
1

FM-ViT: Flexible Modal Vision Transformers for
Face Anti-Spoofing

Ajian Liu, Zichang Tan, Zitong Yu, Chenxu Zhao, Jun Wan, Senior Member, IEEE, Yanyan Liang
Zhen Lei, Senior Member, IEEE, Du Zhang, Stan Z. Li Fellow, IEEE, Guodong Guo, Senior Member, IEEE

Abstract—The availability of handy multi-modal (i.e., RGB-D)
sensors has brought about a surge of face anti-spoofing research.
However, the current multi-modal face presentation attack detec-
tion (PAD) has two defects: (1) The framework based on multi-
modal fusion requires providing modalities consistent with the
training input, which seriously limits the deployment scenario.
(2) The performance of ConvNet-based model on high fidelity
datasets is increasingly limited. In this work, we present a pure
transformer-based framework, dubbed the Flexible Modal Vision
Transformer (FM-ViT), for face anti-spoofing to flexibly target
any single-modal (i.e., RGB) attack scenarios with the help of
available multi-modal data. Specifically, FM-ViT retains a specific
branch for each modality to capture different modal information
and introduces the Cross-Modal Transformer Block (CMTB),
which consists of two cascaded attentions named Multi-headed
Mutual-Attention (MMA) and Fusion-Attention (MFA) to guide
each modal branch to mine potential features from informative
patch tokens, and to learn modality-agnostic liveness features by
enriching the modal information of own CLS token, respectively.
Experiments demonstrate that the single model trained based on
FM-ViT can not only flexibly evaluate different modal samples,
but also outperforms existing single-modal frameworks by a large
margin, and approaches the multi-modal frameworks introduced
with smaller FLOPs and model parameters.

Index Terms—Face anti-spoofing, Flexible-modal testing, Vi-
sion transformer, Mutual-attention, and Fusion-attention.

I. INTRODUCTION

FACE Anti-Spoofing (FAS) aims at protecting face recog-
nition system from various Presentation Attacks (PAs).

It has become an increasingly critical concern, including
competition organization [1]–[4] and algorithm design [5]–
[8], due to its wide applications in financial payment, phone
unlocking, and access control. With the increasingly advanced
presentation attack instruments (PAIs) and acquisition sensors,
face presentation attack detection (PAD) algorithms are also
expanded from RGB spectrum to multi-spectrum [2], [9], [10],
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Fig. 1. Comparison with existing multi-modal methods. (a) the previous multi-
modal fusion methods usually extract features of different modalities based on
stacked CNN layers, and then summarize the features with a late (or halfway)
fusion strategy for final FAS tasks. (b) Our flexible modal framework is built
on multi-branch ViT to realize the function of the flexible modal testing.
Further, the CMTB module is introduced to improve the performance of a
single-modal system with the help of available multi-modal data.

aim to explore more reliable spoofing traces. Although some
recent multi-modal methods can improve the robustness of
PAD systems with the help of multi-spectral imaging technol-
ogy, they require consistent training and test modalities, and
lack consideration of the application scenario when a certain
modality is missing. See the multi-modal fusion framework
in Fig. 1 (a), these methods are usually based on a halfway
fusion strategy [11]. First, independent branches are used to
learn the features of specific modalities, and then these features
are summarized at a later stage via the feature concatenation
based on a shared branch for the final FAS task. When any
modality disappears during testing, these methods would fail to
distinguish live vs. fake faces and result in poor performance.
Due to hardware cost and space constraints, consistent modal
samples cannot always be provided in practical applications,
which makes these systems difficult to deploy widely, even
if they are robust. Although convolution-based algorithms [5],
[6], [12]–[16] remain dominant due to its ability in capturing
multiple semantic features, see the CNN layer in Fig. 1
(a), which is enough to distinguish the attacks with obvious
spoofing traces [17]–[19], they are easily confused by high-
quality attack samples [5], [10], [20]–[22] with the increas-
ingly advanced PAIs and acquisition sensors.
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In this context, different from a modality fusion framework,
our goal is to design a flexible modal framework, as shown in
Fig. 1 (b), that can be deployed in any given single-modal test-
ing scenario. Further, in order to improve the performance of
a single-modal system with the help of multi-modal data, after
learning the individual modal features from different branches,
the proposed CMTB guides each branch to learn the potential
and modality-agnostic liveness features by summarizing the
multi-modal information. Finally, the ideal model is that no
matter what modal sample it receives, the output is better than
the performance of the model trained with the corresponding
modality alone.

Alternatively, Vision Transformer (ViT) [23] has demon-
strated promising performance on various challenging com-
puter vision tasks. Compared with CNNs in Fig. 1 (b),
Transformer encourages non-local computation, captures the
global context, and establishes the dependency with a target.
We analyze the following three advantages of ViT in solving
FAS task: (1) Long-range dependencies. Local spoofing traces,
e.g., a paper boundary in print attack, a specular spot in
video-replay attack, and specular highlights in 3D mask attack,
can establish long-range dependencies with other patch tokens
and play its indicating role for a long time. (2) Class token.
Usually, these local spoofing traces and other subtle clues
related to PAIs are distributed in the whole face in terms of
globality and repetition can be summarized by class token,
e.g., color distortions [24], Moiré patterns [25], or noise
prototypes [26]. (3) Multi-headed self-attention. ViT uses a
multi-headed attention to capture diverse spoofing traces in
parallel. In this case, the multi-headed attention can be viewed
as jointly attending to multiple attacks by ensembling multiple
attention heads, with each attention head focusing on its
specific attention relationship between all patches. (4) Multi-
modal compatibility. Compared with CNNs, Transformer can
fuse different modalities naturally by embedding them into
a common semantic space [27]. After the above analysis,
abandoning the CNNs to mine spoofing traces, we design
a pure transformer-based framework to resist high fidelity
attacks by exploring the spoofing trick from the dependencies
between face tokens. To sum up, the main contributions of this
paper are summarized as follows:

• To the best of our knowledge, it is the first work to
explore Transformer for flexible modal FAS task, where
we compare and analyze the feasibility and advantages
of Transformer for this community.

• We present a novel Flexible Modal Vision Transformer
(FM-ViT) framework to improve the performance of any
single modal FAS system with the help of available multi-
modal training data.

