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Robust Proxy: Improving Adversarial Robustness
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Abstract—Recently, it has been widely known that deep neural
networks are highly vulnerable and easily broken by adversarial
attacks. To mitigate the adversarial vulnerability, many defense
algorithms have been proposed. Recently, to improve adversarial
robustness, many works try to enhance feature representation by
imposing more direct supervision on the discriminative feature.
However, existing approaches lack an understanding of learning
adversarially robust feature representation. In this paper, we
propose a novel training framework called Robust Proxy Learn-
ing. In the proposed method, the model explicitly learns robust
feature representations with robust proxies. To this end, firstly,
we demonstrate that we can generate class-representative robust
features by adding class-wise robust perturbations. Then, we use
the class representative features as robust proxies. With the class-
wise robust features, the model explicitly learns adversarially
robust features through the proposed robust proxy learning
framework. Through extensive experiments, we verify that we can
manually generate robust features, and our proposed learning
framework could increase the robustness of the DNNs.

Index Terms—Robust perturbation, class-wise robust pertur-
bation, robust proxy learning.

I. INTRODUCTION

RECENTLY, Deep Neural Networks (DNNs) have
achieved great performance in various machine learning

tasks [1]–[3]. Despite the phenomenal success of DNNs,
they are highly vulnerable to adversarial attacks [4]–[9]. By
adding small and imperceptible perturbation to input data (i.e.,
adversarial examples), adversarial perturbations can effectively
fool DNNs. Such vulnerability of DNNs could lead to security
problems and the loss of the reliability of DNNs.

To mitigate the potential threat of adversarial attacks, a
number of defenses have been proposed [6], [10]–[17]. Among
the existing defenses, Adversarial Training (AT) has been
demonstrated to be the most effective defense strategy [18],
[19]. It trains DNNs with adversarial examples by solving min-
max optimization problems between the adversarial perturba-
tion and model parameters.

However, some recent works started tackling the limitation
of existing adversarial training schemes through the lens
of feature representation [20]–[25]. They claim that well-
generalized feature representation could improve the adver-
sarial robustness. To enhance the feature representation, they
apply AT framework to a self-supervised or unsupervised
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learning scheme such as SimCLR [23], [24]. However, they
just applied the existing representation learning framework to
AT framework, there is a lack of a deeper understanding of
adversarially robust feature representation.

In the lens of adversarial robustness, it has been known that
the disagreement between standard and adversarial robustness
stems from differently trained features representation [26]–
[28]. The vulnerability of DNNs arises from naturally learned
non-robust feature components, and they are highly correlated
with adversarial prediction. Ilyas et al. [26] demonstrated that
features consist of robust and non-robust components. They
claimed that the adversarial examples are directly attributed
to the presence of non-robust components and these non-
robust components are brittle by adversarial perturbations
while useful for prediction in the standard setting. Kim et
al. [27] explicitly distilled features into the robust and non-
robust components. Specifically, they disentangled features
into the robust and non-robust channels. Then, they showed
that the vulnerability mainly stems from non-robust channels
rather than robust channels. The aforementioned analyses of
the adversarial vulnerability commonly argue that the feature
representations that are learned to correctly predict and ro-
bustly predict are different. Therefore, to improve adversarial
robustness, it is necessary to learn adversarially robust feature
representations. Although there are many studies to identify
the robust and non-robust features, only a few works have been
conducted to exploit these robust and non-robust features.

Based on the aforementioned adversarially robust feature
representation view, in this paper, we raise the following
intriguing, yet thus far overlooked questions:

“How can we make DNNs learn the adversarially robust
feature?”

To address the question, in this paper, we generate class
representative robust features for all classes. Then, with the
generated features, we train DNNs to explicitly learn adver-
sarially robust features.

To generate the robust feature, firstly, we employ a feature
distillation method proposed in [27] and distill the feature into
robust and non-robust channels. With the distilled features,
we quantify the effect of the non-robust channels on the
prediction by the gradient of them. Then, we optimize the
input to minimize the magnitude of the gradient of non-robust
channels. Specifically, we add a Robust Perturbation (RP, r) to
input data and optimize the perturbation to reduce the gradient
of non-robust channels. After that, we extend the process of
optimizing robust perturbation to the process of optimizing
Class-wise Robust Perturbation (CRP, rk). The CRP is added
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to any input data corresponding to the target class k and
makes the input robust against adversarial perturbation. To
optimize CRP, we exploit the Empirical Risk Minimization
(ERM) optimization which is considered a successful recipe
for finding classifiers with small population risk. Specifically,
we propose a novel optimization process called Class-wise
ERM Optimization (CEO). In the CEO algorithm, we quantify
the empirical risk of the target class as the expectation of
gradient for the non-robust channels. Then, we optimize CRP
to reduce the gradient. Through empirical and theoretical anal-
ysis, we show that CRP makes the corresponding class input
not easily attacked by adversarial perturbation and provides a
robust prediction.

With the optimized CRP, we generate a class-representative
robust feature called Robust Proxy. To generate a robust
proxy, we randomly sample each class image from the training
dataset and add CRP to the corresponding class images. Then,
we extract features from the CRP-added images and use
the features as robust proxies. During the training, DNNs
explicitly learn the representation of robust proxy through the
proposed robust proxy learning framework. For each proxy,
we pull the data of the same class close to the proxy and
push others away in the feature space, allowing the model to
explicitly learn adversarially robust features.

The major contributions of the paper are as follows.
• We propose a novel way to generate adversarially robust

features by optimizing robust perturbation. Then, we
extend the robust perturbation to class-wise robust per-
turbation to generate class-representative robust features.

• With the CRP, we train DNNs with the proposed learning
framework called Robust Proxy Learning. In the proposed
method, we train the DNNs to explicitly learn adversari-
ally robust features by using robust proxies.

• Through extensive experiments, we show that we could
explicitly learn robust features and improve the robust-
ness.

II. RELATED WORK

A. Understanding Adversarially Robust Features
As adversarial vulnerability has attracted significant atten-

tion, many works are devoted to getting to the bottom of
the vulnerability [26]–[28]. An early study tended to view
adversarial examples as a result of the excessive linearity
nature of DNNs in high-dimensional spaces [4]. In another
study, it has been regarded as statistical fluctuations in the
data manifold [7], [29].

Recently, a new perspective on the phenomenon of adver-
sarial vulnerability is proposed [26]–[28], [30]. In contrast to
previous studies, these works figure out the vulnerability as
a view of feature representations. Tsipras et al. [30] showed
that the goals of learning features for standard accuracy and
adversarial robustness might be at odds. Specifically, they
argue that the features for adversarial robustness and for stan-
dard accuracy are fundamentally different. Then, the features
learned by robust models tend to align better with salient data
characteristics and human perception. Ilyas et al. [26] demon-
strated that adversarial vulnerability is a consequence of non-
robust components of features. These non-robust components

are useful and highly predictive for standard performance,
yet easily broken by adversarial perturbations. In contrast,
robust components still can provide robust prediction results
even with adversarial perturbation. Kim et al. [27] explicitly
distilled features into robust channels and non-robust channels.
Then, they showed that non-robust channels are directly related
to adversarial predictions. Also, in [27], they addressed that the
robust channels are robust on the noise variation and invariant
to the existence of the adversarial perturbation. In contrast, the
non-robust channels are brittle and easily change the model
prediction by noise variation. In the rest of the paper, we use
the definition of robust/non-robust features defined in [27].

