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Abstract—A bus-off attack is a denial-of-service (DoS) attack
which exploits error handling in the controller area network
(CAN) to induce an honest node to disconnect itself from the
CAN bus. This paper develops a stochastic transmission policy
as a countermeasure for the controller-transmitter pair against
the bus-off attack. We model this as a non-zero-sum linear-
quadratic-Gaussian game between the controller-transmitter pair
and the attacker. We derive Nash equilibria of the game for
two different information structures of the attacker. We show
that the attacker has a dominant attack strategy under both
information structures. Under the dominant attack strategy, we
show that the optimal control policy is linear in the system state.
We further identify a necessary and a sufficient conditions on the
transmission policy to have bounded average cost. The theoretical
results are complemented by a detailed case study of a bus-off
attack on a vehicular adaptive cruise control model.

Index Terms—Attacker-Defender Game, Networked Control
System, Cyberphysical Systems.

I. INTRODUCTION

Bus-off attack leverages the standard error handling method
of several commonly used in-vehicle networks. Using classic
controller area network (CAN) as an example, we review some
basics of the CAN data frame that is related to the bus-off
attack. In a classic CAN data frame, an 11-bit long field
at the beginning of each frame is called an identifier. Each
electronic control unit (ECU) attached to the CAN network can
define a set of CAN data frames for transmitting and receiving,
and each CAN data frame is assigned a unique identifier,
where smaller value of the identifier represents higher priority
in the CAN network. Due to the broadcast nature of CAN,
two messages are not allowed to be sent simultaneously on
the CAN bus. If two ECUs simultaneously attempt to send
messages over the CAN bus, then the message with the smaller
identifier wins the arbitration and gets transmitted first. For
each data frame, the actual data field can be encoded in up to 8
bytes. The coding book for the data field, sometimes referred
to as a .dbc file, is often different across vehicle’s years,
models, and brands. Also most such coding books are OEM
specific and proprietary. However, by physically attaching the
CAN bus and monitoring the traffic, certain part of the coding
book of interest can be deduced for some specific vehicles via
reverser engineering.
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Each ECU is equipped with an error counter to handle
errors in messages sent on the CAN bus – if an ECU sends
a message to the CAN bus and detects a conflict, meaning
the CAN message won the arbitration with a smaller value of
the identifier but the data field is incorrect, e.g., bus fault or
CRC check failure, then it will cause an increment in the error
counter. On the other hand, if the data field is correct, then
the error counter will decrease with a saturation at 0. If the
error counter exceeds a pre-defined threshold, the ECU will
switch to a bus-off mode and no further messages to or from
this ECU will be sent on the CAN bus, until the ECU is reset
or power cycled.

Intelligent attackers can use this error handling feature in
the CAN protocol to eventuate an ECU into the bus-off mode.
In this case, a compromised ECU (the attacker) in the CAN
network could send a message with the exact same identifier
as the targeted healthy ECU with arbitrary data field to trigger
conflicts. This attack is called bus-off attack – it requires only
the knowledge of the identifier used by the target ECU without
any reverse engineering of the encoded data field. Once there
are sufficient conflicts within a certain time period, the attacker
could then trigger the bus-off event and eventually disconnect
the target ECU from the CAN network.

A. Related Works

Bus-off mechanism is designed to be an error confinement
mechanism for CAN network since 1990s [1]. In 2016, the
bus-off attack threat was investigated by Cho and Shin [2].
In 2018, Iehira et al. [3] leveraged bus-off attack in the lab
environment to completely prevent the transmission of regular
messages sent from a target electronic control unit (ECU)
even if the target ECU itself is not compromised. Around the
same time, Souma et al. [4] introduced counter attack as a
potential countermeasure such that the node initiated bus-off
attack itself falls into bus-off mode before the target node does.
Later, this counter attack strategy was improved by Takada er
al. [5] that enhances the success rate of putting attacker into
bus-off mode. In 2019, Ning et al. [6] proposed local outlier
factor (LOF) as an intrusion detection algorithm to detect
the bus-off attack. Testing the algorithm on a real vehicle
shows sufficiently high detection rate and low false alarm rate.
In 2021, implementation of a refined bus-off attack strategy
on real vehicles called WeepingCAN [7] shows stealthiness
of bus-off attack in terms of bypassing detection with high
success rate.

To the best of our knowledge, most of the existing works in
bus-off attack have been conducted toward demonstrating the
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attacker’s capability, or detecting bus-off attack and assuming
attacker node can be removed completely from the network
once detected. The moment the attacker starts to transmit
messages, some the regular messages that are sent by the target
node cannot be successfully delivered. Such regular packet
loss can even happens before the bus-off attack succeeds,
e.g., before reaching the predefined error counter threshold.
The packet loss due to attack can significantly degrade the
performance of the overall control system. The resulting
impact on the performance of the control tasks associated with
the bus-off attack has not received enough attention. This is
the topic we investigate in this paper.

B. Contributions of this paper

In this paper, we present a mathematical model for the bus-
off attack and formulate it as a non-zero sum game between the
target node and the attacker. A stochastic transmission policy
is proposed as a proactive countermeasure when the attacker
persists in the network. We determine the Nash equilibria
of the non-zero sum game in the cases off open-loop and
closed-loop attacker. To demonstrate the effectiveness of our
theoretical results, we apply the stochastic transmission policy
on an adaptive cruise control (ACC) and show that under
the Nash equilibrium strategies, an appropriate stochastic
transmission policy stabilizes the error counter and the ego
vehicle maintains a safe distance with the leading vehicle.

