
1

Blockchain Mining with Multiple Selfish Miners
Qianlan Bai, Yuedong Xu, Nianyi Liu, Xin Wang

Abstract—This paper studies a fundamental problem regard-
ing the security of blockchain PoW consensus on how the exis-
tence of multiple misbehaving miners influences the profitability
of selfish mining. Each selfish miner maintains a private chain
and makes it public opportunistically for acquiring more rewards
incommensurate to his Hash power. We first establish a general
Markov chain model to characterize the state transition of public
and private chains for Basic Selfish Mining (BSM), and derive
the stationary profitable threshold of Hash power in closed form.
It reduces from 25% for a single attacker to below 21.48% for
two symmetric attackers theoretically, and further reduces to
around 10% with eight symmetric attackers experimentally. We
next explore the profitable threshold when one of the attackers
performs strategic mining based on Partially Observable Markov
Decision Process (POMDP) that only half of the attributes
pertinent to a mining state are observable to him. An online
algorithm is presented to compute the nearly optimal policy
efficiently despite the large state space and high dimensional
belief space. The profitable threshold is much lower for the
strategic attacker. Last, we formulate a simple model of absolute
mining revenue that yields an interesting observation: selfish
mining is never profitable at the first difficulty adjustment period,
but relies on the reimbursement of stationary selfish mining gains
in future periods. The delay till being profitable of an attacker
increases with the decrease of his Hash power, making blockchain
miners more cautious about performing selfish mining.

Index Terms—Proof-of-Work, Selfish Mining, Profitability,
Markov Chain, Partially Observable MDP.

I. INTRODUCTION

Bitcoin has gained tremendous concerns as the first fully
decentralized cryptocurrency since its advent in 2008. All
historical transactions are recorded in a global and public data
structure known as blockchain. The security of blockchain
relies on consensus algorithms to come to an agreement
among a large body of pseudonymous participants called
miners [1]. Solving a Hash puzzle is deemed as a way to
generate Proof-of-Work (PoW) for reaching global consensus.
Each miner competes in this “game”, and is rewarded with
cryptocurrencies if he finds a valid block first. The PoW
consensus has been widely deployed in public blockchains,
serving as the cornerstone of current major cryptocurrencies.

The security of PoW is challenged by the trend of central-
ization of Hash power. Mining a Bitcoin block is random and
it needs more than 10 years on average with a latest-generation
ASIC chip [2]. Therefore, miners operate cooperatively to
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form pools to acquire a stable income rate. As a side effect,
a small number of mining pools occupy a vast majority of
global Hash power, placing blockchain systems at risk of being
overthrown. The conventional wisdom believes that PoW is
secure as long as no mining pool controls 51% of total Hash
power. However, a miner can choose to mine selfishly instead
of conforming to the standard Bitcoin protocol.

Selfish mining refers to a class of block publishing policies
in which a miner does not release his newly found block
immediately, but forks a private chain of which others are
unaware. At a future epoch, he will release his private blocks
strategically to obsolete the current public chain for the
purpose of obtaining a higher share of valid blocks in the
new public chain than his ratio of Hash power. The minimum
ratio of Hash power that brings extra rewards is conventionally
called profitable threshold. Eyal and Sirer introduced the first
selfish mining scheme (namely basic selfish mining, BSM) and
pointed out that the profitable threshold of BSM is 25% of
total Hash power [3]. Nayak et al. [4] proposed the stubborn
mining that improves the revenue of the selfish miner by
13.94% compared to BSM. Sapirshtein et al. modeled the
optimal selfish mining as a Markov Decision Process (MDP)
that reduces the selfish miner’s profitable threshold to 23.21%
[5]. Tao et al. [6] introduced the semi-selfish mining attack
based on hidden MDP with the control of fork rate. Grunspan
and Perez-Marco proved rigorously using martingale theory
that selfish mining is an attack on the difficulty adjustment
algorithm of blockchain consensus [7]. Recently, a lot of
efforts have been devoted to the compound attacks of selfish
mining with block withholding attacks [8] [9], bribery attacks
[10], eclipse attacks and double spending attacks [11].

Until very recently, the competition of multiple non-
colluding selfish miners came into view. Liu et al. presented
the publish-n scheme for two selfish mining attackers and
simulated their revenues as well as profitable thresholds [12].
Bai et al. modeled the mining race among two BSM miners
and one honest miner as a Markov process [13]. Zhang et
al. [14] simulated the profitable threshold in the presence of
multiple selfish miners. Charlie et al. [15] proposed SquirRL,
a framework for using deep reinforcement learning (DRL)
to analyze selfish mining and block withholding attacks in
blockchain systems with two attackers. Previous experimental
studies, though insightful, lack theoretical understandings on
the principle of competitive selfish mining. When compared
to the scenario of a solitary attacker, the presence of multiple
selfish mining attackers results in two noteworthy effects. First,
the fierce competition among attackers will make the system
state transition more complex. Second, non-colluding attackers
conduct strategic mining independently, making all miners
incapable of acquiring comprehensive information about the
network. Consequently, it is usually believed that modeling
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the profitable threshold with multiple selfish miners is hard,
and the optimal mining may be intractable due to the above-
mentioned challenges.

In this paper, we theoretically investigate the profitability
of selfish mining with multiple attackers by asking a sequence
of key progressive questions: 1) Will selfish mining become
more easily profitable with multiple attackers than with a solo
attacker? 2) How can we design a nearly optimal mining
policy for an attacker despite the complex interactions among
miners and the incomplete observations of the system state?
3) How long should a BSM attacker wait from the beginning
of selfish mining until being profitable eventually? Figuring
out these questions will provide essential understandings of
the security of blockchain PoW consensus.

We formulate a Markov chain model to compute the relative
revenue of BSM attackers for the first question, which is the
percentage of his valid blocks in the public chain. Our model
is very general in the sense that it can capture cases with
more than two attackers or allow an attacker to hide multiple
blocks privately. In particular, the latter case may cause the
complicated chain-reaction release in which the publishing
action of one attacker triggers that of the other attacker. We
demonstrate how the existence of multiple attackers affects the
system security from a theoretic perspective.

Answering the second question is very challenging if a
strategic attacker with a nearly optimal mining policy (Alice),
a BSM attacker (Bob) and an honest miner (Henry) coexist
in the system. Firstly, the interactions among three chains are
more complicated. The state of the mining race is captured by
a 10-tuple pertinent to the composition of all chains and the
forking status, as opposed to a 3-tuple in MDP-based optimal
policy for a single attacker. The number of actions is larger and
the state-action pairs can be 102 to 103 times larger. Second,
Alice as the strategic miner cannot observe the complicated
state information. In fact, she is merely aware of 5 attributes
at each state related to her private chain and the public chain.
We formulate a family of parameterized partially observable
Markov decision process (POMDP) models to characterize
Alice’s strategic mining policy with a continuous belief of
the current state. To tackle the large state space and the high-
dimensional belief space, we adopt AEMS2 to compute the
nearly optimal mining policy. A binary search method similar
to [5] is used to find the maximum revenue among the family
of POMDP models.

As for the third question, we build a simple model to com-
pute attackers’ absolute revenue, which is the average number
of valid blocks received by each miner per unit of time.
Since selfish mining is an attack on the difficulty adjustment
algorithm (DAA), it is not profitable instantaneously even if
the attacker’s Hash power is above the profitable threshold.
This model enables us to compute the number of DAA periods
that lead to profitable selfish mining eventually. Meanwhile,
we prove that the absolute revenue and relative revenue are
approximately equivalent on a sufficiently long time scale.

Our major observations are summarized as below.
• BSM. The Markov chain is established to model the

revenues of each miner when there are multiple basic
selfish mining attackers in the system. We prove the prof-

itable threshold of Hash power is below 21.48% with two
symmetric BSM attackers from theory and experiment, as
opposed to 25% with a single BSM attacker and 23.21%
with a single optimal attacker. More blocks allowed to
hold privately or more attackers will reduce this threshold.

• POMDP. We propose POMDP-based mining policy
which brings more revenues to the strategic miner than
BSM and honest mining. When the BSM attacker (Bob)
has 34% Hash power, the other attacker’s (Alice’s) prof-
itable threshold decreases from 29.44% to about 2% if
she chooses POMDP-based policy rather than BSM. The
designed online algorithm can rapidly and effectively
compute the near optimal action under the current ob-
servable information.

• Profitable Delay. We make a transient analysis of basic
selfish mining and explore the benefit time. A BSM miner
receives less absolute revenue than honest mining in the
first difficulty adjustment period even if his Hash power
is above the profitable threshold, and his gain is achieved
in future periods. BSM is profitable after 51 rounds of
difficulty adjustment (i.e. 714 days in Bitcoin) if the Hash
power of two symmetric selfish miners is 22%. This delay
decreases to 5 rounds (i.e. 70 days in Bitcoin) as their
Hash power accrues to 33%, which is still quite long.

The remainder of this paper is organized as follows. Section
II describes the background of selfish mining. Section III
models the relative revenue of basic selfish mining with differ-
ent attackers. Section IV proposed the POMDP-based mining
policy and designed the efficient algorithm. The profitable time
of basic selfish mining is modeled in Section V. Section VI
validates the revenue model of BSM and the performance of
the POMDP-based policy. Section VII introduces the related
work, and Section VIII concludes our work.

II. SELFISH-MINE STRATEGY

In this section, we present the block-release procedure of
blockchain mining in the presence of two adversarial miners.
We further introduce the new features on tie-breaking and
chain-reaction release.

A. System Description

Consider a blockchain system with two misbehaving attack-
ers 1 Alice and Bob, as well as an honest miner, Henry 2. They
compete to mine a valid block for the purpose of acquiring
bitcoin-like tokens. The proof-of-work (PoW) consensus is
adopted and the mining of blocks is stateless: the probability
of discovering a block by a miner is proportional to his current
Hash power, but inversely proportional to the current aggregate
Hash power of the entire blockchain network. The blockchain
system dynamically adjusts the difficulty of cryptographic
puzzles such that new blocks are generated at a fixed average

1A malicious mining pool can be treated as a miner because its Hash
power is the sum of the Hash power of its members, and the pool manager is
responsible for broadcasting any blocks mined by its members to the network.

2Multiple honest miners can be boiled down to a single miner for the sake
of their linear additivity of Hash powers and the consistency of their mining
strategies.
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rate (e.g., one block per 10 minutes on average in Bitcoin). The
miners maintain a globally-agreed ordered set of transactions
via the adoption and the mining on the longest chain. The
reward of each valid block is normalized as one cryptographic
coin. For simplicity, we make the following assumptions
consistent with the literature [3] [5]:
• The total Hash power of the blockchain system is nor-

malized as a unit. Then, the Hash power of a miner is
represented as a fraction of the total;

• The block discovery time is exponentially distributed.
These assumptions are obtained based on the PoW mining

mechanism [16] [17]. They allow us to succinctly express
the probability of generating a block per time unit and the
probability that each miner generates the next block. It is worth
noting that the memoryless of the exponential distribution
guarantees that the probability of generating a block in the
current time unit is not affected by how much time has already
passed.

The honest miner Henry who finds a valid block will release
it immediately. Alice (resp. Bob) may release her blocks strate-
gically by forcing Henry into wasting his computation. When
Alice and Bob are both selfish miners, the interaction between
two private chains becomes more complicated because none
of them knows the other’s state. In what follows, we capture
all the different states that each miner may encounter.

Denote by α1, α2 and αh the Hash powers of Alice, Bob and
Henry respectively, i.e., α1+α2+αh = 1. Denote by γ1 (resp.
γ2) the proportion that all except Alice’s (resp. Bob’s) Hash
power mines after Alice’s (resp. Bob’s) released chain in the
tie-breaking between Alice (resp. Bob) and Henry. Denote by
θ1 and θ2 the probabilities that honest miners choose to mine
after Alice’s and Bob’s chains in the three-party tie-breaking,
respectively. When the blockchain system creates a new block,
it is mined by pool i with the probability αi , ∀i ∈ {1, 2, h},
owing to the memorylessness of Hash computations.

B. Basic Selfish Mining Mode

Alice maintains a private chain, and so does Bob, while
Henry operates on the public chain. Alice and Bob are not
aware of each other’s role. We suppose that all the miners
work on the same public chain at the beginning where the
starting point is expressed as “0”. The length of the private
chain is kept as private information by attackers, and the length
of the public chain is observed by all of them. We consider
the selfish mining method proposed by [3], and our analytical
approach can be generalized to a variety of other methods.

The mining procedure consists of two cases as follows.
• (Public-chain mining case) Henry always mines after the

public chain. Alice or Bob also mines on the public chain
if it is longer than his private chain.

• (Private-chain mining case) Alice (resp. Bob) continues
to mine on her (resp. his) private chain if she (resp. he)
discovers a new block and the private chain is now longer
than the public chain.

The release procedure is more complicated than the mining
procedure. Henry broadcasts his mined block as soon as it is

discovered, while Alice and Bob will decide whether to release
their mined blocks depending on the length of the public chain.
• (Forfeit case) Alice (resp. Bob) abandons her (resp. his)

private chain and conforms to mining after the public
chain if the latter is longer. Henry also abandons his
public chain if Alice or Bob publishes a longer chain.

• (Risk-avoiding release case) Alice (resp. Bob) releases
her (resp. his) privately mined blocks to the public if
the new block is mined by the others and the leading
advantage of her private chain is no more than two blocks.

• (Chain reaction case) When Alice (resp. Bob) releases
her (resp. his) blocks to public chain, the release of Bob’s
(resp. Alice’s) private blocks is triggered immediately.

