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The art of defense: letting networks fool the attacker

Jinlai Zhang, Yinpeng Dong, Binbin Liu, Bo Ouyang, Jihong Zhu, Minchi Kuang, Houqing Wang, Yanmei Meng

Abstract—Robust environment perception is critical for au-
tonomous cars, and adversarial defenses are the most effective
and widely studied ways to improve the robustness of envi-
ronment perception. However, all of previous defense methods
decrease the natural accuracy, and the nature of the DNNs itself
has been overlooked. To this end, in this paper, we propose
a novel adversarial defense for 3D point cloud classifier that
makes full use of the nature of the DNNs. Due to the disorder
of point cloud, all point cloud classifiers have the property of
permutation invariant to the input point cloud. Based on this
nature, we design invariant transformations defense (IT-Defense).
We show that, even after accounting for obfuscated gradients, our
IT-Defense is a resilient defense against state-of-the-art (SOTA)
3D attacks. Moreover, IT-Defense do not hurt clean accuracy
compared to previous SOTA 3D defenses. Our code will be
available at: https://github.com/cuge1995/I'T-Defense.

Keywords: Adversarial Attack, Point Cloud Classification,
Adversarial Defenses

I. INTRODUCTION

Deep neural networks (DNN) has shown great success in
many fields [1]-[6]. However, they are vulnerable to mali-
ciously generated adversarial examples [7]. As DNN models
have been implemented into various real-world applications,
i.e., face recognition [§8] and autonomous driving [7], [9]], the
research on adversarial robustness has attracted more and more
attention, and many adversarial attack algorithms have been
proposed, this puts many DNN models deployed in the real
world under serious threats. Therefore, it is crucial to conduct
extensive research on adversarial defense.

Adversarial training is considered to be the most effective
defense and it can generalize across different threat mod-
els [[10]. However, adversarial training faces many problems.
Firstly, the high cost of standard adversarial training making it
impractical. In order to reduce the cost of standard adversarial
training, Shafahi et al. [[11] recycled the gradient information
that was computed when updating model parameters, it finally
speed up adversarial training 7 to 30 times compared to the
standard adversarial training. Maksym et al. [[12] proposed
the GradAlign that that prevents catastrophic overfitting in
fast gradient sign method (FGSM) training. Secondly, all
adversarial training methods cannot overcome the problem that
adversarial trained model decrease the recognition accuracy
in clean samples. Another promising line of defense against
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Figure 1: The permutation invariance property of point cloud.
Where N denote the numbers of orderless points, D denote
the numbers of dimensions of coordinate.

adversarial examples is to randomize the inputs or the model
parameters [13]]. The randomize of the model parameters is
to sample weights of networks from some distribution [14]-
[16], however, it needs to adapted with the target networks.
The random transforms to the input in 2D image as defense
methods [17]-[20] has been studied extensively, and have
shown excellent robustness, but it rarely explored in 3D point
cloud. In this paper, we focus on input random transforms in
3D point cloud.

As point out in [[13]], any deterministic classifier could be
outperformed by a randomized one in terms of robustness.
We therefore ask, can we build a randomized classifier that
with consistent clean accuracy? Motivated by this question,
we observed that the 3D point cloud classifier’s property
can be used to build the randomized classifier. As shown in
Figure |1} due to the unordered nature of 3D point clouds,
most point cloud analysis DNNs are invariant to the order
permutation of the input point cloud. In this paper, we utilize
this property to transform the input point cloud, and finally
build the randomized point cloud classifier.

The main contributions of this paper are summarized as
follows:

o To the best of our knowledge, invariant transformations
defense (IT-Defense) is the first work that uses the
networks’ property to break the strongest gradient based
attacks. It breaks the attack success rate from 100% to
almost 0%.

e Our IT-Defense have no impact on clean accuracy, which
is significantly better than previous defense methods.

o IT-Defense is compatible to different DNNs and adversar-
ial defense methods, which can serve as a basic network
module for 3D point cloud adversarial defense.

