
TRacer: Scalable Graph-based Transaction Tracing for
Account-based Blockchain Trading Systems

Zhiying Wu
∗

Jieli Liu
∗

wuzhy95@mail2.sysu.edu.cn

liujli7@mail2.sysu.edu.cn

Sun Yat-sen University

Guangzhou, Guangdong, China

Jiajing Wu
†

wujiajing@mail.sysu.edu.cn

Sun Yat-sen University

Guangzhou, Guangdong, China

Zibin Zheng

zhzibin@mail.sysu.edu.cn

Sun Yat-sen University

Guangzhou, Guangdong, China

ABSTRACT
Security incidents such as scams and hacks, have become a major

threat to the health of the blockchain ecosystem, causing billions

of dollars in losses each year for blockchain users. To reveal the

real-world entities behind the pseudonymous blockchain account

and recover the stolen funds from the massive transaction data,

much effort has been devoted to tracing the flow of illicit funds in

blockchains recently. However, most current tracing approaches

based on heuristics and taint analysis have limitations in terms of

universality, effectiveness, and efficiency. This paper models the

blockchain transaction records as a blockchain transaction graph

and tackles blockchain transaction tracing as a graph searching

task. We propose TRacer, a scalable transaction tracing tool for

account-based blockchains. To infer the relevance between accounts

during graph searching, we develop a novel personalized PageRank

method in TRacer based on the directed, weighted, temporal, and

multi-relationship blockchain transaction graphs. To the best of our

knowledge, TRacer is the first intelligent transaction tracing tool

in account-based blockchains that can handle complex transaction

actions in decentralized finance (DeFi). Experimental results and

theoretical analysis prove that TRacer can complete the transac-

tion tracing task effectively at a low cost. All codes of TRacer are

available at GitHub
1
.
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1 INTRODUCTION
The rapid development of blockchain technology has aroused great

attention of businesses and researchers recently. By incorporat-

ing peer-to-peer networks, cryptography, and consensus protocols,

blockchain [28] achieves a decentralized environment for trading

and brings new vitality to traditional industries. Particularly, the

typical account-based blockchain platform Ethereum has opened

the era of blockchain 2.0 through the introduction of smart con-

tracts, giving blockchain various possibilities of application. How-

ever, the pseudonymous nature of blockchain has also attracted

a variety of illegal transaction activities like financial scams and

hacks. According to a recent report of Chainalysis [8], a famous

blockchain security company, the losses caused by illegal transac-

tion activities in cryptocurrency-related businesses have exceeded

$14 billion during 2021. Along with the boom of DeFi, most of these

illegal trading activities and malicious attacks are conducted in

the account-based blockchain trading systems like Ethereum and

Binance Smart Chain (BSC) [6] since the boom of DeFi.

With the publicly accessible blockchain transaction data, various

technologies have been developed to combat financial crimes in

blockchain trading systems [21], and these technologies can be

divided into two categories, namely proactive (pre-trade) risk
warning and remedial (post-trade) money tracking. Proactive
risk warning refers to evaluating the risk of new transactions ac-

cording to the historical behaviors of the related accounts and the

existing label information. Data-based fraud detection [22], attack

detection [24], and other types of illegal transaction detection tech-

nologies [19] can be categorized in this scope. However, as shown

in Figure 1(a), although proactive early warning can raise warn-

ings for risky transactions before the occurrence of the trade, it

cannot prevent the criminals who has already gotten the money

from laundering and cashing out of the ill-gotten gains from ex-

changes since the pseudonymous and distributed nature of block-

chain systems. Therefore, a wealth of efforts have been devoted

to the remedial money tracking of the ill-gotten gains [9, 23, 26],

aiming to deanonymize the related money flows and help victims

recover the losses.
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(a) Proactive risk warning in blockchain

(b) Remedial money tracking in blockchain

Figure 1: (a) Proactive risk warning in blockchain raises
warnings for risky transactions. (b) Remedial money track-
ing in blockchain traces the money flow among the source
and the targets possessing the laundered funds, also provid-
ing evidence to catch the criminals off-chain.

Figure 1(b) shows a toy example of the remedial money tracing.

Generally speaking, transaction tracing starts from a source and

traces the flow of money to the targets. Here, the source represents

a tracing object such as the blockchain account of a fraudster de-

camping with a large number of ill-gotten gains, and the targets

indicate the accounts used to gather the “clean” funds awaiting cash-

ing out. Though the identity information of accounts is unknown

in blockchain systems, once we locate target deposit addresses of

exchanges that enforce Know-Your-Customer (KYC) processes, the

related criminals can be identified and caught off-chain according

to the KYC information provided by the exchanges [20].

Current approaches for blockchain transaction tracing [14, 16,

18, 27] are mainly based on rule-based heuristics and taint analy-

sis [13]. However, as an emerging research topic, existing trans-

action tracing methods have limitations in terms of universality,

effectiveness and efficiency. Particularly, most existing heuristic

methods are designed for specific scenarios based on experts ex-

perience, and cannot be automatically and intelligently applied to

various blockchain transaction scenarios. In addition, the time cost

and end conditions of existing methods, especially those requiring

manual verification and intervention, is not definite or well defined,

making their time efficiency and effectiveness difficult to guarantee.

Besides, the popularity of DeFi in account-based blockchains like

Ethereum and BSC brings many new kinds of semantics to block-

chain transaction actions, leading to high barriers to the transaction

tracing task.

In this paper, we propose the first general tool called TRacer,
which is a transaction Tracing in account-based blockchain trading

systems incorporating Personalized PageRank-based technologies.