• We develop the Cross-Modal Transformer Block (CMTB)
in FM-ViT with two effective attentions, namely MMA
and MFA, to achieve the potential region mining and
modality-agnostic feature learning respectively.

• Extensive experiments demonstrate that the proposed
FM-ViT can improve the performance of a single-modal
system with the help of multi-modal data, with only
acceptable FLOPs and model parameters being increased.

II. RELATED WORK

In this section, we mainly review recent FAS works in
three aspects: Single-modal methods, Multi-modal methods,
and Vision transformers methods.

Single-modal FAS Framework. Since most FAS systems
are only equipped with RGB cameras due to the cost and
space constraints, the color texture information is an important
clue used by previous single-modal methods. Due to early
attacks [17]–[19] exposed obvious spoofing traces, the single-
modal PAD methods [12]–[15] supervised by a simple binary
cross-entropy have achieved significant advantages compared
with the handcrafted features. However, they treat face PAD
as a binary classification, and will highly depend on the biased
clues which are not faithful spoof patterns. With the upgrading
of PAIs and acquisition sensors, high-quality 2D attacks [5],
[20], [21] have reached visual illegibility. Instead of treating
FAS as a simple binary classification, recent single-modal
methods [5], [6], [28]–[31] derive inspiration from physical
clues, which are shared by genuine face in any domain, such
as depth and material. Liu et al. [5] design a CNN-RNN model
to leverage the Depth map and rPPG signal as supervision.
Similarly, Wang et al. [28] takes deep spatial gradient and
temporal information to assist depth map regression and Yu et
al. [6] propose a novel frame-level FAS method based on
Central Difference Convolution (CDC), which can capture
intrinsic detailed patterns via aggregating both intensity and
gradient information. Yu et al. [32] treat FAS as a material
recognition problem and combine it with classical human ma-
terial perception, intending to extract discriminative and robust
features for FAS task. Instead of using handcrafted binary or
pixel-wise labels, Qin et al. [33] propose a novel Meta-Teacher
FAS (MT-FAS) method to train a meta-teacher for supervising
PA detectors. To further fully mine the information in local
image blocks, i.e., capturing devices and presenting materials,
Wang et al. [34] propose PatchNet which reformulates FAS
as a fine-grained patch-type recognition problem.

Another works [7], [25], [35], [36] treat the task of FAS
as a feature disentangled representation learning. Jourabloo et
al. [35] solve the face anti-spoofing by inversely decom-
posing a spoof face into the live face and the spoof noise
pattern and then utilizing the spoof noise for classification.
Stehouwer et al. [36] propose a GAN-based architecture to
synthesize and identify the noise patterns from seen and
unseen medium/sensor combinations. Liu et al. [25] design a
Spoof Trace Disentanglement Network (STDN) to disentangle
the spoof traces from input faces as a hierarchical combination
of patterns at multiple scales. Zhang et al. [7] propose a novel
perspective of face anti-spoofing that disentangles the liveness
features and content features from images, and the liveness
features are further used for classification under a CNN
architecture with multiple appropriate supervisions. There are
also some methods [37]–[41] that focus on improving the
generalization of FAS in unknown domains. In [38], a multi-
adversarial deep domain generalization method is proposed
to automatically and adaptively learn this generalized feature
space shared by multiple source domains. [37] proposes an
efficient disentangled representation learning for cross-domain
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face PAD. It consists of a DR-Net and a MD-Net with the
purpose of obtaining the live and spoof class distributions
and learning domain-independent feature representation from
the disentangled features, respectively. Instead of extracting
handcrafted features, Cai et al. [41] propose a learnable
network to extract Meta Pattern (MP), and fused them with
RGB image through a proposed Hierarchical Fusion Module
(HFM). Another works [37], [40] attempts to improve the
generalization capability of PAD into new scenarios via an
adversarial domain adaptation or an unsupervised domain
adaptation with disentangled representation approach.

However, they tend to overfit attacks seen in the training
set, especially when only RGB data is available. In addition,
with the popularity of high-fidelity mask attacks [10], [22],
[42], [43] with more realistic in terms of color, texture, and
geometry structure, it is very challenging to mine spoofing
traces from the visible spectrum alone.

Multi-modal FAS Framework. Multi-modal methods [2],
[8]–[10], [44] have proven to be effective in alleviating the
above problems. The motivation for these methods is that
indistinguishable fake faces may exhibit quite different prop-
erties under the other spectrum.

With the release of several large-scale multi-modal 2D
datasets [2], [45], [46] and high-fidelity mask datasets [10],
[22], [47], exploring multi-modal FAS tasks is of great sig-
nificance to promote technological progress. For example,
Zhang et al. [11] collects a CASIA-SURF dataset with 3
modalities (i.e., RGB, Depth and NIR) using an Intel Re-
alSense SR300 camera, and proposes a multi-modal multi-
scale fusion method for face anti-spoofing. Similarly work,
Liu et al. [46] introduce a CASIA-SURF CeFA dataset, cov-
ering 3 ethnicities, 3 modalities, 1, 607 subjects, and propose a
PSMM-Net [46] to learn the complementary features among
different modalities. George et al. [10] introduce a WMCA
database with four channels, e.g., color, depth, near-infrared,
and thermal, for face PAD which contains a wide variety of
2D and 3D presentation attacks, and propose a MC-CNN
aims to detect sophisticated attacks with multiple channels
information. Heusch et al. [47] collect a HQ-WMCA database,
which can be viewed as an extension of the WMCA [10]
database via adding a new sensor acting in the shortwave
infrared (SWIR) spectrum. Then, a MC-PixBiS framework is
proposed to address the problem of face presentation attack
detection using different image modalities. To improve the
accuracy of the mask attacks, MLFP [48], ERPA [49], and
3DMA [50] also extend the study from visible light to other
spectrums, including near-infrared, and thermal spectrums.
Yu et al. [51] combines face depth estimation framework [5]
and the CDC [6] to fuse multi-modal information and achieved
the best results in a FAS competition [52]. Instead of depth
and infrared maps, Kong et al. [53] devise a novel and cost-
effective FAS system based on the acoustic modality, named
Echo-FAS, which employs the crafted acoustic signal as the
probe to perform face liveness detection.

