k
i=1 |xi | − M

D

∑k
i=1 i |xi | +

m D−M(k+1)
D (|xk+1| − |x ′′k+1|). Considering Assumption 2,

we have |X D| − |X ′D| = 1
D

∑k+1
i=1 i |xi | − k+1

D |x ′′k+1|.
Consequently, we obtain Equation 39.

α ≥ m D − Md

d D

k∑
i=1

i |xi |+m D − M(k + 1)

D
(|xk+1|−|x ′′k+1|)

(39)

Since, x ′′k+1 ⊆ xk+1, α is the summation of non-negative
numbers, and so, co(A1) ≥ co(A2). �

I. The Proof for Case 4 When a > D and b = 1

We can find a positive number, say k, where a = D+k. The
value of α is m

∑D+k−1
i=D i |Xi | − M

∑D+k−1
i=D |Xi | + (m(D +

k)−M)|X D+k |+ (M−m(D+ k))|X ′D+k|. On the other hand,
based on Assumption 2, we have |x1|− |x ′′1 | =

∑D+k
i=D i |Xi |−

(D + k)|X ′D+k|. As a result, we can conclude Equation 40.

α ≥ m D − M

D

D+k−1∑
i=D

i |Xi |

+m(D + k)− M

D
(|X D+k − X ′′D+k|) (40)

Since X ′′D+k ⊆ X D+k , the value of α is not negative, and
consequently co(A1) ≥ co(A2). �

J. The Proof for Case 4 When a > D and b > 1

We can find a positive number, such as k, where a = D+k.
On the other hand, since b > 1, there exists a positive
number, say q , where b = q + 1. Due to Assumption 2,
we have

∑D+k−1
i=D i |Xi | = ∑q+1

i=1 i |xi | − (q + 1)|x ′′q+1| +
(D + k)(|X ′D+k| − |X D+k|). On the other hand, the value
of α in this case is α = M|X ′D+k | − m|x ′′q+1| + m|xq+1| −
M|X D+k |+m

∑q
i=1 |xi |−M

∑D+k−1
i=D |Xi |. Therefore, we can

obtain Equation 41.

α ≥ m D − M(q + 1)

D
(|xq+1| − |x ′′q+1|)

+ Mk

D
(|X D+k| − |X ′D+k|)+

m D − Md

d D

q∑
i=1

i |xi | (41)

We know that x ′′q+1 ⊆ xq+1 and X ′D+k ⊆ X D+k . Hence, α is
the summation of positive values, and consequently, co(A1) ≥
co(A2). �

REFERENCES

[1] A. Javadpour, “Providing a way to create balance between reliability
and delays in SDN networks by using the appropriate placement of
controllers,” Wireless Pers. Commun., vol. 110, no. 2, pp. 1057–1071,
Jan. 2020.

[2] A. Javadpour and G. Wang, “CTMvSDN: Improving resource manage-
ment using combination of Markov-process and TDMA in software-
defined networking,” J. Supercomput., vol. 78, no. 3, pp. 3477–3499,
Feb. 2022.

[3] M. Cirillo, M. D. Mauro, V. Matta, and M. Tambasco, “Botnet
identification in DDoS attacks with multiple emulation dictionaries,”
IEEE Trans. Inf. Forensics Security, vol. 16, pp. 3554–3569, 2021.

[4] AWS. (2020). Aws Shield Threat Landscape Report.
Accessed: Mar. 2021. [Online]. Available: https://aws-shield-
tlr.s3.amazonaws.com/2020-Q1_AWS_Shield_TLR.pdf

[5] Akamai. (2020). State of the Internet. Accessed: Mar. 2021. [Online].
Available: https://www.akamai.com/us/en/multimedia/documents/state-
of-the-internet/soti-security-gaming-you-cant-solo-security-report-
2020.pdf

[6] J.-H. Cho et al., “Toward proactive, adaptive defense: A survey on
moving target defense,” IEEE Commun. Surveys Tuts., vol. 22, no. 1,
pp. 709–745, 1st Quart., 2020.

[7] F. Ja’fari, S. Mostafavi, K. Mizanian, and E. Jafari, “An intelligent
botnet blocking approach in software defined networks using honeypots,”
J. Ambient Intell. Humanized Comput., vol. 12, no. 2, pp. 2993–3016,
Feb. 2021.

[8] J. Zheng and A. S. Namin, “A survey on the moving target defense
strategies: An architectural perspective,” J. Comput. Sci. Technol.,
vol. 34, no. 1, pp. 207–233, Jan. 2019.

[9] M. Rawski et al., “MMTD: Mano-based moving target defense for
corporate networks,” in Proc. World Conf. Comput. Commun. Technol.
(WCCCT), 2020, pp. 79–87.

[10] J. Steinberger et al., “DDoS defense using MTD and SDN,” in Proc.
IEEE/IFIP Netw. Oper. Manag. Symp. (NOMS), Apr. 2018, pp. 1–9.