C. Outline

The paper is organized as follows: The non-zero sum
game between attacker and defender is formulated in Section
II. Stochastic transmission as the defense policy and some
preliminaries on the attack policy is defined in Subsections
III-A and III-B. In Subsection III-C, we define a Markov
chain model for the error counter and define the bus-off
event. The dominant attack policy is derived in Section IV-A.
Given the dominant attack strategy, the optimal control under
finite and infinite horizon cases are discussed in Section V
and VI respectively. In Section VII, the efficacy of applying
stochastic transmission against bus-off attack is evaluated for
adaptive cruise control with emergency braking. In Section
VIII, we conclude the discussion and present our thoughts on
the potential directions for the future work.

II. PROBLEM FORMULATION

In this section, we formulate the bus-off attack problem in
which a controller-transmitter pair is acting against a common
adversary that sends messages on the same bus leading to
repeated collisions and an eventual bus-off event. To simplify
the analysis, we consider the control system model to be
discrete linear time-invariant system with a quadratic objective
function. As shown in Section VII, a discrete-time Linear-
Quadratic-Regulator (LQR) is one of the most commonly
used controllers for control over CAN communication, such
as longitudinal speed control and lateral steering control.

The time horizon is discrete and takes values in Z≥0. Let
xt ∈ X denote the state of the system, ut ∈ U denote the
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Fig. 1: Information Flow Diagram: The history {αt−1} of
the transmitter’s decisions is only available to the closed-loop
attacker and is marked as dashed arrows.

controller’s action, and vt denote the actuation noise at time
t. We use αt ∈ {0, 1} to denote the transmitter’s action, in
which αt = 1 means that the transmitter decides to transmit
the control signal to the actuator at time t and αt = 0 means
that the transmitter decides not to transmit the control signal.
Similarly, βt ∈ {0, 1} denotes the transmission action of the
attacker at time t. In the event of a collision at time t, i.e.,
αt = βt = 1, no actuation signal is received by the controller
and zero control is applied to the system. Accordingly, the
system model can be written as

xt+1 = Axt + (1− βt)αtBut + vt. (1)

Here, vt
iid∼ N (0,Σv) is assumed to be a zero-mean Gaussian

random vector with a known covariance matrix. Note that the
control action ut is only applied to the state xt when the
transmitter decides to transmit {αt = 1} and the attacker
decides not to transmit a message {βt = 0}.

For the transmitter, the decisions (αt)t∈Z≥0
is assumed to

be a memoryless stochastic process with Bernoulli distribution
parameterized by transmission probability p.

For the controller, let xt = (x0, . . . , xt) and αt =
(α0, . . . , αt) be the history of state and action respectively.
The information set available to the controller at time t is
denoted by ICt = (xt, αt−1). Let ICt denote the set of all
possible realizations of the information at the controller at
time t. We let γCt : ICt → U denote the controller’s policy
at time t. Further, let the control strategy of the controller be
the collection of control policies γC = (γCt )t∈Z≥0

and let ΓC
denote the set of all control strategies of the controller.

For the attacker, we consider two different information
structure depending on whether or not it can observe the
transmission decisions αt made by the transmitter:

• The space of closed loop attack policy as ΓA, with
IAt = {αt−1} containing the history of the transmitter’s
decisions. The details of the information set and the
restrictions on the policy space for this case is explained
in Section III-B.

• The space of open loop memoryless attack policy as Γ′A,
with IAt = ∅ and γAt restricted to be a Bernoulli random
variable with probability p′ ∈ [0, p].

The attacker’s policy at time t is denoted by γAt : IAt →
℘({0, 1}). A similar convention is adopted for γA and ΓA.



Given a finite horizon N , the cost function for controller,
JC , is a quadratic function defined as

JNC (γC , γA)

= E
[
xTNQxN +

N−1∑
t=0

xTt Qxt + (1− βt)αtuTt Rut
]
,

(2)

where Q ≥ 0 and R > 0. Moving toward the infinite horizon
case, we adopt average performance with the same parameters
Q and R as the finite case but no terminal cost, that is

J∞C (γC , γA)

, lim sup
N→∞

1

N
E

[
N−1∑
t=0

xTt Qxt + (1− βt)αtuTt Rut

]
.

From attacker’s perspective, denote St as the error counter
at time t, and define the dynamics of error counter by

St =

 min(ē, St−1 + e+), if αt = βt = 1
max(0, St−1 + e−), if αt = 1, βt = 0
St−1, otherwise

,

with S0 = 0, where e+ > 0 is the penalty of collision, e− < 0
is the decrements of error counter in the case of a successful
transmission, and error counter is bounded below by 0, and
above by a threshold ē, which are all pre-defined constants.
The bus-off event is then defined as the stopping time

ξ = min{t : St ≥ ē},

which is the first time the error counter exceeds the threshold
ē. The attacker’s objective function JA is the expected number
of messages the attacker needs to trigger the bus-off event, that
is

JA(γC , γA) = E [ξ|γC , γA] .

Now we are interested in computing a subgame-perfect
Nash equilibrium (γ∗C , γ

∗
A) of the nonzero-sum game between

the controller and the attacker under the two information
structures of the attacker such that

JC(γ∗C , γ
∗
A) ≤ JC(γC , γ

∗
A) , for all γC ,

JA(γ∗C , γ
∗
A) ≤ JA(γ∗C , γA) , for all γA.

A. Main Results

We list the main results of this paper and the detailed proofs
are presented in the later sections. The first result here shows
there is a dominant attack strategy for the case of closed loop
attacker.