These fusion methods belong to a halfway fusion strategy,
which combines the sub-networks of different modalities at a
later stage via the feature map concatenation. However, they

require modal input to be consistent with the training phase,
which seriously limits the deployment. Recent work [54]
presents a framework for PAD that uses RGB and depth
channels supervised by the proposed cross-modal focal loss
(CMFL), which makes it possible to train models using
all the available channels and to deploy with a subset of
channels. Different from CMFL [54] to modulate the loss
contribution of each channel, we introduce CMTB module
to improve the performance of each branch by fusing multi-
modal information.

Vision Transformer. Inspired by the success of Transformers
in natural language processing (NLP), convolution-free models
that only build on transformer blocks have flourished in com-
puter vision. In particular, ViT [23] is the first pure transformer
architecture replacing all convolutions with self-attention to
match or even surpass CNNs in several downstream image
tasks. e.g., image classification [55], object detection [56],
and video classification [57]. However, it has several draw-
backs when compared with CNNs [55]: large training data,
rigid patch division, and single scale. Many variants of vi-
sion transformers have also been recently proposed to deal
with these problems. DeiT [58] uses distillation for data-
efficient training. Swin [59] produces a hierarchical feature
representation by flexibly modeling input at various scales.
CrossViT [60] constructs a dual-branch vision transformer
for learning multi-scale features with a across-attention. In
FAS community, ViTranZFAS [61] uses the pure ViT to
solve the zero-shot anti-spoofing task for the first time. Tran-
sRPPG [62] proposes a pure rPPG transformer framework for
mining the global relationship within MSTmaps for liveness
representation. ViTAF [63] uses the pure ViT to solve the
zero- and few-shot, face anti-spoofing task. Contemporane-
ous, MA-ViT [64] aims to solve flexible modal face anti-
spoofing by introducing Modality-Agnostic Transformer Block
(MATB), which consists of two stacked attentions named
Modal-Disentangle Attention (MDA) and Cross-Modal Atten-
tion (CMA), to eliminate modality-related information for each
modal sequences and supplement modality-agnostic liveness
features from another modal sequences, respectively. Yu et
al. [65] establish the first flexible-modal FAS benchmark with
the principle ‘train one for all’. To be specific, with trained
multi-modal FAS models, both intra- and cross-dataset testings
are conducted on four flexible-modal sub-protocols.

III. FLEXIBLE MODAL VIT (FM-VIT)
In this section, we first introduce the overall architecture of

FM-ViT which focuses on how to improve the performance
of single-modal FAS system with the help of available multi-
modal data. Then, we describe the proposed CMTB module
in detail, which consists of Multi-headed Mutual-Attention
(MMA) and Fusion-Attention (MFA) to guide each branch
to learn potential and modality-agnostic liveness features,
respectively.

A. Overall Framework

An overview of FM-ViT architecture is depicted in Fig. 2,
which is built on multiple ViT [23] branches (each branch
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Fig. 2. (a) The architecture of a Flexible Modal Vision Transformer (FM-ViT). It is built on multiple ViT [23] branches and consists of tokenization module
(Eq. 1), transformer encoder and classification heads (Eq. 4). A completed transformer encoder contains K “Stage”, in which each “Stage” is stacked by
M Standard Transformer Blocks (STBs) and a Cross-Modal Transformer Block (CMTB). In each “Stage”, the CMTB shares the weights (shown by red
double arrow line) and receives the output of the previous multi-modal STBs as input (shown by dotted line). (b) STBs [23] and CMTB in the k-th “Stage”
of the transformer encoder. The CMTB consists of two cascaded multi-headed mutual-attention (MMA) and multi-headed fusion-attention (MFA). (c) MMA
calculates the relevance maps of all modalities to mine the informative patch tokens of its own branch (Eq. 5). MFA fuses the modal information of other
branches to guide its own branch to learn modality-agnostic liveness features (Eq. 8).

corresponds to an input modality) and consists of additional
several CMTBs inserted after some specific Standard Trans-
former Blocks (STBs). Let Ii represents the input at branch i,
where i can be r, d, n, or t for the RGB, Depth, Near-Infrared
(NIR) or Thermal modality. Only Ii=r and Ii=d are used to
introduce the proposed approach for simplicity.

In order to achieve flexible testing of any modality, the FM-
ViT assigns a complete ViT branch for each modality, includ-
ing Tokenization module, Transformer encoder and Classifica-
tion head. Further, the other modal information is intended to
improve the performance of current modality by the proposed
CMTB. Specifically, for MMA module, the attention matrix
can guide the class token of current modality to pay attention
to some ignored patch tokens by the relationship between
the class token and patch tokens of other modalities, which
can readjust the attention region of current modality by the
cues from all other modalities. For MFA module, the class
token containing all information of the current modality is
used as a query to randomly exchange information with the
patch tokens of additional modalities, which can be fused in
the class token of the current modality to produce a stronger
modality-agnostic representation.

Multi-Modal Tokenization Module. FM-ViT first splits
any modal input I ∈ RH×W×C into a sequence of non-
overlapping patches xp ∈ Rn×(P 2·C) by a patch splitting
module and then linearly projecting patches into tokens xpat ∈
Rn×D, where (H,W,C) is the shape of the input image,
(P, P ) is the resolution of each image patch, n = HW/P 2 is
the number of resulting patches, and D is vector size through
all of FM-ViT layers. Similar to BERT [66], a learnable class
token (CLS) xcls = z0,cls ∈ R1×D is concatenated to the

sequence of patch tokens, who serves as the image represen-
tation (or agent) for classification. And position embeddings
xpos ∈ R(n+1)×D are added to each token embeddings to
retain positional information. The tokenization process of
sample input is expressed as follows:

z0 = [xcls||xpat] + xpos, z0 ∈ RN×D, N = n+ 1. (1)

where || means token concatenation, and resulting sequence
z0 serves as input to the following transformer encoder.

Transformer Encoder with CMTBs. As shown in Fig. 2,
after tokenization module, sequences zi0 (i ∈ {r, d}) of
all modalities independently pass through M STBs and one
CMTB. The complete transformer encoder in FM-ViT contains
K “Stages” through the above process of stacking.