The chain reaction case is the combination of the forfeit
and the risk-avoiding cases, whereas the existence of chain
reaction complicates evolution of the public chain. Suppose
that Alice publishes her private blocks to obsolete the current
public chain. After the construction of the new public chain,
Bob may release his private chain to forfeit it immediately.
C. Release procedure and tie-breaking Logics

The consensus on the public chain requires that it is the
longest. We illustrate the evolution of private and public chains
using examples, where Ak, Bk, and Hk denote that the kth

block belongs to Alice, Bob and Henry respectively.
Risk-avoiding release case. We show the risk-avoiding release
of Alice’s private chain in Fig.1 where the blocks of private
chains are in grey and those of public chains are in white.
Alice is only one block ahead of Henry after the latter mines
a new block for the public chain. Because Alice fears losing
the competition, she publishes her private blocks, obsoleting
Henry’s public chain, so that both Alice and Henry mine on
the new longest chain afterward.

Fig. 1. Alice’s risk-avoiding release and Henry’s abandonment. The blocks
of private chains are in grey and those of public chains are in white.

Tie-breaking resolving. In Alice’s case, if she only hides one
block, Henry may catch up with her. When it happens, Alice
publishes her private blocks to compete with Henry. Thus, two
public chains of the same length exist in Fig. 2. Since only one
public chain prevails, a tie-breaking rule needs to be taken into
account. The case is that the public chains of Alice and Henry
have the same length, and Bob’s private chain is 0. Hence, we
only need to resolve the tie between Alice and Henry. All
the miners are possible to mine after block A1, while Bob
and Henry may mine after H1. There are five possibilities of
extending the longest public chain, and the shorter one will be
obsoleted. If Alice and Bob hide one block respectively, there
will be three public chains with the same length. Alice and
Bob will mine after their own chain, and Henry will choose
one chain randomly. More details about tie-breaking with three
public chains are described in Appendix A.
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Fig. 2. Tie-breaking case of two public chains.

Fig. 3. Chain reaction case.

Chain reaction release. We next introduce the chain reaction
release. Note that the chain reaction release consists of a
sequence of risk-avoiding releases and tie-breaking resolvings.
Fig. 3 illustrates an example of how the chain reaction phe-
nomenon is triggered. First, Alice’s private chain contains four
blocks, while the lengths of Bob’s private chain and Henry’s
public chain are 0. This process is marked as ¬ in Fig. 3. After
a tie-breaking resolving at ­, the longer public chain contains
two blocks B1 and H2, and the shorter one is orphaned.
Bob constructs a new private chain starting from B3 to B8

at ®, while Henry continues to mine one block after H2 at
¯. From Alice’s perspective, her private chain is merely one
block ahead of the public chain. She releases her private blocks
in order to avoid the risk of losing the race with Henry. The
new public longest chain now starts from block A4. Next,
° and ± constitute a new round of tie-breaking resolving
between Alice and Henry, extending the public chain to block
A7. However, the release of A7 triggers Bob to release all of
his private blocks starting from B3 to B8. When retrospecting
the whole mining process, we observe that the winning branch
switches back and forth, making the analysis of selfish mining
extremely complicated. To be noted, the chain reaction occurs
only when the length of the private chain is greater than three.

III. STATIONARY ANALYSIS OF BASIC SELFISH MINING

In this section, we present Markov chain models to char-
acterize the block-publishing dynamics with multiple selfish
miners. The expected revenues are derived in explicit form.

A. Definition

The theme of our study is placed on the profitability
of selfish mining so that the profitable measures should be
clarified first. For notational simplicity, we only consider three
miners: Alice, Bob and Henry. We denote the mining round
as the process in which all miners start mining on the same

public chain, go through a series of block-hiding and block-
releasing actions, and finally reach a consensus on the public
chain again.

Definition 1. (Relative Revenue) Let Ra, Rb and Rh be the
expected numbers of valid blocks mined by Alice, Bob and
Henry in a mining round, respectively. The relative revenue of
a miner, R̂i, is expressed as

R̂i =
Ri

Ra +Rb +Rh
, i ∈ {a, b, h}.

It should be emphasized that the valid blocks are confirmed
blocks in the longest chain. Selfish mining attack will increase
the number of orphan blocks that leads to a drop in the valid
block generation rate. The Bitcoin mining protocol will adjust
the mining difficulty, so that the mining rate of the public chain
is kept at one block on average every 10 minutes. Therefore,
the expected revenue needs to be normalized. We leave a more
rigorous analysis of the relative revenue in Section V.

The profitability of selfish mining does not refer to the sur-
plus that the block reward subtracts the cost of cryptographic
computation. In fact, it is a contrastive measure to the honest
mining that needs an objective index.

Definition 2. (Profitability) The selfish or strategic mining
performed by Alice (resp. Bob) is deemed profitable if the
relative revenue is higher than the normalized Hash power,
i.e. R̂a > α1 (resp. R̂b > α2).

B. Stationary Analysis for Two Attackers

In order to analyze the profitability of selfish mining, we
need to capture the states of the system which satisfy the
Markov property, including the block generation and block
release. We hereby formulate a discrete-time Markov chain
model similar to [3] to characterize the dynamics of the public
and private chains. We begin with the assumption that each
selfish miner will release his two private blocks immediately
after he has mined the second one (i.e. N = 2). The underlying
reasons are two-fold. Firstly, the simpler block-release process
avoids the complicated representation of Markov states, thus
allowing more tractable mathematical modeling. Secondly, the
bursty release of many valid blocks in a very short time usually
indicates the existence of selfish mining attacks that can be
easily detected.

Fig. 4. Markov chain with less than two private blocks.

We define a state as a three-tuple consisting of the lengths
of Alice’s, Bob’s and Henry’s chains. Fig. 4 illustrates all
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the states, the state transition indicators and their transition
probabilities. For instance, the transition from state (0, 0, 0) to
state (1, 0, 0) means that Alice discovers a valid block with
probability α1 and forks the private chain. If the maximum
length of any private chain is below 2, Alice and Bob can
hide their private chains and continue the selfish mining.
All the transitions to state (0, 0, 0) mean that the forked
chains return to the unanimous public chain and a new round
of selfish mining starts. Denote by P the state transition
probability matrix and by Pss′ the transition probability from
state s = (i, j, k) to s′ = (i′, j′, k′). Let πijk be the stationary
distribution of state (i, j, k). According to the detailed balance
equation [18] [19]

πs =
∑
s′

πs′Ps′s. (1)

We calculate the probability distribution of states and obtain
the following equations:

π000 + π100 + π010 + π110 + π101 + π011 + π111 = 1. (2)

Then, we can compute π000 as

π000 = (1+α1+α2+α1αh+2α1α2+α2αh+2α1α2αh)−1, (3)

and πijk at any other state s = (i, j, k) in the same way.

The transitions to state (0, 0, 0) manifest which miner is
the final winner in the current round of selfish mining. There-
fore, we can compute the expected revenues of Alice, Bob
and Henry that are defined as Ra, Rb and Rh respectively.
Facilitated by the stationary state distributions, we calculate
them as below,

Ra = 2α1π100 + (2α1 + (1− α1)γ1)π101 + α1π011 (4)
+ 2α1π110 + (2α1 + αhθ1)π111;

Rb = 2α2π010 + (2α2 + (1− α2)γ2)π011 + α2π101 (5)
+ 2α2π110 + (2α2 + αhθ2)π111;

Rh = (αh + (1− α1)(1− γ1))π101 + αh(2− θ1 − θ2)π111
(6)

+ (αh + (1− α2)(1− γ2))π011 + αhπ000.

Then we can obtain the expected revenue in closed form as:

Ra = π000 · [2α2
1 (1 + αh) + (α2 + αh)α1αhγ1

+ α1α2αh + 4α2
1α2 (1 + αh) + 2α1α2α

2
hθ1]; (7)

Rb = π000 · [2α2
2 (1 + αh) + (α1 + αh)α2αhγ2

+ α1α2αh + 4α2
2α1 (1 + αh) + 2α1α2α

2
hθ2]; (8)

Rh = π000 · [α1α
2
h (2− γ1) + 2α1α2α

2
h (2−θ1 − θ2)

+ αh + α2α
2
h (2− γ2) + α1α2αh(2− γ1 − γ2)]. (9)

The relative revenue of each miner can be given by:

R̂i =
Ri

Ra +Rb +Rh
,∀i ∈ {a, b, h}. (10)

The average number of Henry’s orphaned blocks in each attack
round is calculated as:
Oh =π000[(α1+(1−α1)γ1)α1αh + (α2+(1−α2)γ2)α2αh

+ (α1 + α2 + (θ1 + θ2)αh)2α1α2αh]. (11)

As a special case that both selfish miners are homogeneous,
i.e. α1 = α2 = α < 0.5, γ1 = γ2 = 0.5 and θ1 = θ2 = 1/3,
the expected revenues can be simplified as

π000 = (1 + 4α− 4α3)−1;

Ra = Rb = π000 · 16α(25α+ 2α2 + 3− 32α3); (12)
Rh = π000 · [(1− 2α)(1 + 3α− 7

3α
2 − 16

3 α
3)]. (13)

We can easily observe that the attackers’ (resp. Henry’s)
expected revenues in Eq. (12) (resp. Eq. (13)) monotonically
increase (resp. decrease) with regard to attackers’ ratios of
Hash power.

C. Scaling to Multiple Attackers
Although the profitable selfish mining demands a high Hash

power, it is possible that multiple selfish miners opt in. The
profitability of more selfish miners is obscure. The honest
miner’s share of Hash power decreases, and the competition
among selfish miners becomes more fierce. Therefore, we
consider a general mire scenario with m (m > 2) BSM miners.

We model the dynamics of the public and private chains
as a Markov process likewise. Fig. 5 illustrates all the states
and their transition probabilities. Recall that the assumption
of the maximum private chain length also holds. Each state
is expressed as a m-tuple, i.e. L = {l1, l2, · · · , lm} with li ∈
{0, 1}, which consists of the lengths of each attacker’s private
chain. The state with m zeros, denoted as L0, indicates the
start of the mining competition. The states with a single ‘1’
are grouped together in which one and only one attacker has
mined a valid block to build his private chain. Similarly, the
states with k elements of ‘1’ indicate that the private chains
of k out of m attackers have one valid block. Formally, we
denote by L the set of all states with the cardinality 2m, and
by Lk ⊆ L the subset in which k selfish miners hold their
private blocks.

Fig. 5. Markov State Transition with m attackers.

The state transition probabilities are described as the fol-
lowing. The blockchain system can reside at the initial state
with probability αh, i.e., the block is mined by the honest
miner. Denote by ei the vector whose ith element is 1 and
all others are zero. When attacker i discovers a valid block,
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the blockchain system transits to a new state (L + ei) with
probability αi. At state L ∈ Lk, if the ith attacker who has a
private block finds a valid block again, the blockchain system
returns to the initial state L0 (in which the state is expressed as
a double circle). Otherwise, it jumps to a state in Lk+1 with the
probability equivalent to the relative Hash power of the selfish
miner. The state transition probabilities can be expressed as:

PL0L0
= αh,

PLL′ = αi, ∀L ∈ Lk, and L′ = L+ ei ∈ Lk+1,

PLL′ = αi + αh, PL′L0
= 1, ∀L ∈ Lk, L′ /∈ Lk+1.

Using the detailed balance equations, we can compute the
stationary distribution of each state. Specifically, the stationary
probability at state S0 is computed explicitly as

πL0
=
(
1 +

m∑
k=1

∑
L∈Lk

k!

m∏
j=1

(αj · 1lj=1)
)−1

. (14)

The stationary probability at state L is given by:

πL = k! · πL0
·
m∏
j=1

(αj · 1lj=1),∀L ∈ Lk. (15)

The revenues of all miners are computed based on the
stationary state distribution and the particular transition paths
to state L0. If all miners have the same γ in tie-breaking cases,
their revenues can be written as:

Ri =

m∑
k=1

∑
L∈Lk

πL · [2αi + αh(2αi +
1−

∑
j∈L

αj ·1lj=1

k+1 )], li = 1;

αh · πL · αi, li = 0.

Rh =
( m∑
k=1

∑
L∈Lk

αhπL(αh +

1−
∑
j∈L

αj · 1lj=1

k + 1
)
)

+ πL0
· αh.

(16)

The relative revenue of each miner can be given by:

R̂i =
Ri

m∑
j=1

Rj +Rh

,∀i ∈ {1, · · · ,m, h}. (17)

As a special case that all selfish miners are homogeneous and
their Hash power is α, the stationary probability at state S0

can be simplified as

πL0
=
(
1 +

m∑
k=1

Akmα
k
)−1

, (18)

where Akm is k−permutations of m. The stationary probability
at state L can be represented as

πL = k! · πL0 · αk,∀L ∈ Lk. (19)

We can obtain the expected revenue of each miner as

Rh
πL0

=

m∑
k=1

Akmα
kαh(αh +

1− kα
k + 1

) + αh. (20)

Ri
πL0

=

m∑
k=1

Akmα
k[
k

m
(2α+ αh

1 + α

k + 1
) + αhα], (21)

Hence, the relative revenue can be rewritten as

R̂i = Ri/(m ·Ri +Rh),∀i ∈ {1, · · · ,m}, (22)

R̂h = Rh/(m ·Ri +Rh). (23)

The revenue of all miners when each private chain can hide
more than one block is modeled and the detailed results are
shown in Appendix B.

IV. OPTIMAL STRATEGY UNDER MULTIPLE ATTACKERS

The basic selfish mining (BSM) policy restricts the choices
of withholding and releasing blocks. In this section, we present
the more profitable selfish mining strategy (POMDP-based
mining policy) for two attackers when one of them chooses
the basic selfish mining and the other chooses to be strategic.

A. MDP-based policy for an Upper Bound of Revenue

The limitations of basic selfish mining are intuitive. An
attacker is “conservative” to adopt the public chain when
his private chain slightly lags behind it, and is “less wise”
to override the public chain when it is catching up. The
optimal selfish mining problem with a single attacker was
raised in [5] [11] that modeled the mining race as a Markov
decision process. This strategic selfish mining policy lowers
the profitable threshold of Hash power.

