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Rethinking Smart Contract Fuzzing: Fuzzing With Invocation
Ordering and Important Branch Revisiting

Zhenguang Liu, Peng Qian, Jiaxu Yang, Lingfeng Liu, Xiaojun Xu, Qinming He, and Xiaosong Zhang

Abstract—Blockchain smart contracts have given rise to a
variety of interesting and compelling applications and emerged
as a revolutionary force for the Internet. Smart contracts from
various fields now hold over one trillion dollars worth of virtual
coins, attracting numerous attacks. Quite a few practitioners
have devoted themselves to developing tools for detecting bugs
in smart contracts. One line of efforts revolve around static
analysis techniques, which heavily suffer from high false positive
rates. Another line of works concentrate on fuzzing techniques.
Unfortunately, current fuzzing approaches for smart contracts
tend to conduct fuzzing starting from the initial state of the
contract, which expends too much energy revolving around the
initial state of the contract and thus is usually unable to unearth
bugs triggered by other states. Moreover, most existing methods
treat each branch equally, failing to take care of the branches
that are rare or more likely to possess bugs. This might lead to
resources wasted on normal branches.

In this paper, we try to tackle these challenges from three
aspects: (1) In generating function invocation sequences, we
explicitly consider data dependencies between functions to fa-
cilitate exploring richer states. We further prolong a function
invocation sequence S1 by appending a new sequence S2, so that
the appended sequence S2 can start fuzzing from states that
are different from the initial state. (2) We incorporate a branch
distance-based measure to evolve test cases iteratively towards
a target branch. (3) We engage a branch search algorithm to
discover rare and vulnerable branches, and design an energy
allocation mechanism to take care of exercising these crucial
branches. We implement IR-Fuzz and extensively evaluate it
over 12K real-world contracts. Empirical results show that: (i)
IR-Fuzz achieves 28% higher branch coverage than state-of-the-
art fuzzing approaches, (ii) IR-Fuzz detects more vulnerabilities
and increases the average accuracy of vulnerability detection by
7% over current methods, and (iii) IR-Fuzz is fast, generating
an average of 350 test cases per second. Our implementation
and dataset are released at https://github.com/Messi-Q/IR-Fuzz,
hoping to facilitate future research.

Index Terms—Fuzzing, smart contract, vulnerability detection,
blockchain, sequence generation, seed evolution.

I. INTRODUCTION

This work was supported by the National Key R&D Program of China under
Grant 2021YFB2700500, the Key R&D Program of Zhejiang Province under
Grant 2022C01086 and Grant 2021C01104, and by the Scientific Research
Fund of Zhejiang Provincial Education Department under Grant Y202250832.
(Corresponding author: Peng Qian.)

Zhenguang Liu, Peng Qian, and Qinming He are with Zhejiang Uni-
versity, Hangzhou 310058, China (e-mail: liuzhenguang2008@gmail.com;
messi.qp711@gmail.com; hqm@zju.edu.cn).

Jiaxu Yang, Lingfeng Liu, and Xiaojun Xu are with School of Computer
and Information Engineering, Zhejiang Gongshang University, Hangzhou
310018, China (e-mail: yjx.00@foxmail.com; liulingfengxx@gmail.com;
xuxj2022@gmail.com).

Xiaosong Zhang is with the Center for Cyber Security, University of
Electronic Science and Technology of China, Chengdu 611731, China (e-
mail: johnsonzxs@uestc.edu.cn).

SMART contracts are programs executing on top of a
blockchain system [1]. A smart contract encodes prede-

fined contract terms into runnable code. Due to the immutable
nature of blockchain, once a smart contract is deployed on the
blockchain, its defined rules will be strictly followed during
execution. Smart contracts make the automatic execution of
contract terms possible, giving rise to a variety of decentralized
applications [2], [3].

Notably, not all blockchains support smart contracts.
Ethereum, one of the most prominent blockchains enabling
the execution of smart contracts, has attracted widespread
attention worldwide. So far, tens of millions of contracts have
been deployed on Ethereum [4], enabling a broad spectrum
of applications, including wallet [5], crowdfunding [6], supply
chain [7], and cross-industry finance [8]. Smart contracts from
various fields now hold over one thousand billion dollars worth
of virtual coins, and the number of contracts is still increasing
rapidly [2]. Smart contracts have long been appealing targets
for attackers since they manipulate so many digital assets.

Specifically, the source code of a Ethereum smart contract
will be compiled into bytecode and executed on Ethereum
Virtual Machine [9]. Like traditional programs, smart con-
tracts may contain vulnerabilities. Therefore, it is important
to identify potential vulnerabilities in smart contracts, ideally
before their deployments. Malicious attackers may exploit the
bugs in smart contracts to gain illegal profits. Recently, there
was an increasing number of security vulnerability incidents
in smart contracts [10], [11], leading to enormous financial
losses. One infamous example was the reentrancy attack, i.e.,
attackers stole more than $130 million worth of digital assets,
exploiting the reentrancy vulnerability in the Cream.Finance
contract [12]. This case is not isolated, e.g., a delegatecall bug
accidentally triggered resulted in freezing over $280 million
worth of Ether in the Parity Multisig Wallet contract [13].
Obviously, conducting security vetting on smart contracts to
avoid exposing vulnerabilities to attackers is much coveted.

Fueled by the maturity of static analysis techniques such as
formal verification [14] and symbolic execution [15], smart
contract vulnerability detection has undergone considerable
progress in the past few years. These methods, however,
inherently suffer from high false positive rates since they do
not actually execute each path. Recent efforts resort to fuzzing
techniques [16]–[18], which have the merits of producing neg-
ligible false positives in discovering software vulnerabilities.
This can be attributed to the fact that fuzzers usually generate
test cases to exercise a branch, and report vulnerabilities only
when they detect abnormal results during fuzzing.

After scrutinizing existing released fuzzers for smart con-
tracts, such as [16], [18]–[23], we obtain the following obser-
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vations. (1) Current fuzzers (e.g., sFuzz [16] and Harvey [21])
tend to generate function invocation sequences randomly,
overlooking the data dependencies (such as read and write
dependencies) between functions. More importantly, a smart
contract may transition through many different states during its
lifecycle [21]. For example, every bet in a gambling contract
will change the contract state. However, current methods
generally conduct fuzzing starting from the initial state of the
contract, which actually expends too much energy revolving
around the initial state of the contract and is incapable of
unearthing bugs triggered by complex states. (2) Most current
approaches fail to take into account the distance between
test cases and branch conditions in seed mutation, resulting
in generating seeds that have low probabilities to enter a
target branch. (3) Existing fuzzers (e.g., ILF [22] and Con-
fuzzius [23]) often treat program branches equally. As a result,
fuzzers might waste too many resources in fuzzing normal
branches and are unable to dive deep into crucial branches
that are rare or more likely to have bugs.

To tackle these challenges, we propose IR-Fuzz, a fully
automatic Fuzzing framework equipped with Invocation or-
dering and impoRtant branch revisiting, for detecting security
vulnerabilities in Ethereum smart contracts. In particular, IR-
Fuzz consists of three key components.

Sequence Generation. Usually, there are multiple func-
tions within a contract, we introduce a function-invocation-
sequence generation strategy, which consists of function in-
vocation ordering and sequence prolongation. Specifically,
we build a data flow analyzer to capture the data flow
dependencies of global variables and then define a rule to
compute the order priority of each function call, inferring the
ordered function invocation sequence. Further, we introduce a
prolongation technique to extend the sequence, enforcing the
fuzzer to tap into unprecedented states.

Seed Optimization. We also present a seed optimiza-
tion paradigm, which drives the fuzzer to generate branch-
condition-aware test cases. In practice, we employ a branch
distance-based measure to select test cases according to how
far a test case is from satisfying the condition (e.g., x==10)
of a just-missed branch1. Intuitively, the test case has a higher
probability to enter the just-missed branch as the distance
decreases. In this way, IR-Fuzz iteratively evolves test cases
to get increasingly closer to satisfying the branch conditions,
which boosts its ability to find a high-quality test case and
achieve a higher branch coverage.

Energy Allocation. Finally, we design an energy allo-
cation mechanism that takes into account the significance
of a branch. Technically, we first propose a branch search
algorithm to pick out rare branches and branches that are
likely to have vulnerabilities. Then, we formulate a customized
energy schedule and develop two rules to guide fuzzing
energy allocation. As such, IR-Fuzz can flexibly assign fuzzing
resources to more important branches, which increases the
overall fuzzing efficiency by a large margin (4.9x faster than
sFuzz [16]) and further improves branch coverage.