The aforementioned studies commonly argued that features
for a standard performance and for adversarial robustness are
different. Also, the vulnerability stems from the non-robust
feature components that are brittle and incomprehensible to
humans. Therefore, it is necessary to learn robust feature repre-
sentations. In this context, recently some works try to improve
the robustness by exploiting the robust feature representations.
Yang et al. [31] proposed the Deep Robust Representation
Disentanglement Network (DRRDN) model to disentangle the
class-specific representation and class-irrelevant representa-
tion. To this end, they employed a disentangler to extract
and align the robust representations from both adversarial
and natural examples. With the disentangler, they eliminate
the effect of adversarial perturbations and improve the ro-
bustness. Kim et al. [32] proposed a way to extract robust
and non-robust features based on causality. They demystified
causal features on adversarial examples in order to uncover
inexplicable adversarial origins through a causal perspective.
To this end, they proposed adversarial instrumental variable
(IV) regression as a means to identify the causal features
pertaining to the causal relationship of adversarial prediction
on adversarial examples. Then, they improve the robustness
by exploiting the causal features.

In this work, we propose a new approach that explicitly
learns robust feature representations rather than heuristically
employing existing learning algorithms.

B. Adversarial Training

Adversarial Training (AT) is one of the most effective
approaches to defending against adversarial attacks [6], [15]–
[17], [33], [34]. By solving a min-max optimization between
model parameters and adversarial perturbation, it improves the
adversarial robustness. Madry et al. [6] proposed a PGD-based
adversarial training method and achieved the first empirical
adversarial robustness. Since then, it became a milestone in
adversarial training methods.

AT by Enhancing Feature Representation: Many recent
studies tackled the limitation of existing adversarial training
methods in the lens of feature representation [20]–[25]. Then,
they started to study how to improve feature representation
by exploiting self-supervised / unsupervised learning scheme.
They tried to apply AT framework to a self-supervised /
unsupervised pretraining task to make DNNs learn robust
data representation. Mao et al. [20] empirically analyze the
feature representations under adversarial attack and showed
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that adversarial perturbations shift the feature representations
of adversarial examples away from their true class and closer
to the false class. With the empirical observations, they employ
triplet-wise distance loss in the AT framework and improve
the robustness. Fan et al. [21] proposed a unified adversarial
contrastive learning framework that learns well transferable
feature representations. Similar works have been done to
enhance the feature representation against adversarial attacks
[22], [23], [35], [36].

However, since they heuristically employ existing repre-
sentation learning framework to AT framework, they do not
take any consideration of the adversarially robust feature
representations into account. It has been known that naturally
learned feature representation that aims to correctly predict
is different from adversarially robust feature representation.
Therefore, it is necessary to consider the adversarially robust
feature representation to improve the adversarial robustness.

III. GENERATING CLASS REPRESENTATIVE ROBUST
FEATURES

The main contribution of this paper is to generate class-
representative robust features. Then, we train the model ro-
bustly by using the class representative robust features. In this
section, we first describe how to generate class-representative
robust features. Specifically, to clarify how to distill robust
and non-robust channels from features, we briefly revisit [27].
Then, with the distilled features, we explain how to generate
adversarially robust features and class representative robust
features. Through the proof concept experiments, we verify
that we could generate class-representative robust features by
using Class-wise Robust Perturbations (CRP).

A. Revisiting Robust & non-Robust Feature Distillation

In this section, we revisit how to distill features into robust
and non-robust channels. In this paper, the definition of robust
and non-robust channels stems from [27]. Let z indicates the
intermediate feature of the model f such that z = fl(x), where
fl(·) is l-th layer output of the given model. Then, fl+(·)
represents subsequent network after the l-th layer. Therefore,
the prediction of the model can be written as y′ = fl+(fl(x)).
Since the last convolution layer contains higher-level features
and more discriminative features than the earlier convolution
layer, we identify the robust features at the last convolu-
tional layer before the global average pooling layer or fully-
connected layer. Here, the feature z has C channels and
each channel has inherent feature variation. The σz indicates
inherent feature variation of the feature z for each channel.
Therefore, it can be written as σz = [σz,1, σz,2, . . . , σz,C ]
(given parameters). With the given parameter (σz), we set the
criterion for comparison as T = max(σ2

z), where T denotes
the maximum tolerance of the noise variation of the original
feature. Here, we use T as the threshold that discriminates
robust and non-robust channels. Then, we find the noise
variation σ to estimate the prediction sensitivity of each feature
channel along the noise intervention. If the noise variation
σ2
c > T , the channel is regarded as a robust channel. To find

the noise variation (σ), in [27], they exploited information

bottleneck [37]. According to the definition of information
bottleneck in [27], [37], it could find maximally informative
representation for target labels, restraining input information,
concurrently. Therefore, by using the information bottleneck,
we can quantify the feature importance and information flow
for the target labels. Then, we can quantify the importance
of each feature by utilizing the information bottleneck. The
optimization objective can be written as follow:

min
σ

L = −y · log(fl+(fl(x) + σ · ϵ))︸ ︷︷ ︸
cross-entropy

+βDKL[p(z|x)|qσ(z))]︸ ︷︷ ︸
KL divergence

.

(1)
The first term indicates cross-entropy and the second term

indicates KL divergence between the original feature and noise
added feature. Also, the ϵ indicates Gaussian noise, and y
denotes the ground-truth label. Through the optimization pro-
cess, we find noise variation σ = [σ1, σ2, . . . , σC ] (optimized
parameters). In [27], they have analyzed that σ is related to
variance in Gaussian, thus large σ can allow for large variation
capacity in the channel, which makes it have the ability to
overcome feature variation. On the other way, small σ only
allows for a small variation capacity in the channel, which
makes it brittle to feature variation.

After we optimize σ, following the aforementioned
criterion, we find the robust channel index (ir =
[ir,1, ir,2, . . . , ir,C ]). If the optimized noise variation σ2

c > T ,
the channel is regarded as robust channel and ir,c = 1. Then,
the non-robust channels are simply reversed from the robust
channel index such that inr,c = 1 − ir,c. Finally, the set
of robust channel features can be written as zr = z · ir.
Similarly, the set of non-robust channel feature znr can be
written as znr = z · inr. In this way, the z can be expressed
as z = ir · z + inr · z.