The optimal selfish mining in the presence of two attackers
(Alice adopts the more profitable mining policy and Bob
adopts the BSM mining policy) is far more challenging than
that with a single attacker. First, the state and state transition
are greatly augmented. Alice has to incorporate the status of
multiple chains in the state other than merely the lengths
of the chains. Second, Alice cannot acquire the information
regarding Bob’s private chain. To tackle these difficulties, we
begin with the assumption that Alice has full information about
the private chain of Bob. The optimal policy of Alice with
full information can be solved based on an MDP model (OPT
policy), and the corresponding revenue will be used as the
upper bound of revenue when the private chain of Bob is
unknown. Meanwhile, the MDP model offers the principle of
designing optimal policy with partially observable states.

1) Main components: We formulate an MDP model for
the strategic attacker as the four-tuple M =< S,A,P,R >
where S denotes the state space, A denotes the action space,
P corresponds to the transition matrix, and R corresponds to
the reward matrix.

State: The state space S is defined as a 10-tuple in the
form < loc, fork, l1, l2, h1, h2, h3, u1, u2, u3 >. The attribute
loc ∈ {1, 2, 3} indicates the branch that Henry is working on.
If loc = 1 (resp. loc = 2), Henry is mining on the public chain
that also contains Alice’s (resp. Bob’s) blocks at the current
mining round. If loc = 3, the longest public chain contains
only Henry’s blocks. Note that Alice’s and Bob’s blocks are
mutually exclusive on the public chain at the same mining
round because one attacker will not accept the blocks of the
other before this attack round ends. The attribute fork obtains
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six values, dubbed as {ir, r, f12, f13, f23, f123}, where r
represents that Alice can release blocks to compete with the
current public chain when h3 > 0 while ir represents that
she can not. If multiple miners are competing on the public
chain, fork takes four values {f12, f13, f23, f123}, indicating
that (Alice, Bob), (Alice, Henry), (Bob, Henry) and (Alice,
Bob, Henry) are in the competition respectively.

The notation h1 indicates the distance between the starting
position believed by Alice and the real starting position.
Similarly, h2 and h3 indicate these distances of Bob and
Henry. We record h1, h2 and h3 because the blocks between
the real and the believed starting positions influence which
chain will prevail finally and how the revenues are calculated.
The notation l1 (resp. l2) represents the number of unreleased
blocks at Alice’s (resp. Bob’s) private chain. µ1 denotes the
number of Henry’s blocks between the real starting position
and the Alice-believed starting position. µ2 and µ3 are defined
for Bob and Henry in the same way. Similar to [5], we limit
the lengths of private and public chains in a mining round
so as to confine the size of state space, i.e. l1, l2 ≤ N and
h3 ≤ h3,max.

Action: An action is the number of blocks that Alice
publishes under a particular state. We define Alice’s action
space A as A = {adopt, 0, 1, · · · , l1} in which adopt means
that Alice gives up her private chain, 0 means that Alice
chooses to wait, and l1 is the current number of blocks held
by Alice privately. The action taken by Alice has certain
reasonable restrictions: if l1 reaches N , Alice must release
at least one block; if h3 reaches h3,max, Alice either chooses
“adopt” or to release no less than (h3−h1) blocks to end this
mining round.

State Transition: We define the state transition function as
Pr(s′|s, a ∈ A), the probability that the state s jumps to s′

under action a. The state transition is triggered by the mining
of a new block, and is determined by who discovers it. All
the transitions are summarized in Appendix Table III.

Reward Function: The purpose of “optimal” mining is
to acquire a larger share of confirmed blocks on the public
chain. Recall that the relative revenue of a miner is the
fraction of his blocks on the public chain for a long period.
Obviously, the relative revenue cannot be measured under each
state-action pair, and cannot be taken as the corresponding
immediate reward. Sapirshtein et al. [5] transform the (long-
term) relative revenue into the family of (one-shot) absolute
revenues parameterized by the weight ρ ∈ [0, 1].

This ingenious transformation operates as the following.
Define a transformation function wρ : N3 → R related to
Alice’s instantaneous reward:

wiρ(r
i
1, r

i
2, r

i
h) = (1− ρ) · ri1 − ρ · (ri2 + rih), (24)

where ri1, ri2 and rih represent the instantaneous rewards of
Alice, Bob and Henry at step i (analogous to time t in
classical MDP). We reformulate the original MDP model as
Mρ =< S,A,P, wρ(r1, r2, rh) >. The underlying reason of
such transformation is that instead of maximizing the relative
revenue, we choose to maximize the expected fictitious reward
wρ(r1, r2, rh). For any admissible policy π, the mean reward

denoted by vπρ is characterized as:

vπρ = E[ lim
ξ→∞

1

ξ

ξ∑
i=1

wρ(r
i
1(π), ri2(π), rih(π))], (25)

where ξ is the total number of state transition steps. The
optimal revenue v∗ρ is given by

v∗ρ = max
π
{vπρ }. (26)

The equivalence between two MDPs M and Mρ is indirect.
Sapirshtein et al. [5] present two propositions to guarantee
their equivalence for a single selfish miner.
• If v∗ρ = 0 for some ρ ∈ [0, 1], then any policy π∗

obtaining this value also maximizes the relative revenue,
and the relative revenue equals to ρ.

• v∗ρ is monotonically decreasing in ρ.
The above propositions tell us that by searching for an

appropriate ρ that yields the mean reward of Mρ to be 0,
we can obtain the optimal relative revenue of Alice inM. We
generalize this idea to the MDP with multiple selfish miners.
In addition, the maximum number of steps, ξ, is truncated to
avoid excessive computations by tolerating a very gentle loss
in the optimal mean reward vπρ .

2) Algorithm: Owing to the monotonicity of v∗ρ to ρ, a
binary search of ρ ∈ [0, 1] is adequate. For a given ρ, we
utilize the value iteration method to solve the optimal policy
π∗ρ as [5]. Compared with policy iteration, the advantage of
value iteration is its fast convergence rate especially in large-
scale MDPs [20] [21].

B. POMDP-based policy for Optimal Mining

The OPT framework provides important insights into the
optimal mining policy in the presence of two attackers, yet
its real world deployment is unrealistic. The strategic miner
Alice is assumed to know precisely the system state, while
in reality Bob’s private chain is not observable to Alice, and
the blocks on the public chain released by Bob and Henry
cannot be differentiated because of their anonymity. In light of
the incomplete state information, we reformulate the optimal
mining as a Partially Observable Markov Decision Process
(POMDP). Before diving into details, we enumerate three key
challenges:
• which subset of information is non-observable to Alice;
• how the mining event-driven MDP model is generalized

to the POMDP model;
• how the POMDP-based optimal mining policy can be

computed efficiently.
1) Main components: The POMDP model is expressed as a

six-tuple MPO :=< S,A,P,R,O,Z >, where O is Alice’s
observation space, Z(·) is the observation function, and the
remaining components inherit the same meanings as their
counterparts in MDP.

Observable Information: In the partially observable en-
vironment, Alice cannot obtain all the attributes in S. The
length of Bob’s private chain l2 cannot be observed absolutely.
The attribute loc is non-observable either because Alice is
unaware of whether Henry is mining on his own chain or



8

Bob’s chain. h2, µ2 and µ3 are non-observable for that the
anonymity of mining covers up the owners of the blocks on
the public chain. The attribute fork is observable because ir
and r are pertinent to Alice’s private chain, and the values
f∗ ∈ {f12, f13, f23, f123} is obtained by counting the number
of focks in competition. l1, h1 and µ1 are known for sure;
h3 is actually the length of the longest public chain. In
summary, the observation space is represented as O :=<
fork, l1, h1, h3, µ1 >⊂ S. Given the same observation, Alice
is likely to be in many possible states.

State Transition: The state transition function is also
denoted as Pr(s′|s, a ∈ A). Though taking the similar form,
MPO possesses a different state transition logic from M. In
M, an action is triggered by the discovery of a new block,
and the state transition follows. InMPO, the pure event-driven
state transition will restrict Alice from participating in the fork
competition. For instance, if Bob hides one block, Alice should
publish her private block while there is no observable event
to trigger a fork competition. On the contrary, if Bob does not
have any private block while Alice believes that the length
of Bob’s private chain is 1, Alice may publish one or two
blocks unnecessarily. Therefore, one can see that a time-slotted
plus event-driven POMDP model is appropriate to handle the
intricate optimal mining problem.

Due to the memoryless Hash computation [22], the block
arrival process is actually a stationary stochastic process. If
we slice this stochastic process equally with a slot duration
∆t, the number of mined blocks in every slot has the same
distribution. By choosing a relatively small ∆t, we suppose
that at most one block is mined in each slot (the chance of
mining two or more blocks is rarer by orders of magnitude).
Denote by p the probability of generating a block in one time
slot. The probabilities that Alice, Bob and Henry generate it
are α1p, α2p and αhp respectively. Alice can estimate the
Hash power α2 and αh through mining honestly for a certain
period. It is worth highlighting that our POMDP model makes
the optimal mining with partially observable states feasible,
and is in accordance with realistic blockchain systems. All
the transitions are summarized in Appendix Table IV.

Observation function: Define Z := S × A → ∆(O)
as the observation function that specifies the relationship
between system states and observations. Here, z(s, a, o) is
the probability that observation o will be reached after Alice
performs action a and lands in state s:

zt+1(s, a, o) = Pr(ot+1 = o|st+1 = s, at = a). (27)

In MPO, the observation of a state is certain, i.e,

s =< loc, fork, l1, l2, h1, h2, h3, µ1, µ2, µ3 >,

o =< fork, l1, h1, h3, µ1 >,

zt+1(s, a, o) = 1. (28)

Belief: Our POMDP model is pertinent to a belief b which
is a probability distribution over all the possible states. Intu-
itively, Alice makes a guess on the current state iteratively.
The belief on a particular state s at time t is given by:

b(s) = Pr(st = s|ot, at−1, ot−1, · · · , a0, b0). (29)

The updated belief state b′(s′) is calculated whenever the
action a is taken and the observation o is perceived.

b′(s′) ≡ Pr(s′|a, o, b) =
Pr(o|s′, a)

∑
s Pr(s′|a, s)b(s)

Pr(o|a, b)
, (30)

where
∑
s∈S b(s) = 1 and Pr(o|a, b) is a normalization factor

given by

Pr(o|a, b) =
∑
s′

Pr(o|a, s′)
∑
s

Pr(s′|a, s)b(s). (31)

Reward function: We use ri1(s, a), ri2(s, a) and rih(s, a) to
denote the instantaneous rewards of Alice, Bob and Henry
at step i when Alice takes action a at state s. Due to the
uncertainty of system state, the expected reward functions
ri1(b, a), ri2(b, a) and rih(b, a) are constructed on the belief of
instantaneous rewards, ∀a ∈ A,

rik(b, a) =
∑
s∈S

bi(s)r
i
k(s, a), k ∈ {1, 2, h}. (32)

Similar to the transformation in the MDP model, we
replace the relative reward by the absolute reward
wiρ(r

i
1(bi, a), ri2(bi, a), rih(bi, a)) parameterized by ρ using

Eq. (24).
We next formulate the optimal mining as a finite-horizon

average reward POMDP problem as [5] and [11]. The expected
average value function is defined as

vπρ = E[ lim
ξ→∞

1

ξ

ξ∑
i=1

wρ(r
i
1(bi, π), ri2(bi, π), rih(bi, π))].

The optimal policy π∗ is a set of decision rules depending on
belief-state pairs:

π∗ = arg max
π∈A
{vπρ }. (33)

The parameter ρ that solves v∗ρ = 0 is the relative revenue
of Alice under the POMDP model. In practice, the sum of
revenues over ξ is truncated by a sufficiently large number ξ0.
Given a precision threshold ε, ξ0 needs to satisfy:

|vπρ − E[
1

ξ0

ξ0∑
i=1

wρ(r
i
1(π), ri2(π), rih(π))]| ≤ ε. (34)

C. Algorithm
A POMDP is essentially an expanded MDP defined on

belief space. However, the belief space is a high-dimensional
continuous space that needs to be segmented into a huge
number of belief states. An offline POMDP algorithm will
compute the optimal actions at every belief state. Considering
a large-scale POMDP like ours, the offline computation is
time-consuming because of generating the rewards, updating
the beliefs and constructing the optimal policy at each belief.
For efficiency considerations, we propose using the online
POMDP algorithm that explores the future belief states reach-
able from the current belief state. The policy construction time
is often substantially shorter. Furthermore, three properties can
be used to reduce the time of searching for ρ.

Lemma 1. Under the same parameter setting, the optimal
result of M is the upper bound of MPO.
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Proof: Among the approximation algorithms of the POMDP
problem, the MDP approximation consists in approximating
the value function of the POMDP by the value function of its
underlying MDP [23]. This value function is an upper bound
on the value function of the POMDP [24].

Lemma 2. The revenue obtained under the optimal policy
based on any ρ is the lower bound of the actual optimal
revenue for MPO.

Proof: The value of ρ does not affect the state transition and
the instantaneous reward. All the mining policies under any
ρ are available, even though they are not optimal. Hence, we
record the number of blocks that each miner obtains at every
time step, i.e, (ri1, r

i
2, r

i
h). After enough time steps, we can

compute the relative revenue under the current ρ even though
it is not optimal. Therefore, the revenue of the optimal policy
obtained under the current ρ is the lower bound of the actual
optimal revenue.

Lemma 3. There exists an optimal stationary deterministic
policy for MPO model.

Proof: The states, actions and beliefs are countable because
the maximum lengths of private and public chains are limited.
Since a POMDP problem can be regarded as a belief MDP,
the existence of an optimal stationary policy for our POMDP
problem is guaranteed by Theorem 7.3.6 of [25].