1A just-missed branch stands for the unexplored if -branch or then-branch
of a conditional statement (such as if and require) or a recurrent statement
(such as for and while).

We implement IR-Fuzz and extensively evaluate this system
over 12K real-world smart contracts. Experimental results
show that: (i) IR-Fuzz achieves high average branch cover-
age by up to 90%, yielding a 28% improvement compared
with state-of-the-art fuzzing approaches. (ii) IR-Fuzz identifies
more vulnerabilities and increases the average accuracy of
vulnerability detection by 7% over current methods. (iii) IR-
Fuzz generates an average of 350 test cases per second, in most
cases orders-of-magnitude faster than conventional fuzzers.

Our key contributions can be summarized as follows:
• We design and implement a novel framework IR-Fuzz for

smart contract fuzzing, which consists of three key com-
ponents, i.e., function invocation sequence prolongation,
branch-distance-driven seed optimization, and branch-
importance-aware energy allocation.

• Within the framework, we present a sequence generation
strategy to infer high-quality function invocation se-
quences, steering fuzzing to explore unprecedented states.
Further, we introduce a seed optimization paradigm that
incorporates a branch distance-based measure to select
and evolve test cases towards new branches. Finally, we
develop a branch search algorithm to discover rare and
vulnerable branches, and propose an energy allocation
mechanism to concentrate on these critical branches.

• We evaluate IR-Fuzz over large-scale real world smart
contracts, and empirical results show that the proposed
techniques are indeed useful in achieving high branch
coverages. IR-Fuzz surpasses state-of-the-art fuzzers and
overall provides interesting insights. As a side contribu-
tion, we construct a large benchmark dataset for evaluat-
ing smart contract fuzzing approaches. Our implementa-
tion and dataset are released, hoping to inspire others.

II. RELATED WORK

A. Smart Contract Vulnerability Detection

Since blockchain endows smart contracts with unalterable
nature, there is no way to patch the vulnerabilities of a smart
contract without forking the blockchain (almost an impossible
mission), regardless of how much money the contract holds
or how popular it is [2], [24]–[26]. Therefore, it is critical
to conduct security vetting for smart contracts, especially
before their deployments. Early works for smart contract
vulnerability detection employ formal verification techniques.
For example, [14] introduces a framework to compile smart
contracts to EVM bytecode and then put them into an existing
verification system. [27] proposes a formal model and verifies
smart contracts using the Isabelle/HOL tool. Further, [28]
and [29] define the formal semantics of contracts using the F*
framework and the K framework, respectively. Although these
frameworks provide strong formal verification guarantees, they
are still semi-automated and yield high false positives. Another
stream of works rely on symbolic execution methods, such
as Oyente [15], Slither [30], and Securify [31]. Oyente is
one of the pioneering works to perform symbolic execution
on smart contracts, which checks bugs based on expert-
defined rules. [30] converts smart contracts into intermediate
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representations and conducts static analysis to detect vulnera-
bilities. Whereas symbolic execution is a powerful technique
for discovering bugs, it still suffers from the inherent problem
of symbolic execution path explosion.

Recent efforts resort to using fuzzing techniques for smart
contract vulnerability detection. ContractFuzzer [20] is the first
to apply fuzzing techniques to smart contracts and identi-
fies vulnerabilities by monitoring runtime behaviors during
fuzzing. ReGuard [32] and Harvey [21] are dedicated to
generating a number of test cases that cover as many paths as
possible to trigger a vulnerability. ILF [22] and sFuzz [16] aim
to design a feedback-based seed mutation strategy. Despite the
practicality of fuzzing techniques, existing fuzzers still have
difficulties in achieving high coverage and fuzzing efficiency.
Instead, our work alleviates the issues by carefully designing
a sequence generation strategy, a seed optimization paradigm,
and an energy allocation mechanism.

B. Greybox Fuzzing

Fuzzing techniques have been proven as an effective way
to discover software vulnerabilities. According to how much
information is available about the program under test [33],
fuzzing techniques can be cast into three categories: whitebox,
blackbox, and greybox [34]–[36]. Put succinctly, blackbox test-
ing conducts fuzzing without knowing any internal structure
of the target program. In contrast, whitebox testing performs
fuzzing while having full knowledge about the internal archi-
tecture of the target program. Greybox fuzzing stands in the
middle of blackbox fuzzing and whitebox fuzzing, where we
have partial knowledge of the internal structure of the target
program. Particularly, greybox fuzzing can be further divided
into two groups.

One spectrum of works [37], [38] aim at covering as many
paths or branches as possible, expecting to reveal a bug in
the program, namely coverage-guided greybox fuzzing. AFL,
one of the most well-known fuzzers, employs the lightweight
instrumentation technique and genetic algorithm to improve
coverage [39]. Some other researchers [16], [40] increase
code coverage by smartly selecting and mutating test cases.
Typically, these methods improve coverage by generating
as many new test cases as possible to traverse previously
uncovered program paths. Another spectrum of works [35],
[37], [41] are designed to direct greybox fuzzing towards
a set of specific target locations, termed targeted greybox
fuzzing. There is a number of greybox fuzzers that focus on
specific program locations, e.g., low-frequency or uncovered
branches. For example, [19] utilizes a power schedule to
collect feedback information and steer fuzzing towards target
locations. AFLGo [35] calculates the distance between entry
points and buggy code in the control flow graph, guiding
seed mutation to cover the target locations. Overall, targeted
greybox fuzzing generates test cases to reach certain target
locations, attempting to further trigger a bug.

III. MOTIVATING EXAMPLE

As a motivating example, we present a real world smart
contract GuessNum, which implements a gambling game on

contract GuessNum {
mapping(address => uint256) userBalance;
uint256 prizePool;

constructor () payable { prizePool = msg.value; } /* Initialize the prize pool */

function guess(uint256 num) payable external {
uint256 luckyNum = uint256(keccak256(abi.encodePacked( 

block.difficulty, now))); /* Generate a lucky number */

luckyNum = luckyNum % 100;
prizePool = SafeAdd(prizePool, msg.value); /* Put funds into the prize pool */
if (num == luckyNum && msg.value == 50 finney)  {

/* If a player guesses it, he obtains 40 times the participant fee */

userBalance[msg.sender] = SafeAdd(userBalance[msg.sender], msg.value*40);
}

}
function getReward() payable external {

if (userBalance[msg.sender] < prizePool && userBalance[msg.sender] > 0)  {
msg.sender.call.value(userBalance[msg.sender])();    /* Reentrancy bug */

prizePool = SafeSub(prizePool, userBalance[msg.sender]);
userBalance[msg.sender] = 0;

} 
}

}
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Fig. 1 A real-world smart contract written in Solidity.

Ethereum [4]. Fig. 1 shows the simplified code2 of GuessNum,
which is written in Solidity. The contract realizes a guess
number game that users play by submitting their guesses along
with participation fees. The fee is fixed to 50 finney each time
and is poured into the prize pool, i.e., prizePool. Function
constructor() runs only once when the contract is created, and
it puts the funds of the contract’s owner into the prize pool.
A player who wants to submit a guess can invoke function
guess(), which compares the received guess number with the
randomly generated lucky number, i.e., luckyNum (line 11). If
guess number exactly matches the luckyNum, the player will
obtain 40 times the participation fee in return (line 13). Players
can get rewards by calling function getReward().

Vulnerability. This GuessNum contract, unfortunately,
suffers from a classical reentrancy vulnerability. From line
18 of Fig. 1, we observe that function getReward() invokes
call.value to transfer money to the user. However, due to
the default settings of smart contracts, the transfer operation
will automatically trigger the fallback function of the recipient
contract. Therefore, an attacker may set a malicious second-
time invocation to getReward() in his fallback function for
stealing extra money. Since getReward() waits for the first-time
transfer to finish, the balance of the attacker is not reduced yet
(i.e., the user balance reduction operation at line 19 is behind
call.value and is not executed yet). Function getReward() thus
may wrongly believe that the attacker still has enough balance
and transfers money to the attacker again.