Referring to the framework displayed in Figure 2, TRacer first mod-

els the blockchain transaction data including the complex DeFi

operation actions into a directed, weighted, temporal, and multi-

relationship graph, and then conducts local community detection

on a subgraph around the risky seed obtained by graph expansion.

The output small-scale community is the traced money flow graph

and can be further audited by experts. Moreover, we propose a

novel ranking algorithm based on personalized PageRank [15] to

reveal the relevance between the source and other accounts in block-

chain systems. We introduce approximate personalized PageRank

(APPR) [1, 2, 25] to obtain the approximate solution of personal-

ized PageRank, which can improve the scalability of the algorithm.

Both graph expansion and local community detection in TRacer

are based on the proposed ranking algorithm. Experimental results

demonstrate the performance of TRacer on transaction tracing in

account-based blockchains. The main contributions of this work

can be summarized as follows:

• To the best of our knowledge, we are the first to study intelli-

gent transaction tracing in account-based blockchain trading

systems like Ethereum, which is an urgent problem with the

booming security incidents in these systems.

• We design and implement a general blockchain transaction

tracing tool named TRacer, which is able to incorporate the

complex semantics of transaction actions in DeFi. Particu-

larly, a novel personalized PageRank method is employed to

estimate the relevance score of accounts in TRacer.

• We thoroughly evaluate the performance of TRacer via both

theoretical analysis and experimental evaluation, and the

results demonstrate the effectiveness and the scalability of

TRacer. We also contribute a benchmark dataset verified by

several security companies for evaluating the transaction

tracing methods.

2 RELATEDWORK
To combat crimes in blockchain, transaction tracing is a critical task

for blockchain security companies and the community. Current

methods for blockchain transaction tracing are mainly designed for

Bitcoin-like blockchain systems and heavily rely on expert experi-

ence. The most widely used transaction tracing method is Breath

First Search (BFS) [16, 27], and many related tools like skytrace
2

and coinholmes
3
are available. Since BFS is insufficient to reveal

the audit priority of different money tracking directions, the taint

analysis technologies [9, 13, 18] have been proposed for bitcoin

tracing according to the amount value and the order of multiple

outputs in each transaction. However, these technologies rely on

expert analysis and cannot automatically output the money flows

from the source to the targets.

Based on the co-spending clustering heuristic in Bitcoin that

the input addresses of the same transaction belong to the same

entity [17], Huang et al. proposed to track the bitcoin flow of ran-

somware to when the money is being cashed out [11]. Meiklejohn

et al. [12] utilized the change address heuristic to deanonymize

the money flows in Bitcoin. Moreover, some rule-based transac-

tion tracing methods were proposed for cross-chain scenarios and

mixing scenarios. For example, Yousaf et al. traced the cross-chain

money flows by identifying the transactions which happen close

in time and have similar amount value [26]. However, these rule-

based methods are designed for specific protocols and they are

inapplicable to transaction tracing in account-based blockchains.

Personalized PageRank models the relevance of nodes in a net-

work to a specific node, and has been widely used in web search

2
https://www.certik.com/skytrace

3
https://trace.coinholmes.com



TRacer: Scalable Graph-based Transaction Tracing for Account-based Blockchain Trading Systems KDD ’22, August 14–18, 2022, Washington DC, USA

Expert audi�ng

Graph expansion

Graph construc�on

Local community detec�on
Risky source

Push

Rank

Special a�ributes:
� Timestamp
� Transfer value

� Edge pa�erns
Xfer
Swap

Pop

Output?
Yes

No

edges(v)

(+)

Seed
Current node v
Expanded node

Edges(v)

Expand

Transac�on tracing

0.3ETH, t4

1000DAI, t4

2ETH, t1

1.6ETH, t3

1000DAI, t5

0.8ETH, t6

0.7ETH, t7

0.1ETH, t2

1000DAI, t8

0.79ETH, t10

0.69ETH, t11

1000DAI, t9

0.3ETH, t9

0.29ETH, t12

0.1ETH, t0

Blockchain data

Extract

Figure 2: The framework of TRacer.

[15], recommendations [10], etc. Recently many variants and ef-

ficient approximations of personalized PageRank have been pro-

posed for large-scale applications [7]. In this paper, we model the

account-based blockchain data as a directed, weighted, temporal,

and multi-relationship graph, and formalize the transaction tracing

problem as a graph searching problem. We develop a scalable and

intelligent transaction tracing tool for account-based blockchains

based on personalized PageRank and its approximate solutions.

3 PRELIMINARIES
3.1 Account-based blockchains
Traditional Bitcoin-like blockchains are based on the transaction-

centered model [21] whose building block is unspent transaction

output (UTXO), which is an indivisible cryptocurrency chunk locked

to a specific owner. Each transaction has multiple inputs made up

of UTXOs and multiple outputs, and there is a change address in

the outputs used to receive the change.

Different from UTXO-based blockchains, account-based block-

chain systems like Ethereum and BSC have the concept of account

similar to that of traditional banking accounts. There are two kinds

of accounts in account-based blockchains, namely external owned

account (EOA) and smart contract account. Accounts are the ini-

tiators of blockchain transactions and record some dynamic state

information including account balance. Especially, each smart con-

tract account is associated with a piece of executable bytecode.

There are also two types of transactions in the systems. A trans-

action triggered by an EOA is called external transaction, while a

transaction triggered by an invocation of the function in a smart

contract account is called internal transaction. In addition, an EOA

can invoke functions of a smart contract in an external transaction

and further result in many internal transactions. Transaction hash

consisting of a set of numbers and letters is used to uniquely iden-

tify a particular transaction from or to an EOA. Due to the support

of smart contract, everyone can take the advantage of blockchain

technology and build DApp projects in account-based blockchains.