B. Generating Robust Features
1) Problem Definition: In this section, we describe how

to generate robust features. To generate robust features, we
generate robust inputs and use the features extracted from
the inputs as robust features. To this end, we manipulate the
input by adding perturbation and define the perturbation as
Robust Perturbation (RP, r), which makes the input robust
against adversarial perturbation. Then, the input is regarded as
the robust input if the model prediction maintains its original
prediction, even though there exists adversarial perturbation.
Therefore, the problem can be defined as follows,

Making f(x+ r + δ∗) ≈ f(x) by optimizing r

where δ∗ = argmax
||δ||<ϵ

L(f(x+ r + δ)), y), (2)

where δ∗ is an adversarial perturbation that attacks x + r, ϵ
is adversarial perturbation budget, x is an input image, and
L denotes the objective function such as cross-entropy. The
equation can be interpreted that even though the input x + r
is attacked by the adversarial perturbation, the prediction is
maintained and the feature extracted from x+r can be regarded
as a robust feature. In the following section, we will explain
how to optimize r in detail.
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Algorithm 1: Robust Perturbation Generation 

Input: Pre-trained classifier 𝑓(∙), loss function ℒ𝑟𝑜𝑏𝑢𝑠𝑡,  

input image 𝑥  

Output: Robust perturbation 𝑟 

Randomly initialize 𝑟 

for T iterations do 

 𝑥′ ← 𝑥 + 𝑟  
▷ Add robust perturbation to 

input image 

 𝑟 ← 𝑟 − 𝛼𝛻𝑟(ℒ𝑟𝑜𝑏𝑢𝑠𝑡(𝑥′, 𝑟))  
▷ Update with gradient 

decent (𝛼: 𝑙𝑟) 

end for 

return 𝑟 

 

 2) Optimizing Robust Perturbation: Recall that the adver-
sarial vulnerability mainly stems from non-robust components
of feature [26], [27], [30]. Specifically, in [27], the vulnera-
bility is highly correlated with the non-robust channel of z. If
the non-robust channels have a large impact on the prediction,
it can be interpreted that the input is vulnerable to adversarial
perturbation. Therefore, it is necessary to reduce the influence
of non-robust channels on prediction. To this end, in this
paper, we quantify the influence of non-robust channels by
measuring the gradient of the cost function with respect to non-
robust channels and reducing them by optimizing r. Note that,
the gradient of the non-robust channels represents how small
changes at each channel affect the prediction. The gradient of
non-robust features can be described as follows:

Gnr =
∂

∂znr
Lbase(f(x+ r), y), (3)

where znr is the set of non-robust channels in feature z =
{zr ∪ znr}, f(·) is a model prediction, and Lbase is a loss
function to ensure correct prediction. We define the loss
function as Lbase = −c ·max(max

i ̸=y
(f(x)i)− f(x)i, 0) due to

its empirical effectiveness of optimization performance in [6].
c determines the trade-off between the size of the perturbation
added to the input and the degree of correct prediction in Eq.5.
Gnr is a quantified value that quantifies how much a change
in the non-robust feature changes the correct prediction. If
Gnr has a large value, it indicates that we can easily change
the prediction for the ground-truth class. The gradient of non-
robust channel can be simplified as follows:

Gnr =
∂

∂znr
Lbase(f(x+ r), y)

=
∂z

∂znr

∂

∂z
Lbase(f(x+ r), y)

= inr ·
∂

∂z
Lbase(f(x+ r), y).

(∵ z = ir · z + inr · z)

(4)

Following Eq.4, we could simply reduce the gradient of
non-robust channels by multiplying non-robust channel index
(inr) to the gradient of objective function respect to the
feature ( ∂

∂zLbase(·)). Using the gradient, we optimize robust
perturbation by optimizing the following objective:

Lrobust = Lbase(f(x+ r), y) + ∥Gnr∥2 + ∥r∥2 . (5)

TABLE I
ROBUSTNESS COMPARISON WHEN ROBUST PERTURBATION r IS ADDED TO

INPUT DATA. NOTE THAT THE ADVERSARIAL PERTURBATION IS
GENERATED BY PGD-20 ON xi + ri .

Model Input Types CIFAR-10 Tiny-ImagNet

Madry xi 46.5 20.2
xi + ri 75.3 48.7

TRADES xi 48.8 21.3
xi + ri 77.91 46.5

MART xi 49.1 21.2
xi + ri 79.8 49.2

HELP xi 52.1 21.6
xi + ri 78.5 48.4

Optimizing Eq. 5 means that we find a small and imperceptible
perturbation that makes the model predict well and reduces the
gradient of non-robust features. Then, reducing the gradients
of non-robust channels contains the same effect of reducing
σnr to resist adversarial perturbation. Therefore, features ex-
tracted from those inputs (x+r) can be a robust feature. Note
that there is no regularization parameter before the gradient
norm of non-robust features and the norm of perturbation in
Eq.5 The optimization algorithm is described in Algorithm 1.

3) Robustness Analysis with Robust Perturbation: The goal
of optimizing r is to make the input itself robust against
adversarial perturbation. If we can robustify the input by
adding r to the input, we can extract features from these
inputs and regard them as robust features. For verification, in
this section, we conduct a proof concept experiment to verify
whether we can make the input itself robust against adversarial
attacks by augmenting the input.

In the proof concept experiment, we optimize ri for all
corresponding images xi in the test dataset of CIFAR-10
and Tiny-ImageNet on the pre-trained AT models (Madry [6],
TRADES [16], MART [15], and HELP [17]). The results are
described in Table I. Table I shows the robustness comparison
under the PGD-20 attack according to different input types.
In the table, xi denotes an accuracy when the adversarial
perturbation is added to the original input image, and xi + ri
denotes an accuracy when the adversarial perturbation is added
to xi + ri. Note that to verify that ri truly makes the input
robust, we generate the adversarial perturbation on xi + ri.
As shown in the table, we verify that adding ri to input data
can significantly improve the robustness. Furthermore, even
though the adversarial perturbation is generated on xi + ri,
ri could successfully improve the robustness (robust against
adaptive attack). This can be interpreted that ri does not cause
gradient obfuscation [9], and reducing the gradient of the non-
robust channels makes the input robust itself.

C. Optimizing Class-wise Robust Perturbation

We have analyzed that augmenting input with robust pertur-
bation makes the input robust against adversarial perturbation.
In this section, we expand the concept of r to Class-wise
Robust Perturbation (CRP, rk) where k denotes the class
index. The CRP is a class-specific perturbation that can be
applied to any corresponding class input (xk) and improve
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𝑘
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ℒ𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =
1

𝑁


𝑛=1

𝑁
𝜕

𝜕𝑧𝑛,𝑛𝑟
𝑘 ℒ𝑏𝑎𝑠𝑒

2

1

𝑁


𝑛=1

𝑁

ℒ𝑏𝑎𝑠𝑒(𝑓(𝑥𝑛
𝑘+𝑟𝑘),𝑦𝑘)

𝑧𝑛,𝑟
𝑘 :  Robust feature of feature 𝑧𝑛

𝑘

𝑧𝑛,𝑛𝑟
𝑘 : Non-robust feature of feature 𝑧𝑛

𝑘

𝑟𝑘

Class-wise
Robust Perturbation

Input Images
(Same class)

Freezed Model

Extracted Features

Minimizing Gradient of Loss Function
Respect to Non-robust Channels

Only Optimizing
CRP

Distilling
Robust / Non-robust Channels

Fig. 1. Overview of the proposed CEO process. The CRP is added to input for the corresponding class, fed into the freezed model, and extract feature. Then,
the features are distilled into robust / non-robust channels and we measure the empirical risk of non-robust channels to optimize the CRP. The calculated
objective function is backpropagated to CRP and we only optimize CRP.