Limitation of Existing Fuzzers. Interestingly, this simple
smart contract reveals three key challenges for most existing
fuzzers to expose vulnerabilities. (1) The order of function
invocations is critical. We observe that if the conditions at
line 11 are not satisfied (namely the then-branch at line 13 is
not reached), then the second condition at line 17 will never
be met either (because userbalance[msg.sender] is equal to

2Address: 0xd5e94f6350c7911015dd120b0b006420b6e85a58

https://ropsten.etherscan.io/address/0xd5e94f6350c7911015dd120b0b006420b6e85a58#code
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Fig. 2 A high-level overview of IR-Fuzz. IR-Fuzz has four main components, including (1) Sequence Generation, (2)
Seed Optimization, (3) Energy Allocation, and (4) Vulnerability Analysis and Report.

0). As such, the fuzzer will be unable to reach the then-
branch at lines 18–20. (2) Generating a test case to satisfy
the second condition at line 11 (msg.value == 50 finney) is
difficult. More specifically, the variable msg.value has a size
of 32 bytes. Thus, when we generate a random value for
msg.value in fuzzing, we have only 1

2256 probability to obtain
the value 50 to meet the condition. Indeed, existing fuzzers like
AFL [39] are shown to have difficulties in electing a test case
to enter the then-branch at line 13. (3) Vulnerable branches that
may contain vulnerabilities only take a small fraction of the
program. For example, lines 18–20 are vulnerable code which
only exists in one branch. Current fuzzers [22], [23] tend
to treat each branch equally, which may fail to discover the
vulnerability due to insufficient fuzzing resource allocation.

Fuzzing Policy. We embrace three key designs in IR-
Fuzz to tackle the challenges. (1) IR-Fuzz leverages the
variable read and write dependencies between functions to
generate the ordered function invocation sequence. It further
extends the ordered sequence with another ordered sequence to
explore more complex states. Specifically, this contract (Fig. 1)
has two global variables, i.e., userBalance and prizePool,
which both appear in functions guess() and getReward(). By
analyzing read and write dependencies of the global variable
userBalance, IR-Fuzz recognizes that function getReward()
depends on function guess(), awaring that guess() should be
called before getReward(). Consequently, IR-Fuzz generates
the function invocation sequence as: guess()→getReward(). (2)
IR-Fuzz adopts a branch distance-based schema to select test
cases according to how far a test case is from satisfying the
condition of a just-missed branch. For example, the distance of
reaching the just-missed branch (i.e., then-branch at line 13)
is calculated as |msg.value - 50| since the branch condition
at line 11 is msg.value == 50. Intuitively, the test case has
a higher probability to enter the just-missed branch as the
distance decreases. With the guidance of distance measure, IR-
Fuzz iteratively evolves test cases to get increasingly closer to
satisfying the branch condition at line 11. (3) IR-Fuzz engages
a branch search algorithm to pick out vulnerable (e.g., then-
branch at lines 18–20) and rare branches, and then formulates
an energy schedule to expend more fuzzing resources on these
important branches. In our experiments, after only 26s, IR-
Fuzz generates a test case to reach the then-branch at line 18

and exposes the reentrancy vulnerability.

IV. METHOD

Overview. The overall architecture of IR-Fuzz is outlined
in Fig. 2. Generally, IR-Fuzz consists of four key components:
• Sequence Generation: Given that a contract might contain

multiple functions, to explore their possible function in-
vocation sequences, IR-Fuzz first analyzes the data flow
dependencies between functions. Then, it defines a rule to
compute the order priority of each function, and generates
a function invocation sequence that successively calls the
ordered functions. Further, IR-Fuzz adopts a prolongation
technique to extend the sequence, driving the fuzzer to dive
into deeper states.

• Seed Evolution: To guide seed mutation so that the gen-
erated cases could reach a target branch, IR-Fuzz utilizes
a branch distance-based measure to select and evolve test
cases iteratively according to how far a test case is from
satisfying the condition of the target branch.

• Energy Allocation: To further take care of the rare branches
and branches that are likely to have vulnerabilities, IR-Fuzz
introduces a branch search algorithm to analyze exercised
branches and picks out those important branches. Then, IR-
Fuzz formulates a customized energy schedule and utilizes
two rules to flexibly guide fuzzing energy allocation towards
these critical branches.

• Vulnerability Analysis and Report: IR-Fuzz analyzes the
generated logs and refers to vulnerability-specific patterns
to discover vulnerabilities. Bug reports are generated for
further manual inspections.

In what follows, we will elaborate on the details of these
components one by one.

A. Sequence Generation

Presented with the multiple functions of a smart contract,
existing methods tend to generate a function invocation se-
quence by randomly picking a function each time. Scrutinizing
12K real-world smart contracts, we empirically observe that
the state of a smart contract is often captured by the state
of its global variables, and different functions do share and
operate differently on the global variables. Some functions
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perform ‘read’ operations on the variables while some other
functions may perform ‘write’ operations on the variables.
Generating function invocation sequence randomly ignores
such connections between functions. The functions that per-
form ‘write’ operations could change the state of the contract
while the functions that perform only ‘read’ operations are
unable to change the state. Therefore, we assign higher order
priority to functions that perform ‘write’ operations so that we
may explore a broader contract state space and cover more
branches. It is worth mentioning that initializing a variable
will not affect the method.

Sequence Ordering. Motivated by this, we propose to
model the global variable read and write dependencies be-
tween functions. Specifically, we first characterize the source
code of a smart contract into an abstract syntax tree [42],
from which we extract variable access operations such as
assignments and comparisons. Then, we leverage a data flow
analyzer to capture the read and write dependencies of global
variables between functions. Afterwards, we calculate the
order priority (OP) of each function and sort them according to
their OPs. Finally, we generate the ordered function invocation
sequence, i.e., the invocation sequence that calls the sorted
functions successively.

Formally, we denote the set of functions in a smart contract
as F = {F1, F2, ..., FN}, and global variables that appear
in function Fi as V = {vi1, vi2, ..., viM}, where M is the
number of global variables appear in Fi and vik represents
the k-th global variable in Fi. Specifically, each variable vik
has a unique identifier (i.e., variable name), which is denoted
as vIDik . To further indicate the operation that Fi exerted on vik,
we use vopik = 1 to represent that Fi performs read operation
on vik, and vopik = 0 to denote that Fi conducts write operation.
Now, we define the order priority of functions as below.

Rule 1: Read & Write Dependency. When a global
variable appears in two different functions, the function that
executes write operation on the variable should be called
earlier than the function that executes read operation. Put
differently, given global variables vik in Fi and vjn in Fj

(where vIDik = vIDjn ), we suggest that Fi should have a higher
order priority (OPFi > OPFj ) when vopik = 0 and vopjn = 1.

Guided by this, we may compute the order priority of each
function by converting this rule into the following formula,
which sums up the analysis on read & write dependencies
(Rule 1) of all global variables in different functions.

OPi =

Mi∑
k=1

Mj∑
p=1

vopjp (1− vopik ) · cmp(vik, vjp)

1 ≤ i, j ≤ N && i 6= j

(1)

where N is the number of functions in the contract. Mi and
Mj denotes the number of the appearance of global variables
in Fi and Fj , respectively. Notably, cmp(vik, vjp) compares
the identifier of global variables in two different functions,
which is given by:

cmp(vik, vjp) =

{
1, vIDik = vIDjp
0, vIDik 6= vIDjp

(2)

where vik denotes k-th variable of Fi and vjp represents p-th

variable of Fj .
Mathematically, in Eq.(1), a function accumulates one order

priority score only if it writes on a global variable and
the variable is read by another function. In this context,
the functions that conduct write operations on more global
variables get higher priority and are put in the front of
the function invocation sequence. This drives the fuzzer to
exercise more on the functions that could change the states
and boost the fuzzing by encouraging it to encounter more
states and reach more branches. Interestingly, our experimental
results show that branch coverage is significantly improved
with such sequence ordering (see §V-E). Here, we take the
contract of Fig. 1 as an example to illustrate the order priority
calculation of each function. From Fig. 1, we can observe
that this contract has two global variables, i.e., userBalance
and prizePool. Function guess() performs a read operation
and a write operation on the two variables, respectively.
We represent the variables that appear in function guess()
as Vguess = {vguess1, vguess2, vguess3, vguess4}, where vguess1 =
vguess2 = prizePool, vopguess1 = 1, vopguess2 = 0, and vguess3 =
vguess4 = userBalance, vopguess3 = 1, vopguess4 = 0. Meanwhile,
cmp(userBalance, prizePool) = 0, while cmp(userBalance,
userBalance) = cmp(prizePool, prizePool) = 1. Similarly, the
global variables appear in getReward() are denoted as VgetReward

= {vgetReward1, vgetReward2, ..., vgetReward8}, where vopgetReward1 = ...
= vopgetReward6 = 1, and vopgetReward7 = vopgetReward8 = 0. As such,
according to Eq.(1), we calculate the order priority of function
guess() as below.