Besides the native currency in blockchain systems, there are many

third-party tokens representing assets, currency, or access rights of

projects in the account-based blockchain ecosystem. To facilitate to-

ken development and exchange, some token standards are launched

in blockchain trading systems, e.g., the ERC20 token standard in

Ethereum. There are also many DeFi DApps that offer financial

services such as token lending and exchange.

3.2 Problem Definition
The transaction tracing task in account-based blockchain trading

systems aims to trace the money flows from a given source to the

targets that gather the money awaiting cashing out and point the

priority money flows for auditors to further verify manually. By

modeling the blockchain transaction relationships as graph where

nodes indicate the accounts and edges indicate the money flow

relationships, we can formulate the transaction tracing problem as

follows.

Problem formulation. Given a source node 𝑠 in a transaction
graph 𝐺 , the goal is to search a connected money transfer subgraph
𝐺𝑠 from 𝑠 to its money flow targets around the neighborhood of 𝑠 .
𝐺𝑠 should contain as many target nodes as possible in the smallest
possible size of graph for manual verification.

3.3 Approximate Personalized PageRank
Personalized PageRank. The personalized PageRank vector 𝒑𝑠
of a source node 𝑠 in a graph 𝐺 = (𝑉 , 𝐸) is defined as the unique

solution of Equation 1, i.e.,

𝒑𝑠 = 𝛼𝒆𝑠 + (1 − 𝛼)𝒑𝑠𝑀, (1)

where 𝛼 is a teleport constant between 0 and 1, 𝒆𝑠 is the indicator
vector with a single nonzero element of 1 at 𝑠 ,𝑀 is a transition ma-

trix and𝑀 = 𝐷−1𝐴where𝐷 and𝐴 are degree matrix and adjacency

matrix. The definition of personalized PageRank is equivalent to

simulating a random walk starting from 𝑠 , and 𝒑𝑠 is a probability
vector where 𝒑𝑠 (𝑢) is the probability that a certain random walk

beginning at 𝑠 terminates at 𝑢.
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Approximate personalized PageRank (APPR). The first al-
gorithm proposed to calculate personalized PageRank is power it-

eration [15], which requires high time complexity and not effective

in large-scale networks. Therefore, various efficient approximate

solutions of personalized PageRank have been proposed, and the

most widely used one is called the “local push” algorithm [1]. This

algorithm starts with all probability residual on the source node

of the graph, and pushes the residual to the neighbors iteratively.

During the iterations, the residual of each node can be transformed

into the relevance to the source node. Finally an estimate of 𝒑𝑠
can be obtained. In the algorithm, a residual vector 𝒓𝑠 is used to

maintain the residual, where 𝒓𝑠 (𝑢) denotes the residual of node
𝑢. By setting 𝒑𝑠 = ®0 and 𝒓𝑠 = 𝒆𝑠 for initialization, the local push
procedure updates the value of 𝒑𝑠 (𝑢) as follows:{

𝒑𝑠 (𝑢) = 𝒑𝑠 (𝑢) + 𝛼𝒓𝑠 (𝑢)
𝑟 (𝑣) = 𝑟 (𝑣) + (1 − 𝛼)𝑟 (𝑢)/𝑑 (𝑢),

, (2)

where 𝑣 ∈ 𝑁 (𝑢) is the neighbor of 𝑢, and 𝑑 (𝑢) is the degree of 𝑢.
The local push procedure stops when the residual of each node in

𝐺 is within 𝜖 .

4 PROPOSED APPROACH
This section introduces the architecture, implementation, and theo-

retical analysis of TRacer.

4.1 Architecture Overview
TRacer consists of three main modules including graph construc-

tion, graph expansion, and local community detection. Each module

is described as follows:

• Graph construction: This module models the money trans-

fer relationships between accounts as directed, weighted,

temporal, and multi-relationship graphs.

• Graph expansion: Since the blockchain data contains bil-

lions of transactions which is too large for common graph

algorithms, this module aims to find a relevant subgraph

from a risky source. The module contains four operations:

Expand collects all edges related to a given node, Push
merges the collected edges to the subgraph, Rank computes

the relevance of nodes in the subgraph to the source, and Pop
selects a node for expanding. The graph expansion process

terminates when the end condition is met.

• Local community detection: ThismoduleExtracts a local
community of the source node from the expended subgraph,

in which nodes have higher relevance to the source than

nodes out of the community.

4.2 Graph construction
Since there aremultiple types of tokens in account-based blockchain

trading systems, we formulate the money transfer relationships

among accounts into a directed, weighted, temporal, and multi-

relationship graph𝐺 = (𝑉 , 𝐸), where𝑉 is the node set representing

accounts, 𝐸 is the edge set representing the token transfer relation-

ships. An edge 𝑒 = (𝑢, 𝑣,𝑤, 𝑡, 𝑏, ℎ) denotes that account 𝑢 transfer

𝑤 units token 𝑏 to account 𝑣 at timestamp 𝑡 with a transaction hash

ℎ. We define mapping functions 𝑓𝑠𝑟𝑐 , 𝑓𝑡𝑔𝑡 , 𝑓𝑎𝑚𝑡 , 𝑓𝑡𝑠 , and 𝑓𝑠𝑦𝑚 to

map each edge to its source, target, amount, timestamp, and token

(a) The Xfer pattern (b) The Swap pattern

Figure 3: (a) Xfer: Sending or receiving tokens. (b) Swap: Ex-
changing tokens for other kinds of tokens.

type respectively. There are multiple types of edges indicating the

transfer relationships of different tokens.