the robustness. For example, if we generate a CRP for the
dog class (rdog), it can be applied to any dog class images
and improve the robustness. To this end, we propose a novel
optimization method called Class-wise ERM Optimization
(CEO) by extending Empirical Risk Minimization (ERM)
algorithm, which is considered a successful recipe for finding
classifiers with small population risk [6]. In order to make rk

have universality in corresponding class inputs, we measure
the empirical risk of non-robust channels for corresponding
class images. Let X = {xk

1 , x
k
2 , ..., x

k
N} be a subset of class-

k images sampled from the training data and the feature
extracted from each input is zkn. Then, the empirical risk of
non-robust channels can be formulated as follows:

Lfeature =
1

N

N∑
n=1

∥∥∥∥ ∂

∂zkn,nr
Lbase(x

k
n + rk, ykn)

∥∥∥∥ , (6)

where N denotes the number of images in the target class and
zkn,nr denotes the set of non-robust channels of n-th image.
Therefore, the total objective function for CEO is

LCEO =
1

N

N∑
n=1

Lbase(x
k
n + rk, ykn) + Lfeature. (7)

The objective function means that the CRP is optimized to
correctly classify the target class k and reduce the effect of
the non-robust channels within the class. Here, the gradient of
CEO with non-robust channels is gradually converged to local
optima, where it asymptotically closes to zero vector to make it
be small population risk. Through the CEO, we could generate
CRP that could improve the robustness of the target class and
generate class representative common robust features. Fig. 1
gives an overview of how to optimize the CRP.

1) Analysis of CRP: The goal of optimizing rk is to
generate the class-wise robust perturbation that could improve
the robustness of the corresponding target class images. For
verification, we also conduct proof concept experiments. In the
experiments, we optimize rk for each class from the training
set and apply them to the test set images. Table II shows the
robustness comparison under the PGD-20 attack according to
different input types. In the table, xk

i denotes an accuracy

TABLE II
ROBUSTNESS COMPARISON WHEN CLASS-WISE ROBUST PERTURBATION

rk IS ADDED TO INPUT DATA. NOTE THAT THE ADVERSARIAL
PERTURBATION IS GENERATED BY PGD-20 ON xk

i + rk .

Model Input Types CIFAR-10 Tiny-ImagNet

AT xk
i 46.5 20.2

xk
i + rk 69.2 35.3

TRADES xk
i 48.8 21.3

xk
i + rk 69.8 35.2

MART xk
i 49.1 21.2

xk
i + rk 68.27 37.0

HELP xk
i 52.1 21.6

xk
i + rk 70.22 36.8

𝑟𝑑𝑜𝑔

𝑟𝑐𝑎𝑟

𝑥𝑑𝑜𝑔

𝑥𝑑𝑜𝑔 + 𝑟𝑑𝑜𝑔

𝑥 + 𝑟𝑐𝑎𝑟

𝑥𝑐𝑎𝑟

Fig. 2. Visualization results of CRPs (rk) and CRPs added images (xk + rk).
k denotes car and dog classes.

when we use the original input image, and xk
i + rk denotes

an accuracy when adding CRP to corresponding target class
images. Different from the result in Table I that generates
robust perturbation for all corresponding input images, in this
experiment, we generate one CRP per class and applied it
to all images that correspond class. The results are shown in
Table II. As shown in the table, we verify that adding CRP
to input also significantly improves the robustness. In other
words, once we optimize CRP from training images, we can
apply CRP to any test image that corresponds to the target
class and robustify the target class images. Furthermore, we
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non-robust feature gradient of CIFAR-10 and Tiny-ImageNet respectively.
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Fig. 4. Feature similarity distribution between positive samples. The blue bar
denotes the feature similarity distribution between images belonging to the
same class. The orange bars denote the feature similarity distribution between
the same classes when CRP is added to the image.

visualize the CRPs.Fig. 2 shows the examples of CRPs (rk)
and CRPs added images (xk + rk). As shown in the figure,
CRP contains the semantic information of the corresponding
class, and its magnitude is very small. Therefore, even if we
add the CRPs to corresponding class images, we can robustify
the corresponding image well without any significant change.

Measuring the Gradient of Non-robust Channels: As we
discussed above, the norm of the gradients with respect to
the non-robust channels are related to adversarial vulnerability.
Then, we have shown that adding CRP to input can improve
the adversarial robustness. In this section, we verify whether
the increase in robustness is caused by the decrease in the
gradient of the non-robust channels. To this end, we apply
CRPs to input data and measure the L2-norm magnitude of
non-robust channels. The results are shown in Fig. 3. As shown
in the figure, the gradients of non-robust channels are re-
duced significantly compared with ‘without CRP’. Therefore,
we demonstrate that CRPs could improve the robustness by
reducing the gradient of non-robust features.

Feature Similarity Measurement: Furthermore, to verify
whether adding CRP can generate a feature that can represent
the class or not, we measure the feature similarity between
samples belonging to the same class (positive samples). The
result is shown in Fig. 4. As shown in the figure, when
applying the CRP to input data (orange color bar) the sim-
ilarity between positive samples is increased and has narrow
distribution. The experimental result shows that if the features
are extracted by adding CRP to any input corresponding to
the target class, the features have similar representations and
can be regarded as robust and class-representative features.

Pulling Proxy-Positive Pair Push Proxy-Negative Pair

1

|𝑃+|
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Fig. 5. Graphical explanation of the proposed robust proxy learning frame-
work. Each robust proxy is colored in black and different shapes denotes
different classes. Note that for simplicity, in the case of proxy-negative pair,
we only describe for one proxy.

Algorithm 2: Robust Proxy Learning 

Input: Classifier 𝑓(∙), adversarial loss ℒ𝐴𝑇 ,  

robust proxy loss ℒ𝑝𝑟𝑜𝑥𝑦, extracted feature z(x), 

set of all proxies P, training dataset 𝒟,  

Interval T, learning rate 𝜏 

Output: Model parameter 𝜃 

Initialize 𝜃  

for epoch do 

 if epoch%T=0 do  
 for 𝑘 = 1,2,3, . . . , 𝐾 do  

  Generate class-wise robust perturbation 𝑟𝑘  

  Randomly sample 𝑥𝑘 for each class k,  𝑥𝑘 ⊂ 𝒟 

  𝑝𝑘 ← 𝑧(𝑥𝑘 + 𝑟𝑘)  

 end for  

 for minibatch 𝑋 ⊂ 𝒟 do 

  𝒢𝜃 ← 𝔼(𝑥,𝑦)∈𝐵[∇𝜃ℒ𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦, 𝑝)]   

  𝜃 ← 𝜃 − 𝜏𝒢𝜃   

 end for 

end for 

return 𝜃 

 
IV. PROPOSED ROBUST PROXY LEARNING

A. Generating Robust Proxy

In this section, we introduce our novel robust proxy learning
framework. The main idea is to regard each robust proxy as
an anchor in Triplet loss and associate it with entire data
in a batch. To this end, we first explain how to generate
robust proxies. In the previous section, we verified that even if
features are extracted by adding rk to any input belonging to
the target class k, the features have similar values. Therefore,
we randomly select the input corresponding to each class,
add the corresponding CRP, and then extract the features.
The extracted features can be regarded as class-representative
robust features and we use them as robust proxies.