OPguess =vopgetReward1(1− vopguess4) + vopgetReward2(1− vopguess2)

+vopgetReward3(1− vopguess4) + vopgetReward4(1− vopguess4)

+vopgetReward5(1− vopguess2) + vopgetReward6(1− vopguess4)

=6

(3)

For function getReward(), we calculate its order priority as:

OPgetReward =vopguess1(1− vopgetReward7)

+vopguess3(1− vopgetReward8)

=2

(4)

According to the order priority calculation, we can see that the
order priority of calling function guess() is greater than that
of function getReward(). Therefore, IR-Fuzz finally generates
the function invocation sequence as: guess() → getReward().

Sequence Prolongation. Another important insight is that
a smart contract might go through many different states dur-
ing its lifecycle. However, current methods typically conduct
fuzzing starting from the initial state of the contract, which
expends too much energy revolving around the initial state
and is usually incapable of unearthing bugs triggered by other
states. These facts inspire us to explore richer starting states
via sequence prolongation. Particularly, we first exercise the
ordered function invocation sequence S using various test
cases, which result in different states of the contract. We
then engage in the invocation sequence S again but execute
S starting from these different states, i.e., appending a new
sequence S after S .

For instance, presented with the crowdfunding contract in
Fig. 3, we observe that covering the if-branch at line 21 for
traditional fuzzers is difficult, which requires at least twice
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contract CrowdFunding {
uint256 goal;
uint256 raised;
uint256 phase;
address beneficiary;

constructor () {
beneficiary = msg.sender;
goal = 300 ether;
raised = 0;
phase = 0; } /* 0: Active 1: Finished */

function donate(uint256 donations) payable public {
/*  Check if the crowdfunding goal is reached */
if (raised < goal) { raised += donations; }
else { phase = 1; }

}

function withdraw() public {
/*  The crowdfunding goal has been reached */
if (phase == 1) {

beneficiary.delegatecall(bytes4(keccak256(“transfer(uint256)”)), raised); }
}

}
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Fig. 3 An example contract for illustrating how the
sequence prolongation technique is used in IR-Fuzz.

invocations of function donate(). Particularly, this contract
implements a simple crowdfunding project that allows users
to donate money by calling donate(). The constructor() sets
the goal of crowdfunding as 300 Ether (line 9), and the
raised money is initialized to 0 (i.e., raised = 0 at line 10).
The status of the crowdfunding process is initialized to 0
(i.e., phase = 0 at line 11), which represents unaccomplished.
According to Rule 1, we realize that the invocation to func-
tion donate() should have a higher order priority than that
of function withdraw(). As a result, the function invocation
sequence is generated as: donate()→ withdraw(). However,
such a sequence fails to satisfy the branch condition at line
21 because call function donate() once cannot enter the else-
branch at line 16 to set phase = 1. To reach the else-branch
at line 16, function donate() needs to be called at least twice.
Namely, the required amount of money for the crowdfunding
is accomplished at the first call (i.e., raised ≥ goal), and
the second call enters the else-branch at line 16. Therefore,
to explore deeper states, we propose to prolong the function
invocation sequence.

In contrast to most fuzzing methods that conventionally
call each function only once in the invocation sequence, we
further extend the ordered function invocation sequence S by
appending the same invocation sequence to S, namely S → S,
such that the second sequence starts its execution from a
different state rather than the initial state. To explore different
starting states for the second sequence, the first sequence is
presented with different sets of parameters, which lead to
different inner statuses. Technically, we first try to sufficiently
exercise sequence S with various different input parameters.
A different set of input parameters to S translates to a variant
of S, denoted as Sj . Then, we concatenate two sequences Si
and Sj that have different input parameters and exercise the
new concatenated sequence. The following rule formulates the

Algorithm 1: SEED ITERATIVE OPTIMIZATION

1 currentTestSuite← ∅;
2 currentTestCase← initialTestCase();
3 while ¬Terminated() do
4 Let BtestCase be covered branches by

currentTestCase;
5 Let Bmiss be just-missed branches in

currentTestSuite;
6 for br ∈ BtestCase do
7 if br is new branch then
8 currentTestSuite.ADD(currentTestCase);

9 for br ∈ Bmiss do
10 for seed ∈ currentTestSuite &&

seed 6= currentTestCase do
11 dist_1← distance(currentTestCase, br);
12 dist_2← distance(seed, br);
13 if dist_1 < dist_2 then
14 currentTestSuite.REMOVE(seed);
15 currentTestSuite.ADD(currentTestCase);

16 energy ← 0;
17 MutationEnergy ← AssignMutationEnergy();
18 while energy < MutationEnergy do
19 testCase← SelectInput(currentTestSuite);
20 newCase←Mutation(testCase);
21 if ¬RepeatCheck(currentTestSuite, newCase)

&& ¬V alidityCheck(newCase) then
22 currentTestCase.ADD(newCase);
23 log ← FuzzInput(newCase);
24 energy ← UpdateEnergy(log, energy);

25 return currentTestSuite: A set of high-quality test cases

sequence pair selection to generate a new prolonged sequence,
which constrains that the input parameters of Si and Sj should
be quite different.

Rule 2: Sequence Pair Selection. (1) When the number
of required function input parameters in the sequence is no
less than 2, we select the sequence pairs iff at least one input
paramter is different between the two sequences. For example,
given three sequences S1: F1(x1) → F2(), S2: F1(x2) →
F2(), and S3: F1(x2) → F2(), pairs P1(S1, S2) and P2(S1,
S3) are selected. In contrast, pair P3(S2, S3) is not selected
since S2 and S3 have the same parameters. (2) When the
number of required function input parameters is larger than 2,
we select the sequence pairs iff at least two input parameters
are different between the two sequences. For example, given
three sequences S1: F1(x1, y1) → F2(z1), S2: F1(x1, y2) →
F2(z1), and S3: F1(x2, y2) → F2(z2), pairs P1(S1, S3) and
P2(S2, S3) are selected.

Upon each sequence pair selection, we obtain a prolonged
function invocation sequence. For the crowdfunding contract
demonstrated in Fig. 3, IR-Fuzz first generates two sequences,
e.g., S1: donate(300) → withdraw() and S2: donate(200) →
withdraw(). According to Rule 2, IR-Fuzz combines S1 and S2
as a new prolonged sequence S: donate(300)→ withdraw()→
donate(200)→ withdraw(). Since the goal of crowdfunding is
300, the first call to donate(300) in S satisfies the condition
of the if-branch at line 15, and the second call to donate(200)
reaches the else-branch at line 16 (i.e., set phase = 1). The
new sequence thus can reach the then-branch at line 22 on the



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

second call to withdraw() and expose the potential Ether frozen
vulnerability. Promisingly, with the prolongation technique,
IR-Fuzz greatly expands the scope of explored states and
branches. Note that the sequence prolongation technique yields
little impact on the overhead of the fuzzer.

B. Seed Evolution
To fuzz a function invocation sequence, the most intuitive

and direct way is to generate test cases randomly. Despite
its simplicity, this strategy is not favorable for reaching unex-
plored conditional branches due to its random nature. IR-Fuzz,
instead, incorporates a seed evolution paradigm to refine test
cases iteratively. The seed evolution framework is summarized
in Algorithm 1. First, IR-Fuzz initializes an empty test suite
and a set of test cases (lines 1-2). Then, the first loop from
lines 6 to 8 performs seed selection. Whenever a test case
covers a new branch (i.e., any branch not covered by test
cases in the test suite), it is added to the suite. Next, the loop
from lines 9 to 15 evolves test cases iteratively. Particularly,
we propose a branch distance-based measure to select those
test cases which are closer to satisfying the conditions of new
branches. Thereafter, the loop from lines 18 to 24 executes
seed mutation, in which function Mutation() generates the
mutated test cases based on the test cases selected from the
suite (lines 19-20). Then, we adopt seed verification strategies
to guarantee the validity of mutated test cases (line 21). This
mutation process continues until a mutation energy upper-
bound is reached (line 18). Finally, a new test suite that
contains a set of high-quality test cases is shaped. In what
follows, we present the technical details of seed selection and
seed mutation, respectively.