Theorem 1: There exists a dominant closed-loop policy
γ∗A ∈ ΓA such that for any γC ∈ ΓC

JA(γC , γ
∗
A) ≤ JA(γC , γA), for all γA ∈ ΓA.

Under the dominant attack policy, we have βt = γA∗t (IAt ) =
αt−1.
Proof: Please refer to Subsection IV-A.

With some minor changes in the proof, the second result shows
there is also a dominant attack strategy for the case of open
loop attacker.

Theorem 2: There exists a dominant open-loop policy γ′∗A ∈
Γ′A for the attacker such that

JA(γC , γ
′∗
A ) ≤ JA(γC , γ

′
A), for all γ′A ∈ Γ′A.

Proof: Please refer to Subsection IV-B.

Under the dominant attack strategy, the following result shows
the optimal control strategy for the case of closed loop attacker.

Theorem 3: There exists an optimal closed-loop control
policy γ∗C ∈ ΓC such that

JC(γ∗C , γ
∗
A) ≤ JC(γC , γ

∗
A), for all γC ∈ ΓC ,

where γ∗A is derived in Theorem 1. Here, γC
∗

i is linear in xi,
for all i ∈ {0, ..., N − 1}. Further, in the infinite horizon case,
there exists a ρmin such that if 1) system parameter (A,B)
and (A,Q

1
2 ) are controllable, and 2) the given transmission

policy with p satisfies p(1− p) > ρmin, then

J∞C (γ∗C , γ
∗
A) <∞.

Proof: Please refer to Section V for the finite horizon cost
JC , and Section VI for the infinite horizon average cost J∞C
as N →∞.

The linearity of optimal control and the condition for bounded
average cost as N →∞ for the open-loop attack case can be
proved in a similar way, and is discussed in Section VI.

We next add some more details of system with attacker and
defender in the following section. This serves as the prelim-
inaries of computing the subgame-perfect Nash equilibrium
strategies of the players.

III. SYSTEM MODELING UNDER THE BUS-OFF ATTACK

A. Transmission policy

Recall that the transmission decisions over time space is
represented by (αt)t in the system model (1), which deter-
mines a counting process for the transmission of the messages.
In the message space, let tTx

i denote time elapsed between the
(i−1)th and ith message transmissions. In this paper, we further
restrict the distribution of (αt)t to i.i.d. Bernoulli distribution
with parameter p. Thus, (tTx

i )i is a geometrically distributed
sequence of random variables, and we have

[αt|Ĩt]
d
= αt for all t ⇐⇒ tTx

i
iid∼ Geometric(p), p ∈ (0, 1).

Example 1: The sequence of realizations (tTx
i )3

i=1 =
(1, 3, 2) over message space uniquely determines (αt)

6
t=1 =

(1, 0, 0, 1, 0, 1) over time space.

B. Attack Policy

In this section, we will discuss two types of attack policy,
where the closed loop policy requires the history of the
transmission policy, and the open loop policy requires no such
information. We constrain the attacker to drop messages at the
same frequency (on average) as the transmitter. Otherwise, the
attacker will just choose to attack the network every single
time, in which case the control signal {ut}t will never be
successfully delivered.



1) Closed loop Attack Policy: Let tAi be the time elapsed
between (i−1)th message from transmitter and the ith blocking
attempt from the attacker. The following three situations arise:
• If tAi < tTx

i , then the attacker will send a message prior
to the ith message from the transmitter. No collision
will happen at the time of sending ith message from
transmitter, hence the attack is launched and failed to
block the message and increase the error counter.

• If tAi = tTx
i , then the ith message sent from transmitter

triggers a collision, and the attack is launched and is
successful in increasing the error counter.

• If tAi > tTx
i , then before the attacker decided to cause

a collision, the ith message from the transmitter will be
sent. In this case, attacker’s waiting time for the next
blocking attempt will be reset at the time of observing
ith message sent from the transmitter. In this case, the ith

attempt of the attacker is withdrawn.
Now we denote closed loop attack policy γA ∈ ΓA as any

distribution supported by Z>0, where tAi
iid∼ γA. Note that γA

can be parameterized as {ιk}k∈Z>0 , where

P(tAi = k) = ιk, for all i, k ∈ Z>0.

Since {tAi }i are independent, in the time space we have

[βt|IAt ] = [βt|α1:t−1, β1:t−1]
d
= [βt|αkt:t−1, βkt:t−1].

where kt = max{k < t : αk = 1}. This implies the
distribution of βt only depends on the history of up to kt,
where kt is the last time step when the transmitter sends a
packet.

2) Open loop Attack Policy: The open loop policy considers
the case when the attacker requires no information to make the
attack decision βt. Similar to the previous section, this implies

tAi
iid∼ Geometric(p′), βt

iid∼ Bernoulli(p′).

As a result, the attack policy in the reduced space Γ′A of open
loop attack can be parameterized by p′, and we write

γ′A = p′.

Under the constraint when the attacker could have at most the
same transmission frequency (on average) as the transmitter,
we have p′ ≤ p.

C. Markov Chain Model for Error Counter and Bus-off Event

Leveraging the transmission policy and the attack policy
introduced in the previous two sections, we can derive the dy-
namics of the error counter based on the collision probability
q, under the message space. Recall that the penalty of collision
is e+ and the reward for successful transmission is e−. Here,
we assume these are given constants, with e+ > 0 > e− and
|e+| > |e−|. Without loose of generality, we set e− = −1,
and e+, ē ∈ Z>1.