B. Training with Robust Proxies

With the robust proxies, we make the DNNs explicitly
learn adversarially robust features. Fig. 5 briefly illustrates
how to learn robust features during the training. In the figure,
each proxy is colored in black, and different shapes indicate
different classes. As shown in the figure, positive samples and
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TABLE III
ADVERSARIAL ROBUSTNESS COMPARISON ON CIFAR-10 AND TINY-IMAGENET DATASET UNDER WHITE-BOX ATTACK SETTING. THE BACKBONE

MODELS ARE RESNET-18 AND WIDE-RESNET28-10 (WRN28-10).

Backbone Method CIFAR-10 Tiny-ImageNet

Clean FGSM PGD CW AA Clean FGSM PGD CW AA

ResNet-18

Standard 92.1±0.10 18.1±0.13 1.1±0.02 0.0±0.00 0.0±0.00 60.3±0.02 6.2±0.10 0.8±0.01 0.0±0.00 0.0±0.00

Madry 83.8±0.02 60.3±0.02 50.1±0.04 48.3±0.03 47.0±0.03 46.1±0.02 23.3±0.05 20.2±0.06 18.2±0.04 17.6±0.05
Madry+Proxy 84.5±0.02 62.0±0.04 53.1±0.06 49.4±0.04 48.9±0.04 46.3±0.04 24.1±0.02 22.7±0.03 20.5±0.03 19.9±0.05

TRADES 83.0±0.02 61.4±0.05 53.0±0.06 48.6±0.05 47.0±0.05 47.8±0.06 24.4±0.07 21.3±0.02 18.4±0.04 18.2±0.06
TRADES+Proxy 84.0±0.04 63.1±0.05 55.3±0.04 49.7±0.05 49.8±0.05 47.5±0.07 25.1±0.05 22.5±0.06 21.2±0.06 20.0±0.05

MART 82.3±0.06 60.6±0.05 54.1±0.08 48.5±0.06 47.2±0.06 47.6±0.07 23.9±0.02 21.2±0.04 19.2±0.03 18.1±0.03
MART+Proxy 84.0±0.05 63.4±0.04 56.3±0.06 51.0±0.05 49.9±0.05 47.8±0.04 25.5±0.06 23.1±0.05 21.3±0.04 20.0±0.02

HELP 84.0±0.04 61.9±0.03 52.0±0.07 49.8±0.05 48.6±0.06 48.0±0.07 24.0±0.05 21.6±0.03 19.3±0.03 17.7±0.05
HELP+Proxy 85.0±0.06 63.8±0.06 55.3±0.04 52.0±0.04 51.2±0.04 49.0±0.08 25.3±0.02 23.0±0.05 20.5±0.01 19.1±0.01

WRN28-10

Standard 96.2±0.12 22.3±0.10 3.5±0.01 0.0±0.00 0.0±0.00 63.1±0.02 9.2±0.02 2.7±0.00 0.0±0.00 0.0±0.00

Madry 85.5±0.02 62.3±0.04 54.2±0.05 50.8±0.06 49.9±0.04 48.6±0.03 25.1±0.08 23.0±0.06 20.0±0.06 18.7±0.06
Madry+Proxy 86.8±0.02 64.5±0.05 57.8±0.05 52.3±0.06 51.7±0.06 50.0±0.06 27.2±0.04 25.9±0.05 22.3±0.05 20.1±0.04

TRADES 85.2±0.04 63.4±0.04 56.2±0.06 50.7±0.04 49.8±0.05 50.6±0.07 26.8±0.08 25.1±0.02 21.9±0.03 19.0±0.01
TRADES+Proxy 86.8±0.05 66.2±0.06 58.3±0.03 53.8±0.02 52.0±0.02 52.0±0.03 28.3±0.02 27.7±0.03 22.8±0.02 21.3±0.03

MART 85.7±0.09 63.5±0.05 56.2±0.06 52.4±0.05 51.0±0.05 50.4±0.04 28.2±0.04 26.2±0.06 23.4±0.03 20.4±0.03
MART+Proxy 86.7±0.08 65.6±0.06 59.4±0.04 54.0±0.04 53.1±0.03 52.5±0.05 30.8±0.05 28.7±0.04 24.0±0.02 22.6±0.02

HELP 86.8±0.08 65.0±0.06 56.8±0.06 53.9±0.05 52.5±0.06 51.6±0.05 27.8±0.04 26.7±0.06 23.5±0.03 20.0±0.03
HELP+Proxy 86.0±0.05 67.2±0.04 57.7±0.04 55.3±0.04 54.0±0.03 53.1±0.06 29.6±0.05 27.9±0.05 24.2±0.04 22.8±0.04

corresponding positive proxy (p+) are trained to reduce the
distance from each other, whereas negative samples and each
proxy are trained to increase the distance from each other. This
can be formulated as follows:

Lproxy =
1

|P+|
∑
p∈P+

∑
z∈z+

p

(d(z, p)−m)

︸ ︷︷ ︸
Pulling to the Proxy

−

1

|P |
∑
p∈P

∑
z∈z−

p

(d(z, p) +m)

︸ ︷︷ ︸
Pushing from the Proxy

(8)

where m denotes a margin, P denotes the set of all proxies,
P+ denotes the set of positive proxies of data in a batch,
and d(·) denotes a distance function. Also, z+p denotes the
set of positive features of corresponding p, z−p denotes the
set of negative features of p+, and we use cosine similarity
between two vectors as a distance function. To boost the
robustness of existing AT methods, we jointly optimize the
existing AT losses and proxy loss. Therefore, we optimize
Ltotal = LAT + Lproxy to train the model. LAT denotes
the existing loss function of AT methods. For example, in
the case of MART [15] the LAT can be written as LAT =
BCE(f(x+ δ), y)+λ(1−fy(x))KL(f(x+ δ), f(x)), where
fy(x) denotes the output probability of ground-truth class, λ
is a tunable scaling parameter that balances the two parts of
the loss, and BCE(·) adds the cross-entropy loss and margin
loss terms to improve the decision margin of the classifier.
Then, Lproxy makes the model learn features in which the
effects of non-robust features are suppressed during training
and separate the different classes. After training, we do not
need robust perturbation for inference. Therefore, during the
inference, robust perturbations are not added to the test data.
Training Details: In this section, we describe the training
details of the proposed robust proxy learning. Note that,
since robust/non-robust features can be distilled from the
adversarially trained model, we initialize the model parameters

of the AT model. Then, we fine-tuned the model parameter
with Ltotal and set the margin value as 1.0. Since generating
robust proxies for every epoch increase the training time,
we refresh the proxies for every T = 5 epoch. The details
algorithm is described in Algorithm 2.

V. EXPERIMENTS

A. Experiment Setting

1) Dataset and Network: We conduct experiments to
verify the effectiveness of the proposed method on two
datasets (CIFAR-10 [38] and Tiny-ImageNet [39] datasets).
The CIFAR-10 dataset consists of 50,000 training images and
10,000 test images with 10 classes. The Tiny-ImageNet dataset
has 200 classes and each class has 500 training images, 50
validation images, and 50 test images. For both datasets, we
use the ResNet-18 [40] and WideResNet28-10 [41] networks.

