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Logit Margin Matters: Improving Transferable
Targeted Adversarial Attack by Logit Calibration

Juanjuan Weng, Zhiming Luo, Shaozi Li, Nicu Sebe, Zhun Zhong

Abstract—Previous works have extensively studied the transfer-
ability of adversarial samples in untargeted black-box scenarios.
However, it still remains challenging to craft targeted adversarial
examples with higher transferability than non-targeted ones.
Recent studies reveal that the traditional Cross-Entropy (CE) loss
function is insufficient to learn transferable targeted adversarial
examples due to the issue of vanishing gradient. In this work, we
provide a comprehensive investigation of the CE loss function and
find that the logit margin between the targeted and untargeted
classes will quickly obtain saturation in CE, which largely limits
the transferability. Therefore, in this paper, we devote to the goal
of continually increasing the logit margin along the optimization to
deal with the saturation issue and propose two simple and effective
logit calibration methods, which are achieved by downscaling
the logits with a temperature factor and an adaptive margin,
respectively. Both of them can effectively encourage optimization
to produce a larger logit margin and lead to higher transferability.
Besides, we show that minimizing the cosine distance between the
adversarial examples and the classifier weights of the target class
can further improve the transferability, which is benefited from
downscaling logits via L2-normalization. Experiments conducted
on the ImageNet dataset validate the effectiveness of the proposed
methods, which outperform the state-of-the-art methods in black-
box targeted attacks. The source code is available at Link.

Index Terms—Adversarial machine learning, convolutional
neural networks, Targeted adversarial examples, logit calibration

I. INTRODUCTION

In the past decade, deep neural networks (DNNs) have
achieved remarkable success in various fields, e.g., image
classification [1], image segmentation [2], and object detec-
tion [3]. However, Goodfellow et al. [4] revealed that the
DNNs are vulnerable to adversarial attacks, in which adding
imperceptible disturbances into the input can lead the DNNs
to make an incorrect prediction. The adversarial perturbation
will raise a vital threat for the real-world applications of the
CNNs, especially in scenarios of speech recognition [5], [6],
facial verification systems [7], [8] and person re-identification
systems [9], [10]. Many following approaches [11], [12],
[13], [14], [15], [16], [17] have been proposed to construct
more destructive adversarial samples for investigating the
vulnerability of the DNNs. Besides, some studies [4], [18] also
showed that the adversarial samples are transferable across
different networks, raising a more critical robustness threat
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under the black-box scenarios. Therefore, it is vital to explore
the vulnerability of the DNNs, which is extremely useful for
designing robust DNNs.

Currently, most of the works [11], [15], [19], [20], [21],
[22], [23] have been devoted to the untargeted black-box
attacks, in which adversarial examples are crafted to fool
unknown CNN models predicting unspecified incorrect labels.
For example, [11], [15] leveraged input-level transformation
or augmentation to improve the non-targeted transferability.
[20] proposed a powerful intermediate feature-level attack.
[21], [22] demonstrated that backpropagating more gradients
through the skip-connections can increase the transferability.
[24] proposed the stochastic variance reduced ensemble (SVRE)
attack to reduce the gradient variance of the ensemble models
for improving transferability. Despite the success in non-
targeted cases, targeted transferability remains challenging,
which requires eliciting the black-box models into a pre-defined
target category.

For learning the transferable adversarial samples in untar-
geted cases, most methods have leveraged the Cross-Entropy
(CE) as the loss function. However, recent studies [25],
[26] showed that the CE loss is insufficient for learning
the adversarial perturbation in the targeted case due to the
issue of vanishing gradient. To deal with this issue, Li et
al. [25] adopted the Poincaré distance to increase the gradient
magnitude adaptively during the optimization. Zhao et al. [26]
demonstrated that an effortless logit loss equal to the negative
value of the targeted logits could alleviate the gradient vanishing
issue and achieve surprisingly strong targeted transferability.
Besides, Zhao et al. [26] also showed that optimizing with more
iterations can significantly increase the targeted transferability.
Although it demonstrated that continually enlarging the logit of
the targeted class along the whole training iteration (as shown
in Figure 1c) can improve the transferability of adversarial
samples, it still does not thoroughly analyze the insufficient
issue in the CE loss function

Different from [25], [26], in this study, we take a closer
look at the vanishing gradient issue in the CE loss and
find the logit margin between the targeted and non-targeted
classes will quickly get saturated during the optimization
(as shown in Figure 1a). Moreover, this issue will influence
the attack performance of the adversarial examples and thus
essentially limits the transferability. Specifically, along with
the training iterations in CE, we observe the logits of the
targeted and non-targeted classes increase rapidly in the first
few iterations. However, after reaching the peak, the logit
margin between the targeted and non-targeted classes will
get saturated, and further training will decrease the logits
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Fig. 1: The average Top-3 logits and logit margin of 50 adversarial samples generated from the ResNet-50 by the Cross-Entropy,
Po+Trip [25] and Logit [26] loss functions. (* Training and computation details of this figure are in Section III-B)

simultaneously to maintain this margin. This phenomenon is
mainly due to the fact that the softmax function in CE will
approximately output the probability of the target class to 1
when reaching the saturated margin (e.g., 10). Thus, it raises
the problem that the transferability will not be further increased
even with more optimization iterations. A similar saturated
phenomenon also can be observed in the Po+Trip loss [25]
as shown in Figure 1b. While in practice, we are encouraged
to improve the transferability by keeping increasing the logit
for the targeted class and its margin along the optimization to
avoid saturation against other non-targeted classes to cross the
decision boundaries of other black-box models.

In this paper, we devote to keeping enlarging logit margins
along the optimization to alleviate the above saturation issue in
CE. Inspired by the temperature scaling technique employed in
knowledge distillation where logits are divided by a temperature
parameter 𝑇 [27], a higher temperature 𝑇 produces a softer
probability distribution over different classes after applying
the softmax function. We first utilize the scaling technique for
targeted attacks to calibrate the logits. Then the logit margin
between the targeted and non-targeted classes will not be
saturated after only a few iterations and will keep improving
the transferability. Besides, instead of using a constant 𝑇, we
further explore an adaptive margin-based calibration by scaling
the logits based on the logit margin of the target class and
the highest non-target class. In addition, we also investigate
the effectiveness of calibrating the targeted logit into the unit
length feature space by L2-normalization, which is equivalent
to minimizing the angle between the adversarial examples and
the classifier weights of the targeted class.

Finally, we conduct experiments on the ImageNet dataset to
validate the effectiveness of the logits calibration for crafting
transferable targeted adversarial examples. Experimental results
demonstrate that the calibration of the logits helps achieve a
higher attack success rate than other state-of-the-art methods.
Besides, the combination of different calibrations can further
provide mutual benefits.

II. RELATED WORKS

In this section, we give a brief introduction of the related
works from the following two aspects: untargeted black-box
attacks and targeted attacks.

A. Untargetd Black-box Attacks

After Szegedy et al. [28] exposed the vulnerability of deep
neural networks, many attack methods [15], [12] have been
proposed to craft highly transferable adversaries in the non-
targeted scenario. We first review several gradient-based attack
methods that focus on enhancing the transferability against
black-box models.

Iterative-Fast Gradient Sign Method (I-FGSM) [29] is
an iterative version of FGSM [4], which iteratively adds the
perturbation with a small step size 𝛼 in the gradient direction:

𝑥̂0 = 𝑥, 𝑥̂𝑖+1 = 𝑥̂′𝑖 + 𝛼 · sign(∇𝑥̂ 𝐽(𝑥̂′𝑖 , 𝑦)), (1)

where 𝑥̂′
𝑖

denotes the adversarial image in the 𝑖𝑡ℎ iteration,
𝛼 = 𝜖/𝑇 ensures the adversary is constrained within an upper-
bound perturbation 𝜖 through the 𝑙𝑝-norm when optimized by
𝑇 iterations.

Following the seminal I-FGSM [29], a series of methods
have been proposed to improve the transferability of attacking
black-box models from different aspects, e.g., gradient-based,
input augmentation-based. For example, the Momentum
Iterative-FGSM (MI-FGSM) [11] introduces a momentum
term to compute the gradient of the I-FGSM, encouraging the
perturbation is updated in a stable direction. The Translation
Invariant-FGSM (TI-FGSM) [12] adopts a predefined kernel
𝑊 to convolve the gradient ∇𝑥̂ 𝐽(𝑥̂′𝑖 , 𝑦) at each iteration 𝑡,
which can approximate the average gradient over multiple
randomly translated images of the input 𝑥̂𝑡 . On the other
aspects, the Diverse Input-FGSM (DI-FGSM) [15] leverages
the random resizing and padding to augment the input 𝑥̂𝑡 at
each iteration. Currently, most targeted attack methods [25],
[26], [30] simultaneously use the MI [11], TI [12] and DI [15]
to form a strong baseline with better transferability.