Algorithm 1 Algorithm for solving the POMDP.
Input:MPO,M, a truncation parameter ξ0, a precision value
ε; The initial belief bc;
Output:ρ;
Static: a∗ : optimal action;

1: low ← 0;
2: ρ∗ =QMDP(M);
3: upper ← ρ∗;
4: while upper − low > ε do
5: ρ← (low + upper)/2
6: RESULT← {};
7: r1 ← 0, r2 ← 0, rh ← 0;
8: vρ ← 0, ξ ← ξ0;
9: bc ← initial belief

10: while ξ > 0 do
11: if bc ∈ RESULT then
12: a∗ =RESULT[bc]
13: else
14: a∗ ← AEMS2(bc,MPO)
15: end if
16: (ri1, r

i
2, r

i
h)← Execute a∗ for bc.

17: r1+ = rii , r2+ = ri2, rh+ = rih;
18: vρ+ = wρ(ri1, r

i
2, r

i
h);

19: RESULT[bc] = a∗

20: Perceive a new observation o
21: bc ← b′(bc, a∗, o) B update algorithm is Eq. (30)
22: ξ− = 1
23: end while
24: R′1 = r1/(r1 + r2 + rh);
25: if vρ > 0 then
26: low ← max(ρ,R′1);
27: else
28: upper ← ρ; low ← max(low,R′1);
29: end if
30: end while
31: return ρ;

Our online mining algorithm is described in Algorithm 1.
We calculate the optimal revenue based on binary search.
The upper bound can be set as the result of the underlying
MDP model according to Lemma 1 (lines 2-3). Alice will
execute the optimal action based on the current ρ and obtain
the relative revenue (lines 16 and 24). Her optimal revenue is
no less than the relative revenue according to Lemma 2 (lines
25-29). We do not have to recalculate the optimal action at
every step according to Lemma 3. The online algorithm will
adopt the corresponding action if the same belief state has met.
Otherwise, it will calculate and store the new optimal action
(lines 11-15). A block of size 1MB needs 18 seconds to reach
three thousand nodes in Bitcoin [26]. Making timely decisions
is very important. We use AEMS2 [27] [24], one of the fastest
POMDP algorithms, to compute the optimal action (line 14).

V. TRANSIENT ANALYSIS OF PROFITABILITY

In this section, we first describe the difficulty adjustment
algorithm (DAA) in Bitcoin-like systems, and model the
revenue of miners in one difficulty adjustment period. We
analytically show that the extra revenue of selfish mining is
originated from the DAA.

A. Bitcoin-like Difficulty Adjustment

The essence of Bitcoin mining is to solve a cryptographic
puzzle. A Bitcoin miner repeatedly enumerates a NONCE until
the head Hash is below the difficulty target. The smaller a
target value is, the more difficult the discovery of a valid
NONCE will be. For a fixed target difficulty, a larger Hash power
means a shorter time of finding a valid NONCE.

To maintain a stable block generating interval, Bitcoin
introduces difficulty adjustment algorithms (DAAs) to cope
with the variable Hash powers in the systems. The Bitcoin
DAA is executed after 2016 blocks have been mined. It is
actually a feedback control system: if the actual time of
mining 2016 blocks is larger than 20160 minutes (10 minutes
per block), the target difficulty decreases proportionally, and
increases otherwise. When a miner performs selfish mining,
a lot of blocks are orphaned so that the actual time to mine
2016 blocks becomes longer. In the next difficulty adjustment
periods, the target difficulty is lowered down to maintain the
fixed block generating rate.

B. Absolute Revenue

Previously we define the revenue of a miner in each mining
round and his/her relative revenue. However, the duration of
a mining round may not be fixed all the time, and the actual
number of valid blocks obtained by a miner in each unit of
wall-clock time is overlooked. In Bitcoin system, we denote
10 minutes as the unit time, and denote a DAA period as the
expected time units of mining 2016 valid blocks.

Definition 3. (Absolute Revenue) The absolute revenue is the
average number of blocks obtained in each unit time.

#1 DAA Period. We treat the first DAA period as the begin-
ning of selfish mining in order to analyze the transient absolute
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revenues of Alice and Bob. The following normalization rule
is made to simplify the analysis by eliminating the randomness
of block generating interval. A block is generated every time
unit at the first difficulty adjustment period, i.e., ∆t1 = 1.

With the above assumption, we can easily compute the
duration of generating 2016 valid blocks. Let Rvld be the total
number of valid blocks of all miners in a mining round, and
let Rtot be the total number of blocks including the valid
and orphan blocks in the same round. This means that a
mining round occupies Rtot time units. Denote by T1 the
expected time units to accomplish the first DAA period. One
can calculate the time of mining rounds that the total number
of valid blocks reaches 2016. Then, T1 is equivalent to the
sum of time units of these mining rounds. There exists

Rvld = Ra +Rb +Rh; Rtot = 1;

E[T1] =
2016

Rvld
·Rtot. (35)

Due to the orphaned blocks, Rtot is greater than Rvld so that
the actual time of T1 is longer than 2016 time units.

Subsequent DAA Periods. After the first DAA period, the
blockchain finds that the time interval of generating a valid
block is longer than one time unit. Consequently, the target
difficulty decreases to match the current valid Hash power in
the system. Given the invariable Hash power of miners, the
block generating interval ∆ti becomes smaller for i ≥ 2. Let
Ti be the expected time units of the ith DAA period that has
Ti = 2016 for i ≥ 2. This is also the goal that DAA is going
to achieve. It is noted we assume Rtot ≤ (4 ·Rvld).

Absolute Revenue Over Time. Recall that the absolute
revenue captures the expected reward of a miner in each
time unit. Since our purpose is to investigate the transient
profitability of selfish mining, we define R̃i(K) as the absolute
revenue of the ith miner over K DAA periods. Therefore, we
obtain the following expressions for ∀i ∈ {a, b, h}

R̃i(K) =
2016 ·K ·Ri

Rvld
· 1∑K

k=1E[Tk]

=
KRi

Rtot + (K − 1)Rvld
. (36)

Now we are aware that the selfish mining has a smaller
absolute revenue in the first DAA period no matter whether the
Hash power of the attacker is above the stationary profitable
threshold or not. This claim also holds in different selfish
mining policies. As K increases, the absolute revenue is
asymptotically close to the relative revenue, which is

R̃i(K) =
KRi

Rtot + (K − 1)Rvld
≈ KRi
Rvld + (K − 1)Rvld

.

(37)

This fully justifies the use of relative revenue to represent
absolute revenue in previous models. At the same time, a
selfish miner can hopefully reimburse his/her loss in the first
DAA period by his/her extra revenue in the future DAA
periods. With our absolute revenue model, we can characterize
how much time is needed to make selfish mining profitable
eventually.
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Fig. 6. Bob’s threshold under the influence of Alice’s Hashrate.

VI. EVALUATION

In this section, we develop an event-driven simulator for
basic selfish mining and a time-driven simulator for POMDP-
based selfish mining 3. Comprehensive experiments validate
the correctness of our models and reveal important properties
regarding the profitability of selfish mining [28].

A. Basic Selfish Mining

Observation 1. When there are multiple attackers in Bitcoin-
like systems, the attackers’ profitable thresholds decrease and
the system security is degraded.

We illustrate Bob’s profitable threshold of selfish mining
in Fig. 6 as Alice’s Hash power increases from 0 to nearly
0.5. To avoid involving too many control variables, the tie-
breaking parameters are set to γ1=γ2= 1

2 and θ1=θ2= 1
3 . One

can observe from three curves with different N that Bob’s
profitable threshold decreases at first and increases afterward.
When N = 2 and α1 = 0.16, Bob’s profitable threshold is the
lowest. Under this situation, Alice’s selfish mining may yield
less revenue compared with her honest mining. We further
draw a 45◦ line to indicate the profitable threshold for both
Alice and Bob when their Hash power is symmetric. When N
is 2, 3 and 4, the profitable threshold is 26.64%, 22.57% and
21.48%. In contrast, it takes the value of 33.33%, 28.08% and
26.50% respectively, if there is a single attacker. An obvious
conclusion is that the existence of multiple attackers makes
selfish mining more easily profitable.

Observation 2. The profitable threshold decreases with the
increase of N , and remains stable with the attackers of
symmetric Hash power as N ≥ 4; it also decreases when
the number of attackers m increases.

We evaluate the profitable thresholds of BSM with different
N and m. Our purposes are twofold: one is analyzing the inter-
play between this threshold and the environment variables, and
the other is justifying the use of N ≤ 4 in the mathematical
modeling. The Hash powers of all the attackers are identical,
and the competing chains are indistinguishable upon the tie-
breaking rules.

Fig. 7 shows the relationship between N and the profitable
threshold. The cases with 1, 2, 3 and 4 symmetric attackers are

3Mining strategies can be implemented in real systems possibly because
miners’ decision-making relies on public information.
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Fig. 12. Estimating Bob’s Hash power by observing
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expressed in solid, dashed, dash-dotted and dotted lines. One
can observe that the profitable threshold decreases remarkably
for different m as N increases from 2 to 4. The event-driven
simulations exhibit a stable profitable threshold when Alice
and Bob can hold more than 5 private blocks. For instance, this
threshold converges to 25% for a sufficiently large N with a
single attacker, which is in line with [3]. With two symmetric
attackers (m = 2), its value is 20.60% at N = 30, slightly
different from that at N = 4. In general, Alice’s or Bob’s
Hash power is much smaller than Henry’s Hash power. The
chance that Alice’s or Bob’s private chain takes a large lead
over the public chain in a mining round is very small. Hence, it
does not make an evident influence on the profitable threshold
when N is already large. Moreover, hiding a long private
chain and releasing all the blocks simultaneously will make
the selfish mining attack easily detected. Fig. 8 shows Henry’s
orphan block ratio as N increases from 2 to 9 with m = 2.
Even though Alice’s and Bob’s Hash powers are merely (0.22,
0.22), they cause a very high orphan block ratio to Henry,
e.g., 18.73% with N = 2, 28.53% with N = 4 and 31.66%
with N = 9. Such a high orphan ratio can easily expose the
identity of attackers. Therefore, our modeling framework only
considers N ≤ 4 though it is extensible to N > 4.

We use mathematical models and event-driven simulations
to quantify the impact of m on the profitable threshold in Fig.
7 and 9. One can observe that the increase in the number
of attackers reduces the profitable threshold, thus endangering
blockchain security. For N = 4, the profitable thresholds with
m ∈ {2, 4, 8} are {0.2148, 0.155, 0.11}. This challenges the
cognition that selfish mining is less likely to happen if the
Hash power of a miner is below 25%. The primary reason
that more attackers lead to smaller profitable thresholds lies
in that the Hash power of the honest miner declines relatively.
Meanwhile, our model coincides with the simulation result at

N = 2 in Fig. 9, thus validating its correctness. In Appendix
C, we further explore the impact of N on the BSM attackers’
revenues when the attackers’ Hash powers are asymmetric.

Observation 3. The profitable threshold decreases with the
increase of γ and θ. When γ1 = γ2 = 1 and N = 2, BSM
homogeneous attackers can obtain extra revenue with very
small Hash power.

We also explore the impact of different information prop-
agation delays on the profitable threshold. The information
propagation delay determines the proportion of other miners’
Hash power after the attacker’s released chain in the tie-
breaking, i.e., γ1, γ2, θ1 and θ2. We will study the prof-
itable threshold of two homogeneous attackers under different
information propagation delays, i.e., γ1 = γ2 = γ and
θ1 = θ2 = θ. Fig 10 shows the results when θ = 1/3, the
profitable threshold will decrease with the increase of γ. When
γ increases to 1, the attackers’ profitable threshold tends to
0. This means that when N is relatively small, the attacker
can obtain extra revenue through BSM with a very small
hash power if γ = 1. Fig. 11 shows the profitable threshold
decreases with the increase of β when γ = 1/2. It can be
observed the less propagation delay leads to more revenues
for the attacker.

Since the advent of the seminal work [3], the Bitcoin
community tries to constrain mining pools to possess less
than 25% of Hash power. However, we prove that 25% is not
enough: Bitcoin mining is fragile in the presence of multiple
selfish miners.

B. MDP and POMDP-based Mining

The roadmap of performing optimal mining is the follow-
ing. We explore its feasibility by estimating the unknown
parameters. Then, we compute the optimal mining policy
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Fig. 16. The revenue for Alice when α2 = 0.3,
N = 2.

Fig. 17. The revenue for Alice when α2 = 0.35,
N = 2.

Fig. 18. The revenue for Alice when α2 = 0.4,
N = 2.

Fig. 19. The revenue for Alice when α2 = 0.26,
N = 3.

Fig. 20. The revenue for Alice when α2 = 0.28,
N = 3.

Fig. 21. The revenue for Alice when α2 = 0.3,
N = 3.

and the corresponding revenue using MDP, and on this basis
we compute the optimal mining policy using POMDP under
partially observable states.

Recall that Alice is the strategic attacker with POMDP-
based policy and Bob is the basic selfish miner (BSM). Alice
needs to compute the proportion of her Hash power to the
global Hash power based on the public information [29]. Then
she needs to decide whether there exists a selfish miner namely
Bob, and if so, what Bob’s Hash power is. Note that there
has been a one-to-one mapping between Henry’s orphan block
ratio and Bob’s Hash power. Fig. 12 shows the orphan ratio
of the honest miner as a function of Bob’s Hash power with
N = 2 and N = 3. The theoretical and experimental results
match well, which indicates the feasibility of calculating Bob’s
Hash power through the observed orphan block ratio. After
that, we compute the revenue upper bound of POMDP-based
policy using MDP. Analogous experiments of MDP-based
mining can be found in Appendix D. Then, we will focus
on the performances of POMDP-based mining policy. Let
the error parameter ε = 0.00001 and the execution number
ξ0 = 1000000.