II. RELATED WORK

Adversarial attacks on images. The deep neural networks
are vulnerable to adversarial examples, it was firstly found in
the image domain [21]]. Then a bunch of algorithms to generate
adversarial examples or to attack the deep neural networks
are proposed [22[]-[25]]. Which can be summarized as white-
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box attacks and black-box attacks [[10]. Most attacks in white-
box setting are based on the input gradient. The fast gradient
method (FGM) [26] generates adversarial examples by one-
step update towards the input gradient. The iterative version
of FGM (IFGM) [27] generate adversarial examples by small
steps towards the gradient direction. A momentum term was
introduced by [28] to stabilize the update direction during
the iterations, which was known as MIFGM. The projected
gradient descent method (PGD) adopts random starts during
the iterations, which was served as a baseline in first-order
adversary. The C&W attack [29] turn the process of obtaining
adversarial examples into an optimization problem, and used
the Adam [30] for optimization. This algorithm was heavily
used in recent point cloud attack research.

Adversarial attacks on point clouds. Due to the safety-
critical applications of the point cloud in robotics and safe-
driving cars, 3D point clouds has attracted many researchers
in the computer vision community. However, its robustness is
relatively under-explored compared to the image domain. [31]
first proposed to generate adversarial point clouds examples
via C&W attack, which introduced two point cloud attacks,
point perturbation and adding. The point adding attack can
further divide by adding independent points, adding clusters,
and adding objects. However, the generate adversarial point
clouds examples are very messy, which can be easily per-
ceivable by humans. The knn attack [32] adopted a kNN
distance constraint, a clipping and a projection operation to
generate more smooth and imperceptible adversarial point
clouds examples. The Geometry-Aware Adversarial Attack
(GeoA?) [33] further improved the imperceptible to humans.
The perturbation based attacks can be removed by statistical
outlier removal (SOR) [34] method that removes points with
a large kNN distance if the perturbation is too large. To solve
this problem, [35] developed the JGBA attack, which is an
efficient attck to SOR defense. Besides, the point drop attack
[36] was developed by a gradient based saliency map, which
iteratively remove the most important points. Moreover, the
AdvPC [37] improved the transferability of adversarial point
cloud examples by utilizing a point cloud auto-encoder, and
the LG-GAN [38] utilized the powerful GANs [39] to gen-
erate adversarial examples guided by the input target labels.
However, most of those attacks are integrate the gradient
information from the input, which can be a weakness.

Adversarial defenses. To overcome the threat of adversarial
examples to DNNs, extensive research has been conducted
on defending against adversarial attacks. Existing adversarial
defense methods can be roughly divided into two classes:
attacking stage defense and testing stage defense. The ad-
versarial training [40]-[43]] is an effective way to improve
the model’s robustness, which have two stages defense effect.
There are other defense methods that have two stages defense
effect. For example, Pang et al. [44] proposed a novel loss,
the model’s adversarial robustness is increased if the model
was trained with this loss. Thermometer encoding [45] encode
values in a discrete way. EMPIR [46] constructed ensemble
models with mixed precision of weights and activations.
Ensemble diversity [47] improved robustness with a regular-
ization term. For the attacking stage defense, k-Winners Take

All [48]] developed a novel activation function that masks the
backpropagated gradient, input transformations [[19] and input
randomization [49]] utilized the backpropagated transformed
gradient to fool the attacker, stochastic activation [[50] replaces
the dropout layer with a non-differentiable function. Those
defend methods can prevent the attacker from generating
adversarial examples effectively. For the testing stage defense,
the are a lot of adversarial examples detection methods [S1]-
[S5] are developed, the transformation method of Pixeldefend
[56], defense-GAN [57], and sparse fourier transform [5§]
transforms the adversarial examples to a normal sample, the
Mixup Inference [59]], ME-Net [[60], and Error Correcting
Codes [61]] mitigate the adversarial perturbations by inference
the adversarial examples directly.