In addition, many blockchain services such as decentralized ex-

changes act as the intermediary for token swap. To reveal the token

flows after users interact with these services, we categorize the

money transfer relationships into two patterns, namely Xfer and
Swap. As shown in Figure 3(a), accounts send or receive tokens

through the Xfer pattern, and the related DeFi actions [24] in this

pattern include: 1) transfer: An account sends an amount of to-

ken to another account, 2) minting: A token contract mints an

amount of token to an account, and 3) burning: An account burns

an amount of token. While accounts exchange tokens for other

kinds of tokens through the Swap pattern as shown in Figure 3(b),

including three related DeFi actions: 1) add liquidity: An account

deposits an amount of token to a DeFi app, and receives a certain

amount of Liquidity Provider (LP) token back, 2) remove liquid-
ity: An account sends an amount of LP token to a DeFi app for

destroying and gets a certain amount of other tokens back, and 3)

trade: An account sells an amount of token A in a DeFi app for a

certain amount of token B.We identify the transaction relationships

involving both the sending of tokens and the receiving of another

kind of tokens with the same hash as the relationships in the Swap

pattern, and otherwise as the relationships in the Xfer pattern.

4.3 Graph Expansion
The graph expansion module aims to obtain a relevant subgraph

expanded from a given seed via iterating four operations shown

in Figure 2. In what follows, we introduce the design of these four

operations.

4.3.1 Push and Rank: Transaction Tracing Rank. The Push operation
merges the expanded edges to the subgraph in each iteration. While

Rank calculates the relevance of nodes in the subgraph to the source.
We introduce APPR to calculate the node relevance. More specif-

ically, the Rank operation executes the local push procedure for the

incremental update of node relevance. Based on the characteristics

of blockchain transaction graph in account-based blockchains, we

propose a novel local push algorithm named Transaction Tracing
Rank (TTR) to compute the node relevance in blockchain transac-

tion graph. We develop four local push strategies in TTR, namely

tracing tendency, weighted pollution, temporal reasoning,
and token redirection. We use 𝑟𝑠 (𝑢, 𝑡, 𝑏) to denote the residual of
node𝑢 brought from token 𝑏 ∈ 𝐵 at timestamp 𝑡 ∈ Γ, where Γ is the

timestamp set and 𝐵 is the token symbol set in the subgraph. In this

way, the local push procedure in TTR is described as Algorithm 1.

During initialization, a part of the residual of node 𝑢 is transformed

into the relevance (line 1). Moreover, other parts of the residual are

pushed to the neighbors according to the four strategies.
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Algorithm 1 TTR local push

Input: Node 𝑢, edges 𝐸 (𝑢) related to 𝑢, edge mapping functions

𝑓𝑠𝑟𝑐 , 𝑓𝑡𝑔𝑡 , 𝑓𝑎𝑚𝑡 , 𝑓𝑡𝑠 , 𝑓𝑠𝑦𝑚 , rank 𝒑𝑠 , residual 𝑟𝑠 , timestamps Γ,
token symbols 𝐵, teleport constant 𝛼 , and tracing tendency 𝛽 .

Output: The updated 𝒑𝑠 and 𝑟𝑠 .
1: 𝒑𝑠 (𝑢) = 𝒑𝑠 (𝑢) + 𝛼

∑
𝑏∈𝐵

∑
𝑡 ∈Γ

𝑟𝑠 (𝑢, 𝑡, 𝑏)

2: 𝑟 ′𝑠 (𝑢, 𝑡, 𝑏) = 𝑟𝑠 (𝑢, 𝑡, 𝑏), 𝑟𝑠 (𝑢, 𝑡, 𝑏) = 0, ∀𝑡 ∈ Γ,∀𝑏 ∈ 𝐵.
3: for (𝑡, 𝑏) ∈ Γ × 𝐵 do
4: 𝐸𝑜𝑢𝑡 = {𝑒 ∈ 𝐸 (𝑢) |𝑓𝑡𝑠 (𝑒) > 𝑡 ∧ 𝑓𝑠𝑟𝑐 (𝑒) = 𝑢 ∧ 𝑓𝑠𝑦𝑚 (𝑒) = 𝑏}
5: 𝐸𝑖𝑛 = {𝑒 ∈ 𝐸 (𝑢) |𝑓𝑡𝑠 (𝑒) < 𝑡 ∧ 𝑓𝑡𝑔𝑡 (𝑒) = 𝑢 ∧ 𝑓𝑠𝑦𝑚 (𝑒) = 𝑏}
6: for 𝐸 ′ ∈ {𝐸𝑜𝑢𝑡 , 𝐸𝑖𝑛} do
7: 𝛾 = 𝛽 𝑖 𝑓 𝐸 ′ == 𝐸𝑜𝑢𝑡 𝑒𝑙𝑠𝑒 (1 − 𝛽)
8: for 𝑒 ∈ 𝐸 ′ do
9: 𝐸 ′𝜌 = 𝜌 ({𝑒}, 𝐸 (𝑢)) // obtained by Equation 3

10: for 𝑒 ′ ∈ 𝐸 ′𝜌 do

11: Δ =
(1−𝛼)𝛾 𝑓𝑎𝑚𝑡 (𝑒)

|𝐸′
𝜌 |

∑
𝑒′′∈𝐸′

𝑓𝑎𝑚𝑡 (𝑒′′) 𝑟
′
𝑠 (𝑢, 𝑡, 𝑏)

12: 𝑣 = 𝑓𝑠𝑟𝑐 (𝑒 ′) 𝑖 𝑓 𝐸 ′ == 𝐸𝑖𝑛 𝑒𝑙𝑠𝑒 𝑓𝑡𝑔𝑡 (𝑒 ′)
13: 𝑟𝑠 (𝑣, 𝑓𝑡𝑠 (𝑒 ′), 𝑓𝑠𝑦𝑚 (𝑒 ′))+ = Δ
14: end for
15: end for
16: 𝑟𝑠 (𝑢, 𝑡, 𝑏) = (1 − 𝛼)𝛾𝑟 ′𝑠 (𝑢, 𝑡, 𝑏) if |𝐸 ′ | == 0.
17: end for
18: end for
19: return 𝒑𝑠 , 𝑟𝑠

Tracing tendency. Since amoney transfer relationship between

accounts is directed, the attention to in-degree neighbors and out-

degree neighbors during the local push procedure can be different.