See the block detail in Fig. 2, one STB consists of alter-
nating layers of multi-headed self-attention (MSA) and MLP
blocks. Layer normalization (LN) is applied before every
block, and residual shortcuts after every block. The CMTB
receives the output of the previous multi-modal STBs as input,
which consists of two cascaded MMA and MFA. Similar
to STBs, LN is applied before every block, and residual
shortcuts after every block. However, we do not apply a feed-
forward blocks MLP after the MMA and MFA. Specifically,
the process of Mk STBs in the k-th (where k = 1, ...,K)
“Stage” can be expressed as:

z′m = MSA(LN(zm−1)) + zm−1,m = 1, ...,Mk,

zm = MLP(LN(z′m)) + z′m,m = 1, ...,Mk.
(2)

where the MLP contains two-layer multilayer perceptron. The
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Fig. 3. A 4-modality PaperMask sample in WMCA. The red box indicates
the distribution area of spoofing traces.

process of a following CMTB can be expressed as:

z′
r
Mk = MMA(LN(zrMk),LN(zdMk)) + zrMk ,

zrMk+1 = MFA(LN(z′
r
Mk),LN(zdMk)) + z′

r
Mk .

(3)

where zrMk and zrMk+1 are the outputs of STBs and CMTB
for r modality, respectively. Another modal sequence zdMk

participates in the training as inputs of MMA and MFA at
the same time. The same procedure is performed for zdMk+1
by simply swapping the index r and d.

Flexible-Modal Classification Heads. To flexibly deploy
the proposed framework in the devices with any modal sensor,
our model is required to be trained on all the available
modalities and tested on any sub-modal sets. In this work, we
provide a classification head for each modal branch and a joint
classification head for the combined multi-branch sequences to
meet the requirements of multi-functional testing, which are
supervised by independent binary cross-entropy (BCE). The
output sequences at the K-th “Stage” of transformer encoder
zrK,cls and zdK,cls are served as the agents of tokens xr and
xd for classification. The total loss Ltotal to minimize is given
as:

Li = BCE(MLP(LN(ziK,cls)), y), i ∈ {r, d} ,
Ljoint = BCE(MLP(LN(zrK,cls||zdK,cls)), y),

Ltotal = Lr + Ld + Ljoint.

(4)

where || means sequences concatenation along the vector
dimension, and the classification head is implemented by MLP
with a single linear layer. y is the ground truth (y = 0 for
attack and y = 1 for bonafide) for sample I.

B. Cross-Modal Transformer Block (CMTB)

As shown in Fig. 3, for a 4-modality PaperMask sample
in WMCA [10]: (1) RGB data has rich appearance details,
including the paper creases and the paper reflection spot at the
nose. (2) Depth data is sensitive to the distance between the
image plane and the corresponding face. However, the paper
mask lacks depth change at the eyes and mouth. (3) The eyes
and chin of the paper mask expose obvious folding marks in
NIR data. (4) The thermal data measures the heat radiated
by the face. The paper mask shows uneven heat distribution
in the cheek due to occlusion. To sum up, we can conclude
that the same attack shows different spoofing cues in different
modalities, which are distributed in different face regions.

In this work, the CMTB aims to guide any modal branch
to mine its informative patch tokens by the indication of other
modalities, and to learn the modality-agnostic features through
the developed MMA and MFA respectively.

Print ViT Map

C
ol

or
D

ep
th

MMA Map Glasses ViT Map MMA Map

Fig. 4. Visualization of classification features based on the vanilla Small-ViT
and inserted MMA. Print and Glasses samples are from WMCA [10] dataset.
‘⊕’ means attention matrix accumulation operation.

Multi-headed Mutual-Attention (MMA). How to deter-
mine the informative patch tokens is the primary task in MMA.
By analyzing the attention matrix [23], which is essentially a
relevance map, whose each row corresponds to a link for each
token given the other tokens. Therefore, the relevance map
that corresponds to the CLS token links each of the tokens to
the CLS token, and the strength of this link can be intuitively
considered as an indicator of the contribution of each token
to the classification [67].

To corroborate the effect of MMA, we use the vanilla ViT
and ViT inserted into the MMA to train the attentions of each
layer on the training set of WMCA [10] respectively, and
visualize the response map of the final classification feature
on the face area on the testing set. It can be seen from Fig. 4
that when there is no MMA, the feature response of color
modality focuses on the overconfidence area, which leads to
the wrong classification of samples, such as the color details
in high-definition Print attack and the live face areas that are
not covered by funny eyes glasses. After adding MMA, with
the guidance of depth modality, it further mining the spoofing
details that are easily ignored in the color modality, such as
the paper boundary and facial depth in Print attack, and the
deliberate funny eyes glasses.

See from the MA module in Fig. 2, for any modal sequence
z, as shown in Eq. 5, we first compute qcls of CLS token, kpat
and vpat of patch tokens through three learnable parameters
Wq , Wk and Wv , respectively. Then, we compute the dot
products of the qcls with kpat, divide each by

√
D/h, and

apply a softmax function to obtain the relevance map mapcls.
At the same time, we identify the informative patch tokens
based on the strong links in mapcls when the modal sequence
is classified correctly, which is completed by a threshold
function Γλ(·). In which Γλ(·) aims to find the corresponding
patch tokens by thresholding the relevance map to keep
λ(∈ [0, 1]) proportional mass. It outputs a mask matrix M
with values of 1 and 0, where 1/0 means to retain/discard the
patch tokens of the corresponding position. In order to mine
informative patch tokens in the current modal sequence, we
take the strong links from other modal sequences as indicators
to retain the patch tokens discarded by the current modal
sequence. As shown in Eq. 5, this process can be completed
in sequence by accumulating the mask matrix Mi(i ∈ {r, d})
and a selection function Γ′M(·) based on the index position of
a given matrix Mi. Finally, we successively obtain the weights
by a softmax function to redefined mapcls and the output of
MA by the weighted sum over all values of patch tokens vpat.
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This process is denoted as:

[qcls,kpat,vpat] = [zclsWq, zpatWk, zpatWv],

mapcls = qclsk
T
pat/

√
D/h,

Mi = Γλ(mapicls),M = Mr + Md,

A = softmax[Γ′M(mapcls)],

MA(z) = A · vpat.