We note that Guo et al. [19] and Xie et al. [49] also
utilized input transformation before feeding into the DNN
to defend adversarial attacks, which caused the obfuscated
gradients effect and can be defeat by the expectation over
transformation (EOT) attacks proposed by [[62]. However, our
work has several key differences with Guo et al. and Xie et al..
Firstly, we used the invariant transformations of DNN, which
do no harm to the DNN, but Guo et al. and Xie et al. have
some kind of accuracy drop of the standard model. Secondly,
we do not cause information loss between the original sample
and the transformed sample. Thirdly, we cannot be defeated
by the EOT attack.

III. METHODOLOGY

A. An overview of point cloud attack

Let z € RV >3 represents a set of clean 3D points {P;|i =
1,...,N}, and y denote the corresponding true label. For a
classifier F'(x) : * — y that outputs the prediction for an
input, the attacker wants to generate an adversarial example
2™ which is imperceptible by humans from z but fools the
classifier. We give a brief introduction of some famous attack
algorithms on 3D point cloud classifier in this section.

FGM [26] generates adversarial example by one-step up-
date.

x = — ¢ sign (Vo J (z,y)) (1)
where V5 J is the gradient of the loss function with respect to
the input z. sign(. ) is the sign function that turns the gradient
value into the direction value.

I-FGM [27] generate adversarial example by small steps in
a iterative fashion.

adv

zi = z¢? — o -sign (Vo (207, y)) (2)

where o = ¢/T with T steps iteration, and z¢%’ = x.

MIFGM [28]] introduced a momentum term to stabilize the
update direction during the iteration.

Ve (zf%,y)

iy1 =1 g+ vaJ (w?dv’y)H1 )
xil = 2! — o - sign (9e41) “)



where ¢, gathers the gradient information up to the ¢-th
iteration with a decay factor . We mainly compare FGM, I-
FGM and MIFGM with GvF-P [|63]], the first self-robust point
cloud defense method.

C&W [29] turn the process of obtaining adversarial exam-
ples into an optimization problem.

®)

arg min Hx“d” — ac”p +c-J (wad", y)
gadv
where the loss J can be different from the cross-entropy loss
and many variants are proposed for point cloud attack [31]-
(33

B. Invariant transformation defense (IT-Defense)

In this paper, we make full use of the nature of point cloud
classifiers, i.e., the point cloud classifiers are permutation
invariant to the input point cloud’s index, and propose the
invariant transformation defense (IT-Defense). The pipeline
of IT-Defense is shown in Figure 2] The IT-Defense can be
described as following:

9(x) = Vi) J (t(),y) (6)

where V() J is the gradient of the loss function with respect
to the random input transformation ¢() of x. Note that un-
like previous random input transformation defense [18]], [19],
[49], our transformation is invariant to the classier F'(). The
intuition is that by randomly perturb the index of the input
point cloud, the transformed point cloud will not affect the
performance of point cloud classifier due to the orderless
nature of point cloud, but the real gradient have perturbed
significantly, thus fool the attacker.

Following, we perform some simple analysis to investigate
why IT-Defense works.

C. Theoretical analysis of IT-Defense against gradient-based
attacker

In the following section, we use the theory of [|64] to analyze
IT-Defense against various attacks. Under the system of game
theory, the relationship between the adversarial robustness of
neural networks and the complexity of game interaction is
modeled uniformly. They proved that the adversarial pertur-
bations mainly affect high-order interactions. They define the
game-theoretic interactions as follows:

I(Za J) = &(Z | N)] always present — QE(Z | N)j always absent (7)

where g?)(z | N);j always present  denote the importance of input
variable ¢ when j is always present and gg(z | IN)j always absent
denote the importance of input variable ¢ when j is always
absent. Then, the interactions can be decomposed into multiple
orders [65] as following:

n—2
SI5Y, 15 = Escn iy [Ae(i, 4, 9))
m=0

®)
where [ me) represents the mth-order interaction. m represents
the number of units in the background S other than input units

1
n—1

I(Zvj> =

1 and j, reflecting the complexity expressed by the interaction.
When the background contains more input units, m is larger,
and the game-theoretic interaction between ¢ and j can be
regarded as a high-order interaction. When the background
contains a small number of input units, m is small, the game-
theoretic interaction between ¢ and j is a low-order interaction.