In most cases, tracing for the destinations of money flows oriented

from a particular source needs to pay more attention to the out-

degree neighbors. Therefore, we define an attention coefficient 0 ≤
𝛽 ≤ 1. During the residual propagation, the out-degree neighbors
in a transaction relationship can get a higher residual when 𝛽 > 0.5,
and the in-degree neighbors can receive a higher residual when

𝛽 < 0.5. As Figure 4(a) shows, the in-degree neighbors and the

out-degree neighbors obtain a different weight in this strategy. Line

6-17 in Algorithm 1 describe the residual propagation procedure of

different directions with the attention coefficient assigned at line 7.

Weighted pollution. In blockchain transaction graph, the stren-
gth of money transfer relationships is weighted by the transaction

amount. For each node, a neighbor trading a larger amount of

money with this node is considered to be more relevant to the

node. Therefore, in this strategy we take the weight of the money

transfer relationships into account. Figure 4(b) shows an exam-

ple of this strategy that neighbors of 𝑢 associated by edges with

greater weight can obtain more residual during the propagation.

In this way, the residual of a node is distributed to each neighbor

associated by edge 𝑒 ∈ 𝐸 ′ according to the ratio of edge weight

𝑓𝑎𝑚𝑡 (𝑒)/
∑
𝑒′′∈𝐸′ 𝑓𝑎𝑚𝑡 (𝑒 ′′) as shown in Algorithm 1 line 11, where

𝐸 ′ is the set of edges.
Temporal reasoning. Blockchain transactions are recorded in

blocks chronologically. Each block contains a specific timestamp.

With the timestamp information, tracing for the targets of money

flows usually follows the paths with increasing timestamps, while

Figure 4: (a) Tracing tendency. Different attention is as-
signed to the out-degree neighbors and in-degree neigh-
bors. (b) Weighted pollution. The higher the edge weight,
the closer the relationship. (c) Temporal reasoning. Tracing
money flow in chronological order, and 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 in
this example. (d) Token redirection. Uncovering the token
flows even though there exist complex DeFi actions in the
Swap pattern.

tracing back to the source of money flows follows the paths with

decreasing timestamps. Therefore, in this strategy we take the

temporal information into consideration. For example in Figure

4(c), the residual from the input transaction at 𝑡2 is pushed out

through the outgoing edges after 𝑡2 and the incoming edge before

𝑡2. Algorithm 1 line 4-5 show the edge set for residual propagation

that satisfies this strategy. Moreover, the residual is pushed to the

node itself if the edge set is empty in Algorithm 1 line 16, indicating

that the funds have not been transferred from the node.

Token redirection. This strategy makes the effort to uncover

the flow of interesting tokens based on the transaction patterns

of Xfer and Swap. As Figure 4(d) shows, the residual of node 𝑢

brought from the USDC token in an Xfer edge with hash1 should

be pushed through the edges with hash3 and hash4, rather than the

USDC outgoing edge with hash2. Since the edges with hash2 are in

a Swap pattern and swapped the USDC token into ETH. To achieve

the redirection of token flows in complex transaction actions, we

define a recursive function 𝜌 (·, ·) which can find the initial state of

a set of incoming edges before the Swap operations and the final

state of a set of outgoing edges after the Swap operations within

a node. For example, the initial state before Swap of the incoming

edge with hash2 in Figure 4(d) is the incoming edge with hash1,

and the final state after Swap of the outgoing edge with hash2 is the

outgoing edges with hash3 and hash4. More specifically, as shown

in Algorithm 1 line 8-14, the residual of a specific token should be

pushed through the redirected edges. Therefore, 𝜌 (·, ·) satisfies the
following recursive equation:

𝜌 (E, 𝐸 (𝑢)) = E𝑥 𝑓 𝑒𝑟 ∪ 𝜌 (
⋃

𝑒∈E𝑠𝑤𝑎𝑝

𝑟𝑒𝑑𝑖𝑟𝑒𝑐𝑡 (𝑒), 𝐸 (𝑢)), (3)

where E is a set of edges for redirection, E𝑥 𝑓 𝑒𝑟 ⊂ E is a set of

Xfer edges, E𝑠𝑤𝑎𝑝 ⊂ E is a set of Swap edges, and 𝑟𝑒𝑑𝑖𝑟𝑒𝑐𝑡 (·)
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Algorithm 2 TTR-based Local Community Detection

Input: The source node 𝑠 , the subgraph of graph expansion 𝐺𝑠 =

(𝑉𝑠 , 𝐸𝑠 ), and the TTR score vector 𝒑𝑠 .
Output: The local community with nodes set 𝑆 .