B. Targeted Attacks

Targeted attacks are different from non-targeted attacks,
which need to change the decision to a specific target class. [31]
integrates the above non-targeted attack methods into targeted
attacks to craft targeted adversarial examples. However, the
performance is limited because it is insufficient to fool the
black-box model only by maximizing the probability of the
target class in the CE loss.
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Po+Trip [25] finds the insufficiency of CE is mainly due to
the vanishing gradient issue. Then, [25] leverages the Poincaré
space as the metric space and further utilizes Triplet loss to
improve targeted transferability by forcing adversarial examples
toward the target label and away from the ground-truth labels.
To further address this gradient issue, Logits [26] adopts a
simple and straightforward idea by directly maximizing the
target logit to pull the adversarial examples close to the target
class, which can be expressed as:

𝐿𝐿𝑜𝑔𝑖𝑡 = −𝑧𝑡(x′), (2)

where 𝑧𝑡(·) is the output logits of the target class. Based on
the prior Logits [26], the ODI [16] proposes the object-based
diverse input (ODI) method to diversify the input for further
improving targeted transferability.

On the other hand, many studies employ resource-intensive
approaches to achieve targeted attacks, which train target class-
specific models (auxiliary classifiers or generative models)
on additional large-scale data. For example, the FDA [32],
[33] uses the intermediate feature distributions of CNNs to
boost the targeted transferability by training class-specific
auxiliary classifiers to model layer-wise feature distributions.
The GAP [34] trains a generative model for crafting targeted
adversarial examples. Subsequently, [35] adopts a relativistic
training objective to train the generative model for improving
attack performance and cross-domain transferability. Recently,
the TTP [30] utilizes the global and local distribution matching
for training target class-specific generators for obtaining high
targeted transferability. However, the TTP requires actual
samples from the target class and brings expensive training
costs. Different from the above methods, we introduce three
simple and effective logit calibrations into the CE loss, which
can achieve competitive performance without additional data
and training.

III. METHOD

A. Problem Definition
Given a white-box model 𝔽𝑠 and an input image 𝑥 not

from the targeted class 𝑡, our primary goal is to learn an
imperceptible perturbation 𝛿 that can fool the 𝔽𝑠 to output the
target 𝑡 for 𝑥̂ = 𝑥 + 𝛿. Besides, the prediction of 𝑥̂ will also
be 𝑡 when feeding into other unknown black-box models. The
𝑙∞-norm is usually used to constrain the perturbation 𝛿 within
an upper-bound 𝜖, denoted as | |𝛿 | |∞ ≤ 𝜖.

For the surrogate model 𝔽𝑠 , we denote the feature of the
final classification layer of the input 𝑥 as 𝜙(𝑥). The logit 𝑧𝑖
of the category 𝑖 is computed by 𝑧𝑖 = 𝑊𝑇

𝑖
𝜙(𝑥) + 𝑏𝑖 , where

𝑊𝑖 and 𝑏𝑖 are the classifier weights and bias for category 𝑖.
The corresponding probability 𝑝𝑖 after the softmax function is
calculated by 𝑝𝑖 =

𝑒𝑧𝑖∑
𝑒
𝑧𝑗

.

B. Logit Margin
When successfully attacking the 𝔽𝑠 , the logit 𝑧𝑡 of the target

class 𝑡 will be higher than the logits 𝑧𝑛𝑡 of any other non-
target class in the classification task. Their logit margins can
be computed by,

𝐺(𝜙(𝑥̂)) = 𝑧𝑡 − 𝑧𝑛𝑡 = 𝑊𝑇
𝑡 𝜙(𝑥̂) + 𝑏𝑡 −𝑊𝑇

𝑛𝑡𝜙(𝑥̂) − 𝑏𝑛𝑡 . (3)
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Fig. 2: The targeted attack success rate (%) on VGG-16 by
using the ResNet-50 as the surrogate model.

[25], [26] showed that it is insufficient to obtain transferable
targeted adversarial samples that are only close to the target
class while not far away enough from the true class and other
non-targeted classes. Based on this property, it encourages us
to continually enlarge this logit margin along the optimization
to increase the separation between the targeted and other non-
targeted classes, thereby improving transferability.

To have a better understanding of the relationship between
the logit margins and the targeted transferability, we visualize
the average Top-3 logits (1 targeted class and other two non-
targeted classes) of 50 random adversarial samples trained on
ResNet50 by the CE, Po+Trip [25], and the Logit [26] loss
functions. We also compute the average logit margin of the
targeted class against the Top-20 non-targeted classes. The
logit and the average logit margin are shown in Figure 1, and
the transfer targeted attack success rate of these three loss
functions from ResNet50 to VGG16 is plotted in Figure 2.

From Figure 1, we can observe that the logits of the targeted
class and the Top-2 non-targeted classes increase rapidly in the
first few iterations for the CE and Po+Trip loss, as well as their
logit margins. When reaching the peak, the margin is saturated,
and the logits start to decrease simultaneously to maintain
the saturated margin. By comparing the CE and Po+Trip, the
Po+Trip needs slightly more iterations to reach the saturated
status and thus shows a marginal better transferability than CE,
as shown in Figure 2. In comparison, the Logit loss function
will keep increasing the logits of the targeted category and the
logit margin. Hence, the Logit loss function shows a much
better transfer targeted-attack success rate than CE and Po+Trip.
On the other hand, the Logit loss also significantly increases
the logits from other non-targeted classes when training with
more iterations.

To further analyze why the logit margin will quickly reach
saturation in the CE loss function and explore the effectiveness
of increasing the margin during training. In the following
sections, we will revisit the cross-entropy loss function and
introduce the logit calibration to achieve this goal.
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C. Revisiting the Cross-Entropy Loss

Firstly, our objective is to maximize the logit margin in
Eq. 3. After computing the gradient w.r.t. to 𝜙(𝑥̂), we can get

𝜕𝐺

𝜕𝜙(𝑥̂) = 𝑊𝑡 −𝑊𝑛𝑡 . (4)

This gradient indicates that the adversarial feature 𝜙(𝑥̂) needs
to move towards the target class while apart from those non-
target classes. Next, we compute the gradient w.r.t. to 𝜙(𝑥̂) in
the Cross-Entropy loss function

𝐿𝑐𝑒 = − log(𝑝𝑡) = −𝑧𝑡 + log(
∑

𝑒𝑧 𝑗 ), (5)

where the 𝑝𝑡 is probability about target class 𝑡 and the 𝑧𝑡 is
the logit of the category 𝑡. And we can get the gradient

𝜕𝐿𝑐𝑒

𝜕𝜙(𝑥̂) = − 𝜕𝑧𝑡
𝜕𝜙(𝑥̂) +

1∑
𝑒𝑧 𝑗

· 𝜕
∑

𝑒𝑧 𝑗

𝜕𝜙(𝑥̂) (6)

= −
∑

𝑒𝑧𝑖∑
𝑒𝑧 𝑗

· 𝜕𝑧𝑡
𝜕𝜙(𝑥̂) +

1∑
𝑒𝑧 𝑗

∑
𝑒𝑧𝑖

𝜕𝑧𝑖
𝜕𝜙(𝑥̂)

=
∑ 𝑒𝑧𝑖∑

𝑒𝑧 𝑗
· ( 𝜕𝑧𝑖
𝜕𝜙(𝑥̂) −

𝜕𝑧𝑡
𝜕𝜙(𝑥̂) )

=
∑

−𝑝𝑖(𝑊𝑡 −𝑊𝑖),

where 𝑊𝑡 is the classifier weights and bias for category 𝑡.
From Eq. 6, we actually find that the CE loss is designed to
adaptively optimize the 𝜙(𝑥̂) towards 𝑊𝑡 and away from other
𝑊𝑖 . However, after optimization with several iterations, the 𝑝𝑖
of the non-targeted class will soon approach to 0 and then the
influence of 𝑊𝑡 −𝑊𝑖 significantly vanishes.