2) Attack Settings: To evaluate the defensive performance
of the proposed method, we conduct four adversarial at-
tack methods used as benchmarks for evaluating adversarial
robustness (FGSM [4], PGD [6], CW [9], and AutoAttack
[42]). For all attack methods, we set the perturbation budget
ϵ = 8/255. We generate adversarial perturbation with 20
iterations with the step size ϵ/10 for the PGD attack. In the
case of CW [9] attack, we use L∞-norm bounded attacks with
200 iterations. In the case of Auto Attack (AA) [42], it includes
four attack methods (APGD-CE, APGD-DLR [42], FAB [43],
and Square Attack [44]) and generates adversarial perturbation
by ensembling them. For FAB attack hyper-parameters, we
optimize the perturbation with 100 iterations and 5 random
restarts. In the case of Square attack, we fed 5000 queries for
the black-box attack.

B. Robustness Evaluation

1) White-box Evaluation: To evaluate the effectiveness of
the proposed method, we apply our proposed robust proxy
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learning to existing AT methods. Table III shows the robust-
ness evaluation results under various white-box attack settings
on two datasets. In the table, ‘Clean’ denotes the results when
testing with a clean dataset (test without perturbation), and
‘Standard’ denotes the results when testing on the clean model.
Note that the clean dataset denotes the original test image
that any perturbations such as adversarial perturbations or
class-wise robust perturbations are not added. Furthermore,
the clean model denotes the model trained only with the clean
dataset. In other words, the clean model is trained without
adversarial examples and only uses original training data for
training. As shown in the table, the clean model (Standard)
shows better performance on the clean dataset compared with
the adversarially trained model. However, in the case of
adversarial robustness (FGSM, PGD, CW, and AA), it cannot
defend against adversarial attacks.

In terms of the adversarially trained model, the baseline re-
sults are Madry [6], MART [15]1, TRADES [16]2, and HELP
[17]3. Then, the results of our proposed proxy learning are
AT+Proxy, TRADES+Proxy, MART+Proxy, and HAT+Proxy.
We report the mean and variance from 5 checkpoints. As
shown in the table, in the case of Madry, when trained
with the proposed Robust Proxy Learning, the robustness is
improved to 3.5, 3.1, 1.8, and 2.9 in FGSM, PGD, CW,
and AutoAttack, respectively, when trained with the CIFAR-
10 dataset on ResNet-18. Also, when we combined proxy
learning with other AT methods, we can get similar results.
It can be interpreted that the proposed robust proxy learning
framework can be well adapted to existing AT frameworks and
could improve the robustness. Furthermore, the reason why the
proposed method can improve robustness is that it explicitly
learns robust feature presentation while learning discriminative
features between classes through robust proxy learning.

In terms of clean accuracy, the proposed method does not
sacrifice clean accuracy. According to [26], the robust features
are useful and highly related to the target class. Therefore,
exploiting the robust features does not hurt clean accuracy.
Furthermore, through the proposed proxy loss (Eq. 8), the
model learns class-discriminative representations. With the
proxy loss, we pull the data of the same class close to the proxy
and push others away in the feature space, allowing the model
to explicitly learn class discriminative features. Therefore, the
proposed method shows better performance even on clean
samples.

2) Black-box Evaluation: Different from white-box adver-
sarial attacks, black-box attacks generate adversarial perturba-
tion from an unknown model. To show the robustness of the
proposed proxy learning under the black-box attack settings,
we pre-train WideResNet-34-10, then generate adversarial
examples from the model. Then, we use the examples to our
WideResNet-28-10 models. The black-box attack results are
shown in Table IV and V. ‘Base’ denotes the reimplementation
results with existing AT methods, and ‘Ours’ denotes the
results of proxy learning. Table IV shows the black-box result

1https://github.com/YisenWang/MART
2https://github.com/yaodongyu/TRADES
3https://github.com/imrahulr/hat

TABLE IV
BLACK-BOX ATTACK EVALUATION ON CIFAR-10 DATASET. THE

PERTURBATION IS GENERATED ON WIDERESNET-34-10.

Method FGSM PGD-20 CW AutoAttack

Madry Base 81.37 82.41 83.02 82.41
Ours 82.12 83.89 84.21 83.91

TRADES Base 82.29 83.01 83.16 82.98
Ours 83.21 84.39 84.84 84.72

MART Base 81.76 82.56 83.09 82.59
Ours 83.37 84.00 84.27 84.21

HELP Base 82.33 83.03 83.62 83.81
Ours 84.16 85.60 85.42 85.88

TABLE V
BLACK-BOX ATTACK EVALUATION ON TINY-IMAGENET DATASET. THE

PERTURBATION IS GENERATED ON WIDERESNET-34-10.

Method FGSM PGD-20 CW AutoAttack

Madry Base 45.42 46.09 47.36 46.27
Ours 47.45 47.99 48.35 48.23

TRADESS Base 46.30 47.23 48.15 48.52
Ours 48.45 49.03 49.23 49.98

MART Base 47.40 48.14 48.27 48.4
Ours 48.30 49.15 49.61 49.50

HELP Base 48.91 49.47 49.88 50.01
Ours 49.71 49.93 50.64 50.98

on the CIFAR-10 dataset. As shown in the table, our method
could improve the adversarial robustness of existing methods.
Also, compared with the white-box results, we achieve better
robustness and show close to the natural accuracy. Similar
results are described in Table V conducted on the Tiny-
ImageNet dataset.

3) Sanity Check about Gradient Obfuscation: Some works
provide a false sense of security by vanishing the gradient.
These methods are not considered to provide actual robust-
ness. This phenomenon is called gradient obfuscation (gradi-
ent masking) [19]. It has been widely known that gradient
obfuscation-based defense strategy does not provide adver-
sarial robustness [19], [45]–[48]. The adversarial robustness
must guarantee their robustness under the worst case. However,
the gradient obfuscation-based method supposes that the gra-
dient of the model is not exposed and is unknown. Therefore,
if the gradient of the model is exposed to the adversary, it
cannot guarantee adversarial robustness. To handle this, it is
important to verify whether the defense strategy is based on
gradient obfuscation or not. To verify that the defense strategy
is not a gradient obfuscation, in [19], [45], they provide several
sanity checks as follows:

• It should show better robustness against 1-step attacks
(e.g., FGSM) than iterative attacks (e.g., PGD).

• It should show better robustness against black-box attacks
than white-box attacks.

To verify whether the defense strategy is based on gradient
obfuscation or not, many studies have utilized the above
points [46]–[49]. Then, many defense strategies failed to pass
the sanity check. However, from the above experiments, we
verify that our proposed method does not suffer from gradient
obfuscation. 1) In Table III, the proposed defense method
shows better robustness against the FGSM attack than the PGD

https://github.com/YisenWang/MART
https://github.com/yaodongyu/TRADES
https://github.com/imrahulr/hat
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TABLE VI
ROBUSTNESS COMPARISON RESULTS WITH RECENTLY PROPOSED

REPRESENTATION LEARNING-BASED METHODS ON RESNET-18 MODEL
WITH CIFAR-10.