1: 𝑆 = {𝑠}
2: 𝑆 = 𝑉𝑠 \ 𝑆
3: while Φ(𝑆) ≥ 𝜑 do
4: 𝑢 = argmax𝑣∈𝑆 𝒑𝑠 (𝑣)
5: 𝑆 = 𝑆 ∪ {𝑢}
6: 𝑆 = 𝑆 \ {𝑢}
7: end while
8: return 𝐺𝑠 .𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑆)

selects the edges in the token types before/after Swap for incom-

ing/outgoing edges 𝑒 ∈ E𝑠𝑤𝑎𝑝 from edges 𝐸 (𝑢) related to 𝑢. Espe-

cially, 𝜌 (∅, 𝐸 (𝑢)) = ∅.

4.3.2 Pop and Expand: Greedy Selection. The Pop operation selects

a node from the subgraph for the next round expansion iteration,

and the Expand operation expands from a node by collecting all

the related edges of this node. Note that the graph expansion in

TRacer terminates when the residual of all nodes in the subgraph

is below a threshold 𝜖 ∈ (0, 1), i.e.,

max
𝑢∈𝑉

(
∑︁
𝑡 ∈Γ

∑︁
𝑏∈𝐵

𝑟𝑠 (𝑢, 𝑡, 𝑏)) < 𝜖. (4)

Thus we proposed the greedy selection for the Pop operation to

achieve the condition in Equation 4, i.e., the Pop operation selects

the node in the subgraph with the highest residual.

4.4 Local Community Detection
Referring to Figure 2, the Extract operation employs local commu-

nity detection to construct a small-scale local community from the

expanded graph. For a particular risky source node, the importance

rank of the nodes within the local community is significantly higher

than the external nodes, making it easy for further expert auditing.

The less conductance [1, 2] of the local community, the higher

rank of the nodes in the local community than external nodes, in

which the conductance is:

Φ(𝑆) = 𝒑𝑠 (𝜕(𝑆))
𝒑𝑠 (𝑆)

, (5)

where 𝑆 denotes the nodes of the local community, the boundary

𝜕(𝑆) = {𝑣 | (𝑢, 𝑣) ∈ 𝐸 ∧𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆}, 𝑆 is the complement of 𝑆 and

𝒑𝑠 (𝑆) =
∑
𝑢∈𝑆 𝒑𝑠 (𝑢) denotes the sum of rank over each node in the

local community. Given a specific threshold 𝜑 > 0 for conductance,

the local community detection finds the local community satisfying:

Φ(𝑆) < 𝜑. (6)

With 𝑆 = {𝑠} as the initialization, Algorithm 2 describes how to

find the local community satisfied the Equation 6.

4.5 Theoretical properties
In this part, we discuss the theoretical properties of TRacer, and

prove that our method is able to finish the transaction tracing task

in large-scale transaction graphs with a constant time cost. Besides,

we discuss the upper limit of the tracing depth in TRacer.

As the description in Proposition 4.1, the cost of TRacer is inde-

pendent of the graph size, indicating that TRacer is able to trace on

the large-scale transaction graph with a low cost.

Proposition 4.1. The iteration of graph expansion runs 𝑂 ( 1
𝜖𝛼 )

times, and the number of nodes with non-zero values in the output TTR
score is at most𝑂 ( 1

𝜖𝛼 ), which guarantees the cost of local community
detection is 𝑂 ( 1

𝜖𝛼 ).

Proof. This follows from Andersen et al. [1], Lemma 2. □

In addition, what depth can TRacer trace in a transaction graph

from the source node is described in Proposition 4.2.

Proposition 4.2. An 𝑛-hop neighbor of the source node can be
found in the graph obtained by graph expansion, in which 𝑛 satisfies:

𝑛 ≤ 𝑙𝑜𝑔(𝜖)
𝑙𝑜𝑔(1 − 𝛼) + 1. (7)

Proof. In order to maximize the rank of the neighbors far away

from the source node, 𝛼 needs to be as small as possible, and 𝛽 needs

to be as close as possible to 0 or 1, which ensures that the residual

can be pushed to a specific direction. Let the sum of residual pushed

from the source node 𝑠 to the 𝑛-hop neighbors be 𝑟 (𝑛) . Considering
𝛽 = 1 here, 𝑟 (𝑛) can be obtained by:

𝑟 (1) = (1 − 𝛼),
𝑟 (2) ≥ (1 − 𝛼) (𝑟 (1) − 𝑘1𝜖) = (1 − 𝛼)2 − (1 − 𝛼)𝑘1𝜖,
......

𝑟 (𝑛) ≥ (1 − 𝛼) (𝑟 (𝑛−1) − 𝑘𝑛−1𝜖)

= (1 − 𝛼)𝑛 −
𝑛−1∑
𝑖=1

(1 − 𝛼)𝑛−𝑖𝑘𝑛−𝑖𝜖,

(8)

where 𝑘𝑖 represents the number of nodes with residual less than 𝜖

in the 𝑖-order neighbors of the source node. Therefore, 𝑟 (𝑛) obtains
the maximum value when:

𝑛−1∑︁
𝑖=1

(1 − 𝛼)𝑛−𝑖𝑘𝑛−𝑖𝜖 = 0, (9)

which means the residual of each 𝑖-order node is greater or equal

than 𝜖 . This situation exists when the source node is in a path-like

graph, whose adjacency matrix 𝐴 satisfies 𝐴(𝑖, 𝑖 + 1) = 1 and other

elements are 0. Considering the end condition of the local push

procedure, the residual of 𝑛-hop neighbors is:{
(1 − 𝛼)𝑛 < 𝜖

(1 − 𝛼)𝑛−1 ≥ 𝜖
⇒ 𝑙𝑜𝑔(𝜖)

𝑙𝑜𝑔(1 − 𝛼) < 𝑛 ≤ 𝑙𝑜𝑔(𝜖)
𝑙𝑜𝑔(1 − 𝛼) + 1. (10)

□

5 EXPERIMENTS
In this section, we conduct experiments to evaluate the effectiveness

of TRacer on a large-scale real-world dataset. Besides, we conduct

case studies with network visualization techniques.
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Table 1: Statistics of the transaction record data related to
the cases

Field Description Number

Source nodes

The source node related to this

case, such as the hacker account

and the scam contract.