Let’s consider the case only with 2 classes (𝑡 and 𝑛𝑡), we
have the probabilities 𝑝𝑡 and 𝑝𝑛𝑡 as:

𝑝𝑡 =
𝑒𝑧𝑡

𝑒𝑧𝑡 + 𝑒𝑧𝑛𝑡
=

1
1 + 𝑒−(𝑧𝑡−𝑧𝑛𝑡 )

, (7)

𝑝𝑛𝑡 =
𝑒𝑧𝑛𝑡

𝑒𝑧𝑡 + 𝑒𝑧𝑛𝑡
=

1
1 + 𝑒(𝑧𝑡−𝑧𝑛𝑡 )

. (8)

As shown in Figure 3, the 𝑝𝑡 will get close to 1 when 𝑧𝑡−𝑧𝑛𝑡 >
6 (e.g., 𝑝𝑛𝑡 ≈ 2𝑒−9 when 𝑧𝑡 − 𝑧𝑛𝑡 = 20). In such a context, the
gradient will significantly vanish. Recall that, in the CE loss
function (Figure 1a), the logit margin increases rapidly but
will reach saturation when approaching a certain value. This
further indicates that the optimization of the CE loss function is
largely restrained when the logit margin reaches a certain value.
To this end, we raise the question if we explicitly enforce the
optimization to increase the logit margin (𝑧𝑡 − 𝑧𝑛𝑡) continually
during the training process, could we get better transferable
targeted adversarial samples?

To answer this, we propose to downscale the 𝑧𝑡 − 𝑧𝑛𝑡 by
a factor 𝑠 in the CE and extend the informative optimization
for more iterations. Since in such circumstances, 𝑧𝑡 − 𝑧𝑛𝑡 will
be enlarged by the factor 𝑠. Specifically, suppose that the
optimization will be saturated when 𝑧𝑡 − 𝑧𝑛𝑡 reaches a certain
value 𝑣. Using 𝑧𝑡−𝑧𝑛𝑡 and 𝑧𝑡−𝑧𝑛𝑡

𝑠 in the CE will both approach
the saturated value 𝑣. Then, it is easy to infer that, for the
latter case, 𝑧𝑡 − 𝑧𝑛𝑡 will be 𝑣 × 𝑠.
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Fig. 3: The probability of 𝑝𝑡 under different 𝑧𝑡 − 𝑧𝑛𝑡 .

D. Calibrating the Logits

To downscale the 𝑧𝑡 − 𝑧𝑛𝑡 during the optimization, we
investigate three different types of logit calibration methods in
this study, i.e., Temperature-based, Margin-based, and Angle-
based.

1) Temperature-based: Inspired by the Temperature-scaling
used in the knowledge distillation [27], our first logit calibration
directly downscales the logits by a constant temperature factor
𝑇,

𝑧̃𝑖 =
𝑧𝑖

𝑇
. (9)

After introducing the 𝑇, the probability distribution p will be
softer over different classes. The corresponding gradient can
be computed by:

𝜕𝐿𝑇𝑐𝑒
𝜕𝜙(𝑥̂) =

𝑒𝑧 𝑗/𝑇∑
𝑒𝑧 𝑗/𝑇

· 1
𝑇
(

𝜕𝑧 𝑗

𝜕𝜙(𝑥̂) −
𝜕𝑧𝑡

𝜕𝜙(𝑥̂) ) (10)

=
∑

−𝑝𝑖
(𝑊𝑡 −𝑊𝑖)

𝑇
.

After downscaling by the factor 𝑇, the new 𝑝𝑖 after the softmax
will not quickly approach 0 when only trained with a few
iterations. In Figure 4a and Figure 4b, we visualize the trend
of logits and margins using 𝑇 = 5 and 𝑇 = 20. We can find
that targeted logits and the logit margin will keep increasing
as the same as the Logit loss [26] in Figure 1. Meanwhile, the
trend of 𝑇 = 20 is very similar to the Logit [26].

2) Margin-based: The previous Temperature-based logit
calibration contains a hype-parameter 𝑇, which could be
different for different surrogate models 𝔽𝑠 . To migrate this
issue, we further introduce an adaptive margin-based logit
calibration without extra hype-parameters. Specifically, we
calibrate the logits by using the margin between the Top-2
logits in each iteration, denoted as:

𝑧̃𝑖 =
𝑧𝑖

𝑧̂1 − 𝑧̂2
, (11)

where 𝑧̂1 and 𝑧̂2 are the Top-1 and the Top-2 logit, respectively.
Suppose the z̃ is sorted, the Top-1 logit 𝑧̃1 will be the target
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Fig. 4: After the logit calibration, the average Top-3 logits and logit margin of 50 adversarial samples crafted from ResNet-50.

class 𝑧̃𝑡 after a few iterations. Therefore, the corresponding
calibrated probability of the target class will be:

𝑝𝑡 =
1

1 +∑
𝑖≠𝑡 𝑒

−(𝑧̃𝑡−𝑧̃𝑖 )
(12)

=
1

1 + 𝑒−(𝑧̃𝑡−𝑧̃𝑖 ) +∑
𝑖=2 𝑒

−(𝑧̃𝑡−𝑧̃𝑖 )

=
1

1 + 𝑒
− 𝑧̂𝑡−𝑧̂2

𝑧̂𝑡−𝑧̂2 +∑
𝑖=2 𝑒

−(𝑧̃𝑡−𝑧̃𝑖 )

<
1

1 + 𝑒−1
.

Correspondingly, we can have the probability of 1 − 𝑝𝑡 >
1− 1

1+𝑒−1 . Therefore, the probability 𝑝1̂ of the Top-1 non-target
class will be larger than the average probability of all non-target
classes, denoted as:

𝑝1̂ =
1

𝑒 𝑧̃1̂−𝑧̃𝑡 +∑
𝑖≠𝑡 𝑒

𝑧̃𝑖−𝑧̃1̂
>

1
𝑁 − 1

(1 − 1
1 + 𝑒−1

). (13)

Then, it can adaptively deal with the vanishing gradient issue
in the original CE loss function. The logits and the margin is
shown in Figure 4c.

3) Angle-based: On the other aspect, we also can adaptively
calibrate the logit 𝑊𝑇

𝑖
𝜙(𝑥̂) + 𝑏𝑖 of each category based on the

weights 𝑊𝑖 . Besides, the weights 𝑊𝑖 for different category 𝑖
usually has a different norm. To further alleviate the influence
of various norms, we calibrate the logit into the feature space

with unit length by L2-normalization, denoted as
𝑊𝑇

𝑖
𝜙(𝑥̂)+𝑏𝑖

| |𝑊𝑖 | | | |𝜙(𝑥̂)| | .
If omit the 𝑏𝑖 , this calibration is actually computed the

cos(𝜃) between 𝜙(𝑥̂) and 𝑊𝑖 , and we term it as angle-based
calibration. Since this angle-based calibration will bound each
logit smaller than one. Instead of using the CE loss function, we
directly minimize the angle between the 𝜙(𝑥̂) and the targeted
weights 𝑊𝑡 . The corresponding optimization loss function is:

𝐿𝑐𝑜𝑠𝑖𝑛𝑒 = −
𝑊𝑇

𝑡 𝜙(𝑥̂)
| |𝑊𝑡 | | | |𝜙(𝑥̂)| |

. (14)

Notice that, the angle-based classifiers have been widely used
in Face-Recognition task [36], [37].

Relationship of these three calibrations: The temperature-
based is the simplest one which only calibrates the logits by
a constant value of 𝑇. However, the optimal 𝑇 is different
for different models, as shown in Tables I and II. Therefore,

we investigate the margin-based and angle-based calibrations
to deal with this hyper-parameter issue. The margin-based
method calculates the temperature parameter 𝑇 adaptively by
considering the Top-2 logits at each iteration, instead of using
a constant value. On the aspect, since 𝑧𝑖 = 𝑊𝑇

𝑖
𝜙(𝑥̂) + 𝑏𝑖 and

the 𝐿2 norm of 𝑊𝑖 is different for each class 𝑖, we could
perform the calibration by normalizing the classifier weight 𝑊𝑖

of each class 𝑖 and normalizing the feature to the unit length
by 𝐿2 normalization. This 𝐿2 normalization-based calibration
is actually computing the cosine between the 𝑊𝑖 and 𝑥̂ without
considering their norms. Therefore, we refer to it as “angle-
based calibration”. Additionally, the three different calibration
methods used in this study are complementary to other, and
we will evaluate their performance and their mutual benefits
in the following experimental section.

Difference between our Margin-based calibration and
the DLR loss [38]: The targeted-DRL loss is DRL(𝑥, 𝑦) =

𝑧𝑦−𝑧𝑡
𝑧̂1−(𝑧̂3+𝑧̂4)/2 , which is a margin loss function and requires the
original label 𝑦 of each sample for optimization. The targeted
DRL is very similar to the Logit loss Logit(𝑥) = −𝑧𝑡 . However,
in our margin-based calibration, we only adaptively calibrate
the logit 𝑧𝑖 =

𝑧𝑖
𝑧̂1−𝑧̂2

and still optimize with the CE loss. Besides,
our margin-based calibration doesn’t need the original label
for computing the loss function.