Method FGSM PGD AutoAttack

TLA 60.1 50.5 47.0
RoCL 60.5 51.6 48.8

AdvCL 61.6 53.2 49.8
AGKD-BML 61.3 52.3 50.0

Ours 62.5 55.3 51.2

TABLE VII
COMPARISON RESULTS WITH RECENTLY PROPOSED METHODS THAT

EXPLOIT THE ROBUST AND NON-ROBUST FEATURES. THE EXPERIMENT
WAS CONDUCTED ON CIFAR-10 DATASET WITH RESNET-18 MODEL.

Method FGSM PGD CW AutoAttack

CAFE 60.5 54.5 50.4 48.5
DRRDN 62.1 52.1 51.3 47.9

Ours 63.8 55.3 52.0 51.2

attack. 2) By comparing the result of Table III, Table IV, and
Table V, we verified that it shows better robustness under the
black box setting than in the white-box setting. Through the
sanity check, we demonstrate that the proposed method does
not rely on gradient obfuscation.

C. Comparison with Recently Proposed Methods

Many previous works try to enhance feature representation
to improve adversarial robustness. In this section, we compare
the proposed robust proxy learning method with recently pro-
posed methods that enhance the feature representations (TLA
[20], RoCL [23], AdvCL [21], AGKD-BML [36]). In the case
of TLA and AGKD-BML, they are fully supervised learning
methods that apply existing metric learning frameworks to
AT framework. In the case of RoCL and AdvCL, they apply
AT framework to a self-supervised or unsupervised learning
scheme for pretraining. Then, finetuned in a supervised man-
ner. Table VI shows the comparison results. As shown in the
table, our proposed method achieves better robustness than
other methods. Since our proposed method explicitly learns
adversarially robust feature representation, it shows better
robustness.

Furthermore, recently some works try to improve the robust-
ness by exploiting the robust features [31], [32]. Table VII
shows the comparison results. DRRDN [31] denotes a method
that disentangles the features into class-specific features and
class-irrelevant features. Then, exploit class-specific features
as robust features. In the case of CAFE [32], it extracts robust
features by adversarial instrumental variable (IV) regression.
The experiment was conducted on the CIFAR-10 dataset with
the ResNet-18 model. As shown in the table, our proposed
method shows better robustness than recently proposed meth-
ods that exploit robust features.

1) Fine-tune with Proxy Loss: As we referred above, many
existing feature representation learning methods exploit their
methods as pretraining in an unsupervised/semi-supervised
manner. Then, finally, they fine-tune the model in a supervised

TABLE VIII
IMPROVING THE ROBUSTNESS BY COMBINING THE PROPOSED METHOD

WITH EXISTING REPRESENTATION LEARNING-BASED METHODS

Pretraining Fine-tune FGSM PGD-L∞ AutoAttack PGD-L2

(ϵ = 0.25)
PGD-L2

(ϵ = 0.5)

RoCL Base 60.5 51.6 48.8 70.3 60.8
Ours 61.5 53.1 50.0 72.5 62.9

AdvCL Base 61.6 53.2 49.8 71.1 60.0
Ours 62.8 54.8 51.1 73.2 63.0

manner. Therefore, the proposed method can be combined
with existing representation learning as a fine-tuning process.
To this end, we pretrain the model with AdvCL [21] and
RoCL [23]. Then, we fine-tuned the model with the proposed
proxy loss. The results are shown in Table VIII. As shown
in the table, our method can be combined with AdvCL and
RoCL and improve the robustness over them. Furthermore, we
verify the effectiveness of the proposed method under unseen
adversarial attack (L2-norm bounded attack). As shown in
Table VIII, our proposed method still shows better robustness
under unseen attack. The results can be interpreted that the
proposed method can ensure robustness against unseen types
of perturbations. Since we explicitly learned a feature that is
resistant to noise variation, it shows robustness against unseen
perturbations.

2) Computation Cost for Data Sampling in Proxy Learning:
Another advantage of Robust Proxy Learning compared to
existing representation learning-based AT methods is that the
complexity of training computation is low. Here, the training
complexity represents the amount of computation required to
solve the entire training dataset. Let N denote the number
of samples in the training dataset. Since most of existing
methods take a tuple of data as a unit input (anchor, positive,
negative), it requires high training complexity. For example, in
the case of AdvCL and RoCL that exploit contrastive loss, they
take a pair of data as input thus they require O(N2) training
complexity. Furthermore, in the case of TLA that exploits
Triplet loss, it takes triplets of data thus it requires O(N3)
training complexity. Compared with these methods, in our
method, we generate proxies for each class and compare every
proxy with all samples. Therefore, the training complexity of
the proposed method is O(NC) where C denotes the number
of classes. Since C ≪ N , the training complexity of the
proposed method is much less than others.

D. Attacking by Maximizing Gradient of Non-robust Features

One way to directly attack the proposed method is to
maximize the gradient of non-robust channels. To generate
adversarial perturbation, we modify the Eq. 5 as follows:

Lattack = −Lbase(f(x+ p), y)− ∥Gnr∥2 + ∥p∥2 , (9)

where p is an adversarial perturbation that maximizes the
gradient of non-robust channels and leads to misclassifica-
tion. The robustness evaluation result is described in Table
IX. In the experiment, we set the perturbation budget as
ϵ = 0.03. As shown in the table, when maximizing the
gradient of non-robust channels, the baseline models (Madry,
TRADES, MART, and HELP) are significantly broken. How-
ever, when we train the model with the proposed proxy
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Fig. 6. Visualization of learned representation. The ‘Intermediate’ denotes the visualization results of the intermediate feature, and the ‘Robust Channels’
denotes the visualization results of a set of channels with rarely be manipulated by adversarial perturbations. The ‘Non-robust Channels’ denotes the visualization
results of the set of channels that can potentially be manipulated by adversarial perturbation.

TABLE IX
ROBUSTNESS EVALUATION WHEN THE ADVERSARIAL PERTURBATION IS

GENERATED BY MAXIMIZING THE GRADIENT OF NON-ROBUST CHANNELS

Dataset Method Accuracy

CIFAR-10

Madry 20.1
Madry+Proxy 23.2
TRADES 24.8
TRADES+Proxy 27.1
MART 22.3
MART+Proxy 25.7
HELP 20.6
HELP+Proxy 23.8

Tiny-ImageNet

Madry 9.2
Madry+Proxy 12.5
TRADES 11.9
TRADES+Proxy 14.1
MART 12.7
MART+Proxy 14.1
HELP 11.2
HELP+Proxy 14.3

learning (Madry+Proxy, TRADES+Proxy, etc), it shows better
robustness. Since the feature that reduces the effect of the non-
robust channels is explicitly learned, it is not easily attacked
even if we maximize them, and it shows better robustness.

E. Effectiveness of Robust Proxy

In this section, we verify the effectiveness of robust proxy
by ablation study. To this end, we conduct an ablation study
by using different types of proxies in Eq.8. Table X shows
the experimental results with the ResNet18 model on CIFAR-
10 and Tiny-ImageNet datasets when use different types of
proxies. In the table, Madry+Proxynormal denotes the results
when using a normal instance as the anchor, Madry+Proxyavg
denotes the experimental results when using proxy by aver-
aging all robust features. Also, Madry+Proxyours denotes the
results when using our proposed robust proxies as the anchor.
As shown in the table, when using the robust proxy, it shows
better robustness than when using normal instances as the
anchor. Since the normal instances do not guarantee robust
representation, they cannot improve the adversarial robustness.