(5)

where D and h are the embedding dimension and number of
heads, respectively. Wq , Wk and Wv ∈ RD×(D/h). Γ′M(·) is
a selection function defined as:

Γ′M(A) =

{
Aa,b,Ma,b > 0
−∞,Ma,b = 0

(6)

Similar to [55], we discard the noise tokens by setting the
attention values in mapcls to small enough constant. MMA
is an extension of MA in which we run h mutual-attention
operations in parallel. As shown in Fig. 2 and Eq. 3, we apply
a residual shortcuts after the MMA and concatenate with patch
tokens zpat to obtain a new sequences z′:

z′cls = MMA(z) + zcls, z
′ = [z′cls||zpat]. (7)

where || means token concatenation, the output sequences z′

will be used as the input sequences of the next stage.
Compared to self-attention [23] that computes the relevance

maps that correspond to all tokens and the attention matrix
on all query-key pairs, there are two differences in mutual-
attention: (1) we only calculate the relevance map that corre-
sponds to CLS token to mine potential patch tokens. (2) we
only select the informative patch tokens from the keys for each
query to compute the attention map. Thus, the performance
is improved by retaining informative patch tokens, and the
training process is accelerated by eliminating noisy tokens
(i.e., clutter background and occlusion).

Multi-headed Fusion-Attention (MFA). How to effec-
tively fuse multi-modal information to produce a stronger
modality-agnostic representation is the primary task in MFA.
Due to the CLS token being essentially an image agent, which
summarizes all the patch tokens for prediction, inspired by
cross-attention [60], we develop a simple yet effective multi-
modal fusion strategy, which uses the CLS token for each
modal sequence as a query to exchange information with
patch tokens of other modal sequences. The MFA is inspired
by the self-supervision, but has the following differences: (1)
Input form. Different from the self-attention, which takes a
single modal sample as input, the input the MFA is a pair
of samples of different modalities, i.e., Ir and Id, where
the query and key/value are from patches of Ir and Id

respectively. (2) Fusion strategy. The purpose of self-attention
is to mine the relationship between all the tokens (including
CLS token and patch tokens) in the input sample, while the
MFA is to fuse the other modal information for current modal
sequence by calculating the dependency between the CLS
token (from current modality) and the patch tokens (from
another modality).

As for the MFA in Fig. 2, we first compute queries
qrcls with CLS token of modal sequence zr, and keys kdpat,
values vdpat with patch tokens from another modal sequence

zd, respectively. Similar to self-attention [23] in Eq. 8, the
attention function A is computed on the set of queries qrcls
simultaneously with all keys kdpat. Finally, the outputs of FA
is a weighted sum over all values vdpat, denoted as:

[qrcls,k
d
pat,v

d
pat] = [zrclsWq, z

d
patWk, z

d
patWv],

A = softmax(qrcls(k
d
pat)

T /
√
D/h),A ∈ R1×n,

FA(z) = A · vdpat.
(8)

where FA(·) receives all modal sequences z as inputs and
outputs the zrcls of the current training sequence zr. Similar
to MMA, we also apply a residual shortcuts after the MFA
and obtain z′

r
cls, and concatenate with patch tokens zrpat to

obtain a new sequences z′
r (similar way for sequence z′

d).
This process is denoted in Eq. 9:

z′
r
cls = MFA(z) + zrcls, z

′r = [z′
r
cls||zrpat]. (9)

where || means token concatenation, the output sequences z′
r

will be used as the input sequences of the next stage. Since the
CLS token already learns abstract information among all patch
tokens in its own modality, interacting with the patch tokens
of other modalities can enrich own multi-modal information.
In other words, MFA guides the any branch to learn modality-
agnostic liveness features by enriching the modal information
of own CLS token.

IV. EXPERIMENTS

A. Experimental Setup

Datasets & Protocols. We use three commonly used multi-
modal and two single-modal FAS datasets for experiments,
including CASIA-SURF (MmFA) [2], CASIA-SURF CeFA
(CeFA) [46], WMCA [10] OULU-NUPU [20] (OULU) and
SiW [5]. MmFA [2] consists of 1, 000 subjects with 21, 000
videos and each sample has 3 modalities, and provides a intra-
testing protocol to evaluate the performance against unknown
attack types. CeFA [46] covers 3 modalities, 1, 607 subjects,
and provides five protocols. We select the Protocol 1, 2,
and 4 for experiments. WMCA [10] contains a wide variety
presentation attacks, which introduces 2 protocols: grandtest
protocol emulates the “seen” attack scenario and the “unseen”
protocol evaluates the generalization on an unseen attack. We
use Protocol 1 of OULU [20] and SiW [5] for cross-testing
experiments.

Test Scenario Settings. We consider two test scenarios. The
first is a commonly used setting where the test modalities need
to be consistent with the training stage. The second is a flexible
modal test scenario, which means the user can provide any
single-modal sample. In all scenarios, we evaluate the intra-
testing performance based on the provided protocols and the
robustness through cross-testing experiments.

Evaluation Metrics. In intra-testing experiments, Attack
Presentation Classification Error Rate (APCER), Bonafide Pre-
sentation Classification Error Rate (BPCER), and ACER [70]
are used for the metrics. The ACER on the testing set is
determined by the Equal Error Rate (EER) threshold on dev
sets for MmFA, CeFA, OULU, and the BPCER=1% threshold
for WMCA. TPR(@FPR=10−4) is provided for MmFA. For
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TABLE I
THE RESULTS ON MMFA. A LARGE TPR(%) AND A LOWER ACER (%) INDICATE BETTER PERFORMANCE. BEST RESULTS ARE BOLDED.

Method TPR APCER BPCER ACER
@FPR=10−2 @FPR=10−3 @FPR=10−4

SEF [11] 96.70 81.80 56.80 3.80 1.00 2.40
MS-SEF [2] 99.70 97.40 92.40 1.90 0.10 1.00

VisionLabs [68] 99.98 99.95 99.87 0.01 0.15 0.08
ViT 87.58 63.09 27.05 3.94 4.48 4.21

FM-ViT 99.83 99.13 98.23 0.39 0.50 0.45

TABLE II
EVALUATION RESULTS (%) ON THE PROTOCOL 1, 2, AND 4 OF CEFA

DATASET.