IV. THE CONNECTION WITH LOGIT LOSS

In this section, we theoretically analyze the relationship
between the Logit loss [26] and Temperature-based calibration
with a large 𝑇. When using a large 𝑇, the distribution 𝑝̂𝑖 will
be extremely smooth over different classes. And we can get
the 𝑝̂𝑖 ≈ 1

𝑁 for each class, where 𝑁 is the number of classes.
Besides, the

∑
𝑖 𝑊𝑖 are with very small values (i.e.,

∑
𝑖 𝑊𝑖 ≈ 0).

In this study, we conduct experiments on the ImageNet dataset
(𝑁 = 1000). Then the gradient of Cross-Entropy with a large
T in Eq. 10 will become:

𝜕𝐿𝑇𝑐𝑒
𝜕𝜙(𝑥̂) ≈

∑
𝑖

−(𝑊𝑡 −𝑊𝑖)
𝑁𝑇

(15)

≈ −𝑊𝑡

𝑇
+ 1

𝑁𝑇

∑
𝑖

𝑊𝑖

≈ −𝑊𝑡

𝑇
.
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TABLE I: The targeted transfer success rates (%) in the single-model transfer scenario. (Results with 20/100/300 iterations are
reported, and the highest one at 300 iterations is shown bold.)

Attack Surrogate Model: ResNet50 Surrogate Model: Dense121
→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

CE 27.0/40.2/42.7 17.4/27.6/29.1 2.3/4.1/4.6 12.3/17.2/18.4 8.6/10.5/10.9 1.6/2.3/2.8
Po+Trip 27.9/51.2/54.8 17.9/35.5/34.7 3.2/6.8/7.8 11.0/14.8/15.0 7.3/9.2/8.6 1.6/2.8/2.8
Logit 31.4/64.0/71.8 23.8/55.0/62.4 3.1/8.6/10.9 17.4/38.6/43.5 13.7/33.8/37.8 2.3/6.6/7.5
T=5 33.3/69.9/77.8 24.8/59.9/66.1 3.1/9.4/12.2 19.3/43.4/47.5 14.6/36.6/39.4 2.3/7.3/8.8
T= 10 31.6/68.5/77.0 23.6/58.5/66.4 2.8/9.4/11.6 17.9/43.2/49.3 13.4/36.8/41.5 2.2/7.7/8.8
Margin 33.3/65.8/76.5 23.1/58.6/65.7 3.0/9.5/12.2 18.8/42.8/47.2 14.5/36.5/41.4 2.5/7.7/9.4
Angle 38.9/72.5/77.2 29.2/60.7/65.2 4.4/10.7/11.1 20.6/43.2/47.8 16.5/35.7/39.3 3.0/7.7/8.9

Attack Surrogate Model: VGG16 Surrogate Model: Inc-v3
→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

CE 0.5/0.3/0.6 0.6/0.3/0.3 0/0/0.1 0.7/1.2/1.8 0.6/1.3/1.9 0.4/0.8/1.3
Po+Trip 0.7/0.6/0.7 0.7/0.6/0.5 0.1/0.1/0.1 1.0/1.6/1.7 0.6/1.7/2.5 0.7/1.2/1.8
Logit 3.4/9.9/11.6 3.5/12.0/13.9 0.3/1.0/1.3 0.6/1.1/2.0 0.6/1.9/3.0 0.6/1.5/2.8
T=5 3.1/7.0/6.9 3.3/7.6/7.8 0.2/0.9/0.8 0.7/1.7/2.1 0.5/1.9/3.3 0.4/1.6/2.6
T= 10 3.6/9.0/9.7 3.4/10.5/11.7 3.2/1.1/1.3 0.5/1.3/1.9 0.6/2.0/2.7 0.4/1.5/2.8
Margin 3.3/10.3/12.0 3.5/12.5/14.5 0.3/1.1/1.3 0.5/1.4/1.7 0.7/2.1/3.1 0.5/1.7/2.7
Angle 0.4/0.7/0.5 0.6/0.4/0.5 0/0/0.1 0.8/1.8/2.6 0.8/2.2/3.0 0.9/1.7/2.4

For the Logit loss [26], we can obtain the gradient w.r.t. to
input feature 𝜙(𝑥̂) in Eq. 2 as:

𝜕𝐿𝐿𝑜𝑔𝑖𝑡

𝜕𝜙(𝑥̂) = −𝑊𝑡 . (16)

From the Eq. 15 and Eq. 16, we can observe the gradient of
Cross-Entropy with a large 𝑇 is approximate 1

𝑇 of the gradient
of the Logit loss [26]. On the other aspect, the I-FGSM is used
for optimization,

𝑥̂𝑖+1 = 𝑥̂′𝑖 + 𝛼 · sign(∇𝑥̂𝐿(𝑥̂′𝑖 , 𝑦)), (17)

which only considers the sign of the gradient. Therefore, Eq. 16
and Eq. 15 will update the perturbation in a similar direction.
Based on the above analysis, we can consider the Logit loss
function as a special case of Temperature-based calibration
with a large 𝑇. Besides, we compare the performance between
the Logit and CE (𝑇 = 50 & 𝑇 = 100) in the following
experimental section.

V. EXPERIMENTS

A. Experimental Setup.

In this section, we evaluate the effectiveness of logit
calibration for improving transferable targeted adversarial
attacks. Following the recent study [26], we conduct the ex-
periments on the difficult ImageNet-Compatible Dataset1. This
dataset contains 1,000 images with 1,000 unique class labels
corresponding to the ImageNet dataset [39]. We implement our
methods based on the source code2 provided by the Logit [26].
The same four diverse CNN models are used for evaluation,
i.e., ResNet-50 [40], DenseNet-121 [41], VGG-16 with Batch
Normalization [1] and Inception-v3 [42]. The perturbation is
bounded by 𝐿∞ ≤ 16. The TI [12], MI [11] and DI [15]
are used for all attacks, and | |𝑊 | |1 = 5 is set for TI. The I-
FSGM is adopted for optimization with the 𝛼 = 2. The attacks
are trained for 300 iterations on an NVIDIA-2080 Ti GPU.
We run all the experiments 5 times and report the average

1https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.
0/examples/nips17_adversarial_competition/dataset

2https://github.com/ZhengyuZhao/Targeted-Tansfer

targeted transfer success rates (%). Besides, we also conduct
more experimental results about the ensemble attack and the
real-world attack.

B. Comparison with Others in Single-Model Transfer

We first compare the proposed (temperature-based, margin-
based and angle-based) logit calibrations with the original CE,
Po+Trip [25], and Logit [26] in the single-model transfer task.
In this task, we take one surrogate model for training and
test the targeted transferability in attacking the other 3 models.
As shown in Table I, the original CE loss function produces
the worst performance than the Po+Trip and Logit. But after
performing the logit calibration in the CE loss function, we
can find a significant performance is boosted compared with
the original CE. Our calibration methods can outperform the
Logit, especially when using the ResNet50 and Dense121 as
the surrogate model. These results indicate that continuously
increasing the logit margin can significantly influence the
performance of the targeted transferability. On the other aspect,
we find that 𝑇 = 10 has better performance than 𝑇 = 5 on the
VGG-16, suggesting that different models may need different
𝑇. Instead of finding the best 𝑇 for a different model, the
Margin-based calibration can solve the issue and reach the
overall best transferability in all four models. However, we
find that the Angle-based calibration is not working on the
VGG16, which needs further investigation.

C. Influence of Different 𝑇 in CE

In this section, we evaluate the influence of using different
T in the CE loss function. The results are reported in Table II.
From the Table, we can have the following observations. 1)
The scaling factor 𝑇 has a significant influence on the targeted
transferability. Specifically, the performance drops significantly
when using a small 𝑇 = 0.5. After increasing the 𝑇, we
can observe the number of successfully attacked samples will
increase. 2) The optimal 𝑇 for different model is different. For
example, 𝑇 = 5 can produce the overall best performance for
ResNet50, Dense121, and Inception v3, while the VGG16 with
fewer convolutional layers requires a large 𝑇 to obtain better
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TABLE II: The targeted transfer success rates (%) by using different 𝑇 in CE loss function. (Results with 20/100/300 iterations
are reported.)