TABLE X
ABLATION STUDY BY USING DIFFERENT TYPES OF PROXIES. THE
EXPERIMENT WAS CONDUCTED ON THE RESNET18 MODEL WITH

CIFAR-10 AND TINY-IMAGENET.

Dataset Method FGSM PGD CW AA

CIFAR-10
Madry + Proxynormal 60.1 50.5 48.1 47.0
Madry + Proxyavg 61.0 51.7 48.5 47.1
Madry + Proxyours 62.0 53.1 49.4 48.9

Tiny-ImageNet
Madry + Proxynormal 23.5 21.1 18.0 17.0
Madry + Proxyavg 23.5 20.2 19.0 18.0
Madry + Proxyours 24.1 22.7 20.5 19.9

However, in the proposed method, the robust proxies have
robust feature representation, we could improve the robustness
by robust proxy learning. Furthermore, when using the average
of robust proxies, it shows less robustness compared to using
the proposed robust proxy. Since simply averaging the features
could lead to different feature representations, it could lead the
robustness decrement.

F. Visual Interpretation of Learned Representations

1) Feature Visualization: In this section, we show the
advantage of the proposed method from the lens of learned
feature representation. To this end, we visualize the features
that have high similarity and low similarity to proxies. We
visualize the features by [27]. In [27], the visualization results
are optimized from random image. It optimizes the random
input image so that the features extracted from the optimized
input image are similar to the robust or non-robust features.
Then, the optimized image becomes the visualization result.
Fig. 6 shows the visualization results of robust and non-robust
channels for each input. In the figure, following the definition
of [27], the ‘Intermediate’ denotes the visualization results of
the intermediate feature, and the ‘Robust Channels’ denotes
the visualization results of a set of channels with rarely be ma-
nipulated by adversarial perturbations. ‘Non-robust Channels’
denotes the visualization results of the set of channels that
can potentially be manipulated by adversarial perturbation. As
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Baseline (Madry)
(a)

Proposed Method (Madry+Proxy)
(b)

Fig. 7. t-SNE visualization of representations according to the differently
trained model. (a) denotes the t-SNE feature visualization results of the
existing method (Madry). (b) denotes the t-SNE feature visualization results
of the proposed method (Madry+Proxy).

(a) 𝒙 (b) 𝒙 + 𝒓 (c) 𝒙 + 𝒓𝒌

Fig. 8. t-SNE visualization of representations according to different input
types. Adding r or rk gives a much clearer separation among classes.

shown in the figure, the features of ‘High Similarity Samples’
have semantic information by themselves, and the features of
‘Low Similarity Samples’ do not have semantic information by
themselves. Specifically, in the case of non-robust channels of
high similarity samples, it remains the semantical information
of ground-truth classes. Therefore, the prediction does not
change even if adversarial perturbations are added. In contrast
to, in the case of the negative units of low similarity samples,
it contains different semantical information from the ground-
truth class. Therefore, it is easily manipulated by adversarial
perturbation.

2) Verify the effectiveness of Proposed Proxy Learning by
t-SNE visualization: In the proposed method, the performance
improvement mainly stems from the separation of robust and
non-robust features. Different from previous works, since our
proposed method explicitly learns class discriminative robust
features, it shows better robustness. To verify this, we visualize
the features using t-SNE on the CIFAR-10. Fig. 7 shows
the t-SNE results. Fig. 7 (a) shows features extracted from
the base model (Madry). Fig. 7 (b) shows features extracted
from the model trained by our proposed method. As shown
in the figure, Fig. 7 (b) shows more discriminative feature
distribution and clearer class boundary than (a). This can be
interpreted that the proposed method can learn more robust
and class discriminative features.

3) Verify the effectiveness of CRP by t-SNE visualization:
To further demonstrate the efficacy of CRP, we visualize the
features according to the input types using t-SNE on the
CIFAR-10 dataset. Fig. 8 shows the t-SNE results. As shown
in the figure, when we add r or rk to input, it shows a
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Prediction with Robust Features
Prediction with Non-robust Features

Fig. 9. The accuracy comparison of robust and non-robust features by
controlling information flows of features. The blue line denotes the accuracy
when predicting only with robust features and the red line denotes the accuracy
when predicting only with non-robust features. Note that β regulates the total
amount of the information that flows into the features.

much clearer class boundary than using the original images.
This can be interpreted that r and rk make the adversary
difficult to successfully attack an image, leading to more robust
prediction.

G. Effect of Information Bottleneck in Feature Distillation

In this section, we conduct ablation studies to verify the
role of the information bottleneck. To this end, we change the
β values in Eq. 1 to analyze how the information bottleneck
controls the information flow of the robust and non-robust
features. In the equation, β regulates the total amount of
the information that flows into the features. Increasing the
β value means that minimizing the information flow of the
robust features while maximizing the information flow of the
non-robust features. Therefore, we will compare classification
accuracy for the robust and non-robust features according
to the β value. Fig. 9 shows the results when predicting
with distilled robust or non-robust features. In the figure,
the blue line represents the accuracy of predictions using
only the robust features. Also, the red line represents the
accuracy of predictions using only the non-robust features. As
shown in the figure, as the β value increases, the accuracy of
predicting with the robust feature decreases. Since the amount
of information flowing into the robust feature decreases as
the β value increases, the prediction accuracy with robust
features decreases. On the other hand, as the β value increases,
the accuracy of predicting with non-robust features increases
since the amount of information flowing into the non-robust
feature increase. Through the experiment, we demonstrated
how the information bottleneck affects the information flow
of the robust and non-robust features.

VI. DISCUSSION

In this research, we generate robust proxies that have robust
feature representations. Then, we train the model so that the
features resemble the representation of those proxies. For
future direction, there are many ways that could improve
the proposed method. For example, it is possible to train
a network that only leverages robust features by manually
masking the non-robust features during the training. Also,
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exploiting multiple proxies from the same class or generating
a more reliable proxy could be a good future direction.

VII. CONCLUSION

In this paper, we introduce the intriguing, yet not explored
aspect of adversarial training that explicitly learns adversar-
ially robust features. Many works have demonstrated that
adversarial vulnerability mainly stems from the non-robust
components of learned features, while how to explicitly learn
robust features is not explored. To tackle the problem, we
manually generate adversarially robust features and propose
a novel training framework called robust proxy learning that
explicitly learns robust features. To this end, through the CEO
algorithm, we generate class representative robust features
called robust proxies. During the training, DNNs explicitly
learn the representation of robust proxies through the proposed
robust proxy learning framework. For each proxy, we pull the
data of the same class close to the proxy and push others away
in the feature space, allowing the model to explicitly learn
adversarially robust features. Extensive experimental results
suggest that the proposed method can improve the robustness
of existing AT methods under stronger attacks and be general
and flexible enough to be adopted on any AT methods. We
believe that the proposed method could shed new insight into
utilizing robust perturbation for adversarial robustness.
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