As shown in Figure [3] we perform I-FGM and MIFGM
and IT-Defense against their in Pointnet [66], where the lower
ratio of points represent the the low-order interactions, and
higher ratio of points represent the the high-order interactions,
the results show that the adversarial example without defense
mainly affected high-order interactions, the IT-Defense mainly
change the low-order interactions, thus mitigate adversarial
effects.

D. Theoretical analysis of IT-Defense against optimization-
based attacker

Following Sec. two optimization-based attacker are
selected, the 3D-Adv [31]] and kNN attack [32]. From Figure
[ we can observe similar results as Sec. [[II-=C] which means
the IT-Defense mainly change the low-order interactions to
overcome adversarial effects.

E. Theoretical analysis of IT-Defense against adaptive attacks

Recent works on robust defense [62], [67], [68] suggest
that the proposed new defense algorithms should take a further
evaluation against the corresponding adaptive attack. Since our
method transform the index the points, the expectation over
transformation (EOT) attacks proposed by [62] is expect as the
adaptive attacker, due to its excellent performance in adaptive
attack to the input transform based methods [18]]. Following
[18]], we use the EOT to build a strong attacker. The EOT [69]
is defined as follows:

VoB @) = By (Vafylo)] 3 Valnle) - ©)

where f.(z) is the randomized classifier, and the r; are
independent draws of the randomness transformation. But our
transformation is big enough (up to 1024! or 2048! depends
on n), given one transformation ¢(.) of our defender, the
probability of correctly sample this (.) by an attacker is 1/n!,
which is sufficently small, simply repeat the transformation
multiple times (usually 10 to 30 times in most EOT attacks
literatures [67]) cannot recover the true gradient. As shown
in Figure 5] the EOT attack further increased the gap in low-
order interactions compare to without EOT attack, thus it is
not effective to attack the I'T-Defense. We further verified this
by experiment.

IV. EXPERIMENTS

In this section, we present the experimental results to
demonstrate the effectiveness of the proposed method. We first
specify the experimental settings. Then we conduct extensive
experiments to study the defense effects of IT-Defense. And
perform comparative experiments to analyze IT-Defense in
detail.
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Figure 2: The pipeline of our proposed IT-Defense.
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Figure 3: The multi-order interaction Ic(zzgn and Ig;]) of

gradient-based attacks. Our IT-Defense mainly affect the low-
order interactions, thus mitigate adversarial effects.
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Figure 4: The multi-order interaction Ic(lrzgn and I(EZL) of
optimization-based attacks. Our IT-Defense mainly affect the
low-order interactions, thus mitigate adversarial effects.

A. Experimental Settings

We implement all experiments on a Linux server with 8
Nvidia RTX 3090 GPUs. For point cloud attacks, we use
the ModelNet40 test set kindly provided by [71]], which
also contained the targeted label for targeted attacks. We
also select three commonly used networks in 3D computer
vision area [72], for evaluation, ie., PointNet [66],
PointNet++ [3]], and DGCNN [74], the SOTA networks such
as PointConv [75]], PAConv [76]], Point Cloud Transformer
(PCT) and CurveNet are also selected for KNN
attack evaluation. The FGM [26], I-FGM [27]], MIFGM
and PGD attacks were selected as the gray-box attacker.
We follow the same settings as [63]] for point cloud attack.
Moreover, the untargeted point dropping attack [36]], and the
C&W attack’s variant kNN attack and 3D-Adv
attack were further verified our effective defense ability.
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clean and Iadv of
Pointnet and Pointnet with our proposed IT-Defense, and IT-
Defense with EOT attack. The EOT attack further increased
the gap in low-order interactions, thus not effective to attack

the IT-Defense.

Figure 5: The multi-order interaction I\

The JGBA attack and GeoA?® attack were implemented by
their open-sourced code and dataset. Experiments are repeated
5 times. The estimated gradient of EOT is averaged by 10
random transformations.