Pro. Method APCER(%) BPCER(%) ACER(%)

1

PSMM [46] 2.40±0.60 4.60±2.30 3.50±1.30
ViT 1.42±0.51 1.58±1.88 1.50±0.77

FM-ViT 1.29±1.21 0.67±0.95 0.98±0.31

2

PSMM [46] 7.70±9.00 3.10±1.60 5.40±5.30
ViT 2.82±1.20 1.25±0.59 1.67±0.83

FM-ViT 0.46±0.09 1.08±0.83 0.30±0.07

4

PSMM [46] 7.80±2.90 5.50±3.00 6.70±2.20
Hulking [52] 3.25±1.98 1.16±1.12 2.21±1.26
Super [52] 0.62±0.43 2.75±1.50 1.68±0.54
BOBO [51] 1.05±0.62 1.00±0.66 1.02±0.59

ViT 3.17±2.15 6.83±6.08 5.00±2.19
FM-ViT 0.87±1.16 0.93±1.53 0.90±1.34

cross-testing experiments, Half Total Error Rate (HTER) [71]
is adopted as the metric, which computes the average of False
Rejection Rate (FRR) and the False Acceptance Rate (FAR),
and the threshold computed in dev set using EER criteria.

Implementation Details. Our models can be freely built on
any version of ViT [23]. In our experiments, we adopt ViT-
S/16 as the backbone through comparative experiments, which
means the “Small” variant with K = 3, M1 = 2, M2 = 2
and M3 = 4. Our model is initialized with weights provided
by [23], and other newly added layers are randomly initialized.
We resize all modal images to 224× 224 and train all models
with 50 epochs via Adam solver. All models are trained with
a batch seize of 8 and an initial learning rate of 0.0001 for
all epochs. We set λ = 0.5 in MMA according to conclusion
of KVT [55]. The FM-ViT can be easily extended to more
modality, such as RGB (r), Depth (d), NIR (n), Thermal (t).
In MMA module, we first calculate the mask matrix M of
each modal sequence, which means the location of informative
patch tokens in this modality. Then, we force all modalities
share an accumulating mask matrix, which can readjust the
attention region for each modality by the cues from all other
modalities. Therefore, the shared mask matrix is accumulated
by four modalities according to M = Mr + Md+ Mn+ Mt in
Eq. 5. In MFA module, for any current sequence (i.e., RGB),
we randomly select only one of the remaining modalities (i.e.,
Depth, NIR, or Thermal) in each iteration for fusion to reduce
the computational effort. Therefore, no matter how many
modalities are included in one dataset, the MFA is applicable
and the calculation amount is fixed. In fact, we found through
experiments that there is little difference between the results

of fully fusing all modal information in each iteration and the
results of randomly selecting a modal fusion.

In the testing stage, for any given single-modal test sample,
we input it into all branches to activate CMTB, and report the
results by corresponding classification head. For multi-modal
test samples, we report the results by joint classification head.
In other words, although our system can flexibly test samples
with different modalities, we need to know the modal type in
advance. To obtain stable experimental results, a statistical test
is adopted in all experiments, that is, we report the average of
the last five training models as the experimental results.

B. Fixed Modal Scenario Evaluations

The fixed modal scenario setting evaluates the fusion
ability of our approach to multi-modal information. On the
three multi-modal datasets, we compare with baseline method
ViT [23] that removed the CMTB from FM-ViT, and the
previous state-of-the-art (SOTA) methods.

Intra-Testing Results. Because MmFA [2] is the dataset
for holding the multi-modal FAS challenge [72], we compare
with the benchmark method SEF [11], multi-scale benchmark
method MS-SEF [2], and the top one method of the challenge,
i.e., VisionLabs [68]. From the Tab. I, we can observe that the
performance of baseline method ViT is worse than SEF due to
the lack of modal fusion ability, i.e., 56.80% (SEF) vs. 27.05%
(ViT) for TPR@FPR=10−4 and 2.40% (SEF) vs. 4.21% (ViT)
for ACER. However, when equipped with CMTB, our FM-
ViT improves the TPR@FPR=10−4 from 27.05% to 98.23%,
reduces ACER from 4.21% to 0.45%, and outperforms MS-
SEF by a large margin, i.e., 92.40% (MS-SEF) vs. 98.23%
(FM-ViT) for TPR@FPR=10−4 and 1.00% (MS-SEF) vs.
0.45% (FM-ViT) for ACER. Finally, the performance of our
FM-ViT is worse than that of VisionLabs [68]. Our analysis
has the following two reasons: (1) VisionLabs [68] adopts
additional datasets, i.e., face and gender recognition datasets,
and multi-model fusion strategy, i.e., three ResNet-18; (2) Our
FM-ViT focuses on the performance of flexible modal testing,
and ignores the performance of multi-modal fusion to a certain
extent.

Similar to MmFA, CeFA [46] is the dataset for holding
another FAS challenge [52] with the Protocol 4. We compare
our approach with the benchmark PSMM [46] and the top
three methods introduced in the challenge, i.e., BOBO [51],
Super and Hulking [52]. It can be seen from Tab. II that
the performance of baseline ViT is superior to benchmark
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TABLE III
COMPARISON OF ACER (%) VALUES ON PROTOCOL “SEEN” AND “UNSEEN” FOR THE WMCA. BEST RESULTS ARE BOLDED.

Method seen unseen
Flexiblemask Replay Fakehead Prints Glasses Papermask Rigidmask Mean±Std

MC-PixBiS [16] 1.80 49.70 3.70 0.70 0.10 16.00 0.20 3.40 10.50±16.70
MCCNN-OCCL-GMM [69] 3.30 22.80 31.40 1.90 30.00 50.00 4.80 18.30 22.74±15.30

CMFL [54] 1.70 12.40 1.00 2.50 0.70 33.50 1.80 1.70 7.60±11.20
ViT 2.71 11.95 1.44 3.78 0.00 18.02 0.58 4.43 5.74±6.75

FM-ViT 1.0 3.56 0.72 0.00 0.00 12.00 0.43 0.73 2.49±4.37

TABLE IV
THE HTER (%) VALUES FROM THE CROSS-TESTING BETWEEN MMFA,

CEFA (PROTOCOL 4) AND WMCA (PROTOCOL “SEEN”) DATASETS.