Observation 4. When Alice uses the POMDP-based policy,
and Bob uses the basic selfish mining, Alice has a much lower

profitable threshold compared with the basic selfish mining.
Her revenue is no less than the honest mining and the basic
selfish mining, and is close to the OPT policy with complete
state information.

We evaluate Alice’s profitable threshold and revenue when
she uses the POMDP-based mining policy. Fig. 13 and 14
compare the profitable thresholds of BSM, MDP-based (OPT)
and POMDP-based (POMDP) mining strategies when N =
2, 3 and α2 increases from 0.285 to 0.42. An interesting finding
is that both OPT and POMDP strategies have much smaller
profitable thresholds compared with BSM. For instance, the
profitable threshold is 0.02 when α2 = 0.34 and N = 2,
and is 0.08 when α2 = 0.3 and N = 3. The reason is the
following. When Bob is playing BSM and Bob’s Hash power is
much larger than Alice’s, Alice will choose to mine honestly.
If there is a fork between Bob and Henry, Alice insists on
mining on the public chain that contains her own blocks.
Alice’s policy is equivalent to decreasing γ2 in the situation
of a single attacker. Therefore, Bob will find it difficult to
gain more revenues, and Alice as well as Henry benefits from
Bob’s losses. In addition, with the increase of Bob’s Hash
power, Alice’s profitable threshold becomes higher. A cross-
comparison between Fig. 13 and 14 shows that a larger N
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Fig. 22. The revenue for Alice when α = 0.3,
N = 2 with different γ.

Fig. 23. The revenue for Alice when α = 0.35,
N = 2 with different γ.

Fig. 24. The revenue for Alice when α = 0.4,
N = 2 with different γ.

Fig. 25. The revenue for Alice when α = 0.3,
N = 3 with different γ.

Fig. 26. The revenue for Alice when α = 0.35,
N = 3 with different γ.

Fig. 27. The revenue for Alice when α = 0.4,
N = 3 with different γ.

Fig. 28. The revenue for Alice when α = 0.3,
N = 2 with different θ.

Fig. 29. The revenue for Alice when α = 0.35,
N = 2 with different θ.

Fig. 30. The revenue for Alice when α = 0.4,
N = 2 with different θ.

Fig. 31. The revenue for Alice when α = 0.3,
N = 3 with different θ.

Fig. 32. The revenue for Alice when α = 0.35,
N = 3 with different θ.

Fig. 33. The revenue for Alice when α = 0.4,
N = 3 with different θ.

makes Alice hard to compete with Bob if α1 ≤ α2. When
Bob’s Hash power is 0.36, Alice’s profitable threshold is 0.08
when N = 2 and is about 21.6% when N = 3.

The POMDP-based policy can improve Alice’s revenue
under different situations. We first direct our attention towards
examining the influence of miners’ Hash power on the prof-
itability of POMDP-based policy. Setting γ1 = γ1 = 1/2 and
θ1 = θ2 = 1/3, Fig. 16∼18 plot Alice’s revenues using Honest
mining, BSM, OPT and POMDP-based mining at N = 2;
Fig. 19∼21 show those revenues with N = 3. In each set of
experiments, we fix Bob’s Hash power (α2) and change Alice’s
Hash power (α1) from 0.20 to 0.40. As for the POMDP-based
policy, three cases are considered, in which the probability of
generating a block is 0.9, 0.8 or 0.5 at each time slot. One can

easily observe that the POMDP-based policy has comparable
revenues with the honest and the OPT mining policies when
Alice’s Hash power is relatively small, such as the case of
α1 = 0.25 in Fig. 17 and Fig. 18. While the basic selfish
mining seems very “stubborn”, causing Alice’s revenue much
lower than the honest mining in this situation. The revenue
of the POMDP-based policy is significantly higher than that
of BSM and honest mining when Alice’s hash power is large,
such as the case of α1 = 0.4 in Fig. 16.

Subsequently, we explore the potential benefits of various
γ and θ. Fig. 22 ∼ Fig. 27 plots Alice’s revenue using honest
mining, BSM, OPT and POMDP-based mining at N = 2 and
N = 3 with different γ; Fig. 28 ∼ Fig. 33 show those revenues
with different θ. In each set of experiments, we fix the two
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solute revenue when α1 = α2 after 100 periods.
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Fig. 36. Profitable time and Hash power.

attackers’ Hash power (α1 = α2) to 0.3, 0.35 and 0.4. We then
vary γ1 = γ2 = γ from 0.2 to 1 with θ1 = θ2 = 1/3. At the
same time, we also explore the situations that θ1 = θ2 = θ
is from 0.1 to 0.5 with γ1 = γ2 = 1/2. Evidently, it can
be observed that the POMDP-based policy has demonstrated
superior performance compared with both BSM and honest
mining across all scenarios. Meanwhile, as the parameters γ
and θ exhibit an increase, a corresponding increase in Alice’s
revenue of POMDP-based policy is discernible. In conclusion,
the PODMP-based policy generates equal or higher revenues
than honest mining and basic selfish mining, and approaches
the performance of the OPT policy.

The designed online algorithm can effectively calculate
the optimal revenue of MOP . We compare the number of
iterations required to execute the binary search algorithm in [5]
and Algorithm 1. The reduction ratios are summarized in Table
I. Under different Hash power combinations and different
action slots, the efficiency of Algorithm 1 is significantly
higher. When N = 2, α1 = 0.3, α2 = 0.3 and p = 0.5,
we can save 66.6% of the computing time. It takes a long
time to simulate half a million times to obtain the revenue
for each ρ. The improvement of our search algorithm plays a
significant role in solving MPO rapidly.

C. Selfish Mining on Multiple Difficulty Adjustment Periods

Observation 5. A selfish miner obtains a smaller absolute
revenue than that of honest mining during the first difficulty
adjustment period regardless of his Hash power. However, he
might gain profit after a number of periods that is related to
the selfish miners’ Hash power.

Fig. 15 shows the relative revenue and absolute revenue
of attackers with the same Hashrate 33% and N = 4 in
each DAA period. The relative revenue and absolute revenue
are equal within the allowable range of error. Therefore, the
relative revenue can play the same role as absolute revenue in
representing benefit. Fig. 34 and Fig. 35 show the theoretical
relative revenue and absolute revenue after 100 and 1000 DAA
periods when α1 = α2 and N = 4. It can be observed that
the absolute revenue is always less than the relative revenue,
but the difference is small. When α1 = 0.22, the relative
revenue is 0.2217 and the absolute revenue is 0.2209. This
difference decreases to 0.0001 after 1000 periods. That means
the difference between relative revenue and absolute revenue
decreases with the increase of the attack time.

TABLE I
THE TIME REDUCTION RATIO OF ALG. 1 COMPARED TO TRADITIONAL

ALGORITHM.

Hash power p EFF IMP

α1 = 0.3, α2 = 0.3 0.9 53.3%
0.8 46.6%

N = 2 0.5 66.6%

α1 = 0.35, α2 = 0.35 0.9 80%
0.8 60%

N = 2 0.5 46.7%

α1 = 0.28, α2 = 0.28
0.9 60%
0.8 46.7%

N = 3 0.5 46.7%

α1 = 0.3, α2 = 0.3
0.9 73.3%
0.8 46.7%

N = 3 0.5 40%
As Eq. (36) shows, when Alice has more Hash powers, she

can get illegal revenue earlier. However, if both of the two
attackers have a large Hashrate, they will benefit late. Fig.
36 shows the simulation results and the theoretical results of
profitable time under different Hash powers with symmetric
attackers. The horizontal axis represents the attack’s Hash
power and the ordinate represents the attackers’ profitable
time, also the curves are theoretical results and the dots are
simulation results. The selfish mining is profitable after 51
DAA rounds (i.e. 714 days in Bitcoin) if the Hash power of
selfish miners are both 22% (slightly higher than the profitable
threshold). This delay decreases to 5 rounds (i.e. 70 days in
Bitcoin) as their Hash power accrues to 33%, which is still
very long. As the attackers gained more computing power,
Alice’s main competitor became Bob rather than Henry. The
benefit time begins to increase for Alice and Bob. When there
is only one attacker and she has 25.5% Hashrates, the attacker
will obtain extra revenue after 26 rounds (about 364 days).

It shows that when attackers’ Hashrate is relatively small,
it takes a rather long period to gain profit. When the two
attackers all have large Hashrates, it also takes a long period to
obtain extra revenue. That means in the real system, it is a little
bit hard to perform attack. If the global Hashrate increases, we
can also use this formula to calculate when to stop the attack
before we can benefit the most.

VII. RELATED WORK

Selfish mining attack is one of the core challenges of
blockchain consensus that has been extensively studied in the
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past several years. We hereby describe the recent advances
in selfish mining policies and their analytical or experimental
performance.

One attacker. Since the advent of [3], there have been
many studies on different forms of selfish mining attacks.
Nayak et al. [4] proposed the stubborn mining which improves
about 13.94% revenues compared with the basic selfish mining
attack. A more intelligent selfish mining strategy has been
proposed in [5] based on the Markov Decision Process and
it decreases the profitable threshold to 23.21%. Tao et al. [6]
described semi-selfish mining attack on the basis of selfish
mining based on hidden Markov decision process, which not
only ensures the benefit of the attack, but also reduces the
forking rate. Negy et al. [30] introduced intermittent selfish
mining and showed that the intermittent selfish miner above
37% hash power earns more coins per time unit even when
γ = 0. Davidson et al. [31] simulated the profitability of
selfish mining under several difficulty adjustment algorithms
used in popular cryptocurrencies. Selfish mining attack takes
on different properties in the Ethereum system because of
the uncle block. Grunspan and Ritz introduced the selfish
mining attack in Ethereum and found that Ethereum is more
vulnerable to selfish mining than Bitcoin [32] [33]. Zhang et
al. studied the selfish mining, double-spending and feather-
forking in different blockchain systems based on MDP. They
obtained that no PoW protocol achieves ideal chain quality or
is resistant against all three attacks [34].

At the same time, selfish mining attack can also be com-
bined with other attacks to achieve greater benefits. Gervais et
al. devised optimal strategies for double-spending and selfish
mining while taking into account real world constraints such
as network propagation, different block sizes, block generation
intervals, information propagation mechanism, and the impact
of eclipse attacks [11]. Kwon et al. [8] proposed FAW attack
which combines the selfish mining attack and withholding
attack. The reward for an FAW attacker is no less than that for
a BWH attacker. Gao et al. extended the work of Kwon et al.
proposing the power adjusting withholding attack (PAW) and
bribery selfish mining attack (BSW) [10]. They showed PAW
could avoid the “miner’s dilemma” in BWH attack and BSW
increases revenues by 10% compared with traditional SM [35].
However, BSW will introduce “venal miner’s dilemma”. To
avoid the “venal miner’s dilemma”, Yang et al. proposed the
IPBSM attack which assumed all attackers take the optimal
bribery selfish mining [36].

Multiple attackers. The participation of multiple attackers in
the system will greatly change the benefits of selfish mining
attacks. Ruan et al. simulated the multiple strategic miners
employing strategies other than honest mining and extended
the attackers’ strategy by proposing a new strategy set publish-
n [12]. Their results show a lower profitable threshold in
the presence of multiple attackers compared to that with a
single attacker. Xia et al. explored the impact of multiple
miners and propagation delay on selfish mining [37]. They
used simulations to show that the large selfish miner with
more mining power can obtain extra revenue while other
smaller attackers cannot when there are multiple selfish min-
ers. Charlie et al. proposed SquirRL which is a framework

for using deep reinforcement learning to analyze attacks on
blockchain incentive mechanisms. The revenue of SquirRL
is greater than that of the Markov decision attackers when
there are multiple selfish mining attackers [15]. Francisco et al.
proposed semi-selfish mining when there are two attackers and
modeled this attack [38]. They focused on the simplest selfish
mining strategy in which selfish miners never maintain private
chains of length greater than 2. Their result shows the Nash
equilibrium under different Hash powers and the threshold for
each policy based on the game theory. Also, they modeled
the situation when the number of attackers is more than two.
However, they do not get the closed-form result.

Further research is undertaken to explore the correlation
between the number of attackers and the security of the
system. Sebastian et al. proposed the simulation results that
the profitable threshold decreases in proportion to the number
of selfish miners [39]. Meanwhile, they found the existence of
Nash equilibria where many miners use selfish mining strategy
and gain extra revenue simultaneously. Zhang et al. simulated
the situation when there were multiple selfish mining attackers
in the system [14]. It shows there are scenarios where it is
enough to have 12% mining power to benefit from selfish
mining but also that having more than seven selfish miners
which benefit simultaneously is highly unlikely. Azimy et al.
designed a Bitcoin network simulator and used it to simulate
different configurations of miners [40]. Their finding shows
that in almost all of the configurations, with the presence of a
more powerful selfish miner, selfish mining actually decreases
the revenue of the weaker selfish miners and also helps the
stronger selfish miner.

VIII. CONCLUSION

In this paper, we first study how the existence of multiple
misbehaving miners influences the profitability of basic selfish
mining. By establishing the Markov chain model to describe
the action of attackers and honest miners, we can obtain the
minimum profitable threshold is symmetric 21.48%, which
decreases as the number of symmetric attackers increases.
If there are two asymmetric selfish mining attackers in the
system, the profitable threshold of one attacker decreases first
and then increases with the increase of the other attacker’s
Hash power. We validate this in both models and experiments.
We next investigate the revenues of the attackers when one
executes the basic selfish mining and the other implements the
strategic mining. A new mining strategy is designed for the
miners with incomplete information based on POMDP. We
can obtain revenue by the new strategy no less than honest
mining and basic selfish mining. Considering the difficulty
adjustment, we model the transient process and acquire the
closed-form solution of the profitable time. It can be discov-
ered that the profitable time is large when the attacker’s Hash
power is low. Moreover, there is a negative correlation between
the profitable time and the attackers’ mining power.
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APPENDIX

A. Tie-breaking with three public chains

For the situation that each of Alice and Bob hides one
private block, they will publish their private chains instantly
after Henry finds a new block. As shown in Fig. 37, there
exist three competing public chains. Alice will mine after A1

and Bob will mine after B1 for sure; Henry is not aware of
which chain is maliciously forked so that he may mine on
each public chain. There are also five possible situations. The
risk-avoiding release, together with two tie-breaking solutions,
constitutes all the dynamics of private and public chains.