Seed Selection. In IR-Fuzz, we first try a classical seed
selection strategy. That is, IR-Fuzz monitors the execution of
test cases and records the branches that each test case traverses.
A test case is added into the test suite as long as it covers a new
branch, i.e., a branch which is not covered by any test case in
the suite. Empirically, our experimental results show that this
strategy could reveal a number of branches. However, it is
still quite inefficient in reaching those complex branches with
strict conditions. For example, the probability of satisfying
the second condition (msg.value == 50 finney) at line 11 of
Fig. 1 is 1

2256 , which is extremely low. To meet such strict
branch conditions, we design a novel seed selection strategy.
Inspired by [16], we adopt a distance function dist(T, br)
to compute a branch distance indicating how far a test case
is from covering a just-missed branch (i.e., uncovered then-
branch). More specifically, let br be a just-missed branch,
which is not covered by any test case T . We suppose that br
is a branch of condition C. Note that C can be either x==k,
x! = k, x ≤ k, x < k, x ≥ k or x > k, where x and k are
variables or constants. The function dist(T, br) is given by:

dist(T, br) =


|x− k|, if C is x == k

1, if C is x ! = k

max(x− k, 0) if C is x ≤ k or x < k

max(k − x, 0) if C is x ≥ k or x > k

(5)

where x and k are extracted from the stack information
recorded by IR-Fuzz. Intuitively, dist(T, br) is defined such

Algorithm 2: BRANCH SEARCHING

Input: Program P , Test case case, Vulnerable statements T
Output: Brare and Bvulnerable

1 br ← FuzzRun(P, case);
2 Brare ← ∅; // Rare Branches
3 Bvulnerable ← ∅; // Vulnerable Branches
4 R← 0;
5 i← 0;
6 while i < |br| do
7 if IsConditionInstruction(i, Cb) then
8 R← R+ 1, bpre ← br[0...i+ 1];
9 c, state← StateInference(bpre);

10 if V ulnerableStatementReached(P, state, c, T )
then

11 Bvulnerable.ADD(br);

12 i← i+ 1;
13 if R > 2 then
14 Brare.ADD(br);

that the closer a test case T is from satisfying the condition
of branch br, the smaller the distance is. For example, a test
case with msg.value = 100 is closer to satisfying the condition
msg.value == 50 than a test case with msg.value = 10,000.
For each just-missed branch, IR-Fuzz selects a test case has
the smallest dist(T, br). With the feedback of the branch
distance measurement, IR-Fuzz can quickly approach complex
branches guarded by strict conditions, improving the overall
branch coverage. Note that all selected test cases are added to
the test suite and transferred to the seed mutation phase for
generating new test cases.

Seed Mutation. Seed mutation plays an important role
in enriching the test cases. In IR-Fuzz, we refer to several
mutation strategies from AFL and introduce new ones tailored
for smart contracts. Particularly, we preferentially mutate those
test cases with smaller branch distances.

Given a test case encoded in the form of a bit vector,
sFuzz [16] engages a set of mutation operators to generate
new test cases, such as bit flipping, interest value insertion, and
key-value insertion. IR-Fuzz additionally ensures the generated
test cases are valid by advocating two principles. (1) IR-Fuzz
checks the validity and integrity of the mutated test cases by
using a bit verification approach, which sets random bits of
a given seed to random values while keeping other bits of
the seed unchanged. Thereafter, IR-Fuzz saves a new test case
as a new seed based on whether the new test case detects a
new branch. Moreover, IR-Fuzz will discard invalid test cases
which lead to fuzzing crashes or bring much overhead to the
fuzzer. (2) IR-Fuzz removes duplicate test cases by comparing
the mutated cases with the test cases in the test suite.

In practice, we also apply multiple heuristics to save the
mutation energy of IR-Fuzz. For example, any test case in the
test suite that does not discover a new branch after a round of
mutation will be assigned with low priority in the mutation.
IR-Fuzz updates energy according to the generated logs during
fuzzing (lines 23-24 in Algorithm 1). The process of seed
mutation continues until the mutation energy upper-bound is
reached. Each seed is assigned with a priority score which
measures its ability to detect new branches after mutations.
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contract Cheer {
uint256 num = 0;

function random(uint256 x, uint256 y, uint256 z) returns (uint256) {
if (x % 2 == 0) {

num = 256;
while (x != z) {

num = SafeMul(x, z);
if (x > z) { z = SafeAdd(z, z); }
else { x = SafeAdd(x, x); }

}
if (y % 2 == 0)  {

num = uint256(keccak256(abi.encodePacked(
block.number, now))); /* Block number dependency */

}
} else { num = 3; }
return num;

}
}
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Fig. 4 An example contract for illustrating how IR-Fuzz
allocates energy to the target branches flexibly.

C. Energy Allocation

In this subsection, we introduce how IR-Fuzz performs
fuzzing energy allocation. Recall that most existing fuzzers
treat program branches equally, ignoring the fact that vulner-
able code usually takes a tiny fraction of the entire code [18],
[43]. As a result, conventional fuzzers may waste massive
resources in fuzzing normal branches instead of rare branches
and branches that are more likely to possess bugs. To tackle
this problem, we design an energy allocation mechanism,
guiding IR-Fuzz to assign fuzzing resources towards these
important branches. Specifically, this mechanism consists of
two modules: branch analysis and energy schedule.

Branch Analysis. We remark that the first challenge is
how to pick out the important branches. To address this, we
introduce a branch search algorithm to analyze all branches
discovered during fuzzing and focus on two types of branches:
rare and vulnerable, which are defined as follows.

Definition 1 (Branch): Given a path p exercised by a test
case in smart contract S, we say that br is a prefix subpath
of p if br is a subpath of p and br begins with the same
starting point as p. Further, br is a branch of p if br is a prefix
subpath of p and br ends with the if-branch or then-branch
of a conditional or recurrent statement (e.g., if, require, for,
while) in S.

Definition 2 (Rare Branch): We consider a branch br is
a rare branch if br contains at least two nested conditional
statements (e.g, two nested if). Each rare branch is associated
with a rarity factor R, which is set to the number of nested
conditional statements (at the end of this branch).

Definition 3 (Vulnerable Branch): Given a branch br
and a set of vulnerable statements T that may introduce
bugs (e.g., block.number and call.value), we say that br is
a vulnerable branch when br contains a vulnerable statement
t ∈ T .

After empirically scrutinizing real-world smart contracts,
we found that over 50% (65% and 86% in our experiments)

of bugs are located in rare and vulnerable branches. To
pick out the two types of branches, we design a branch
analysis algorithm shown in Algorithm 2. Technically, IR-Fuzz
employs the abstract interpreter A to pick out the important
branches. First, A analyzes all branches Br discovered during
fuzzing (line 1). Then, the loop from lines 6 to 12 checks
whether there exists a branch br that reaches the vulnerable
statement t ∈ T and computes the rarity factor R for each
branch. Afterwards, A adds the branches with R > 2 into
Brare (lines 13-14). Finally, A obtains a set of rare branches
Brare and vulnerable branches Bvulnerable.

Energy Schedule. We remark that the second challenge is
how to assign resources to these important branches. Towards
this aim, we formulate a customized energy schedule Ω to
manage the fuzzing energy allocation. This schedule adopts
two rules for rare and vulnerable branches, respectively.

Rule 3: Energy Allocation for Rare Branches. Given
branches br1 with R1 and br2 with R2 in a same path p,
where Ri is rarity factor and R1 < R2. To facilitate that
rare branches with higher rarity factors are more sufficiently
fuzzed, Ω assigns energy ∇1∗E to br1 and ∇2∗E to br2 where
∇1 < ∇2.

Rule 4: Energy Allocation for Vulnerable Branches.
Given a branch br1 in a path p1 and a branch br2 in a path
p2, Ω assigns α∗E energy to br1 (α > 1) and E energy to br2
when R1 = R2 and br1 ∈ Bvulnerable. Coefficient α controls
the preference degree for vulnerable branches.

We use the example of Fig. 4 to show how IR-Fuzz works
with the energy allocation mechanism. Specifically, IR-Fuzz
first analyzes all discovered branches and picks out br at
line 12 as the vulnerable branch since it contains a vulner-
able statement (i.e., block.number) at line 13. Then, IR-Fuzz
calculates the rarity factor R of this branch, where R = 2.
As a result, IR-Fuzz assigns energy (α + ∇) ∗ E to branch
br, according to Rule 3 and Rule 4. In our experiments, an
interesting observation is that state-of-the-art tools like sFuzz
cannot reach the if-branch at line 12 since they waste too much
energy in fuzzing the while branch at line 7. In contrast, IR-
Fuzz successfully covers this branch and exposes the block
number dependency vulnerability at line 13 in 8s on average
(between 4s and 12s in 5 runs).