B. Results

1) IT-Defense does not reduce clean accuracy.: 1T-Defense
only change the order of points, it does not reduce clean
accuracy. In this section, we validate this via experiments. As
shown in Table [I] unlike previous SOTA defenses that reduce
the clean accuracy, such as the Simple Random Sampling
(SRS), Statistical Outlier Removal (SOR), DUP-Net
and the IF-Defense are reduced the clean accuracy up
to 4%, the IT-Defense that build upon the property of point
cloud recognition model does not reduce clean accuracy. This
is an important property, which means that IT-Defense can be
embedded in any point cloud recognition model.

2) IT-Defense against various attackers.: In this section,
we show the experimental results of the proposed invariant
transformation defense (IT-Defense) method with different
attackers. We firstly perform the classical adversarial attacks to
our IT-Defense, the results are shown in Table [[Il We report
the success rates of FGM, I-FGM, I-FGM+EOT, PGD, and
MIFGM attacks against our defense method and in no defense



Table I: Classification accuracy of various defense methods on clean ModelNet40 by Pointnet. The best results for each row

are emphasized as bold.

Model

Clean SRS [80] SOR [81] DUP-Net [34] IF-Defense [71] Ours

PointNet 88.49 87.24 87.80

86.83 84.20 88.49

setting. The I-FGM+EOT attack cannot break our defense and
getting worse results than I-FGM attack. The results shown
that our defense improve the robustness of the model against
various attacks significantly, our method break the success rate
from 98.87 to 0.45 in some case.

The point dropping attack [36] is based on the saliency maps
of the input point cloud, where also used the gradient in some
degree, we therefore perform this attack to our defense. For
fairness, we used the same settings with [71]], [72] and used
classification accuracy to compare with state of the art defense
algorithms, the results are shown in Table We can see that
for Drop 200 and Drop 100 attacks, the IT-defense leads to
better results than the IF-Defense. The results verified that our
defense method can be applied to any kind of attack based on
gradient information.

We further verified our defense on kNN attack [32], 3D-Adv
attack [31], JGBA attack [35] and GeoA? attack [33]], three
of them are the C&W attack’s [29]] variant in point cloud.
The C&W attack turns the process of obtaining adversarial
examples into an optimization problem, but the gradient infor-
mation is needed in every iteration step within the optimization
process. We report the success rates of the kNN attack [32],
the 3D-Adv attack [31], the JGBA attack [35] and the GeoA3
attack [33]] against IT-Defense in Table In general, the IT-
Defense consistently breaks the success rate from a high level
(near 100%) to near 0%, which means that we can totally
break the attack effect caused by the attacker.

C. Comparative experiments

In this section, we explore different attack settings on IT-
Defense.

1) Influence of perturbation budget: As suggest in [82],
the perturbation budget have significant impact on the attack
performance. We therefore perform experiment with different
perturbation budget in the range of [0.05,0.40], with point
cloud in [0, 1]. As shown in Figure[6] our IT-Defense is robust
within the 0.25 perturbation budget, it’s big enough to be easily
detected by humans.

2) Influence of attack steps: The number of attack steps
of gradient-based attack is another important factor that affect
the attack performance. The results are shown in Figure [6] for
Pointnet and DGCNN, the Attack Success Rate(%) increased
with the number of attack steps for IFGM without our IT-
Defense, but maintain almost constant zero Attack Success
Rate(%) with IT-Defense.

3) Influence of attack iterations: The number of iterations
of optimization-based attack is a vital variable during attack.
We perform KNN attack [32]] on Pointnet and DGCNN with
the iterations within [500,2500]. As shown in Figure [6] for
Pointnet and DGCNN, similar to the number of steps for
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Figure 6: The Attack Success Rate(%) vs perturbation budget
and number of steps for IFGM attack, the Attack Success
Rate(%) vs number of iterations for KNN attack.

IFGM attack, the Attack Success Rate(%) increased slightly
with the number of attack iterations for KNN attack without
our IT-Defense, but maintain almost constant zero Attack
Success Rate(%) with IT-Defense.

4) Influence of EOTs: In order to validate our IT-Defense
resistent to EOTs, we scale the number of EOTs up to 100.
To the best our knowledge, this is the largest EOT have been
performed. The results are shown in Table [V] the Attack
Success Rate(%) increased slightly with the number of EOTs
initially, but decreased as the EOTs bigger than 50, indicating
that EOT attack is not effective to attack our IT-Defense.