20

Target nodes

A set of target nodes related to

this case, such as exchange

wallets and mixing services.

0.87K

Blocks The blocks related to these cases. 23.5M

Transactions

The transactions contained in the

blocks related to these cases.

4.83B

5.1 Experimental Setups
5.1.1 Dataset. We contribute a benchmark dataset including 20

transaction tracing cases in the recent 5 years across three account-

based blockchains, i.e., Ethereum, Binance Smart Chain, and Poly-

gon. These cases are initialized by various illegal activities contain-

ing hacker attacks, Rug-pull, and scams which have caused billions

of dollars in losses. All these cases are reported by blockchain se-

curity companies and verified by experts coming from Certik
4
,

Peckchield
5
, Chainalysis

6
and so on. Some statistics of this dataset

are shown in Table 1. Note that the transaction data in the dataset is

obtained from the open APIs
7
. As we can see, the activities of these

cases have acrossed millions of blocks, and we have to trace the

money flows of the sources among more than 4 billion transactions.

5.1.2 Compared Methods. We compare our method with several

baseline blockchain transaction tracing methods. For a fair com-

parison, we use the general framework of TRacer to reproduce the

following comparison methods, including:

• BFS [27]: Breadth-First Search, which is the first and the

most commonly used transaction tracing method.

• Poison [13]: A kind of taint analysis technology in block-

chain transaction tracing. Each output of a transaction with

a dirty input is considered to be tainted in this method.

• Haircut [13]: A kind of taint analysis technology in block-

chain transaction tracing. Each output of a transaction with

a dirty input is considered to be tainted partially according

to the amount value in this method.

• APPR [1]: The approximate personalized PageRank algo-

rithms, which can calculate the relevance of nodes in a net-

work to a given source node with an extremely low cost.

The details of implementing the above transaction tracing tech-

nologies can be found in our GitHub page
8
.

5.1.3 Experimental Settings. Since the increase of depth can lead

to the exponential growth of the size of output graph in BFS and

Poison, bringing great difficulty to transaction auditing. During

our experiments, we set the upper limit of the tracing depth in

these two methods is 2. In addition, we use the Haircut method

4
https://www.certik.com/

5
https://peckshield.com/

6
https://www.chainalysis.com/

7
https://blockscan.com

8
https://github.com/wuzhy1ng/BlockchainSpider

Figure 5: The relationship among Epsilon, Recall, and Node
number. Note that the recall has reached 70% with 𝜖 = 10−1

merely, and the increment of recall becomes slow when 𝜖 is
less than 10−3.

to trace the “dirty money” from the source node until the amount

proportion of “dirty money" of all nodes is less than 0.1% of that

from the source node. Moreover, we set 𝛼 = 0.15, 𝜖 = 10−3 for

APPR and TTR, and 𝜑 = 10−3, 𝛽 = 0.7 for TTR to ensure that our

method is able to find the paths among the source node and the

target nodes with 42-hop at most, according to Proposition 4.2.

5.1.4 Metrics. we report the average of the following metrics in

all cases to measure the effectiveness of transaction tracing:

• Recall: The recall evaluates how many target nodes can

be traced by a method, which is defined as: 𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑉𝑡 |
|𝑉𝑡 |

,

where |𝑉𝑡 | is the number of traced target nodes and |𝑉𝑡 | is
the number of all target nodes in a case.

• Number of nodes: This metric measures the number of

nodes in the output graph of a case. A smaller output graph

with recall ensured is easier for expert auditing.

• Tracing depth: This metric measures how deep can a trans-

action tracing method traverse the transaction graph from a

source node, indicating that up to 𝐾-hop neighbors of the

source node are detected.

5.2 Experimental Results
5.2.1 Scalability vs. Performance. The approximation parameter 𝜖

is an important hyper-parameters in modulating the scalability. To

examine the effect of 𝜖 on the performance, we repeat experiments

with different values of 𝜖 and report the recall as well as the number

of traced nodes. As Figure 5 shows, the recall has reached 70% when

𝜖 = 10−1. When 𝜖 is less than 10−3, the increment of recall becomes

slow, and the number of nodes rapidly increases. Therefore, setting

𝜖 = 10−3 can guarantee a higher recall and fewer nodes with a

relatively low cost in experiments, and we set 𝜖 = 10−3 for TRacer.

5.2.2 Comparative experiment. Table 2 shows the performance of

different methods, from which we can obtain the following obser-

vations. Firstly, the output graphs of BFS and Poison contain an

extremely large number of nodes, which brings great difficulty to

transaction auditing even through detecting more than 70% target

nodes. Secondly, the output graph of Haircut has fewer nodes than

BFS and Poison with a greater tracing depth, but the recall is too

low to achieve effective tracing. Thirdly, fewest nodes are obtained
by APPR, ensuring the detection results can be easier audited by
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Table 2: Performance comparison between baselines and
TRacer

Methods Recall (%) Number of nodes (K) Tracing depth

BFS 77.02 52.50 2.00

Poison 70.06 41.45 2.00

Haircut 58.85 10.35 4.15

APPR 71.92 0.66 3.60

TRacer 92.31 0.87 5.05

Table 3: Ablation experiment.