Method
Trained on

MmFA
Trained on

CeFA
Trained on

WMCA
Tested on

CeFA
Tested on
WMCA

Tested on
MmFA

Tested on
WMCA

Tested on
MmFA

Tested on
CeFA

ViT 25.21±0.75 26.50 16.89 33.15 12.61 10.74±4.13
MFA-ViT 24.16±0.92 25.90 15.22 32.11 11.20 10.24±3.80
MMA-ViT 21.51±0.72 22.38 13.41 26.80 9.32 9.34±3.30

FM-ViT 21.43±1.24 20.00 10.24 26.34 8.45 8.77±3.13

PSMM due to the pre-training model, while is far worse
than the well-designed competition methods due to the lack
of modal fusion ability. Such, on Protocol 4, the results of
ACER for competition methods are 2.21%, 1.68% and 1.02%
respectively, which are better than that of ViT (5.00%). Similar
conclusions to MmFA, our FM-ViT achieves the best results
on all protocols and metrics, i.e., the ACER on Protocol 1, 2
and 4 are 0.98%, 0.30% and 0.90%, respectively.

To perform a fair comparison with prior methods, only
RGB and Depth data in WMCA [10] are used for intra-testing
experiments. Tab. III presents the comparisons of ACER to the
SOTA ConvNet-based methods, including MC-PixBiS [16],
MCCNN-OCCL-GMM [69], and CMFL [54]. Compared with
the previous best results, our FM-ViT achieves significantly
better performance with a large margin in “seen” and “unseen”
protocols: −0.70% for FM-ViT (1.0%) over CMFL (1.70%),
and −5.11% for FM-ViT (2.49%) over CMFL (7.60%), re-
spectively. It is worth noting that FM-ViT noticeably surpasses
these methods on two challenging sub-protocols of “unseen”
protocol: −8.84% for FM-ViT (3.56%) over CMFL (12.40%)
when “Flexiblemask” is not seen in the training stage and
−4.0% for FM-ViT (12.0%) over MC-PixBiS (16.0%) when
“Glasses” is not seen in the training stage. We analyze that the
commonality of the two attacks is 3D facial structure, realistic
color-texture, and only local regions contain spoofing traces,
which are easy to be ignored by the ConvNet-based methods.

Cross-Testing Results. To evaluate the robustness, we
conduct cross-testing experiments between models trained on
MmFA, CeFA with Protocol 4, and WMCA with Protocol
“seen”. To demonstrate the contribution of each improvement,
we ablate design elements in the proposed FM-ViT, consider-
ing baseline ViT and two variants MMA-ViT and MFA-ViT
by adding MMA and MFA to the baseline respectively.

Tab. IV lists the results of all methods trained on one
dataset and tested on the other two datasets. From these
results, it can be seen when trained on MmFA, and tested on
CeFA and WMCA datasets, FM-ViT are 3.78% (21.43% vs.
25.21%) and 6.50% (20.00% vs. 26.50%) HTER lower than

ViT respectively. Similar conclusions are drawn by comparing
training models based on other training data.

Further, it can be concluded that MMA plays a more
important role in improving the robustness, compared with
MFA. See Tab. IV for details, when replacing the element of
ViT from MFA to MMA, the results are further reduced from
left to right successively on 6 test sets. Due to the mismatch of
sensors, resolutions, attack types, and settings between differ-
ent datasets, it is more effective to mine the potential features
with the help of MMA against these irrelevant interferences.

C. Flexible Modal Scenario Evaluations

Intra-Testing Results. To explore the ability of our ap-
proach for modal invariant liveness features learning, we
conducted experiments on dataset MmFA [2], Protocol 4
of CeFA [46], and Protocol ‘seen’ of WMCA [10]. Before
reporting the results in flexible modal scenarios, we first list
the results of the SOTA methods on RGB (R), Depth (D), and
IR (I) modalities on each dataset, i.e., MS-SEF [2] for MmFA
dataset, BOBO [51] for CeFA dataset and MC-CNN [69] for
WMCA dataset.

By comparing the results in Tab. V, we can draw the
following two conclusions: (1) Our FM-ViT achieves better
performance than the baseline ViT in each modality, which
demonstrates that FM-ViT improves the performance of any
single-modal sample with the help of multi-modal information.
For example, on the MmFA dataset, the ACER performance
of method ViT in RGB, Depth and IR modalities are 16.90%,
4.01% and 8.44% respectively, while our FM-ViT reduces
the ACER to 12.38%, 3.49% and 2.59%. Similar conclusions
for CeFA and WMCA datasets. Except for RGB modality on
CeFA dataset, our algorithm outperform the best performance
currently reported on each modality, such as for RGB (21.00%
vs. 12.38%), Depth (3.60% vs. 3.49%) and IR (19.40% vs.
2.59%) modalities on MmFA; Depth (2.73% vs. 2.25%) and
IR (10.10% vs. 2.88%) modalities on CeFA; RGB (32.83%
vs. 2.87%) and Depth (6.04% vs. 2.32%) and IR (2.51%
vs. 2.13%) modalities on WMCA. (2) Our FM-ViT reduces
the performance gap between different modalities to a certain
extent. For example, on WMCA dataset, the performance of
method MC-CNN [69] on modality RGB, Depth and IR are
32.83%, 6.04% and 2.51% respectively, while the results of
our FM-ViT are 2.87%, 2.32% and 2.13% respectively. Similar
conclusions for MmFA and CeFA datasets. We analyze that
the MFA module alleviates the bias toward one modality by
supplementing the information from other modalities for this
current modal sequence.
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To verify the advantages of ViT over ResNet in face anti-
spoofing task, we select ResNet50 [73] for comparison, which
has similar parameters and flops to the baseline ViT. By
comparing the results in Tab. V, we can observe that for
any dataset, the performance of ResNet50 in key indicators
is inferior to that of ViT. For example, on MmFA dataset,
the ACER of ResNet50 on modality RGB, Depth and IR are
22.95%, 4.90% and 21.18% respectively, while the results of
ViT are 16.90%, 4.01% and 8.44% respectively. The results
show that the ViT has more advantages in processing face
anti-spoofing task under the condition of using the pre-training
model.

Cross-Testing Results. Despite our model achieving better
performance on multi-modal datasets compared to the base-
lines, it is crucial to check the generalization of the models
by evaluating transfer performance on other multi-modal and
single-modal datasets. In this section, we conduct cross-testing
experiments that models are trained on Protocol “seen” of
WMCA, and tested on MmFA, Protocol 1 of OULU [20] and
SiW [5] datasets, respectively. To demonstrate the contribution
of each improvement to the generalization and modal invari-
ance, we report the baseline method ViT, two variants MMA-
ViT and MFA-ViT, and intra-testing results on WMCA. The
results are listed in Tab. VI.