If we denote the change of error counter by sending ith

message from the controller by ei, then ei follows from

P(ei = a) =

P(tTx
i = tAi ) if a = e+,

P(tTx
i 6= tAi ) if a = e−,

0 otherwise,

where the probability of collision q , P(tTx
i = tAi ). For

implementation purpose, we consider Si, which is defined as
the value of the error counter after sending i messages, to be
lower bounded by 0. Then Si can be updated by

Si+1 = min {max {Si + ei+1, 0} , ē} .

Thus, since ei+1 is independent of {Si, .., S1} for any i ≥ 1,
we have [Si+1|Si, ..., S1]

d
= [Si+1|Si], which shows that the

process {Si}i∈Z≥0 is Markovian, which is illustrated in Figure
2. Note that the state space of this process is finite,

Si ∈ {[0, ē] ∩ Z≥0} =: S

for all n since ē <∞, e+ ∈ Z>1 and e− = −1.
By having a lower bound of zero on the error counter, it is

straightforward to prove that the error counter process shown
in Figure 2 has a single recurrent state, which is the threshold
ē, and all other states are transient. This implies that the bus-off
event will occur eventually if the attacker could persist in the
network for a sufficiently long time. However, by picking an
appropriate transmission probability p, a negative drift of the
error counter can make the active control period large, that is,
the stopping time ξ could be very large with high probability.

More precisely, the dynamics shown in Figure 2 can be
treated as a discrete-time first-come-first-service G/D/1 queue:
the service time is constant with s(t) = 1, and the arrival
process is independent over time with

P(a(t) = e+ − 1) = q, P(a(t) = 0) = 1− q.

In [8] (Section 4), the results there proved that the tail
probability of the queue length seen by a typical customer
decreases exponentially with respect to the threshold ē, when
ē is large.

IV. ATTACKER’S DOMINANT STRATEGY

In this section, we will prove the close-loop attacker’s
dominant strategy stated in Theorem 1, with the open-loop
case following similar lines of arguments. Given the dominant
attack strategy in each cases, we will then derive the induced
state space model based on the general model defined in (1).
The induced models will be used later in Section V to further
analyze the optimal control strategy.

A. Dominant Closed-loop Attack Strategy
It is clear that transmission probability p does not depend

on γC , and therefore, JA is independent of γC . However,
we show in this section that since the transmission policy is
restricted to be geometrically distributed, the attacker has a
dominant strategy γ∗A, which is to jam the channel immediately
after a successful transmission from the controller. Recall
the probability for the attacker to jam k steps after each
transmission as P(tAi = k) = ιk for all i, and

∑
k ιk = 1.

Let

γ∗A = (ι1 = 1, ι2 = 0, ι3 = 0...), (3)

then γ∗A is the dominant strategy of attacker, i.e., for all γA,
p ∈ (0, 1), and γC ,

JA(γC , γ
∗
A) ≤ JA(γC , γA).
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Fig. 2: The error counter process {Si}i forms a Markov chain. With probability q, the error counter is increased by e+, and
with probability 1 − q the error counter is decreased by e−. The upper and lower bound of the error counter is given by ē
and 0. One can consider ē as an absorbing state since we are interested in the time of the error counter cross the thresholds
ē. Here, k̄ ∈ Z≥1 is such that k̄e+ ≤ ē < (k + 1)e+.

This is proved by the following result.
Theorem 4: For any memoryless transmission policy pa-

rameterized by p ∈ (0, 1), we have

E[ξ|γ∗A] ≤ E[ξ|γA], for all γA ∈ ΓA.

where γ∗A defined in (3) is the unique minimizer.
Proof: Please refer to Appendix A.

With dominant attack policy where tAi = 1, we notice that
as long as there are two consecutive transmission decisions
for the controller to transmit the control action, the second
message will be lost in transmission due to collision caused
by the attacker’s action. The state equation in (1) for case I
and II now changes to

xt+1 = Axt + (1− αt−1)αtBut + vt, (4)

with αt
iid∼ Bernoulli(p). Thus, the state for the controller in

this problem is [xTt , αt−1]T .

B. Dominant Open-loop Attack Strategy

Now consider the case of open loop attack strategies where
γ′A ∈ Γ′A, and recall that any γ′A can be parameterized by
p′ ∈ [0, p] for a fixed transmission policy with p. The dominant
open-loop attack strategy is p′∗ = p, which can be proved by
the following result.

Lemma 5: For any memoryless transmission policy param-
eterized by p ∈ (0, 1), we have

E[ξ|p′∗] ≤ E[ξ|p′], for all γ′A ∈ Γ′A.

Proof: Notice that the attacker’s decision is independent of
the transmitter’s decision, therefore the probability of collision
is q(p′) = pp′. The monotonicity result of v0(q) proved in
Appendix A implies p′ = p is the unique optimal strategy.

Given the dominant attack strategy in the open loop case, we
have

αt
iid∼ Bernoulli(p), βt

d
= αt, {αt}t ⊥⊥ {βt}t.

As a result, the state space equation in (1) for Case III and IV
now reduces to

xt+1 = Axt + α̃tBut + vt, (5)

with α̃t
iid∼ Bernoulli(p(1− p)), p ∈ (0, 1).

V. OPTIMAL CONTROL UNDER FINITE HORIZON

In this section, we derive the optimal control strategy of the
controller against the dominant attack strategy of the attacker.
We consider two cases separately. We first derive the optimal
control strategy with closed loop attacker and then proceed to
deriving the optimal control strategy with open loop attacker.
The optimal controller for the finite horizon would be optimal
control strategy when the horizon length N is smaller than the
stopping time ξ almost surely. It is easy to see that if S0 = 0,
then ξ ≥ ē/e+ almost surely.