Fig. 37. Tie-breaking case with three public chains.

B. Scaling to N > 2

We next model the revenues of all miners when each
private chain can hide more than one block. Especially, as
the maximum number of private blocks for one attacker is no
less than four (i.e. N=4), the “chain reaction” occurs and the
resulting finite state machine becomes very much complicated.
A state should include not only the lengths of all chains, but
also the interleaving of blocks on them. We confine our study
to three miners: Alice, Bob and Henry, and investigate the
case N = 4 without loss of generality. The main difficulty
hindering the mathematical analysis is that Alice and Bob have
different beliefs in the starting position of the current mining
round. Besides, the blocks in the winning chain may belong
to Henry and Alice/Bob so that we need to memorize them in
order to compute their revenues. In contrast, both Alice and
Bob always have the common starting position in the racing
without chain reaction (i.e. state (0, 0, 0) in Fig.38).

The state transitions with N = 4 are expressed in Fig.
38 where each state consists of eight parameters. The current
mining round starts at the leftmost node where no miner has
discovered a block. The notation h1 indicates the distance
between the starting position believed by Alice and the real
starting position. Similarly, h2 and h3 indicate these distances
of Bob and Henry. We record h1, h2 and h3 because the blocks
between the real and the believed starting positions influence
which chain will prevail finally and how the revenues are
calculated. The notation l1 (resp. l2) represents the number
of unreleased blocks at Alice’s (resp. Bob’s) private chain. µ1

denotes the number of Henry’s blocks between the real starting
position and the Alice-believed starting position. µ2 and µ3 are
defined for Bob and Henry in the same way. Combined them

together, we define a Markov state as l1l2h1h2h3
µ1µ2µ3

that is also
applicable to the situation with N > 4.

We hereby present a concrete example of state transition.
The related states in Fig. 38 are marked in blue, and their
transitions are illustrated in Fig. 39 separately. At stage 1 ,
Alice has mined three blocks stealthily so that the system state
jumps from 0 to 30000000 through 10000000 and 20000000. At stage 2 ,
Henry mines a valid block H1 and publishes it to the public
chain immediately. The system state then jumps from 30000000 to
30011011. Bob has mined three blocks after H1 at stage 3 and
the system state moves to 33011011. So far, neither Alice nor Bob
will release their private blocks. At stage 4 , Henry discovers
a new block H2 that triggers the release action of Alice. After
Alice publishes all her blocks to obsolete Henry’s chain, Bob
finds that the public chain is catching up. As a consequence,
Bob publishes all his blocks and wins the competition finally,
i.e. the system state returning to the starting position. In this
round, Bob receives three block rewards and Henry receives
one block reward.

According to the transitive probability, the revenue for each
miner can be represented as:

π000 = 1/(1 + α1 + α2 + α1α3 + α2
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β1 = γ1/(γ1 + γ2) β2 = γ2/(γ1 + γ2). (42)
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Fig. 38. State machine with N = 4. Fig. 39. A path sample with N = 4.

Fig. 40. Alice’s Revenue with α1 > max(α2, αh).
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Fig. 41. Simulated threshold for Bob when α1 >
max(α2, αh).
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Fig. 42. Simulated threshold for Bob when αh >
max(α1, α2).

R̂i =
Ri

Ra +Rb +Rh
,∀i ∈ {a, b, h}. (43)

The cases with N > 4 can be analyzed in the same way.
We validate in our experiments that the relative revenue tends
to converge when N ≥ 4. If N is too large, the repeated
chain-reactions will occur, which aggravates the system insta-
bility and increases the possibility of detecting selfish mining
attacks.

C. Profitable threshold under asymmetric attackers

Observation 6. If αh < max(α1, α2), the revenue of the
attacker with more Hash power among three miners will
increase as N increases. If αh > max(α1, α2), the revenue
of the attacker with more Hash power will increase first and
then remain stable as N increases. The common benefit Hash
power region of two attackers increases at first and then
decreases with the increase of N .

We explore the revenue of the attackers with more Hash
power than the honest miner under different N when αh <
max(α1, α2). In Fig. 40, we show Alice’s revenue of Alice at
four situations: the Hash powers of Alice, Bob and Henry are
(0.45, 0.25, 0.3), (0.4, 0.3, 0.3), (0.35, 0.25, 0.4) and (0.3, 0.3,
0.4) that are labeled as situations 1, 2, 3 and 4. Situations 1
and 2 manifest that the revenue of the attacker with more Hash

power than others increases as N increases. The attacker can
obtain more than 90% of the revenue, achieving the similar
effect as the 51% attack, even though she does not have
51% of Hash power. Situation 3 and 4 show that Alice’s
revenue converges as N increases if Henry has the largest Hash
power. The revenue of Alice converges to 0.524 in situation
3 and 0.357 in situation 4 with N = 200. This implies that
limiting the attacker’s Hash power will prevent the attacker
from obtaining too many revenues when N is large.

We then investigate Bob’s profitable threshold when Alice
has a different Hash power and N is large. Fig. 41 shows Bob’s
thresholds under different N when Alice has the largest Hash
power, i.e. α1 > max{α2, αh}. Bob’s profitable threshold
decreases first and then increases as N increases. That means
even if Bob can obtain extra revenue when N is small,
he can not obtain extra revenue when N is large enough.
Under this circumstance, Alice’s revenue can obtain far more
than her Hash power proportion, and her attack becomes
meaningless because this system can not attract other miners
even other selfish mining attackers. Fig. 42 shows Bob’s
profitable threshold will decrease first and then converge as N
increases when Henry has more Hash power than Alice and
Bob. This suggests that limiting the attacker’s Hash power
also encourages other miners including other selfish mining
attackers to continue mining even if N is large. According
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Fig. 43. Profitable regions of both selish mining attackers with N = 2, 3, 4, 5, 7, 8, 15, 25, 35,∞.

Fig. 44. Optimal revenue for Alice when N = 2. Fig. 45. Optimal revenue for Alice when N = 3.

to these analyses, the attacker will not hide too many blocks
even if he has more Hash power than others.

We now analyze the interplay between Alice’s and Bob’s
profitable thresholds. Fig. 43 shows the profitable regions for
each attacker under different N . The blue part indicates that
neither attacker can gain additional revenue if they perform
the BSM attack, and the red part indicates that both attackers
can gain additional revenue through selfish mining. The green
(resp. orange) part represents the situation that only Alice
(resp. Bob) can obtain extra revenue. The intersection of four
regions is actually the profitable threshold with symmetric
Hash powers of Alice and Bob that decreases over N and
converges gradually. The common profitable region (in red)
first expands and then shrinks as N increases. The reason is
the following. A large red region basically says that both Alice
and Bob are profitable with BSM even if their Hash powers are
asymmetric to some extent. When N is very small, Alice and
Bob can hide only a couple of blocks so that their ability of
wasting Henry’s Hash power is restrained. With the increases
of N , their selfish mining ability becomes more powerful,
and thus could have more chances of obsoleting the public
chain even if each of them has a smaller Hash power than
Henry. Meanwhile, given the restriction of N , both Alice and
Bob may receive a certain amount of extra revenues, resulting

in a larger common profitable region. When N is large, the
stronger attacker is inclined to dominating the selfish mining.
If Alice’s Hash power is larger than Bob’s, Bob will find
it difficult to compete with Alice so that Bob’s profitable
threshold is getting higher. If Alice’s Hash power is the largest,
it is similar to 51% attack. Bob’s selfish mining is profitable
only when Alice’s and Bob’s Hash powers are sufficiently
close, causing the common profitable region to shrink to a
line segment.

D. MDP-based mining experiment

We will compute Alice’s optimal policy and the correspond-
ing revenue of MDP-based (OPT) mining. Let the error pa-
rameter ε = 0.00001 and the execution number ξ0 = 500000.
Fig. 44 illustrates the optimal revenue obtained by Alice when
Alice’s Hash power is α1 ∈ {0.10, 0.15, 0.20, 0.25, 0.30, 0.35,
0.40, 0.45}, Bob’s Hash power is α2 ∈ {0.30, 0.35, 0.40} and
N = 2. The maximum length of the longest public chain is set
as (N + 1). One can observe that Alice’s optimal mining and
honest mining yield the same revenue when her mining power
is relatively small, e.g. α1 = 0.1, α2 = 0.40 and αh = 0.50.
Under these situations, the optimal mining policy is exactly the
honest mining, while BSM underperforms the honest mining
significantly. On the contrary, when Alice’s Hash power is
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large, e.g., α1 = 0.40, α2 = 0.40 and αh = 0.20, the optimal
mining policy results in a higher revenue than the basic selfish
mining, and the basic selfish mining is better than the honest
mining. Fig. 45 shows a set of similar experiments except for
N = 3. When α1 = 0.30, α2 = 0.30 and αh = 0.4, Alice’s
optimal mining policy obviously outperforms both BSM and
the honest mining.

We describe a concrete example of optimal mining policy
at a few representative states for simplicity. Table II shows
Alice’s optimal strategy with α1=0.2, α2=0.4 and αh=0.4.
Alice has less Hash power than Bob and Henry. She chooses to
adopt the public chain if the length of her chain is shorter than
that of Bob or Henry. If the length of the chain (i.e. l1 + h1)
she is mining on is equal to that of the public chain (i.e. h3),
and is able to “fork”, she will release l1 private blocks to seize
the chance of winning. If both Alice and Bob hold a private
block, she will choose to hide the private block and continue
to mine after her own block. By performing the optimal policy,
Alice can earn an additional 0.08% revenue, even though Bob
has 40% Hash power.

TABLE II
OPTIMAL POLICY FOR (α1 = 0.2, α2 = 0.4, N = 2).

state action
(l2 + h2) > (l1 + h1) adopt

h3 > (l1 + h1) adopt
(l1 + h1) = (l2 + h2) = h3, fork = r l1

l1 = l2 = 1, h3 = 0 0
l1 = 1, l2 = 0 l1

(l1 + h1) > (l2 + h2) l1
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TABLE III
A DESCRIPTION OF THE TRANSITION AND REWARD MATRICES P AND R IN THE DECISION PROBLEM M .

l2 + h2 − h3 > 2

adopt

loc! = 2
α1 (1, ir, 1, l2, h3, h2, h3, µ3, µ2, µ3)

(0, 0, 0)α2 (1, ir, 0, l2 + 1, h3, h2, h3, µ3, µ2, µ3)
αh (1, r, 0, l2, h3, h2, h3 + 1, µ3, µ2, µ3 + 1)

loc = 2
α1 (1, ir, 1, l2, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)

(0, h2 − µ2, µ2)α2 (1, ir, 0, l2 + 1, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)
αh (1, r, 0, l2, h3 − h2, 0, h3 − h2 + 1, h3 − h2, 0, h3 − h2 + 1)

h1 + action ≤ h3
r, action 6= (h3 − h1) α1 (loc, ir, l1 − action+ 1, l2, h1 + action, h2, h3, µ1, µ2, µ3)

(0, 0, 0)
ir

α2 (loc, ir, l1 − action, l2 + 1, h1 + action, h2, h3, µ1, µ2, µ3)
αh (loc, r, l1 − action, l2, h1 + action, h2, h3 + 1, µ1, µ2, µ3 + 1)

h1 + action = h3

r, action > 0
α1 (loc, f13, l1 − action+ 1, l2, h3, h2, h3, µ1, µ2, µ3)

(0, 0, 0)
α2 (loc, f13, l1 − action, l2 + 1, h3, h2, h3, µ1, µ2, µ3)

f13, action = 0
αhγ1 (1, r, l1 − action, l2, h3, h2, h3 + 1, µ1, µ2, µ1 + 1)

αh(1− γ1) (loc, r, l1 − action, l2, h3, h2, h3 + 1, µ1, µ2, µ3 + 1)

h3 < h1 + action < l2 + h2 − 1
α1 (1, ir, l1 − action+ 1, l2, h1 + action, h2, h1 + action, µ1, µ2, µ1)

(0, 0, 0)α2 (1, ir, l1 − action, l2 + 1, h1 + action, h2, h1 + action, µ1, µ2, µ1)
αh (1, r, l1 − action, l2, h1 + action, h2, h1 + action+ 1, µ1, µ2, µ1 + 1)

h1 + action = l2 + h2 − 1
α1 (2, r, l1 + 1− action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)

(0, 0, 0)α2 (2, r, l1 − action, 1, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)
αh (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2 + 1, µ2 + 1)

h1 + action = l2 + h2

α1 (loc, f12, l1 − action+ 1, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ3)
(0, 0, 0)α2 (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2, µ2)

αhβ2 (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2 + 1, µ2 + 1)
αhβ1 (2, r, l1 − action, 0, 0, 1, 1, 0, 1, 1) (h1 + action− µ1, 0, µ1)

h1 + action > l2 + h2

α1 (3, ir, l1 − action+ 1, 0, 0, 0, 0, 0, 0, 0)
(h1 + action− µ1, 0, µ1)α2 (3, ir, l1 − action, 1, 0, 0, 0, 0, 0, 0)

αh (3, r, l1 − action, 0, 0, 1, 1, 0, 1, 1)

l2 + h2 − h3 = 2

adopt

loc! = 2
α1 (1, ir, 1, l2, h3, h2, h3, µ3, µ2, µ3)

(0, 0, 0)α2 (1, ir, 0, l2 + 1, h3, h2, h3, µ3, µ2, µ3)
αh (2, r, 0, 0, h3, h2 + l2, h2 + l2, µ3, µ2, µ2)

loc = 2
α1 (1, ir, 1, l2, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)