Attack Surrogate Model: ResNet50 Surrogate Model: Dense121
→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

Logit 31.4/64.0/71.8 23.8/55.0/62.4 3.1/8.6/10.9 17.4/38.6/43.5 13.7/33.8/37.8 2.3/6.6/7.5
T=0.5 13.2/16.0/19.5 7.1/9.5/11.0 1.2/1.8/2.4 4.2/5.0/6.2 2.5/3.5/3.2 0.6/0.9/1.1
T=1 27.0/40.2/42.7 17.4/27.6/29.1 2.3/4.1/4.6 12.3/17.2/18.4 8.6/10.5/10.9 1.6/2.3/2.8
T=2 34.2/62.8/67.7 24.4/52.3/53.9 3.3/7.2/8.5 18.7/35.0/36.1 13.2/27.3/27.0 2.2/5.5/6.1
T=5 33.3/69.9/77.8 24.8/59.9/66.1 3.1/9.4/12.2 19.3/43.4/47.5 14.6/36.6/39.4 2.3/7.3/8.8
T=10 31.6/68.5/77.0 23.6/58.5/66.4 2.8/9.4/11.6 17.9/43.2/49.3 13.4/36.8/41.5 2.2/7.7/8.8
T=20 30.4/65.6/74.3 22.9/55.4/63.6 3.2/9.0/11.6 17.6/40.3/46.2 13.4/35.4/40.1 2.3/6.7/8.7
T=50 30.2/64.7/72.7 23.3/55.1/62.9 2.9/8.8/11.4 17.3/39.6/44.8 12.7/34.3/38.3 2.4/6.7/8.3
T=100 30.0/64.7/72.3 22.8/54.4/61.9 3.1/8.7/10.7 17.0/39.7/44.7 13.0/33.7/39.1 2.2/6.5/8.1

Attack Surrogate Model: VGG16 Surrogate Model: Inc-v3
→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

Logit 3.4/9.9/11.6 3.5/12.0/13.9 0.3/1.0/1.3 0.6/1.1/2.0 0.6/1.9/3.0 0.6/1.5/2.8
T=0.5 0.2/0.1/0.2 0.1/0.1/0.1 0/0/0 0.3/0.9/0.9 0.3/0.8/1.4 0.3/0.6/1.3
T=1 0.5/0.3/0.6 0.6/0.3/0.3 0/0/0.1 0.7/1.2/1.8 0.6/1.3/1.9 0.4/0.8/1.3
T=2 1.6/1.8/1.8 1.8/1.9/1.6 0.2/0.2/0.2 0.6/1.5/2.0 0.4/1.7/2.2 0.5/1.2/2.0
T=5 3.1/7.0/6.9 3.3/7.6/7.8 0.2/0.9/0.8 0.7/1.7/2.1 0.5/1.9/3.3 0.4/1.6/2.6
T=10 3.6/9.0/9.7 3.4/10.5/11.7 0.3/1.1/1.3 0.5/1.3/1.9 0.6/2.0/2.7 0.4/1.5/2.8
T=20 3.4/9.7/11.1 3.6/12.7/13.8 0.3/1.2/1.3 0.5/1.4/2.3 0.6/1.8/3.1 0.5/1.6/2.4
T=50 3.1/10.2/11.4 3.9/12.0/14.5 0.1/1.1/1.3 0.6/1.8/2.1 0.6/2.0/3.0 0.3/1.7/2.7
T=100 3.6/9.8/11.3 3.4/11.8/13.9 0.4/1.2/1.4 0.6/1.6/2.0 0.4/2.1/3.0 0.4/1.7/2.8

TABLE III: The targeted transfer success rate (%) with the ResNet-18 and VGG-19 as the surrogate models by using different
𝑇. (Results with 20/100/300 iterations are reported.)

Attack Surrogate Model: ResNet-18 Surrogate Model: VGG-19
Inc-v3 ResNet-50 Dense-121 VGG-16 Inc-v3 ResNet-50 Dense-121 VGG-16

Logit 3.7/10.0/12.2 24.8/55.6/60.7 24.3/53.6/58.5 21.2/49.4/54.9 0.3/0.9/1.0 4.1/10.8/12.3 5.1/13.3/15.8 65.6/84.0/84.2
T=1 2.1/3.0/3.0 19.2/24.0/26.0 18.6/24.0/24.6 15.9/19.3/19.0 0.2/0.1/0.2 1.0/1.8/1.3 1.4/0.8/0.9 40.7/41.1/43.1
T=5 3.9/10.8/11.9 27.8/60.7/63.6 27.2/57.5/61.6 23.7/53.0/56.6 0.5/1.3/0.9 4.6/8.7/8.7 5.1/11.7/10.6 71.4/90.0/90.5
T=10 3.6/11.2/13.2 25.9/59.7/66.9 25.9/57.2/64.2 22.2/53.0/59.7 0.6/1.4/1.7 4.3/10.5/11.4 5.1/13.9/15.9 67.9/91.7/93.1
T=20 3.9/11.4/13.0 25.2/57.8/64.2 24.8/54.3/60.7 21.1/49.7/57.1 0.5/2.0/1.9 4.4/11.3/13.0 5.1/14.5/17.1 65.3/87.8/90.9
T=50 3.0/10.4/12.9 27.1/57.0/61.7 25.7/54.5/59.3 22.5/49.0/54.6 0.4/1.7/1.7 4.2/10.6/12.8 4.9/13.8/16.2 64.4/84.1/85.3

transferability. 3) The performances are comparable when using
𝑇 = 5 and 𝑇 = 10 for ResNet50, Dense121, and Inception v3.
This is because we use I-FSGM for optimization, which only
considers the sign of the gradients. 4) When using a large 𝑇, the
performance will be similar to the Logit loss. For example, we
compare the Logit with CE (𝑇 = 50 & 𝑇 = 100) in the single-
model transfer scenario, and we can see the performances
are approximate for the targeted transfer success. Besides, in
Figure 5, we visualize the trend of logits and margins using the
Logit loss [26] and the CE loss (𝑇 = 50 & 𝑇 = 100). We can
find the trends are very similar when the adversarial samples
are crafted from the ResNet-50 by the Logit and CE (𝑇 = 50
& 𝑇 = 100) loss functions.

To further analyze the influence of the number of convolu-
tional layers, we leverage the ResNet-18 and VGG-19 as the
surrogate models and report the results in Table III. We can
find that the overall best performance is achieved at 𝑇 = 10 for
ResNet-18 and 𝑇 = 20 for VGG-19. Compared with 𝑇 = 5 for
ResNet-50 and 𝑇 = 50 for VGG-16, these results suggest that
a relatively large 𝑇 is preferred for CNNs with few layers to
achieve better performance under the same CNN architecture.

D. Influence of Different 𝑇 on datasets with different size

To further investigate whether the dataset size will influence
the performance, we conduct the following experiments by
using the ResNet-50 as the surrogate model and varying the

size of the dataset. Specifically, we randomly selected 1/5/10
images for each class in the validation set of the ImageNet
dataset, and then obtained a dataset of 1K/5K/10K images
covering all 1000 classes. Since there is no given targeted label
for each image, we follow the worst-case transfer scenario in
Logits [26] by setting the 2nd predicted class of each image as
the targeted class. The results are reported in Table VI and we
can find that the optimal values are consistent at T=5 for the
ResNet-50 with the varying dataset size of 1K/5K/10K. These
results can suggest that the size of the dataset does not affect the
overall final performance. And the optimal 𝑇 is mainly related
to the model architecture of the training surrogate models.

E. Mutual Benefits of Different Logit Calibrations

In this part, we evaluate the mutual benefits of combining
different calibrations. As shown in Table IV, we can have the
following findings. 1) Combining the 𝑇 = 5/10/20 and Margin,
there is no increase in performance compared with using one
of them. This is because the gradient directions of these two
methods are very similar. 2) Combining the 𝑇 = 5 and Angle,
we can observe a further improvement when using ResNet50
and Dense121 as the surrogate model, e.g., the transferable
rate of “ResNet50 → Dense121” is increased to 82.4% with
300 iterations. Since the Angle obtains poor performance on
VGG16, the transferable rates of corresponding combinations
are also low in 𝑇 = 5/10+Angle, but 𝑇 = 20+Angle can deal
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(b) CE (𝑇 = 50)
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(c) CE (𝑇 = 100)

Fig. 5: The average Top-3 logits and logit margin of 50 adversarial samples trained by the Logit, CE (𝑇 = 50) and CE (𝑇 = 100)
loss functions for crafting the ResNet-50.

TABLE IV: The comparison of combining logit calibrations. (The targeted transfer success rates (%) with 20/100/300 iterations
are reported.)