A. Optimal Control with Closed-loop Attacker

We analyze the case with closed loop attacker with the
system model defined in (4). Under the dominant attack
strategy, the controller’s objective function reduces to:

E

[
xTNQNxN +

N−1∑
t=0

xTt Qtxt + (1− αt−1)αtu
T
t Rtut

]
, (6)

with the information set that is available to the controller at
time t as It = {xt, αt−1}. We now derive the optimal control
policy γ∗ using dynamic programming. First, notice that the
terminal value function is

VN (xN , αN−1) , E[xTNQxN |IN ] = xTNQxN .

With IN−1 = {xN−1, αN−2}, we have

V N−1(xN−1, αN−2) , min
uN−1∈Rm

E[xTN−1QxN−1+

+ (1− αN−2)αN−1u
T
N−1RuN−1 + VN (xN )|IN−1]

= min
uN−1∈Rm

xTN−1QxN−1 + p(1− αN−2)uTN−1RuN−1

+ E[VN (xN )|IN−1],

where the second equality holds since αN−2 is known given
IN−1 and αN−1 is random given IN−1 and is independent
of αN−2. Expanding the remaining term using the state
dynamics, we have

E[VN (xN , αN−1)|IN−1] = E[xTNQxN |IN−1]

=xTN−1A
TQAxN−1 + 2p(1− αN−2)xTN−1A

TQBuN−1

+ p(1− αN−2)uTN−1B
TQBuN−1 + tr(QΣv),



where α2
i

d
= αi since αi ∈ {0, 1}. This yields the value

function at step N − 1 as

VN−1(xN−1, αN−2)

= min
uN−1∈Rm

p(1− αN−2)uTN−1(BTQB +R)uN−1+

+ 2p(1− αN−2)xTN−1A
TQBuN−1+

+ xTN−1(ATQA+Q)xN−1 + tr(QΣv),

which is a quadratic function in uN−1. Setting the first deriva-
tive with respect to uN−1 to 0, we compute the minimizer
u∗N−1 to get

u∗N−1 ,γC
∗

N−1(IN−1) = KN−1xN−1,

which is linear in state xN−1, and the gain matrix is KN−1 :=
−(BTQB +R)−1BTQA. The value function is of the form

VN−1(xN−1, αN−2)

= xTN−1

[
P

(1)
N−1 + (1− αN−2)P

(2)
N−1

]
xN−1 + cN−1,

where

P
(1)
N−1 =ATQA+Q

P
(2)
N−1 =− p(BTQA)T (BTQB +R)−1(BTQA)

cN−1 =tr (QΣv) ,

with the following remarks:
1) R is a positive definite (PD) matrix by definition, thus

BTQB +R is invertible.
2) Given symmetric Q and R with Q being PSD and R

being PD, P (1)
N−1 and −P (2)

N−1 are symmetric and PSD.
We next use induction to prove that given Vk, the value
function Vk−1 can be written in the same form.

Theorem 6: Consider the state transition function in (4).
Suppose that the value function at time k is given by

Vk(xk, αk−1) =xTk

[
P

(1)
k + (1− αk−1)P

(2)
k

]
xk + ck. (7)

Then, the value function at time k − 1 is given by

Vk−1(xk−1, αk−2) =xTk−1

[
P

(1)
k−1 + (1− αk−2)P

(2)
k−1

]
xk−1

+ ck−1

with optimal control γC∗k−1 given by

u∗k−1 , γC
∗

k−1(Ik−1) = Kk−1xk−1,

where

Pk ,P (1)
k + (1− p)P (2)

k ,

P
(1)
k−1 =ATPkA+Q,

P
(2)
k−1 =− p(BTP (1)

k A)T (BTP
(1)
k B +R)−1(BTP

(1)
k A),

ck−1 =tr (PkΣv) + ck,

Kk−1 =− (BTP
(1)
k B +R)−1BTP

(1)
k A.

Proof: Notice that since αk−2, αk−1 ∈ {0, 1}, we have

E
[
(1− αk−2)2α2

k−1|Ik−1

]
= p(1− αk−2),

E [(1− αk−1)αk−1|Ik−1] = 0.

We then have the following

E [Vk(xk, αk−1)|Ik−1]

=E
[
xTk

[
P

(1)
k + (1− αk−1)P

(2)
k

]
xk + ck|IN−1

]
,

=xTk−1A
TPkAxk−1

+ 2p(1− αk−2)xTk−1A
TP

(1)
k Buk−1

+ p(1− αk−2)uTk−1B
TP

(1)
k Buk−1 + tr (PkΣv) .

Now, we apply the dynamic programming step to obtain the
value function Vk−1 as

Vk−1(xk−1, αk−2)

=min
uk−1

p(1− αk−2)uTk−1(BTP
(1)
k B +R)uk−1

+ 2p(1− αk−2)xTk−1A
TP

(1)
k Buk−1

+ xTN−1(ATPkA+Q)xN−1 + tr (PkΣv) + ck.

Following the same argument as in the step N−1, this implies

u∗k−1 =− (BTP
(1)
k B +R)−1BTP

(1)
k Axk−1

,Kk−1xk−1.

Simple algebraic steps yields the expressions for P (1)
k−1, P (2)

k−1

as stated in the statement. This completes the proof.

B. Optimal Control under Open-Loop Attacker

We now derive the optimal control strategy for the case of
open loop attacker using a similar approach as above. The key
result is stated below.