(0, h2 − µ2, µ2)α2 (1, ir, 0, l2 + 1, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)
αh (2, r, 0, 0, h3 − h2, l2, l2, h3 − h2, 0, 0)

h1 + action ≤ h3
r, action 6= (h3 − h1)

α1 (loc, ir, l1 − action+ 1, l2, h1 + action, h2, h3, µ1, µ2, µ3)
(0, 0, 0)α2 (loc, ir, l1 − action, l2 + 1, h1 + action, h2, h3, µ1, µ2, µ3)

ir αh (2, r, l1 − action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)

h1 + action = h3

r, action > 0 α1 (loc, f13, l1 − action+ 1, l2, h3, h2, h3, µ1, µ2, µ3)

(0, 0, 0)f13, action = 0 α2 (loc, f13, l1 − action, l2 + 1, h3, h2, h3, µ1, µ2, µ3)
αh (2, r, l1 − action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)

h1 + action = l2 + h2 − 1
α1 (2, r, l1 + 1− action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)

(0, 0, 0)α2 (2, r, l1 − action, 1, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)
αh (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2 + 1, µ2 + 1)

h1 + action = l2 + h2

α1 (loc, f12, l1 − action+ 1, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ3)
(0, 0, 0)α2 (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2, µ2)

αhβ2 (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2 + 1, µ2 + 1)
αhβ1 (2, r, l1 − action, 0, 0, 1, 1, 0, 1, 1) (h1 + action− µ1, 0, µ1)

h1 + action > l2 + h2

α1 (3, ir, l1 − action+ 1, 0, 0, 0, 0, 0, 0, 0)
(h1 + action− µ1, 0, µ1)α2 (3, ir, l1 − action, 1, 0, 0, 0, 0, 0, 0)

αh (3, r, l1 − action, 0, 0, 1, 1, 0, 1, 1)

l2 + h2 − h3 = 1

adopt loc = 2, loc = 3
α1 (1, ir, 1, l2, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)

(0, h2 − µ2, µ2)α2 (1, ir, 0, l2 + 1, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)
αh (loc, f23, 0, 0, h3 − h2, h3 − h2 + 1, h3 − h2 + 1, 0, 0, 1)

h1 + action ≤ h3
α1 (loc, ir, l1 − action+ 1, l2, h1 + action, h2, h3, µ1, µ2, µ3)

(0, 0, 0)α2 (loc, ir, l1 − action, l2 + 1, h1 + action, h2, h3, µ1, µ2, µ3)
αh (loc, f23, l1 − action, 0, h1 + action, h3 + 1, h3 + 1, µ1, µ2, µ3 + 1)

h1 + action = l2 + h2

α1 (loc, f12, l1 − action+ 1, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ3)
(0, 0, 0)α2 (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2, µ2)

αhβ2 (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2 + 1, µ2 + 1)
αhβ1 (2, r, l1 − action, 0, 0, 1, 1, 0, 1, 1) (h1 + action− µ1, 0, µ1)

h1 + action > l2 + h2

α1 (3, ir, l1 − action+ 1, 0, 0, 0, 0, 0, 0, 0)
(h1 + action− µ1, 0, µ1)α2 (3, ir, l1 − action, 1, 0, 0, 0, 0, 0, 0)

αh (3, r, l1 − action, 0, 0, 1, 1, 0, 1, 1)
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l2 + h2 = h3

adopt

f23, f123, loc = 2

α1γ2 (1, ir, 0, 0, 0, 0, 0, 0, 0, 0) (1, h2 − µ2, µ2)
α1(1− γ2) (3, ir, 0, 0, 0, 0, 0, 0, 0, 0) (1, h3 − µ3, µ3)

α2 (2, ir, 0, 0, 0, 0, 0, 0, 0, 0) (0, h2 + 1− µ2, µ2)
αhγ2 (2, r, 0, 0, 0, 0, 0, 0, 0, 0) (0, h2 − µ2, µ2 + 1)

αh(1− γ2) (3, r, 0, 0, 0, 0, 0, 0, 0, 0) (0, h3 − µ3, µ3 + 1)

f23, f123, loc! = 2
α1γ2 (1, ir, 0, 0, 0, 0, 0, 0, 0, 0) (1, h2 − µ2, µ2)

α1(1− γ2) (3, ir, 0, 0, 0, 0, 0, 0, 0, 0) (1 + h3 − µ3, 0, µ3)
α2 (2, ir, 0, 0, 0, 0, 0, 0, 0, 0) (0, h2 + 1− µ2, µ2)
αhγ2 (2, r, 0, 0, 0, 0, 0, 0, 0, 0) (0, h2 − µ2, µ2 + 1)

αh(1− γ2) (3, r, 0, 0, 0, 0, 0, 0, 0, 0) (h3 − µ3, 0, µ3 + 1)

(r, ir, loc = 2), f12

α1 (3, ir, 1, 0, 0, 0, 0, 0, 0, 0)
(0, h2 − µ2, µ2)α2 (3, ir, 0, 1, 0, 0, 0, 0, 0, 0)

αh (3, r, 0, 0, 0, 1, 1, 0, 1, 1)

(r, ir, loc! = 2), f13

α1 (3, ir, 1, 0, 0, 0, 0, 0, 0, 0)
(h3 − µ3, 0, µ3)α2 (3, ir, 0, 1, 0, 0, 0, 0, 0, 0)

αh (3, r, 0, 0, 0, 1, 1, 0, 1, 1)

action = 0

f12

α1 (loc, fork, l1 + 1, l2, h1, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α2 (2, r, l1, l2, h1, h2 + 1, h2 + 1, µ1, µ2, µ2) (0, 0, 0)
αhβ1 (2, r, l1, 0, 0, 1, 1, 0, 1, 1) (h1 − µ1, 0, µ1)
αhβ2 (2, r, l1, l2, h1, h2 + 1, h2 + 1, µ1, µ2 + 1, µ2 + 1) (0, 0, 0)

f13

α1 (1oc, fork, l1 + 1, l2, h1, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α2γ1 (2, r, l1, l2, 0, 1, 1, 0, 0, 0) (h1 − µ1, 0, µ1)

α2(1− γ1) (2, r, l1, l2, h1, h3 + 1, h3 + 1, µ1, µ3, µ3) (0, 0, 0)
αhγ1 (2, r, l1, 0, 0, 1, 1, 0, 1, 1) (h1 − µ1, 0, µ1)

αh(1− γ1) (2, r, l1, l2, h1, h3 + 1, h3 + 1, µ1, µ3 + 1, µ3 + 1) (0, 0, 0)

f23

α1 (loc, fork, l1 + 1, l2, h1, h2, h3, µ1, µ2, µ3)

(0, 0, 0)
α2 (2, r, l1, 0, h1, h2 + 1, h2 + 1, µ1, µ2, µ2)
αhγ2 (2, r, l1, 0, h1, h2 + 1, h2 + 1, µ1, µ2 + 1, µ2 + 1)

αh(1− γ2) (2, r, l1, 0, h1, h2 + 1, h2 + 1, µ1, µ3 + 1, µ3 + 1)

f123

α1 (loc, fork, l1 + 1, l2, h1, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α2 (2, r, l1, 0, h1, h2 + 1, h2 + 1, µ1, µ2, µ2) (0, 0, 0)
αhθ1 (2, r, l1, 0, 0, 1, 1, 0, 1, 1) (h1 − µ1, 0, µ1)
αhθ2 (2, r, l1, 0, h1, h3 + 1, h3 + 1, µ1, µ2 + 1, µ2 + 1) (0, 0, 0)

αh(1− θ1 − θ2) (2, r, l1, 0, h1, h3 + 1, h3 + 1, µ1, µ3 + 1, µ3 + 1) (0, 0, 0)

r, ir
α1 (loc, ir, l1 + 1, l2, h1, h2, h3, µ1, µ2, µ3)

(0, 0, 0)α2 (loc, ir, l1, l2 + 1, h1, h2, h3, µ1, µ2, µ3)
αh (loc, ir, l1, l2, h1, h2 + 1, h3 + 1, µ1, µ2 + 1, µ3 + 1)

action = h3 − h1 > 0

f23

α1 (loc, f123, l1 − action+ 1, l2, h1 + action, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α2 (2, r, l1 − action, 0, h1 + action, h2 + 1, h3 + 1, µ1, µ2, µ2) (0, 0, 0)
αhθ1 (2, r, l1 − action, l2, 0, 1, 1, 0, 1, 1) (h1 − µ1, 0, µ1)
αhθ2 (2, r, l1 − action, l2, h1 + action, h2 + 1, h3 + 1, µ1, µ2 + 1, µ2 + 1) (0, 0, 0)

αh(1− θ1 − θ2) (2, r, l1 − action, l2, h1 + action, h2 + 1, h3 + 1, µ1, µ3 + 1, µ3 + 1) (0, 0, 0)

r, h2 = µ2

α1 (loc, f13, l1 − action+ 1, l2, h1 + action, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α2γ1 (2, r, l1 − action, l2, 0, 1, 1, 0, 0, 0) (h1 + action− µ1, 0, µ1)

α2(1− γ1) (2, r, l1 − action, l2, h1 + action, h2 + 1, h3 + 1, µ1, µ3, µ3) (0, 0, 0)
αhγ1 (2, r, l1 − action, l2, 0, 1, 1, 0, 1, 1) (h1 + action− µ1, 0, µ1)

αh(1− γ1) (2, r, l1 − action, l2, h1 + action, h2 + 1, h3 + 1, µ1, µ3 + 1, µ3 + 1) (0, 0, 0)

r, h2! = µ2

α1 (loc, f12, l1 − action+ 1, l2, h1 + action, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α2 (2, r, l1 − action, l2, h1 + action, h2 + 1, h3 + 1, µ1, µ2, µ2) (0, 0, 0)
αhβ1 (2, r, l1 − action, l2, 0, 1, 1, 0, 1, 1) (h1 + action− µ1, 0, µ1)
αhβ2 (2, r, l1 − action, l2, h1 + action, h2 + 1, h3 + 1, µ1, µ3 + 1, µ3 + 1) (0, 0, 0)

h1 + action > l2 + h2

α1 (3, ir, l1 − action+ 1, 0, 0, 0, 0, 0, 0, 0)
(h1 + action− µ1, 0, µ1)α2 (3, ir, l1 − action, 1, 0, 0, 0, 0, 0, 0)

αh (3, r, l1 − action, 0, 0, 1, 1, 0, 1, 1)
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TABLE IV
A DESCRIPTION OF THE TRANSITION AND REWARD MATRICES P AND R IN THE DECISION PROBLEMMPO .

l2 + h2 − h3 > 2

adopt
loc! = 2

(1− p) (loc, ir, 0, l2, h3, h2, h3, µ3, µ2, µ3)

(0, 0, 0)
α1p (1, ir, 1, l2, h3, h2, h3, µ3, µ2, µ3)
α2p (1, ir, 0, l2 + 1, h3, h2, h3, µ3, µ2, µ3)
αhp (1, r, 0, l2, h3, h2, h3 + 1, µ3, µ2, µ3 + 1)

loc = 2

(1− p) (3, ir, 0, l2, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)
(0, h2 − µ2, µ2)α1p (1, ir, 1, l2, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)

α2p (1, ir, 0, l2 + 1, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)
αhp (1, r, 0, l2, h3 − h2, 0, h3 − h2 + 1, h3 − h2, 0, h3 − h2 + 1)

h1 + action ≤ h3
r, action 6= (h3 − h1)

1− p (loc, ir, l1 − action, l2, h1 + action, h2, h3, µ1, µ2, µ3)

(0, 0, 0)
α1p (loc, ir, l1 − action+ 1, l2, h1 + action, h2, h3, µ1, µ2, µ3)

ir
α2p (loc, ir, l1 − action, l2 + 1, h1 + action, h2, h3, µ1, µ2, µ3)
αhp (loc, r, l1 − action, l2, h1 + action, h2, h3 + 1, µ1, µ2, µ3 + 1)

h1 + action = h3

(1− p) (loc, f13, l1 − action, l2, h3, h2, h3, µ1, µ2, µ3)

(0, 0, 0)
r, action > 0 α1p (loc, f13, l1 − action+ 1, l2, h3, h2, h3, µ1, µ2, µ3)

α2p (loc, f13, l1 − action, l2 + 1, h3, h2, h3, µ1, µ2, µ3)

f13, action = 0
αhpγ1 (1, r, l1 − action, l2, h3, h2, h3 + 1, µ1, µ2, µ1 + 1)

αhp(1− γ1) (loc, r, l1 − action, l2, h3, h2, h3 + 1, µ1, µ2, µ3 + 1)

h3 < h1 + action < l2 + h2 − 1

(1− p) (1, ir, l1 − action, l2, h1 + action, h2, h1 + action, µ1, µ2, µ1)
(0, 0, 0)α1p (1, ir, l1 − action+ 1, l2, h1 + action, h2, h1 + action, µ1, µ2, µ1)

α2p (1, ir, l1 − action, l2 + 1, h1 + action, h2, h1 + action, µ1, µ2, µ1)
αhp (1, r, l1 − action, l2, h1 + action, h2, h1 + action+ 1, µ1, µ2, µ1 + 1)

h1 + action = l2 + h2 − 1

(1− p) (2, ir, l1 − action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)

(0, 0, 0)
α1p (2, r, l1 + 1− action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)
α2p (2, r, l1 − action, 1, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)
αhp (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2 + 1, µ2 + 1)

h1 + action = l2 + h2

1− p (loc, f12, l1 − action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ3)
(0, 0, 0)α1p (loc, f12, l1 − action+ 1, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ3)