Attack Surrogate Model: ResNet50 Surrogate Model: Dense121
→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

T=5 + Margin 33.8/69.8/77.2 24.0/59.0/65.5 3.3/9.6/11.1 19.3/44.3/47.8 14.1/37.7/40.8 2.5/7.5/9.4
T=5 + Angle 34.5/74.3/82.4 25.6/66.5/72.2 3.6/10.5/13.1 20.3/52.7/61.9 15.8/45.0/53.6 2.3/9.2/12.7
T=10 + Margin 32.7/69.5/77.3 22.8/59.4/66.3 12.9/9.7/11.5 18.3/44.1/49.1 13.7/36.9/41.6 2.4/8.3/9.2
T=10 + Angle 33.0/69.8/79.1 24.4/59.0/68.9 3.4/10.0/12.9 19.4/47.2/56.1 14.8/40.1/47.0 2.5/8.3/11.0
T=20 + Margin 33.0/69.2/76.2 23.1/58.4/65.8 3.2/9.5/11.8 19.1/43.4/48.5 13.9/36.7/41.4 2.4/7.8/9.5
T=20 + Angle 34.2/68.6/76.5 24.7/58.7/66.6 3.4/9.7/12.7 20.0/44.4/50.9 15.5/38.4/43.7 2.5/8.2/9.5
Margin + Angle 34.4/70.8/78.1 24.3/60.2/67.4 3.5/10.4/12.6 19.9/46.6/52.7 15.2/39.3/44.5 2.7/8.2/9.9

Attack Surrogate Model: VGG16 Surrogate Model: Inc-v3
→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

T=5 + Margin 3.5/10.2/11.4 3.7/12.4/14.6 0.3/1.1/1.3 0.5/1.4/1.6 0.6/2.1/2.9 0.5/1.7/2.8
T=5 + Angle 2.2/2.5/2.3 2.4/2.6/2.3 0.2/0.1/0.2 0.5/1.6/2.4 0.6/2.0/3.1 0.5/1.7/2.5
T=10 + Margin 3.2/10.7/11.7 3.4/12.9/15.0 0.2/1.0/1.4 0.5/1.4/1.9 0.5/1.9/3.0 0.3/1.5/2.3
T=10 + Angle 3.4/6.2/5.1 3.5/7.5/7.0 0.2/0.6/0.6 0.6/1.3/1.9 0.6/2.0/3.2 0.5/1.6/2.6
T=20 + Margin 3.5/10.1/11.8 3.4/12.0/14.9 0.3/1.2/1.4 0.6/1.2/1.9 0.5/1.9/2.9 0.5/1.6/2.7
T=20 + Angle 3.2/9.7/10.1 3.9/11.9/13.3 0.3/1.0/1.2 0.6/1.6/2.0 0.6/2.0/3.5 0.5/1.7/2.9
Margin + Angle 3.3/9.8/11.1 3.5/12.6/14.6 0.3/1.2/1.4 0.6/1.4/2.0 0.6/1.7/3.1 0.5/1.5/2.6

TABLE V: The targeted transfer success rate (%) with the ResNet-152 and VGG-19 as the surrogate models. (Results with
20/100/300 iterations are reported.)

Attack Surrogate Model: ResNet-152 Surrogate Model: VGG-19
Inc-v3 ResNet-50 Dense-121 VGG-16 Inc-v3 ResNet-50 Dense-121 VGG-16

T=5+Angle 4.3/11.6/14.2 43.6/81.0/86.7 29.6/65.7/72.6 16.3/42.5/49.4 0.6/0.6/0.3 3.4/4.3/3.6 4.0/3.9/3.7 71.5/84.6/82.7
T=10+Angle 4.4/9.5/10.6 42.2/74.1/82.9 29.4/58.8/67.9 17.3/38.6/46.0 0.7/1.1/1.1 4.3/7.7/7.2 5.0/11.1/10.0 69.5/92.4/92.6
T=20+Angle 3.7/8.2/9.8 38.8/71.7/78.2 26.4/56.1/62.4 15.3/37.1/40.8 0.9/1.6/1.8 4.7/10.1/12.0 4.6/14.6/16.1 68.9/89.4/91.5
T=5+Margin 3.9/9.9/10.2 38.2/74.1/78.7 27.1/51.7/61.8 13.4/35.4/40.7 0.4/1.8/1.9 4.6/9.5/13.0 5.5/14.6/16.8 68.9/90.9/92.6

T=10+Margin 3.9/9.1/10.8 37.7/72.7/80.1 25.8/53.3/60.5 12.1/35.4/40.4 0.5/1.5/1.6 4.4/11.7/13.0 5.2/15.4/17.4 68.5/91.2/92.9
T=20+Margin 4.3/9.7/9.6 37.5/71.2/77.4 25.6/53.1/61.6 15.1/34.1/41.3 0.8/1.8/1.8 4.2/11.6/13.1 4.9/15.2/17.5 68.0/90.4/92.6
Angle+Margin 4.0/9.3/10.6 39.1/74.1/79.5 27.1/55.6/62.2 12.6/36.4/40.8 0.6/1.8/2.1 4.4/11.8/12.9 4.9/14.9/16.8 68.4/90.9/92.6

TABLE VI: Targeted transfer success rate (%) when varying the size of datasets from small to large. The targeted class for
each image is its 2nd predicted class.

Attack →DenseNet-121 →VGG-16
1K 5K 10K 1K 5K 10K

T=1 73.4/79.2/81.2 75.3/80.4/82.4 75.8/80.6/82.3 59.6/65.6/68.0 62.3/68.2/70.3 61.9/67.8/70.1
T=5 73.1/88.8/92.0 72.6/89.3/92.6 72.6/89.7/92.6 68.7/85.6/88.8 68.8/86.6/89.9 68.2/86.0/89.6

T=10 65.4/82.9/89.8 67.7/84.3/90.2 68.4/84.7/90.4 64.5/80.6/86.8 64.9/81.5/86.7 65.1/81.4/87.2
T=20 66.1/79.1/83.0 67.0/80.1/84.2 67.4/80.0/84.8 65.6/77.9/81.6 64.2/76.4/81.3 64.4/77.9/81.7

with this issue. 3) Combining the Margin and Angle, there are
only slight improvements on ResNet50 and Dense121, while
it can alleviate the negative effects caused by the angle-based
calibration.

To further investigate the best combination of different mod-

els, we use the ResNet-152 and VGG-19 models as surrogate
models to generate the adversarial examples. From Table V,
we can observe that “T=5+Angle” is most effective in the
ResNet-152 model, which is consistent with the ResNet-50. For
the VGG-19 model, combining the other two logit calibration
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methods (Angle and T=5/10/20) and Margin can achieve similar
performance, which is the same as the observations of the
VGG-16.

Finally, by jointly considering all the experimental results of
single calibration and combined calibration in Table I, II, III, IV,
and V, we suggest that: 1) for the single calibration, it prefers
to use the Margin-based calibration. 2) For different CNNs
with the same architecture, the one with few convolutional
layers usually requires a relatively large T for achieving
better-targeted transferability. 3) For the ResNet and DenseNet
architectures, the combination of T=5 + Angle is preferred
for further improving the performance. 4) For the VGG and
Inception architectures, combining Margin with the other two
logit calibration methods (Angle and T=10/20) can achieve
similar performance, which is slightly higher than only using
single Margin-based calibration.

F. Targeted Transfer of Ensemble Attacks

Since ensemble attacks can significantly improve transfer-
ability, we also use an ensemble of white-box source models to
optimize the perturbations for further evaluation. Following the
realistic ensemble setting in the Logit [26], we also select the
four models—ResNet50, DenseNet121, VGG16, and Inc-v3,
where each hold-out target model shares no similar architecture
with the other three source models used for the ensemble.
Besides, we simply assign equal weights to the source models
during the training.

The results are shown in Figure 6, and we can obtain
the following observations. 1) The Po+Trip produces the
worst performance than the original CE and the Logit in the
realistic ensemble setting. Besides, the original CE is also
weak for ensemble transfer tasks. 2) After performing the
logit calibration (CE (𝑇 = 5) and Margin), we can find a
significant performance is boosted compared with the original
CE. 3) Meanwhile, our methods can outperform the Logit [26],
comparing all results. These results verify the effectiveness of
logit calibration in the ensemble targeted attacks.

G. Transfer Success Rates with Varied Targets

Following the settings in [26], we further evaluate the
performance of different calibration methods in the worse-
case transfer scenario by gradually varying the target class
from the highest-ranked to the lowest one. The ResNet-50 and
the DesNet-121 models are used for training and evaluation,
respectively. From Table VII, we can have the following
findings: 1) The three types of logit calibration methods can
improve the targeted transfer success rate over the original CE.
The angle-based calibration can achieve the best performance.
2) The Temperature-based (𝑇 = 5/10) and the Angle-based
calibrations can outperform the Logit loss by a large margin,
especially the Angle-based calibration. 3) The margin-based
calibration doesn’t work well in this setting. When the target
class is after the 200th, the performance of margin-based will
be significantly lower than the Temperature-based and Angle-
based calibrations.