Moreover, IR-Fuzz also utilizes the feedback of energy
allocation to guide seed mutation. For example, the test cases
which cover the vulnerable branches will be selected and
fuzzed first. Inspiringly, with the energy allocation mechanism,
IR-Fuzz can flexibly assign fuzzing resources to the rare and
vulnerable branches, increasing overall fuzzing efficiency and
branch coverage.

D. Vulnerability Analysis and Report

In this stage, IR-Fuzz turns to vulnerability analysis and
report generation, which reveals vulnerabilities in smart con-
tracts and generates a detailed bug report for further manual
confirmation. In particular, we investigate previous works
(e.g., [2], [20], [44]) and define the specific patterns for eight
types of vulnerabilities, namely timestamp dependency, block
number dependency, dangerous delegatecall, Ether frozen,
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Fig. 5 The workflow of IR-Fuzz to reveal the reentrancy vulnerability in the real-world contract of Fig. 1.

unchecked external call, reentrancy, integer overflow, and dan-
gerous Ether strict equality. We have implemented a pattern
analyzer to handle these patterns. IR-Fuzz analyzes the fuzzing
results and reveals bugs with the assistance of the pattern
analyzer. In the following, we show an example of how IR-
Fuzz exposes a reentrancy vulnerability using patterns.

Vulnerability Pattern Example. Reentrancy vulnerability
is considered as an invocation to call.value that can call
back to itself through a chain of calls. That is, the in-
vocation of call.value is successfully re-entered to perform
unexpected repeat money transfers. Specifically, we design
two patterns to expose the reentrancy vulnerability. The first
pattern CALLValueInvocation checks if there exists an in-
vocation to call.value in the contract. The second pattern
RepeatedCallValue concerns whether a specific function with
call.value invocation is called repeatedly during fuzzing. IR-
Fuzz reports that a function has a reentrancy vulnerability
if it fulfills the combined pattern: CALLValueInvocation ∧
RepeatedCallValue.

E. IR-Fuzz Workflow Illustration with an Example

In this subsection, we take the contract of Fig. 1 as an
example to show the workflow of IR-Fuzz on revealing a
reentrancy vulnerability. The workflow consists of six steps,
illustrated in Fig. 5. Given the contract with source code as
input, IR-Fuzz first compiles the source code to the JSON
file, which consists of EVM bytecode and application binary
interface (ABI) (¶ in Fig. 5). Second, IR-Fuzz extracts the
abstract syntax tree and captures the data flow dependencies
of global variables. By analyzing these dependencies, IR-
Fuzz infers the function invocation sequence as: guess() →
getReward() (· in Fig. 5). Thirdly, IR-Fuzz generates test
cases for the two function calls and adds high-quality test cases
into the test suite based on the branch distance-based measure.
As such, IR-Fuzz effectively generates test cases to cover new
branches (¸ in Fig. 5). Furthermore, IR-Fuzz performs the
branch analysis to pick out the important branches. Then, it
customizes an energy schedule to assign fuzzing resources (¹

in Fig. 5). IR-Fuzz utilizes the feedback of energy allocation
to guide seed selection and mutation. After several rounds
of fuzzing, IR-Fuzz reaches the then-branch at line 18 and
triggers the execution of the transfer function (i.e., call.value).
We develop an attack contract generator, which simulates an
attack contract that calls the transfer function getReward()
again. IR-Fuzz records the instructions into a log file (º
in Fig. 5). Finally, IR-Fuzz analyzes the log and determines
whether the call.value was called multiple times, exposing the
reentrancy vulnerability with the assistance of vulnerability-
specific patterns (» in Fig. 5). Besides fuzzing the ordered
invocation sequence, IR-Fuzz further prolongs the sequence
to explore other complex states.

V. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
IR-Fuzz, seeking to address the following research questions.
• RQ1: Can IR-Fuzz effectively detect contract vulnerabili-

ties? How is its performance against state-of-the-art tools?
• RQ2: Does IR-Fuzz achieve higher branch coverage than

existing methods?
• RQ3: How efficient is IR-Fuzz in fuzzing smart contracts

and generating test cases compared with other fuzzers?
• RQ4: How much do different components of IR-Fuzz

contribute to its performance in branch coverage and vul-
nerability detection accuracy?

We first introduce the experimental settings, then proceed to
answer the above questions. We also present a case study to
allow for a better understanding of the proposed approach.

A. Experimental Setup

Implementation. IR-Fuzz in total contains 9K+ lines of
C++ code, which is released for public use at https://github.
com/Messi-Q/IR-Fuzz . We implemented IR-Fuzz on the basis
of sFuzz [16] (a state-of-the-art smart contract fuzzer).

Baselines. In the experiments, we include seven open-
source methods that either have a high number of citations

https://github.com/Messi-Q/IR-Fuzz
https://github.com/Messi-Q/IR-Fuzz
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TABLE I Summary of vulnerability types supported by
state-of-the-art methods. TP is short for timestamp de-
pendency; BN represents block number dependency; DG
represents dangerous delegatecall; EF represents Ether
frozen; UC represents unchecked external call; RE rep-
resents reentrancy; OF represents integer overflow; SE
represents dangerous Ether strict equality.

Methods Vulnerability Type #Citation or #GitHub Stars Publication
TP BN DG EF UC RE OF SE

Oyente [15] X X X 1,780 citations CCS’16
Osiris [45] X X X 182 citations ACSAC’18

Securify [31] X X X 604 citations CCS’18
ILF [22] X X X X 105 citations CCS’19

sFuzz [16] X X X X X X X 91 citations ICSE’20
Mythril [46] X X X X 2,900 GitHub stars White Paper

ConFuzzius [23] X X X X X X 45 GitHub stars EuroS&P’21
IR-Fuzz X X X X X X X X – –

or receive many stars in GitHub. The methods are summa-
rized in Table I, where we illustrate the vulnerability types
that they can detect, their numbers of citations or GitHub
stars, and their publication information. For fuzzing tools,
we select ConFuzzius [23], ILF [22], and sFuzz [16], which
achieve state-of-the-art performance and support at least four
vulnerability types on smart contracts. For static analysis
tools, we select Mythril [46], Oyente [15], Osiris [45], and
Securify [31], which are well-known vulnerability checkers for
smart contracts. We compare IR-Fuzz with them in terms of
branch coverage, effectiveness, and efficiency. All experiments
are conducted on a computer equipped with an Intel Core i9
CPU at 3.3GHz, a GPU at 2080Ti, and 64GB Memory. Each
experiment is repeated ten times, we report the average results.

Dataset. We obtain the dataset by crawling Etherscan [47]
verified contracts, which are real-world smart contracts de-
ployed on Ethereum Mainnet. In practice, we removed 5,074
duplicate contracts by comparing the hash of the contract bi-
nary code. Our final dataset contains a total 12,515 smart con-
tacts that have source code. As listed in Table I, we focus on
eight types of vulnerabilities in the dataset, namely timestamp
dependency (TP), block number dependency (BN), dangerous
delegatecall (DG), Ether frozen (EF), unchecked external call
(UC), reentrancy (RE), integer overflow (OF), and dangerous
Ether strict equality (SE). We deployed all smart contacts of
the dataset to a local Ethereum test network for experiments.
For the ground truth labels of smart contracts, we define
vulnerability-specific patterns for each kind of vulnerability to
give a preliminary label and then manually check whether a
smart contract in the dataset indeed has a certain vulnerability.
In particular, using the defined vulnerability-specific patterns
(e.g., keyword matching), we could find smart contracts that
may have vulnerabilities and save our time on labeling those
contracts that are safe (e.g., a contract with no ‘call.value’
invocation will not have reentrancy vulnerabilities).

B. Effectiveness (RQ1)
First, we benchmark IR-Fuzz against existing vulnerability

detection methods. We count the number of smart contracts
that have vulnerabilities and are identified by each method,
and present the accuracy, true positives, and false positives of
each method.