Theorem 7: Consider the state transition function in (4),
Suppose that the value function at time k is given by

Vk(xk) =xTk Pkxk + ck.

Then, the value function at time k − 1 is given by

Vk−1(xk−1) =xTk−1Pk−1xk−1 + ck−1

with optimal control γC∗k−1 given by

u∗k−1 , γC
∗

k−1(Ik−1) = Kk−1xk−1,

where

Pk−1 ,ATPkA+Q

− p(1− p)(BTPkA)T (BTPkB +R)−1(BTPkA),

ck−1 =tr (PkΣv) + ck,

Kk−1 =− (BTPkB +R)−1BTPkA.

Proof: The proof follows the same arguments as in Theorem
6. Note that the open-loop attack βk at time k does not depend
on the previous decision αk−1 made by the transmitter. Thus,
the value function Vk here is no longer a function of αk−1.

We now consider the infinite horizon average cost problem in
the next section.



VI. OPTIMAL CONTROL UNDER INFINITE HORIZON

As discussed in Section III-C, we now use the result of
optimal control under infinite horizon to approximate the
scenario when the active control period is large and the
probability of bus-off event within that horizon is negligible.
Consider the average cost

J∞C (γC , γ
∗
A) = lim sup

N→∞

1

N
JNC (γC , γ

∗
A).

From Theorem 6, we conclude that

Vk−1(xk−1, αk−2) ≤ xTk−1

[
P

(1)
k−1 + P

(2)
k−1

]
xk−1 + ck−1.

Note that P (1)
k−1 and P

(2)
k−1 depends only on Pk = P

(1)
k +

(1− p)P (2)
k . Thus, to show that the long term average cost is

bounded, we only need to show that Pk converges as N →∞.
This is established as follows. The update equation of Pk 7→
Pk−1 is given by

gρ(P ) =ATPA+Q (8)

− ρ(BTPA)T (BTPB +R)−1(BTPA),

with ρ = p(1−p). The convergence of such an update scheme
has been analyzed in [9], which we recall below.

Lemma 8: Let (A,B) and (A,Q
1
2 ) be controllable, then

there exists a critical value ρmin such that for all ρ > ρmin,
there exists a unique positive definite matrix P∞ = gρ(P∞).
This can be computed as a limit of the forward recursion
Pj+1 = gρ(Pj). The critical value ρmin is computed by
solving for the following linear matrix inequality:

ρmin = inf{ρ : Ψρ(Y,Z) > 0, 0 ≤ Y ≤ I},

where

Ψρ(Y, Z) = Y
√
ρ(Y A+ ZB)

√
1− ρY A√

ρ(ATY +BTZT ) Y 0√
1− ρATY 0 Y

 .
Proof: See Theorem 5 and Corollary 1 in [9].

Remark 1: It has been shown in [10, Lemma 5.4] that

1− 1

maxi |λui (A)|2
≤ ρmin ≤ 1− 1∏

i |λui (A)|2
, (9)

where {λui (A)}i is the set of unstable eigenvalues of the matrix
A. The upper and lower bounds are tight.

Let us define the following matrices:

P (1)
∞ =ATP∞A+Q,

P (2)
∞ =− p(BTP (1)

∞ A)T (BTP (1)
∞ B +R)−1(BTP (1)

∞ A),

c∞ =tr (P∞Σv) .

Theorem 9: In the case of closed loop attacker, the
subgame-perfect Nash equilibrium strategy for the controller
and the corresponding average cost is given by

γC∗(x) =− (BTP (1)
∞ B +R)−1BTP (1)

∞ Ax,

V (xk, αk−1) =xTk

[
P (1)
∞ + (1− αk−1)P (2)

∞

]
xk + c∞

In the case of open loop attacker, the subgame-perfect Nash
equilibrium strategy for the controller and the corresponding
average cost is given by

γC∗(x) =− (BTP (1)
∞ B +R)−1BTP (1)

∞ Ax,

V (x) =xTP∞x+ c∞

Proof: For the fixed (dominant) strategy of the adversary,
the corresponding optimization problem for the controller is
described in the previous section. We just use the results from
Lemma 5.4, Theorem 5.5, and Theorem 5.6 [10] to determine
the stationary strategy for the controller. This immediately
leads the subgame perfect Nash equilibrium strategy for the
game considered here.

VII. APPLICATION TO ADAPTIVE CRUISE CONTROL

In this section, we use vehicular adaptive cruise control as
an example to demonstrate the control and error performance
when applying stochastic transmission. In particular, we adopt
the LQR setup used in [11] as the base model. The simulation
results shown in this paper are based on a MATLAB Simulink
ACC model we developed with stochastic transmission as an
additional functional block to the dynamics explained in [11].

For adaptive cruise control, the goal is to keep a safe
distance between the ego (self) vehicle and the leading vehicle
by controlling the desired longitudinal acceleration. Let’s
denote the desired longitudinal acceleration as ades and the
actual acceleration as af . The simplest way to capture the low
level vehicle longitudinal dynamics is by a first order transfer
function

af =
KL

TLs+ 1
ades,

where KL = 1 and TL = 0.45 are used in the simulation. The
car following system is then constructed as a three dimensional
system with state denoted by x = [∆d, ∆v, af ]T , where
∆d(∆v) is the relative distance (velocity) between the ego
car and the lead car. ∆d > 0 implies that the lead car is in
front of the ego car, and ∆v > 0 means the lead car is faster
than the ego car. The desired distance is denoted by ddes and
is defined as

ddes = τhvf + d0.

where τh = 2.5s is used as the nominal time headway, vf is
the velocity of the ego car in m/s2, and d0 = 5m is used
as the stopping distance. The continuous time version of the
system dynamics can be written by

ẋ(t) =

0 1 −τh
0 0 −1
0 0 −1/TL

x(t) +

 0
0
TL

u(t) +

0
1
0

 v(t),

where u = ades and v = vp is the velocity of the lead vehicle
and is treated as a disturbance. The states are assumed to be
directly measured by the sensors on the vehicle. In MATLAB
simulation, the above system is discretized using c2d function
with 100ms as the sampling time. Denote the discretized
version of the system dynamics under 100ms sampling time
as

xk+1 = Axk +Buk +Gvk.