TABLE VII: Targeted transfer success rate (%) when varying
the target from the high-ranked class to low.

2nd 10th 200th 500th 800th 1000th
Logit 83.7 83.2 74.5 71.5 64.9 52.4
CE 77.4 58.6 26.9 23.7 16.7 7.0
CE/5 91.3 88.7 77.1 75.8 70.1 58.8
CE/10 89.0 87.8 81.0 79.2 73.5 62.5
Margin 87.4 81.7 61.3 51.6 43.1 23.0
Angle 92.4 89.1 80.3 79.2 76.1 66.3

H. Transfer-based Attacks on Google Cloud Vision

Following the evaluation protocol in [26], we randomly
select 100 images to conduct a real-world adversarial attack
on the Google Cloud Vision API. The attacking performance
is computed based on transfer-based attacks of the ensemble
of four CNNs (i.e., Inc-V3, ResNet-50, Dense-121 and VGG-
16). The results are shown in Table VIII. We can find that
the results of the Logit and CE (𝑇 = 5) are very similar. But
the Margin-based calibration performs worse than Logit and
CE (𝑇 = 5). These results reveal that our logit calibration-
based targeted transfer attacks can cause a potential threat to
the real-world Google Cloud Vision API. Besides, we present
several successful targeted adversarial images with CE (𝑇 =

5) in Figure 7. We can find that the adversarial images can
achieve well-targeted transferability with quasi-imperceptible
perturbations.

TABLE VIII: Non-targeted and targeted transfer success rates
(%) on Google Cloud Vision API.

Logit CE (T=5) Margin
Targeted 16 15 12
Non-targeted 51 53 42

I. Evaluating Logits Calibration in TTP and ODI

In this section, we further evaluate the proposed temperature-
based logit calibration in the GAN-based targeted attacks
(TTP [30]) and the most recently published object-based diverse
input (ODI) method [16].

TTP: Following the setting in TTP [30], we sample 50K
images from the ImageNet training set and 50K images from the
Painting dataset3, which are used to train the targeted generators
from different source domains. Instead of using the distribution
matching and neighborhood similarity matching loss [30], we
only use the cross-entropy function for training the targeted
generators while keeping other settings identical. More training
and evaluation details used by TTP can be referred to [30]. We
use the ResNet50 as the surrogate model and report the results
in Table IX. We have the following findings from Table IX,.
1) By using ImageNet as the training dataset, the TTP shows
better transferability than the CE in attacking other black-box
models. The average targeted accuracy of TTP is around 3%
higher than that of CE. 2) After downscaling the logit by 5
in the CE loss function (𝑇 = 5), we can observe a significant
boost of the Top-1 targeted accuracy for all models, reaching
an average value of 91.98% (ImageNet). For both ImageNet

3https://www.kaggle.com/c/painter-by-numbers
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(b) DenseNet-121
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(d) Inc-v3

Fig. 6: Targeted transfer success rates (%) in a realistic ensemble setting, where each hold-out target model shares no similar
architecture with the source models used for the ensemble. We select four models—ResNet50, DenseNet121, VGG16 and
Inc-v3. In each sub-figure, the caption indicates the name of the hold-out model, and the adversarial examples are generated for
the ensemble of the other three models.

TABLE IX: Comparison with TTP [30] on Target Transferablity. The averaged Top-1 targeted accuracy (%) across 10
targets is computed with 49.95K ImageNet validation samples. Perturbation budget: 𝑙∞ ≤ 16. * indicates the training surrogate
model.

Dataset Loss ResNet50* VGG19𝐵𝑁 Dense121 ResNet152 WRN-50-2 Average

ImageNet

TTP 97.02* 78.15 81.64 80.56 78.25 83.12
CE 97.15* 70.44 78.96 76.22 78.24 80.20

CE (T=5) 99.18* 86.65 90.55 90.30 93.22 91.98
Margin 98.85* 80.76 87.32 86.79 89.86 88.72
Angle 99.17* 93.09 93.62 93.19 94.37 94.69

Painting TTP 96.63* 73.09 84.76 76.27 75.92 81.33
CE (T=5) 98.95* 82.97 87.07 87.81 91.70 89.70

(a) Target Class: miniature-poodle (b) Target Class: goose

(c) Target Class: analog clock (d) Target Class: measuring-cup

Fig. 7: Successful sample targeted adversarial images on Google
Cloud Vision API (object detection) generated by the CE
(𝑇 = 5) with ensemble transfer.

and Painting as the training source, the CE (𝑇 = 5) can surpass
the TTP by a large margin (91.98% vs. 83.12% & 89.70% vs.
81.33%). 3) Margin-based calibration also can outperform the
orginal CE and TTP, but the target transferatblity is lower than
the CE (𝑇 = 5) and Angle-based. 4) Angle-based calibration
can achieve the best target transferability. Specifically, the top-
1 targeted accuracies are higher than 93% for four different
black-box CNN models. Note that, compared to TTP, our logit
calibration has the benefit without any data from the target
class. These experimental results demonstrate that the proposed
temperate-based logit calibration is also effective in training
generator-based targeted attackers.

ODI: For the ODI [16], we follow the setting in ODI,
which improves the targeted transferability by projecting the

adversarial examples on 3D objects and uses the Logit loss [26]
for optimizing the targeted adversarial examples. To compare
with the original ODI, we use the "Package, Pillow, Book" as
the 3D objects and simply replace the Logit loss [26] with the
CE (𝑇 = 5) and Margin-based calibration for training with 300
iterations. Besides, we also select the same six additional mod-
els for more comprehensive comparisons, including ResNet18
(RN-18), a lightweight model MobileNet-v2 (Mob-v2) [43],
Inception ResNet-v2 (IR-v2) [44], Inception-v4 (Inc-v4) [44]
and two adversarial trained models (adversarially trained Inc-v3
(Adv-Inc-v3) [29], and ensemble-adversarially trained IR-v2
(Ens-adv-IR-v2) [29]). The results are reported in Table X.
We have the following observations from Table X: 1) For the
source model ResNet-50, VGG-16, and Dense-121, the CE
(𝑇 = 5) and Margin-based calibration significantly outperform
the Logit loss when using the ODI [16] for data augmentation.
Besides, the Margin-based calibration can perform slightly
better than the CE (𝑇 = 5). 2) For the Inception-V3, there is
no significant difference between the Logit, CE (𝑇 = 5) and
Margin-based calibration.

J. Evaluating Logits Calibration in Non-Target Attack

To evaluate the performance in Non-target attacks, we con-
duct experiments on the CIFAR-10 dataset and the ImageNet-
Compatible dataset.

For the CIFAR-10 dataset, we implement the untargeted
attack based on the code provided by [45]. The ResNet-18
model serves as the white-box surrogate model for crafting
perturbations using the MI-FGSM algorithm with 20 iterations.
The black-box models include DenseNet, GoogLeNet, and
SENet18. In Table XI, we report the untargeted success rate
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TABLE X: Comparison with the ODI-MI-TI [16] on Target Transferablity. Targeted attack success rates (%) against nine
black-box target models with the four source models. For each attack, we also report the average attack success rate (Avg.)
against all black-box models.