Comparing IR-Fuzz to State-of-the-arts. We first com-
pare IR-Fuzz to other fuzzers and existing static analysis

TABLE II Accuracy comparison (%) on different methods,
including static analysis tools, fuzzers, and IR-Fuzz. ‘n/a’
denotes that a tool cannot detect the specific vulnerability.

Methods Vulnerability Type (Accuracy)
TP BN DG FE UC RE OF SE

Mythril [46] n/a 89.97 70.95 n/a n/a 95.09 89.87 n/a
Oyente [15] 86.86 n/a n/a n/a n/a 94.61 74.76 n/a
Osiris [45] 86.56 n/a n/a n/a n/a 93.28 74.80 n/a

Securify [31] n/a n/a n/a 79.42 91.24 91.52 n/a n/a
ILF [22] n/a 87.53 80.99 78.65 94.71 n/a n/a n/a

sFuzz [16] 87.25 88.37 83.33 83.85 94.26 95.20 89.98 n/a
ConFuzzius [23] n/a 87.70 80.47 78.91 94.68 93.33 77.35 n/a

IR-Fuzz 90.25 94.18 95.33 95.05 98.10 98.77 98.79 99.73

TABLE III True and false positives of each method in
identifying the eight types of smart contract vulnerabilities.

Methods Vulnerability Type (True / False Positives) TotalTP BN DG FE UC RE OF SE
Mythril [46] n/a 4/63 20/20 n/a n/a 0/62 10/245 n/a 34
Oyente [15] 12/6 n/a n/a n/a n/a 8/87 16/637 n/a 36
Osiris [45] 4/5 n/a n/a n/a n/a 12/139 12/632 n/a 28

Securify [31] n/a n/a n/a 0/0 7/208 4/194 n/a n/a 11
ILF [22] n/a 0/103 8/4 0/3 5/82 n/a n/a n/a 13

sFuzz [16] 23/8 20/108 20/7 20/3 7/100 10/68 3/235 n/a 103
ConFuzzius [23] n/a 20/120 4/2 0/2 8/86 6/131 10/565 n/a 48

IR-Fuzz 92/5 26/3 58/0 65/0 83/36 95/20 21/10 45/0 485

tools. Quantitative experimental results of each method are
summarized in Table II. From the table, we obtain the fol-
lowing observations. (1) Compared with other methods, IR-
Fuzz is able to identify more vulnerabilities. Inspiringly, IR-
Fuzz has achieved a high accuracy (more than 90%) on
all eight types of vulnerabilities. (2) IR-Fuzz consistently
outperforms state-of-the-art methods by a large margin in
detecting each type of vulnerability. For example, for Ether
frozen vulnerability (EF), IR-Fuzz gains 15.63% and 16.14%
accuracy improvements over Securify and ConFuzzius. These
strong empirical evidences suggest the great potential of IR-
Fuzz to identify smart contract vulnerabilities. We attribute
its superior performance to the key modules proposed, i.e.,
sequence generation, seed optimization, and energy allocation,
which boost the capability of IR-Fuzz in improving branch
coverage and hunting vulnerabilities. (3) Promisingly, IR-
Fuzz discovers a new kind of smart contract vulnerability,
i.e., dangerous Ether strict equality (SE). To the best of our
knowledge, this vulnerability cannot yet be detected by current
automatic tools. We also present an illustrative case study on
how our method detects this vulnerability in §V-F.

Analysis of True and False Positives. To further eval-
uate the effectiveness of IR-Fuzz, we examine the identified
vulnerable contracts to see whether they are true positives or
not. Table III demonstrates the number of vulnerable contracts
discovered by each method, as well as the numbers of true
positives and false positives of each method. (1) From Ta-
ble III, we observe that existing methods have not yet obtained
a high true positive rate on the eight types of vulnerabilities.
For example, for unchecked external call vulnerability (UC),
Securify and sFuzz generate 7 true positives, while ConFuzzius
and ILF obtain 8 and 2 true positives, respectively. This
is mainly due to the reason that conventional tools ignore
handling exceptions for the return value of external calls.
(2) Moreover, we also find that existing methods have high
false positives. For block number dependency vulnerability
(BN), fuzzing tools sFuzz, ConFuzzius, and ILF produce
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Fig. 6 Curves comparison: the tendency of branch coverage
over time on different fuzzers.

over 100 false positives. For integer overflow vulnerability
(OF), 632, 637, and 565 false positives are reported by
Osiris, Oyente, and ConFuzzius, respectively. The high false
positives of these methods may stem from two facts: (i) Most
methods tend to detect vulnerabilities using a few simple but
imprecise patterns, e.g., identifying block number vulnerability
by crudely checking whether there is a block.number statement
in the function; (ii) Many tools conservatively assume that all
arithmetic operations returning a negative value are vulnerable,
resulting in high false positives.

IR-Fuzz reports more true positives than other methods. For
example, for timestamp dependency vulnerability (TP), IR-
Fuzz generates 92 true positives, 88, 80, and 69 more than
Osiris, Oyente, and sFuzz, respectively. In total, IR-Fuzz finds
vulnerabilities in 485 contracts, roughly 4.7 times more than
sFuzz, which ranks the second. For reentrancy vulnerability
(RE), IR-Fuzz produces 95 true positives, which significantly
outperforms the state-of-the-art tool Osiris. More importantly,
IR-Fuzz can precisely detect a new kind of vulnerability (SE)
without reporting any false positives. We attribute the good
performance of IR-Fuzz to the fact that it integrates the three
presented new techniques, which are able to supplement each
other for precise bug detection. In summary, IR-Fuzz can
effectively identify various vulnerabilities in smart contracts,
surpassing existing static analysis tools and fuzzers by a large
margin.

C. Branch Coverage (RQ2)

We now present evaluation results on branch coverage of
IR-Fuzz. We measure the number of distinct branches covered
by the generated test cases in the test suite. Moreover, to
examine the branch coverage on contracts with different sizes,
we follow the settings of previous work [22] and split the
dataset into 1,885 large contracts (≥3,600 instructions) and
10,630 small ones (<3,600 instructions).

We compare with other fuzzers (i.e., sFuzz, ILF, and Con-
Fuzzius). Particularly, we visualize the comparison results on
small contracts in Fig. 6(a) and on large contracts in Fig. 6(b),
respectively. We plot the tendency of branch coverage over
time. It can be seen that IR-Fuzz consistently outperforms
other fuzzers. Quantitatively, IR-Fuzz achieves 90.10% cover-
age on small contracts, 28.20%, 20.10%, and 10.10% higher
than sFuzz, ILF, and ConFuzzius, respectively. On large con-
tracts, IR-Fuzz achieves 19.20%, 14.00%, and 9.10% higher
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Fig. 7 Visual comparison of efficiency on different tools.

coverage, respectively. Moreover, we also observe that IR-Fuzz
reaches the highest coverage with less time required than other
fuzzers. On average, IR-Fuzz spent only 10s to achieve the
highest coverage (i.e., 90.10% on small contracts and 79.10%
on large contracts), while the other three fuzzers spent 18s,
16s, 13s, respectively.

We conjecture that the advantages of IR-Fuzz in achieving
high branch coverage come from three aspects. First, IR-Fuzz
generates the high-quality function invocation sequence by
adopting a dependency-aware sequence generation strategy,
enforcing the fuzzer to tap into richer states. Second, IR-
Fuzz employs a branch distance-based measure to iteratively
optimize the generated test cases, steering fuzzing towards
covering new branches. Thirdly, IR-Fuzz takes into account
the significance of rare branches and branches that are likely
to have vulnerabilities, and designs an energy allocation mech-
anism to flexibly guide fuzzing energy allocation towards these
critical branches. Moreover, IR-Fuzz utilizes the feedback
results generated by the energy allocation mechanism to guide
seed mutation, which further increases branch coverage.

D. Efficiency (RQ3)

In this subsection, we systematically examine the efficiency
of IR-Fuzz and compare it against other methods.

First, we conduct experiments to measure the overhead of
IR-Fuzz by calculating the average execution time on each
contract. We run IR-Fuzz on the whole dataset, revealing that it
spends 21.30s per contract on average. Fig. 7(a) compares IR-
Fuzz to other methods in terms of the average execution time.
From the figure, we observe that IR-Fuzz is significantly more
efficient than others. Particularly, its average execution time is
251s and 82.22s faster than Securify and sFuzz, respectively.
We believe the reasons for the much faster speed of IR-Fuzz
are as follows. (1) IR-Fuzz can quickly infer the ordered
function invocation sequence, accelerating fuzzing execution.
(2) IR-Fuzz adopts the branch distance-based measure to boost
its efficiency in generating test cases, which requires much
fewer mutations to reach a target branch. (3) IR-Fuzz leverages
the energy allocation mechanism to flexibly assign fuzzing
resources, saving overall fuzzing time.