The quadratic cost is set with Q = diag([0.06, 0.1, 0.5]) as
a 3-by-3 diagonal matrix for the state x and R = 1 for the
control u.

The driving scenario tested is whether the ACC function
can successfully stops the vehicle when the lead car performs
an emergency brake. The initial position is set to be 100m
for the lead car, and 0m for the ego car. The initial velocity
is set to be 25m/s (56mph) for the lead car, and 20m/s
(45mph) for the ego car. The lead car will maintain a constant
speed for the first 20 seconds and then perform a brake with
constant acceleration at −2.5m/s2 until its velocity reaches
zero. In general, we expect the ego car in this scenario to
accelerate at the beginning to catch up the lead car while
keeping a safe distance according to ddes. After the lead car
starts to brakes, we also expect the ego car to decelerates and
stops at a safe stopping distance from the lead car, which is
d0 = 5m. Without the attacker in the system and the controller
periodically transmits control signals (p = 1), the performance
is shown in Figure 3. Based on this figure, we observe that the
relative distance gradually converges to the safe distance for
the first 20 seconds and when the lead vehicle starts to brake,
the ego car successfully maintained a safe distance and stops
5m behind the lead car at the end of the simulation. When the
attacker is present, we will then use the performance shown
in Figure 3 as the reference model to compare with.
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Now consider there is a closed-loop attacker present in the
system, which follows the dominant attack strategy discussed
in Section IV-A. The control and attack policy follows the
Nash equilibrium, and the resulting dynamics is described in
(4). Recall the error counter formulated in Section III-C, we
set e+ = 2 as the penalty score when the attacker successfully

0 20 40 60 80 100
0

50

100

D
is

ta
n
c
e
 (

m
) p=0.15

Relative Distance

Safe Distance

0 20 40 60 80 100

Time (sec)

0

1

2

3

E
rr

o
r 

C
o
u
n
te

r

(a)

0 20 40 60 80 100
0

50

100

D
is

ta
n
c
e
 (

m
) p=0.33

Relative Distance

Safe Distance

0 20 40 60 80 100

Time (sec)

0

5

10

E
rr

o
r 

C
o
u
n
te

r

(b)

0 20 40 60 80 100

0

50

100

D
is

ta
n
c
e
 (

m
) p=0.80

Relative Distance

Safe Distance

0 20 40 60 80 100

Time (sec)

0

50

100

E
rr

o
r 

C
o
u
n
te

r

(c)

Fig. 5: Distance Keeping and Error Performance Using
Stochastic Transmission

triggers a collision and on the other hand e− = −1 when the
transmitter of the controller successfully delivered a message.
The threshold ē to trigger a bus-off event is set to be 128. The
attacker is assumed to be in the system through the whole
simulation.

Next, we will talk about how to find a reasonable range of
p for the transmission policy of the controller. In general, the
probability of transmitting control signals cannot be too small
such that it is too intermittent to stabilize the system. On the
other hand, such probability cannot be too large such that the



attacker gains enough collisions in the network to trigger the
bus-off attack.

We first use the necessary condition found in (9) as a lower
bound of picking p for the transmitter. This can be interpreted
as the range of the probability of transmitting a message for
the controller at each time step that is necessary for a bounded
average cost. It turns out that λmax(A) = 1 which implies
p(1− p) > 0 is the necessary condition for bounded average
cost so there is no constraint of picking p in this case according
to (9). However, it is worth noting that in some applications,
it is possible to have the lower bound larger than 0.25 for
p(1− p) which leads to no possible values of p ∈ (0, 1) that
satisfies the necessary condition for bounded average cost. In
these cases, one potential solution is to decrease the sampling
time such that the A matrix of the linear system is closer to
the identity matrix, which has a λmax(A) closer to 1.

An upper bound on p can also be derived if we restrict a
negative drift of the error counter based on the values of e+

and e−. This can be written as pe+ +(1−p)e− < 0, or in this
case p < 1/3. One remark here is that a negative drift of the
error counter does not guarantee the system is free of bus-off
event. In fact, as long as the error counter is bounded below
by zero, bus-off event will eventually happen (with probability
1) given any fixed positive threshold if the attacker stays in
the system as t → ∞. The upper bound is chosen such that
the bus-off attack occurs with sufficiently small probability in
a finite horizon. Now with these suggestions, we pick p =
0.15, 0.33, 0.8 as the three choices for p. As discussed later,
p = 0.15 (p = 0.8) can be considered as overly conservative
(optimistic) transmission policy against bus-off attacker. Given
the three choices of p, the convergence of the value functions
in Lemma 6 is numerically checked. As shown in Figure 4,
this is done by calculating the 2-norm of the error between
two consecutive Pk matrices. This implies that all the three
values of p picked above yield to a bounded cost.