[11] X. Luo, Q. Yan, M. Wang, and W. Huang, “Using MTD and SDN-based
honeypots to defend DDoS attacks in IoT,” in Proc. Comput., Commun.
IoT Appl. (ComComAp), Oct. 2019, pp. 392–395.

[12] S. Macwan and C.-H. Lung, “Investigation of moving target defense
technique to prevent poisoning attacks in SDN,” in Proc. IEEE World
Congr. Services (SERVICES), Jul. 2019, pp. 178–183.

[13] A. Aydeger, M. H. Manshaei, M. A. Rahman, and K. Akkaya,
“Strategic defense against stealthy link flooding attacks: A signaling
game approach,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 1, pp. 751–764,
Jan. 2021.

[14] Y. Zhou, G. Cheng, and S. Yu, “An SDN-enabled proactive defense
framework for DDoS mitigation in IoT networks,” IEEE Trans. Inf.
Forensics Security, vol. 16, pp. 5366–5380, 2021.

[15] Y. Zhou, G. Cheng, S. Jiang, Y. Zhao, and Z. Chen, “Cost-effective
moving target defense against DDoS attacks using trilateral game and
multi-objective Markov decision processes,” Comput. Secur., vol. 97,
Oct. 2020, Art. no. 101976.

682 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

[16] J. Narantuya et al., “SDN-based IP shuffling moving target defense with
multiple SDN controllers,” in Proc. 49th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw.-Supplemental (DSN-S), Jun. 2019, pp. 15–16.

[17] K. Zkik, A. Sebbar, Y. Baddi, and M. Boulmalf, “Secure multipath
mutation SMPM in moving target defense based on SDN,” Proc.
Comput. Sci., vol. 151, pp. 977–984, Jan. 2019.

[18] Z. Liu, Y. He, W. Wang, S. Wang, X. Li, and B. Zhang, “AEH-MTD:
Adaptive moving target defense scheme for SDN,” in Proc. IEEE Int.
Conf. Smart Internet Things (SmartIoT), Aug. 2019, pp. 142–147.

[19] A. Chowdhary, A. Alshamrani, D. Huang, and H. Liang, “MTD analysis
and evaluation framework in software defined network (MASON),” in
Proc. ACM Int. Workshop Secur. Softw. Defined Netw. Netw. Function
Virtualization, Mar. 2018, pp. 43–48.

[20] Y. Shi et al., “CHAOS: An SDN-based moving target defense system,”
Secur. Commun. Netw., vol. 2017, pp. 1–12, Oct. 2017.

[21] S. Debroy et al., “Frequency-minimal utility-maximal moving target
defense against DDoS in SDN-based systems,” IEEE Trans. Netw.
Service Manag., vol. 17, no. 2, pp. 890–903, Jun. 2020.

[22] M. F. Hyder and M. A. Ismail, “Securing control and data planes from
reconnaissance attacks using distributed shadow controllers, reactive and
proactive approaches,” IEEE Access, vol. 9, pp. 21881–21894, 2021.

[23] C. Medina-Lopez, L. Casado, V. Gonzalez-Ruiz, and Y. Qiao, “An SDN
approach to detect targeted attacks in P2P fully connected overlays,” Int.
J. Inf. Secur., vol. 20, no. 2, pp. 245–255, 2021.

[24] S.-Y. Chang, Y. Park, and B. B. A. Babu, “Fast IP hopping randomization
to secure hop-by-hop access in SDN,” IEEE Trans. Netw. Service
Manag., vol. 16, no. 1, pp. 308–320, Dec. 2019.

[25] A. Chowdhary, S. Pisharody, and D. Huang, “SDN based scalable MTD
solution in cloud network,” in Proc. ACM Workshop Moving Target
Defense, Oct. 2016, pp. 27–36.

[26] S. Yoon, J.-H. Cho, D. S. Kim, T. J. Moore, F. Free-Nelson,
and H. Lim, “Attack graph-based moving target defense in software-
defined networks,” IEEE Trans. Netw. Service Manag., vol. 17, no. 3,
pp. 1653–1668, Sep. 2020.

[27] P. Johnson, R. Lagerstrom, M. Ekstedt, and U. Franke, “Can the common
vulnerability scoring system be trusted? A Bayesian analysis,” IEEE
Trans. Dependable Secure Comput., vol. 15, no. 6, pp. 1002–1015,
Dec. 2018.

[28] A. Javadpour, “Improving resources management in network virtualiza-
tion by utilizing a software-based network,” Wireless Pers. Commun.,
vol. 106, no. 2, pp. 505–519, May 2019.