5) Understanding the IT-Defense: To figure out what IT-
Defense brings to the adversarial point cloud examples, we
visualised the airplane and chair of clean sample and adver-
sarial samples without and with IT-Defense under different
perturbation budget. From Figure [/| we can conclude that IT-
Defense can help models escape the ’adversarial region’ when
the perturbation budget is small, and making adversarial point
cloud examples human recognizable when the perturbation
budget is large.

V. CONCLUSION

In this paper, we propose a defense strategy that uses the
networks’ property to break the adversarial attacks. Our find-
ings are insightful, the network’s property is utilized to defend
against attacks, and the results show that our defense can break
most of the existing point cloud attacks. It is worth mentioning
that, although IT-Defense was shown to be a powerful defense
mechanism against adversarial attacks, one limitation might
come across, [T-Defense require the deep neural networks
has some invariant transformations of input. Note that our
method can only resist attacks for finding adversarial samples,
but the adversarial samples generated from the original model
can transferred well to IT-Defense. However, our method can
easily incorporate with the model with higher robustness, such
as models trained with ensemble adversarial training [83]] and
PointCutMix [72]], and combined with other defense methods,
thus not only making the attacker hard to generate effective



Table II: The success rates (%) of targeted attacks.x denotes that results are reported in GvG-P [63].

Model Attack FGM I-FGM I-FGM+EOT PGD MIFGM

Pointnet No Defense 3.69 98.87 98.87 98.78 85.29
IT-Defense | 0.64+0.05 | 0.491+0.06 0.20+0.04 0.93+0.05 | 0.47+0.04

No Defense 2.96 92.63 92.63 93.40 12.48

Pointnet++ GvG-P* 3.20 69.00 - 69.41 37.88
IT-Defense | 3.03+0.07 | 1.274+0.16 0.23+0.10 1.99+0.21 | 1.21+0.11

DGCNN No Defense 3.36 78.65 78.65 78.00 23.34
IT-Defense | 3.26+£0.05 | 1.03£0.04 0.32+0.04 1.80+0.12 | 1.0740.09

Table III: Classification accuracy of various defense methods on ModelNet40 under point dropping attack [36]]. Drop 200 and
Drop 100 denote the dropping points is 200 and 100 respectively. * denotes that results are reported in IF-Defense [71]]. We
report the best result of three IF-Defense. The best results for each row are emphasized as bold.

Attack Model No Defensex SRS SORx DUP-Netsx IF-Defensex Ours

Drop 200 PointNet 40.24 39.51 4259 4692 66.94 88.02+0.19
PointNet++ 68.96 39.63 69.17  72.00 79.09 86.83+0.49
DGCNN 55.06 63.57 5936  36.02 73.30 83.01+0.15
PointNet 64.67 63.57 64.75  67.30 77.76 88.33+0.19
Drop 100 PointNet++ 80.19 64.51 74.16  76.38 84.56 88.31+0.16
DGCNN 75.16 49.23 64.68  44.45 83.43 87.86+0.10

Table IV: The success rates (%) of targeted attacks of kNN attack [32]], 3D-Adv attack [31]], JGBA attack [35] and the GeoA?
attack [33]]. The best results for each row is emphasized as bold.

Attack Model No Defense IT-Defense
PointNet 85.45 0.41
PointNet++ 99.96 0.51
DGCNN 60.53 0.69
kNN  PointConv [[75]] 89.75 0.61
PAConv [76] 99.96 2.76
PCT [[77] 98.78 0.59
CurveNet [78]] 85.53 0.36
PointNet 100.00 0.20
3D-Adv  PointNet++ 100.00 0.61
DGCNN 100.00 0.36
JGBA PointNet 100.00 0.19
GeoA3 PointNet 100.00 32.00

Table V: The success rates (%) of IT-Defense against EOT attack.

EOTs 10 20 30 40 50 60 70 80 90 100
Success rates 0.20 0.41 0.41 0.41 0.32 0.32 0.28 0.28 0.24 0.24
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