The ACC performance with an emergency brake of the lead
car is then simulated using p = 0.15, 0.33, 0.8. As shown
in Figure 5, the performance is measured by the relative
distance and the value of error counter within 100 seconds,
or equivalently 1000 simulation steps with 10hz sampling
frequency. For p = 0.33 (Figure 5b), we see that the error
counter is below 10, and the bus-off attack is avoided. The
relative distance is also kept reasonably close to the safe
distance compared with the reference model shown in Figure
3. For p = 0.15 (Figure 5a), the error counter is also very low
due to an even smaller value of p picked. However, the ego
car stopped about 3.3m behind the lead car which is below
the desired stopping distance which is d0 = 5m. For p = 0.8
(Figure 5c), due to a positive drift of the error counter, a bus-
off event happened at t = 43.4s and the control signal is lost
afterward. As a result, the acceleration is out of control and
the vehicle crashed in to the lead car around t = 63.6s, which
is considered as the first time relative distance is below 0.

VIII. CONCLUSION

In this paper, we introduced stochastic transmission as a
defense scheme against bus-off attack in CAN networks. Sim-
ulation results shows that using an appropriate transmission

probability, the error counter can be maintained at a low level
without triggering the bus-off event. Further, under certain
assumptions on the unstable eigenvalues of the system and
the transmission probability, the system can be made stable
using the subgame-perfect Nash equilibrium control policy.

APPENDIX A
PROOF OF DOMINANT ATTACK STRATEGY

To show γ∗A as the unique minimizer, we first fix p and
define the probability of collision q(γA) as

q(γA) , P(tAi = tTx
i |tTx

i ∼ Geometric(p), tAi ∼ γA).

The first part of the proof will show that γ∗A defined in
Equation (3) is the unique maximizer of q(γA) for any fixed
p. Notice that q(γA) can be derived as

q(γA) =P(tAi = tTx
i ) =

∞∑
k=1

P(tAi = tTx
i = k)

(a)
=

∞∑
k=1

P(tAi = k)P(tTx
i = k)

(b)
=

∞∑
k=1

ιkp(1− p)k−1

(c)

≤
∞∑
k=1

ιkp = p,

where the equality (a) holds since tAi and tTx
i are indepen-

dent according to the restriction of controller’s and attacker’s
transmission policy. The equality (b) holds due to tTx

i are
geometrically distributed. Now we notice that {p(1−p)k−1}k
is a decreasing sequence of k ≥ 1, and

∑∞
k=1 ιk = 1, then q

is maximized if and only if ι1 = 1. In addition, the inequality
(c) is tight, then we have max q = p. The above discussion
implies for any p ∈ (0, 1), we have

γ∗A = arg max
γA∈ΓA

q(γA) = {P(tAi = 1) = 1, for all i ≥ 1},

p = max
γA∈ΓA

q(γA).

where γ∗A is the unique maximizer.
Next, we will show that if the attacker wants to minimize

JA(γC , γA), then it is equivalent to maximize q(p, γA), which
leads to the dominant attack strategy as γ∗A. In the remaining
proof, we will use q instead of q(p, γA) as the probability of
collision for simplicity.

Based on Section III-C, the transition probability matrix
of the error counter {Si}i as a Markov process is given by
Θ(q) = [θss′(q)]s,s′∈S , where

θss′(q) =


q if s′ = s+ e+

1− q if s′ = s+ e− or s = s′ = 0

1 if s = s′ = ē

0 otherwise

.

Note that ē is an absorbing state and all the other states are
transient. We can then assign a reward 1 for each transition
from s ∈ S \ {ē} to s′ ∈ S and 0 reward to the transition
from s ∈ S. In this case, starting from any state s0 ∈ S \{ē},
the expected accumulated rewards in the steady state of the
Markov chain equals to the expected first hitting time to the
state ē. Denote the accumulated rewards vector as v(q) =



[vs(q)]s∈S , where vs(q) is the accumulated rewards starting
from state s. Then in the steady state, we have

v(q) = 1 + Θ(q)v(q). (10)

In this case, the expected steps of bus-off event conditioned
on the probability of collision is E[ξ|q] = v0(q).

Next we will show that equation (10) has a unique solution
and it is monotonically decreasing with respect to q. Since ē
is an absorbing state, we can then transform Θ(q) into the
following Jordan canonical form:

Θ(q) =

 Θ̄(q) 1̃k̄e+

0 1

 ,
where k̄ is such that k̄e+ ≤ ē < (k̄ + 1)e+, and Θ̄ is the
transition probability of all the transient states S \ {ē}. Here
I− θ̄ is invertible according to [12, Theorem 11.4, p418]. That
is, equation (10) can be simplified by removing the absorbing
state ē, which is

v(q)S\{ē} = 1 + Θ̄(q)v(q)S\{ē} =
(
I − Θ̄(q)

)−1
1.

According to [13], let g be such that

g =tr
((
−Θ̄(q)

)
I−1

)
= −tr

(
Θ̄(q)

)
= q − 1,

then

(I −Θ(q))
−1

=

(
I−1 − 1

1 + g
I−1

(
−Θ̄(q)

)
I−1

)
=I +

1

q
Θ̄(q).

Thus, we have

v0(q) = 1 +
1

q

∑
i=0,j∈S\{ē}

θij = 1 +
1

q
,

which shows that v0(q) is monotonically decreasing with
respect to q. Therefore, minimizing E(ξ|) is equivalent to
maximizing q(γA), and γ∗A is the unique maximizer of q(γA).
That is, for any q ∈ (0, 1),

E [ξ|γ∗A] = v0(p) ≤ v0(q) = E [ξ|γA] ,

which proves the result.
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