Next, we further measure the efficiency of IR-Fuzz by
counting how many test cases are generated over time. Specif-
ically, each contract is run for 120 seconds in the experiment.
We show the average statistics in Fig. 7(b), where the x-
axis represents how long a contract is fuzzed, and the y-axis
denotes the number of test cases generated during fuzzing.
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TABLE IV Accuracy and coverage comparison (%) be-
tween IR-Fuzz and its variants.

Method
Vulnerability Type (Accuracy)

Coverage
TP BN DG FE UC RE OF SE

IR-Fuzz-WSG 90.01 93.38 94.48 92.73 96.70 94.80 93.86 96.42 62.03
IR-Fuzz-WDM 89.94 93.56 93.31 92.15 96.26 94.51 92.02 94.12 69.89
IR-Fuzz-WEA 89.22 91.00 91.86 91.00 96.04 92.49 91.60 95.82 42.63

IR-Fuzz 90.05 93.79 95.06 94.48 98.03 98.73 98.73 99.73 85.65

From Fig. 7(b), we can learn that (1) IR-Fuzz significantly
generates more test cases than sFuzz within the same time
interval. On average, IR-Fuzz generates approximately 350
test cases per second, 290 more than sFuzz; (2) The number of
test cases generated by IR-Fuzz has increased rapidly over time
while the process is slow in sFuzz. These evidences reveal that
IR-Fuzz can efficiently generate test cases for fuzzing smart
contracts.

E. Ablation Study (RQ4)

By default, IR-Fuzz adopts the proposed sequence gener-
ation strategy to generate the function invocation sequence.
It is interesting to see the effect of removing this strategy.
Moreover, IR-Fuzz utilizes a branch distance-based measure
to select and evolve test cases iteratively. We are curious
about how much this method contributes to the performance
of IR-Fuzz. Finally, IR-Fuzz introduces an energy allocation
mechanism to flexibly guide fuzzing resource allocation. It
is useful to evaluate the contributions of this mechanism by
removing it from IR-Fuzz as well. In what follows, we conduct
experiments to study the three components, respectively.

Study on Sequence Generation Strategy. We removed
the sequence generation strategy (introduced in §IV-A) from
IR-Fuzz and replaced it with a random sequence construction
method. This variant is denoted as IR-Fuzz-WSG, where WSG
is short for without sequence generation strategy. Quantitative
results are summarized in Table IV. We can observe that the
performance of IR-Fuzz is significantly better than IR-Fuzz-
WSG. For example, on the reentrancy detection task, IR-Fuzz
achieves 3.97% and 23.62% improvement in terms of accuracy
and branch coverage, respectively.

Study on Branch Distance-based Seed Evolution
Paradigm. To evaluate the effect of the branch distance-
based seed evolution paradigm, we analyze the performance of
IR-Fuzz with and without it, respectively. Towards this aim,
we modify IR-Fuzz by removing this mechanism, utilizing
random test case generation. This variant is denoted as IR-
Fuzz-WDM, where WDM is short for without the distance
measure mechanism. The empirical findings are demonstrated
in Table IV, where we can observe that the accuracy and
branch coverage of IR-Fuzz-WDM are lower than IR-Fuzz
by an average of 2.03% and 15.76% on the eight types
of vulnerabilities. This reveals that incorporating the branch
distance-based measure is necessary and critical to improve
the performance of IR-Fuzz.

Study on Energy Allocation Mechanism. We further
investigate the impact of the energy allocation mechanism
in IR-Fuzz. Specifically, we remove this mechanism while
replacing it with assigning fuzzing energy equally to every

contract Gamble {
uint256 private number;
uint256 phase;
address winner;

constructor (uint256 num) {
require(num < 100);
number = num;
phase = 0; } /* 0: guess 1: start a new game */

function guess(uint256 fee) payable external {
require (phase == 0 && fee == 10 finney);
if (address(this).balance == number * 10 finney) { /* Ether strict equality */

winner = msg.sender;
phase = 1; }

}

function newGame(uint256 num) external {
require(phase == 1 && msg.sender == winner);
winner.transfer(address(this).balance);
require(num < 100);
number = num;
phase = 0; }

}
}

1
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8
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11
12
13
14
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Fig. 8 An example contract where IR-Fuzz detects a new
kind of vulnerability, i.e., dangerous Ether strict equality.

branch. This new variant is termed as IR-Fuzz-WEA, namely
IR-Fuzz without an energy allocation mechanism. The com-
parison results are presented in Table IV, where all eight types
of vulnerabilities are involved. We can clearly see that the
accuracy and branch coverage of IR-Fuzz-WEA are lower than
IR-Fuzz by an average of 4.87% and 43.02%. This suggests
that the energy allocation mechanism contributes to significant
performance gains in IR-Fuzz.

F. Case Study

We now present a case study on a new vulnerability (i.e.,
dangerous Ether strict equality). To our knowledge, existing
investigated methods cannot expose this vulnerability yet.
Fig. 8 shows a simplified example that implements a gambling
game. A user can join the game by transferring participation
fees with 10 finney. If a user is the number-th participant, he
will become the winner of the game (line 14). The winner can
obtain the whole balance of the contract by calling newGame()
and starting a next round of the game. However, if the contract
owner had pre-stored some Ethers in the contract, the balance
of the contract will never be equal to the sum of users’
participation fees (namely, the branch condition at line 14 will
never be satisfied). This indicates that there will be no winner
in the game, and the participation fees in the contract will be
permanently frozen.

We empirically checked this contract using existing tools
and manually inspected their generated reports. Unfortunately,
the dangerous Ether strict equality vulnerability cannot yet be
detected by these methods. In contrast, IR-Fuzz successfully
identifies this vulnerability. Specifically, T1: IR-Fuzz infers
the function invocation sequence as: guess()→ newGame()
and generates a test case to cover the requirement at line 13.
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T2: Record the instruction BALANCE when the fuzzing process
reaches line 14. T3: Check if BALANCE is followed by the
jump or compare instructions. T4: IR-Fuzz finds that line 14 is
reachable and the vulnerability-specific patterns of dangerous
Ether strict equality are triggered, outputting that the contract
has such a vulnerability.

VI. DISCUSSION

In this section, we discuss the limitations of IR-Fuzz and
potential future improvements.

Sequence Generation Analysis. IR-Fuzz generates the
ordered function invocation sequence with the guidance of
the order priority computation rules mentioned in §IV-A. We
calculate the order priority of function calls in the sequence
by analyzing the data flow dependencies of global variables.
In the case that several functions perform frequent write and
read operations on global variables, the calculation of function
order priority may bring a certain amount of computation
overhead.

Seed Mutation Optimization. IR-Fuzz refers to several
seed mutation strategies adopted from AFL, usually using bit
manipulation techniques, e.g., bit flipping. However, such a
method still bears the problem of generating repetitive and
invalid test cases. Moreover, arbitrarily mutating bits of a
test input may ignore certain critical parts of the input that
should not be mutated, reducing the probability of hitting
the branches guarded by strict conditions. Therefore, in the
subsequent work, we may focus on enabling the fuzzer not to
mutate these crucial parts of a test case, making the fuzzing
trigger deep and complex states.

VII. CONCLUSION

In this paper, we present IR-Fuzz, a fully automatic fuzzing
framework equipped with invocation ordering and crucial
branch revisiting, to detect vulnerabilities in smart contracts.
Specifically, we propose a sequence generation strategy con-
sisting of invocation ordering and prolongation to generate
the high-quality function invocation sequence, enforcing the
fuzzer to trigger complex and deep states. Furthermore, we
design a seed optimization paradigm that engages a branch
distance-based measure to evolve test cases iteratively to-
wards a target branch, alleviating the randomness of test
case generation. Finally, we develop an energy allocation
mechanism to flexibly guide fuzzing resource allocation to-
wards rare and vulnerable branches, improving the overall
fuzzing efficiency and branch coverage. Experimental results
demonstrate that IR-Fuzz significantly surpasses state-of-the-
art fuzzing approaches by a large margin. Our implementation
and dataset are released to facilitate future research. The
presented techniques in IR-Fuzz might also be transferable
to fuzz other software programs.
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