α2p (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2, µ2)
αhpβ2 (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2 + 1, µ2 + 1)
αhpβ1 (2, r, l1 − action, 0, 0, 1, 1, 0, 1, 1) (h1 + action− µ1, 0, µ1)

h1 + action > l2 + h2

(1− p) (3, ir, l1 − action, 0, 0, 0, 0, 0, 0, 0)

(h1 + action− µ1, 0, µ1)
α1p (3, ir, l1 − action+ 1, 0, 0, 0, 0, 0, 0, 0)
α2p (3, ir, l1 − action, 1, 0, 0, 0, 0, 0, 0)
αhp (3, r, l1 − action, 0, 0, 1, 1, 0, 1, 1)

l2 + h2 − h3 = 2

adopt

loc! = 2
(1− p) (loc, ir, 0, l2, h3, h2, h3, µ3, µ2, µ3)

(0, 0, 0)α1p (1, ir, 1, l2, h3, h2, h3, µ3, µ2, µ3)
α2p (1, ir, 0, l2 + 1, h3, h2, h3, µ3, µ2, µ3)
αhp (2, r, 0, 0, h3, h2 + l2, h2 + l2, µ3, µ2, µ2)

loc = 2

(1− p) (3, ir, 0, l2, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)

(0, h2 − µ2, µ2)
α1p (1, ir, 1, l2, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)
α2p (1, ir, 0, l2 + 1, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)
αhp (2, r, 0, 0, h3 − h2, l2, l2, h3 − h2, 0, 0)

h1 + action ≤ h3
r, action 6= (h3 − h1)

(1− p) (loc, ir, l1 − action, l2, h1 + action, h2, h3, µ1, µ2, µ3)
(0, 0, 0)α1p (loc, ir, l1 − action+ 1, l2, h1 + action, h2, h3, µ1, µ2, µ3)

ir
α2p (loc, ir, l1 − action, l2 + 1, h1 + action, h2, h3, µ1, µ2, µ3)
αhp (2, r, l1 − action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)

h1 + action = h3

r, action > 0 (1− p) (loc, f13, l1 − action, l2, h3, h2, h3, µ1, µ2, µ3)

(0, 0, 0)
α1p (loc, f13, l1 − action+ 1, l2, h3, h2, h3, µ1, µ2, µ3)

f13, action = 0 α2p (loc, f13, l1 − action, l2 + 1, h3, h2, h3, µ1, µ2, µ3)
αhp (2, r, l1 − action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)

h1 + action = l2 + h2 − 1

(1− p) (2, ir, l1 − action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)
(0, 0, 0)α1p (2, r, l1 + 1− action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)

α2p (2, r, l1 − action, 1, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ2)
αhp (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2 + 1, µ2 + 1)

h1 + action = l2 + h2

(1− p) (loc, f12, l1 − action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ3)
(0, 0, 0)α1p (loc, f12, l1 − action+ 1, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ3)

α2p (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2, µ2)
αhpβ2 (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2 + 1, µ2 + 1)
αhpβ1 (2, r, l1 − action, 0, 0, 1, 1, 0, 1, 1) (h1 + action− µ1, 0, µ1)

h1 + action > l2 + h2

(1− p) (3, ir, l1 − action, 0, 0, 0, 0, 0, 0, 0)

(h1 + action− µ1, 0, µ1)
α1p (3, ir, l1 − action+ 1, 0, 0, 0, 0, 0, 0, 0)
α2p (3, ir, l1 − action, 1, 0, 0, 0, 0, 0, 0)
αhp (3, r, l1 − action, 0, 0, 1, 1, 0, 1, 1)

l2 + h2 − h3 = 1

adopt
loc = 2, loc = 3

(1− p) (1, ir, 0, l2, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)

(0, h2 − µ2, µ2)
α1p (1, ir, 1, l2, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)
α2p (1, ir, 0, l2 + 1, h3 − h2, 0, h3 − h2, h3 − h2, 0, h3 − h2)
αhp (loc, f23, 0, 0, h3 − h2, h3 − h2 + 1, h3 − h2 + 1, 0, 0, 1)

h1 + action ≤ h3

(1− p) (loc, ir, l1 − action, l2, h1 + action, h2, h3, µ1, µ2, µ3)

(0, 0, 0)
α1p (loc, ir, l1 − action+ 1, l2, h1 + action, h2, h3, µ1, µ2, µ3)
α2p (loc, ir, l1 − action, l2 + 1, h1 + action, h2, h3, µ1, µ2, µ3)
αhp (loc, f23, l1 − action, 0, h1 + action, h3 + 1, h3 + 1, µ1, µ2, µ3 + 1)

h1 + action = l2 + h2

(1− p) (loc, f12, l1 − action, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ3)

(0, 0, 0)
α1p (loc, f12, l1 − action+ 1, 0, h1 + action, h2 + l2, h2 + l2, µ1, µ2, µ3)
α2p (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2, µ2)
αhpβ2 (2, r, l1 − action, 0, h1 + action, h2 + l2 + 1, h2 + l2 + 1, µ1, µ2 + 1, µ2 + 1)
αhpβ1 (2, r, l1 − action, 0, 0, 1, 1, 0, 1, 1) (h1 + action− µ1, 0, µ1)

h1 + action > l2 + h2

(1− p) (3, ir, l1 − action, 0, 0, 0, 0, 0, 0, 0)

(h1 + action− µ1, 0, µ1)
α1p (3, ir, l1 − action+ 1, 0, 0, 0, 0, 0, 0, 0)
α2p (3, ir, l1 − action, 1, 0, 0, 0, 0, 0, 0)
αhp (3, r, l1 − action, 0, 0, 1, 1, 0, 1, 1)
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l2 + h2 = h3

adopt

f23, f123, loc = 2

(1− p) (loc, f23, 0, l2, 0, µ3 − µ2, µ3 − µ2, 0, 0, µ3 − µ2) (0, h3 − µ3, µ2)
α1pγ2 (1, ir, 0, 0, 0, 0, 0, 0, 0, 0) (1, h2 − µ2, µ2)

α1p(1− γ2) (3, ir, 0, 0, 0, 0, 0, 0, 0, 0) (1, h3 − µ3, µ3)
α2p (2, ir, 0, 0, 0, 0, 0, 0, 0, 0) (0, h2 + 1− µ2, µ2)
αhpγ2 (2, r, 0, 0, 0, 0, 0, 0, 0, 0) (0, h2 − µ2, µ2 + 1)

αhp(1− γ2) (3, r, 0, 0, 0, 0, 0, 0, 0, 0) (0, h3 − µ3, µ3 + 1)

f23, f123, loc! = 2

(1− p) (loc, f23, 0, l2, h3, h2, h3, µ3, µ2, µ3) (0, 0, 0)
α1pγ2 (1, ir, 0, 0, 0, 0, 0, 0, 0, 0) (1, h2 − µ2, µ2)

α1p(1− γ2) (3, ir, 0, 0, 0, 0, 0, 0, 0, 0) (1 + h3 − µ3, 0, µ3)
α2p (2, ir, 0, 0, 0, 0, 0, 0, 0, 0) (0, h2 + 1− µ2, µ2)
αhpγ2 (2, r, 0, 0, 0, 0, 0, 0, 0, 0) (0, h2 − µ2, 1 + µ2)

αhp(1− γ2) (3, r, 0, 0, 0, 0, 0, 0, 0, 0) (h3 − µ3, 0, µ3 + 1)

(r, ir, loc = 2), f12

(1− p) (3, ir, 0, 0, 0, 0, 0, 0, 0, 0)

(0, h2 − µ2, µ2)
α1p (3, ir, 1, 0, 0, 0, 0, 0, 0, 0)
α2p (3, ir, 0, 1, 0, 0, 0, 0, 0, 0)
αhp (3, r, 0, 0, 0, 1, 1, 0, 1, 1)

(r, ir, loc! = 2), f13

(1− p) (3, ir, 0, 0, 0, 0, 0, 0, 0, 0)

(h3 − µ3, 0, µ3)
α1p (3, ir, 1, 0, 0, 0, 0, 0, 0, 0)
α2p (3, ir, 0, 1, 0, 0, 0, 0, 0, 0)
αhp (3, r, 0, 0, 0, 1, 1, 0, 1, 1)

action = 0

f12

(1− p) (loc, fork, l1, l2, h1, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α1p (loc, fork, l1 + 1, l2, h1, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α2p (2, r, l1, l2, h1, h2 + 1, h2 + 1, µ1, µ2, µ2) (0, 0, 0)
αhpβ1 (2, r, l1, l2, 0, 1, 1, 0, 1, 1) (h1 − µ1, 0, µ1)
αhpβ2 (2, r, l1, l2, h1, h2 + 1, h3 + 1, µ1, µ2 + 1, µ2 + 1) (0, 0, 0)

f13

(1− p) (1oc, fork, l1, l2, h1, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α1p (1oc, fork, l1 + 1, l2, h1, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α2pγ1 (2, r, l1, l2, 0, 1, 1, 0, 0, 0) (h1 − µ1, 0, µ1)

α2p(1− γ1) (2, r, l1, l2, h1, h3 + 1, h3 + 1, µ1, µ3, µ3) (0, 0, 0)
αhpγ1 (2, r, l1, 0, 0, 1, 1, 0, 1, 1) (h1 − µ1, 0, µ1)

αhp(1− γ1) (2, r, l1, l2, h1, h3 + 1, h3 + 1, µ1, µ3 + 1, µ3 + 1) (0, 0, 0)

f23

(1− p) (loc, fork, l1, l2, h1, h2, h3, µ1, µ2, µ3)

(0, 0, 0)
α1p (loc, fork, l1 + 1, l2, h1, h2, h3, µ1, µ2, µ3)
α2p (2, r, l1, 0, h1, h2 + 1, h2 + 1, µ1, µ2, µ2)
αhpγ2 (2, r, l1, 0, h1, h2 + 1, h2 + 1, µ1, µ2 + 1, µ2 + 1)

αhp(1− γ2) (2, r, l1, 0, h1, h2 + 1, h2 + 1, µ1, µ3 + 1, µ3 + 1)

f123

(1− p) (loc, fork, l1, l2, h1, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α1p (loc, fork, l1 + 1, l2, h1, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α2p (2, r, l1, 0, h1, h2 + 1, h2 + 1, µ1, µ2, µ2) (0, 0, 0)
αhpθ1 (2, r, l1, 0, 0, 1, 1, 0, 1, 1) (h1 − µ1, 0, µ1)
αhpθ2 (2, r, l1, 0, h1, h3 + 1, h3 + 1, µ1, µ2 + 1, µ2 + 1) (0, 0, 0)

αhp(1− θ1 − θ2) (2, r, l1, 0, h1, h3 + 1, h3 + 1, µ1, µ3 + 1, µ3 + 1) (0, 0, 0)

r, ir
(1− p) (loc, ir, l1, l2, h1, h2, h3, µ1, µ2, µ3)

(0, 0, 0)
α1p (loc, ir, l1 + 1, l2, h1, h2, h3, µ1, µ2, µ3)
α2p (loc, ir, l1, l2 + 1, h1, h2, h3, µ1, µ2, µ3)
αhp (loc, ir, l1, l2, h1, h2 + 1, h3 + 1, µ1, µ2 + 1, µ3 + 1)

action = h3 − h1 > 0

f23

(1− p) (loc, f123, l1 − action, l2, h1 + action, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α1p (loc, f123, l1 − action+ 1, l2, h1 + action, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α2p (2, r, l1 − action, 0, h1 + action, h2 + 1, h3 + 1, µ1, µ2, µ2) (0, 0, 0)
αhpθ1 (2, r, l1 − action, l2, 0, 1, 1, 0, 1, 1) (h1 − µ1, 0, µ1)
αhpθ2 (2, r, l1 − action, l2, h1 + action, h2 + 1, h3 + 1, µ1, µ2 + 1, µ2 + 1) (0, 0, 0)

αhp(1− θ1 − θ2) (2, r, l1 − action, l2, h1 + action, h2 + 1, h3 + 1, µ1, µ3 + 1, µ3 + 1) (0, 0, 0)

r, h2 = µ2

(1− p) (loc, f13, l1 − action, l2, h1 + action, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α1p (loc, f13, l1 − action+ 1, l2, h1 + action, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α2pγ1 (2, r, l1 − action, l2, 0, 1, 1, 0, 0, 0) (h1 + action− µ1, 0, µ1)

α2p(1− γ1) (2, r, l1 − action, l2, h1 + action, h2 + 1, h3 + 1, µ1, µ3, µ3) (0, 0, 0)
αhpγ1 (2, r, l1 − action, l2, 0, 1, 1, 0, 1, 1) (h1 + action− µ1, 0, µ1)

αhp(1− γ1) (2, r, l1 − action, l2, h1 + action, h2 + 1, h3 + 1, µ1, µ3 + 1, µ3 + 1) (0, 0, 0)

r, h2! = µ2

(1− p) (loc, f12, l1 − action, l2, h1 + action, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α1p (loc, f12, l1 − action+ 1, l2, h1 + action, h2, h3, µ1, µ2, µ3) (0, 0, 0)
α2p (2, r, l1 − action, l2, h1 + action, h2 + 1, h3 + 1, µ1, µ2, µ2) (0, 0, 0)
αhpβ1 (2, r, l1 − action, l2, 0, 1, 1, 0, 1, 1) (h1 + action− µ1, 0, µ1)
αhpβ2 (2, r, l1 − action, l2, h1 + action, h2 + 1, h3 + 1, µ1, µ3 + 1, µ3 + 1) (0, 0, 0)

h1 + action > l2 + h2

(1− p) (3, ir, l1 − action, 0, 0, 0, 0, 0, 0, 0)

(h1 + action− µ1, 0, µ1)
α1p (3, ir, l1 − action+ 1, 0, 0, 0, 0, 0, 0, 0)
α2p (3, ir, l1 − action, 1, 0, 0, 0, 0, 0, 0)
αhp (3, r, l1 − action, 0, 0, 1, 1, 0, 1, 1)
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