Source:RN-50 Target model
Attack VGG-16 RN-18 DN-121 Inc-v3 Inc-v4 Mob-v2 IR-v2 Adv-Inc-v3 Ens-adv-IR-v2 Avg.
ODI-MI-TI 76.8 77.0 86.8 67.4 55.4 66.8 48.0 0.7 1.7 53.4
CE (T=5) 80.7 80.7 88.9 68.1 56.7 71.0 51.8 0.6 1.2 55.5
Margin 83.7 84.4 93.3 69.4 58.7 71.3 51.7 0.7 1.2 57.2

Source:VGG-16 Target model
Attack VGG-16 RN-18 DN-121 Inc-v3 Inc-v4 Mob-v2 IR-v2 Adv-Inc-v3 Ens-adv-IR-v2 Avg.
ODI-MI-TI 60.8 64.3 71.1 37.0 38.0 47.0 21.1 0.0 0.0 37.7
CE (T=5) 69.4 70.0 79.5 39.6 42.6 52.6 23.3 0.0 0.0 41.9
Margin 67.6 69.8 78.3 41.3 42.2 52.8 23.2 0.0 0.0 41.7

Source:DN-121 Target model
Attack VGG-16 RN-18 DN-121 Inc-v3 Inc-v4 Mob-v2 IR-v2 Adv-Inc-v3 Ens-adv-IR-v2 Avg.
ODI-MI-TI 64.5 63.4 71.6 53.5 46.4 44.2 38.3 0.4 0.7 42.6
CE(T=5) 66.8 67.7 74.7 56.6 47.8 47.7 42.1 0.5 1.3 45.0
Margin 69.7 68.5 77.1 56.6 47.8 49.2 40.5 0.3 0.7 45.6

Source:Inc-v3 Target model
Attack VGG-16 RN-18 DN-121 Inc-v3 Inc-v4 Mob-v2 IR-v2 Adv-Inc-v3 Ens-adv-IR-v2 Avg.
ODI-MI-TI 15.7 14.7 17.4 30.4 32.1 14.1 26.9 0.3 0.6 16.9
CE(T=5) 15.0 16.2 18.7 34.5 31.5 15.3 27.8 0.2 0.5 17.7
Margin 13.5 15.3 16.6 31.4 31.3 13.2 24.9 0.3 0.3 16.3

when attacking the CIFAR-10 testing set, which consists of
10,000 images. The following observations can be made: 1)
After using T, the untargeted success rates of attacking the
white-box ResNet-18 and other black-box CNNs are increased.
For the white-box ResNet-18, the attack success rate continually
increases along with the T. For the black-box CNNs, the best
performance is achieved at T=5. 2) The Angle-based calibration
shows the overall best transfer untargeted success rate and
the Margin-based calibration also leads to a slight increase.
However, we also notice that Margin-based and Angle-based
will decrease the performance of the white-box ResNet-18. In
summary, these findings provide supporting evidence for the
effectiveness of logit calibration in non-targeted attacks on a
small-scale dataset.

For the ImageNet-Compatible dataset, we follow the set-
ting [11] to implement the untargeted attack. The ResNet-50
is used as the white-box model for crafting the adversarial
examples using the MI-FGSM algorithm with 20 iterations. The
black-box CNNs include DenseNet-121, VGG-16, and Inc-V3.
From the results in Table XII, we can find that: 1) When T=5,
the transfer untargeted success rates are increased on three
black box models. However, when T is further increased to 10
or 20, the transfer untargeted success rates will decrease. 2) The
Margin-based calibration improves the untargeted success rate
in all black-box CNNs. The Angle-based calibration is effective
for transfer attacks on Inc-v3. In summary, these results suggest
that logit calibration can improve the performance of non-
targeted attacks to a certain degree.

K. Evaluating Logits Calibration in ViT and MLP architectures

We evaluate the targeted transferability of the proposed
method in the setting where both the surrogate and victim
models are either ViTs or MLPs. For the ViT, we select the

TABLE XI: The transfer untargeted success rate of training
with ResNet-18 and testing by the DenseNet-121, GoogleNet
and SENet-18 on CIFAR-10.

Attack ResNet-18* DenseNet-121 GoogleNet SENet-18
CE 89.89* 61.92 50.96 62.21
T=5 89.14* 63.98 54.59 63.97
T=10 90.39* 63.55 54.46 63.75
T=20 90.67* 63.08 54.26 63.35

Margin 88.38* 62.77 54.18 62.57
Angle 87.70* 64.45 56.12 64.46

TABLE XII: The transfer untargeted success rate of training
with ResNet-50 and testing by the DenseNet-121, VGG16 and
Inc-v3 on Imagenet.

Attack ResNet-50* DenseNet-121 VGG-16 Inc-v3
CE 100.0* 85.2 82.7 51.3
T=5 100.0* 86.8 83.6 52.5

T=10 100.0* 85.2 82.6 52.4
T=20 100.0* 86.0 82.7 51.5

Margin 100.0* 87.4 84.6 52.8
Angle 100.0* 85.6 82.3 53.5

ViT-B/16 [46] as the white-box surrogate model and the DeiT-
B [47] as the black-box victim model. For the MLP, we use the
MLP-Mixer with SiGLU (MLP-Glu/24) [48] as the white-box
model, and the ResMLP/24 [49] as the black-box model. Note
that the adversarial examples will overfit the white-box model
when the training iterations are more than 20 in the ViT and
MLP. Therefore, we report the results with 5/10/20 iterations.

From Table XIII, we can find the following conclusions: 1)
Whether it is ViT or MLP, all methods can achieve superior
performance in the white-box models, but the transferability
performance degrades significantly due to the architectural
differences between the traditional CNNs and the ViT and
MLP. 2) Compared with the CE and Logit, our CE (T=5) and
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TABLE XIII: The targeted transfer success rates (%) in the
single-model transfer scenario. (Results with 5/10/20 iterations
are reported and the highest one at 20 iterations is shown bold).

Attacks ViT MLP
ViT-B/16 * DeiT-B MLP-Glu/24 * ResMLP/24

CE 79.9/99.7/100.0 0.5/1.1/1.1 96.8/100.0/100.0 1.6/3.0/2.7
Logit 80.7/99.7/100.0 0.6/1.6/1.1 95.1/100.0/100.0 2.0/2.7/3.0
CE/5 82.0/99.8/100.0 0.7/2.2/1.7 95.8/100.0/100.0 1.6/2.7/3.5

Margin 83.1/99.9/100.0 0.7/2.0/1.5 96.4/100.0/100.0 1.8/3.5/3.8

Margin method can slightly enhance the targeted transferability,
which further verifies our method’s effectiveness.

L. Evaluating Logits Calibration on Defense Models

We evaluate the targeted transferability of our approach
against the ResNet-50 trained from different defense strategies
including Augmix [50], Stylized [51], Adversarial [52] with 𝑙2
norm. Besides, we also use the Neural Representation Purifier
(NRP) [53] to cure the infection of adversarial perturbations
before feeding the images into the normal trained ResNet-50
model. We report the untargeted and targeted success rates
(UnTar and Tar) in Table XIV.

From Table XIV, we can have the following observations.
1) Compared to the original CE, the Logit loss leads to a
significant improvement in the untargeted and targeted success
rates against all defense strategies. 2) The T=5/10 and Margin-
based calibrations can achieve similar performance, which
outperforms the CE, Po+Trip, and Logit on the targeted attack.
3) The Angle-based calibrations exhibit lower performance than
other logit calibrations. However, its results are still higher
than the original CE loss. Finally, these results can support the
effectiveness of logit calibration in improving the untargeted
and targeted success rates of attacks against defense strategies.

TABLE XIV: The performance (Untargeted and Targeted suc-
cess rates) against the ResNet-50 trained from different defense
strategies including Stylized (SIN-IN) [51], Augmix [50],
NRP [53], and Adversarial [52].

Attack SIN-IN Augmix NRP Adversarial
UnTar Tar UnTar Tar UnTar Tar UnTar Tar

CE 90.9 65.9 66.8 15.5 57.0 7.8 53.2 3.5
Po+Trip 86.5 69.9 61.7 19.6 49.0 5.8 47.3 5.6

Logit 97.6 85.6 81.2 37.9 63.5 11.8 63.9 11.0
T=5 97.2 91.2 79.6 39.7 63.0 12.6 63.9 13.4
T=10 97.4 90.6 80.9 42.5 64.7 13.8 64.2 12.8

Margin 97.7 90.3 80.7 40.8 65.7 13.5 65.3 13.2
Angle 94.4 81.1 73.2 31.0 54.2 6.2 57.6 9.5

VI. CONCLUSION

In this study, we analyze the logit margin in different loss
functions for the transferable targeted attack and find that
the margin will quickly get saturated in the CE loss and
thus limits the transferability. To deal with this issue, we
propose to use logit calibrations in the CE loss function,
including Temperature-based, Margin-based, and Angle-based.
Experimental results verify the effectiveness of using the logit
calibration in the CE loss function for crafting transferable
targeted adversarial samples. The proposed logit calibrations

are simple and easy to implement, which can achieve state-of-
the-art performance in transferable targeted attacks. Besides,
the logit calibrations also can improve the performance of
non-targeted attack to a certain degree.

POTENTIAL SOCIAL IMPACT

Our findings in targeted transfer attacks can potentially
motivate the AI community to design more robust defenses
against transferable attacks. In the long run, it may be directly
used for suitable social applications, such as protecting privacy.
Contrariwise, some applications may use targeted transferable
attacks in a harmful manner to damage the outcome of
AI systems, especially in speech recognition and facial
verification. Finally, we firmly believe that our investigation in
this study can provide valuable insight for future researchers
of using logit calibration for both adversarial attack and defense.
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