Graph construction

with DeFi patterns

Graph

expansion

Local community

detection

Recall

(%)

Number of

nodes (K)

√ √ √
92.3 0.87√ √
80.3 0.55√ √
95.9 57.5

Figure 6: Top 𝑛 most relevant nodes and the recall.

experts. Fourthly, TRacer obtains better performance than APPR.

On the basis of the advantages of APPR, the recall and tracing depth

of TRacer are significantly better than other methods.

5.2.3 Ablation experiment. TRacer is consist of three modules in-

cluding graph construction, graph expansion, and local community

detection. In order to discuss the function of different modules, we

conduct an ablation study and report the performance of TRacer

in Table 3 after removing the DeFi pattern recognition in graph

construction and the local community detection. When the DeFi

pattern recognition is removed in the graph construction module,

the recall decreases significantly, which shows that the understand-

ing of DeFi patterns in TRacer can help trace the money flows

effectively. Moreover, if the local community detection module

is removed, the number of nodes increases significantly with the

weakly improvement of recall, which shows that the local commu-

nity detection module can find the nodes strongly associated with

the source node at the cost of a small recall loss.

5.2.4 TopN Recall. Since the rank of a node represents the rel-

evance relationship between this node and the source node, we

can audit the nodes according to the descending order of rank. To

compare the rank-based methods including Haircut, APPR, and

TRacer, we take out the top 𝑛 most relevant nodes to the source

Source EtherDelta Yobit.net OKEx

Figure 7: Tracing visualization for Cryptopia. Besides the
EtherDelta exchange marked by experts, our method also
finds the other target exchanges including Yobit.net and
OKEx.

and calculate the recall for different 𝑛. The result is displayed in

Figure 6, where the curve of TRacer shows a better performance

than other methods. In addition, TRacer achieves a 25% recall gain

over APPR when 𝑛 > 50.

5.3 Case Study
In this part, we visualize the traced money flow of two cases with

Gephi 0.9.2 [4], in order to evaluate the feasibility of TRacer.

5.3.1 Cryptopia. The Cryptopia exchange was attacked by hackers
in May 2019. According to the tracing result published by Coin-

Holmes
9
, the source node with prefix 0xd4e79

10
possessed 30.8K

stolen ETH from Cryptopia and transferred about 10K ETH to 4

target nodes labeled as EtherDelta.

Figure 7 presents the transaction tracing result of our method,

where the source node and the target nodes are marked with labels.

Additionally, the node size is proportional to its rank score for each

node, so the higher the rank is, the larger the node diameter is.

Based on the tracing result, we can find 4 target nodes labeled as

EtherDelta (an exchange) in the 2-hop neighborhood of the source

node easily, which is consistent with the results in CoinHolmes.

Moreover, another 4-hop neighbor of the source node labeled

as Yobit.net
11

and two nodes labeled as OKEx can be found in the

figure, which is not reported by CoinHolmes. In fact, Yobit.net and

OKEx are exchanges enabling the hacker to cash out the stolen

ETH. According to the traced money flows in the figure, about 1420

stolen ETH is transferred into Yobit.net, and 18.47K stolen ETH is

transferred into OKEx. Therefore, more than 97% of the stolen ETH

of Cryptopia are traced by our method in this case.

5.3.2 Kucoin. The Kucoin exchange was attacked by hackers in

September 2020, and there is still a large number of stolen funds

that have not been traced until now. As shown in Figure 8, the

source node
12

of the hackers obtained ETH from the nodes labeled

as Kucoin, and then transferred most of the stolen ETH to a famous

privacy-preserving protocol named Tornado Cash [3].

9
https://trace.coinholmes.com

10
https://etherscan.io/address/0xd4e79226f1e5a7a28abb58f4704e53cd364e8d11

11
https://etherscan.io/address/0xf5bec430576ff1b82e44ddb5a1c93f6f9d0884f3

12
https://etherscan.io/address/0xeb31973e0febf3e3d7058234a5ebbae1ab4b8c23
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Source Kucoin Tornado-cash

Figure 8: Tracing visualization for Kucoin. A large number
of ETH was transferred to Tornado Cash.

Through the tracing result of our method, a total amount of

13.8K ETH was transferred to the 100 ETH pool of Tornado Cash,

which is similar to the conclusion of experts in SlowMist
13
. As

Tornado Cash is a decentralized mixing service, it is impossible for

us to obtain valuable KYC information from this project to identify

the hackers. In addition, since Tornado Cash is designed based

on zero-knowledge proof, liquidity mining, and smart contract,

it is difficult to trace the downstream fund flow when money is

transferred into Tornado Cash. Therefore, some researchers have

conducted analysis on Tornado Cash in recent years [5].

6 CONCLUSION
In this paper, we studied the transaction tracing problem on account-

based blockchain trading systems and proposed the first intelligent

transaction tracing tool named TRacer. Compared with existing

methods based on heuristics and taint analysis, which usually re-

quires expert experience and manual intervention, TRacer show

obvious superiority in terms of universality, effectiveness and time

cost. In TRacer, we first formulated the transaction records in each

account-based blockchain as a directed, weighted, temporal, and

multi-relationship graph, which is able to represent the rich seman-

tics of complex multi-token transaction relationships in the sys-

tem. Then we proposed to use personalized PageRank-based graph

searching technologies on this complex graph to trace the money

flows. Specifically, we introduced novel approximate personalized

PageRank strategies to realize effective and low-cost transaction

tracing, which can also handle the complex DeFi transaction ac-

tions in account-based blockchains. The theoretical analysis and

experimental results demonstrated the effectiveness of TRacer. In

the future, we will further delve into blockchain transaction trac-

ing by integrating more transaction features like bytecodes and

logs and design effective methods for blockchain systems with

privacy-enhancing mechanisms.
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