Amir Javadpour received the M.Sc.
degree in medical information technology
engineering from the University of Tehran, Iran,
in 2014, and the Ph.D. degree in computer
science/mathematics/cybersecurity from Guangzhou
University, China. He has published papers with
his colleagues in highly ranked journals and several
ranked conferences on several topics, including
cloud computing, software-defined networking
(SDN), big data, intrusion detection systems (IDS),
and the Internet of Things (IoT), moving target

defense (MTD), machine learning (ML), and optimization algorithms.
Additionally, he reviewed papers for several reputable venues, such as
IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE TRANSACTIONS ON

NETWORK SCIENCE AND ENGINEERING, ACM Transactions on Internet
Technology, The Journal of Supercomputing, and several journals of Springer
and Elsevier. He is a technical program committee (TCP) member of various
conferences.

Forough Ja’fari received the bachelor’s degree from
the Sharif University of Technology and the master’s
degree in computer network engineering from Yazd
University, Iran. She is a Senior Researcher in
cybersecurity and computer science. She is a Visiting
Scholar Researcher with Guangzhou University,
China. Her research interests include cloud com-
puting, software-defined networking (SDN), cyber
deception, intrusion detection systems (IDS), the
Internet of Things (IoT), moving target defense
(MTD), and machine learning. She is currently a

Guest Editor (GE) of Cluster Computing (CLUS) journal and a reviewer of
several journals and conferences.

Tarik Taleb (Senior Member, IEEE) received the
B.E. degree (Hons.) in information engineering and
the M.Sc. and Ph.D. degrees in information sciences
from Tohoku University, in 2001, 2003, and 2005,
respectively. From October 2005 to March 2006,
he was a Research Fellow at the Intelligent Cosmos
Research Institute, Sendai, Japan. In March 2009,
he worked as an Assistant Professor at the Graduate
School of Information Sciences, Tohoku University,
Japan, in a Laboratory fully funded by KDDI, the
second-largest mobile operator in Japan. He was

a Senior Researcher and the 3GPP Standards Expert at NEC Europe Ltd,
Heidelberg, Germany. He then led the NEC Europe Laboratories Team
working on Research and Development projects on carrier cloud platforms.
He is currently a Professor with the Center of Wireless Communications,
The University of Oulu, Finland. He is the Founder and the Director of the
MOSA!C Laboratory (www.mosaic-lab.org). He is a Professor with the School
of Electrical Engineering, Aalto University, Finland. His research interests
include telco cloud, network softwarization and network slicing, AI-based
software-defined security, immersive communications, mobile multimedia
streaming, and next-generation mobile networking. He has also been directly
engaged in the development and standardization of the Evolved Packet System
as a member of 3GPP’s System Architecture working group 2. He served
on the IEEE Communications Society Standardization Program Development
Board. As an attempt to bridge the gap between academia and industry,
he founded the “IEEE Workshop on Telecommunications Standards: from
Research to Standards,” a successful event that got awarded the “Best
Workshop Award” from the IEEE Communication Society (ComSoC). Based
on the success of this workshop, he has also founded and is the Steering
Committee Chair of the IEEE Conference on Standards for Communications
and Networking.

Mohammad Shojafar (Senior Member, IEEE)
received the Ph.D. degree (Hons.) in ICT from the
Sapienza University of Rome, Rome, Italy, in 2016.
He was a Senior Researcher and a Marie Curie
Fellow at the SPRITZ Security and the Privacy
Research Group, University of Padua, Italy. He is a
Senior Lecturer (an Associate Professor) of network
security, an Intel Innovator, a Professional ACM
Member, an ACM Distinguished Speaker, a fellow of
the Higher Education Academy, and a Marie Curie
Alumni, working in the 5G & 6G Innovation Centre

(5GIC & 6GIC), Institute for Communication Systems (ICS), at the University
of Surrey, U.K. He secured $310k for the ESKMARALD project funded by
GCHQ, UK, in 2022. Also, he is a PI of AUTOTRUST, a secure autonomous
5G-based traffic management platform the European Space Agency supported
for around e750k in 2021. Also, he was a PI of the PRISENODE project,
a e275k Horizon 2020 Marie Curie Project in network security and fog
task/resource scheduling collaborating at the University of Padua. He also
was a PI on an Italian SDN security and privacy (e60k) supported by the
University of Padua, in 2018, and a Co-PI on an Ecuadorian-British Project on
the IoT and Industry 4.0 resource allocation ($20k) in 2020. He contributed to
some Italian projects in telecommunications, like GAUChO, SAMMClouds,
and SC2. He is an Associate Editor of IEEE TRANSACTIONS ON NETWORK
AND SERVICE MANAGEMENT, IEEE TRANSACTIONS ON INTELLIGENT

TRANSPORTATION SYSTEMS, IEEE Consumer Electronics Magazine, IEEE
SYSTEMS JOURNAL and Computer Networks. For additional information:
http://mshojafar.com.

Bin Yang received the Ph.D. degree in systems
information science from Future University Hako-
date, Japan, in 2015. He is a Professor with the
School of Computer and Information Engineering,
Chuzhou University, China, and a Senior Researcher
with MOSA!C Lab, Finland. His research interests
include unmanned aerial vehicle networks, cyber
security, and the Internet of Things.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