We can observe that our FM-ViT achieves the best results
in both intra-testing experiments on WMCA dataset and cross-
testing experiments on OULU and SiW datasets. For example,
on the RGB, Depth and IR modalities of WMCA dataset,
the ACER of our FM-ViT are 2.87%, 2.32% and 2.13%
respectively. On the OULU and SiW dataset, the HTER are
30.70% and 29.98% respectively. By comparing MFA-ViT,
MMA-ViT and FM-ViT, we can conclude that the benefit of
generalization mainly benefits from MMA module, which is
consistent with the fixed modal test scenarios.

D. Ablation Study

Effect of the Frameworks. We conduct an in-depth analy-
sis of the framework with a variety of ViT family architectures,
i.e., baseline method ViT, “tiny” and “base” variants FM-
ViT(T) and FM-ViT(B), and some variants based on FM-
ViT(S) framework, i.e., FM*-ViT(S) means changing the order
of MMA and MFA in CMTB, K = 4 indicates that the trans-
former encoder contains 4 “Stages”, in which each “Stage”
contains 2 STBs to ensure that the total length unchanged,
and L = 2 indicates that one “Stage” contains 2 CMTBs.
Besides ACER, FLOPs and parameters are also employed for
comparisons as shown in Tab. VII. Compared with the baseline
method ViT, our approach (FM-ViT(S)) only introduces
0.80 (G) FLOPs and 7.43 (M) parameters, but has significant
performance improvement in three test modalities. Changing
the order of MMA and MFA in each CMTB will result
in performance degradation. We analyze that the efficiency
of modal fusion will be reduced if it is executed before
informative feature mining. Finally, whether adding CMTB by
stacking more “Stage” (see K=4) and increasing the number
of CMTB in each “Stage” (see L=2), there is no performance
benefit and more FLOPs and parameters are introduced.

(a) (b)

Fig. 5. (a) Intra-testing experiment. The results of ACER on OULU with
different λ values. (b) Cross-testing experiment. The results of HTER on
MmFA with different λ values.

Based on the ViT(S), we will further improve the perfor-
mance by replacing BCE with CMFL [54], which aims to
modulate the loss contribution of each channel as a function
of the confidence of individual channels. For example, the
ACER of RGB, Depth, IR modalities is reduced from 4.32%,
2.83%, 2.34% to 4.10%, 2.80%, 2.22%, respectively. Similar
conclusion on the FM-ViT show that CMFL can be used as an
independent transferable loss to replace BCE in multi-branch
architecture.

Effect of the λ in MMA. The threshold function Γλ(·)
selects the informative patch tokens in MMA according to the
parameter λ. We conduct experiments on MMA-ViT with both
intra-testing and cross-testing experiments to search a best
value for λ. The model is trained with Protocol 1 of OULU
dataset for intra-testing and trained with Protocol “seen” of
WMCA and tested on MmFA dataset for cross-testing. As
shown in Fig. 5, all experiments achieve the best results when
setting λ = 0.5, which means we select informative patch
tokens by thresholding the attention map to keep 50% of the
mass.

E. Visualization Analysis

In Fig. 7 (a), we visualize the patch tokens mined by the
MMA in the last “Stage”. For each modal branch in the
MMA-ViT model, we visualize the areas of informative patch
tokens before and after a randomly selected head. Such as
for RGB input, two attack samples from the Protocol “seen”
of WMCA test set are shown in Fig. 7 (a). We can see that
before MMA, the informative patch tokens are not distributed
in the areas with obvious spoofing clues, i.e., the nose position
of “Paper Mask” and the eye position of “Glasses”. While,
the distribution is adjusted after MMA, which refers to the
informative patch tokens in other modal sequences to mine
potential patch tokens ignored by RGB sequences. In Fig. 6,
we further visualize the response area of the last layer’s six
multi-head attention. The example of Print attack indicates
that the attention regions of ViT’s heads overlap to a large
extent, while our proposed MMA-ViT has four heads (head
#1, 2, 5, 6) focus on the mouth, forehead, nose and depth
information of the face, and two heads (head #3, 4) attend
to the boundary information of the printed paper. A similar
phenomenon applies to funny eyes glasses, such as three heads
(head #1, 2, 6) fortunately paid attention to the deliberate
occlusion.



10

TABLE V
COMPARISON OF FLEXIBLE MODAL RESULTS (%) BASED ON MULTI-MODAL DATASETS. THE ‘SOTA’ MEANS THE METHOD WITH PUBLIC RESULTS ON

THE CORRESPONDING DATASET. R&D&I INDICATES THE METHOD RECEIVES RGB (R), DEPTH (D) AND IR (I) PAIRED SAMPLES AS INPUT.

Method Train Test MmFA CeFA (Protocol 4) WMCA (Protocol “seen”)
TPR APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

Fixed modal testing

SOTA
[2], [51], [69]

R R 14.60 40.30 1.60 21.00 9.96±5.41 2.08±0.88 6.02±2.33 65.65 0.00 32.83
D D 67.30 6.00 1.20 3.60 4.29±1.37 1.17±0.63 2.73±0.97 11.77 0.31 6.04
I I 15.90 38.60 0.40 19.40 19.61±15.66 0.58±0.38 10.10±7.66 5.03 0.00 2.51

ResNet50
R R 1.02 23.39 22.50 22.95 25.08±1.46 25.06±1.41 25.07±1.44 6.33 13.91 10.12
D D 28.93 2.46 7.33 4.90 9.67±4.54 8.71±4.33 9.19±4.43 9.50 4.35 6.93
I I 1.23 26.02 16.33 21.18 6.12±6.95 5.13±2.91 5.65±3.25 4.75 6.96 5.85

ViT
R R 1.50 16.64 17.17 16.90 34.74±5.44 13.67±3.25 24.20±2.34 4.30 4.35 4.32
D D 32.00 4.30 3.72 4.01 8.41±5.36 3.83±3.76 6.12±2.91 5.66 0.00 2.83
I I 20.33 7.15 9.33 8.44 7.90±6.53 2.50±2.65 5.20±3.74 2.94 1.74 2.34

Flexible modal testing

FM-ViT
R&D&I R 24.39 8.77 16.00 12.38 36.61±9.51 5.50±1.32 21.06±4.90 2.26 3.48 2.87
R&D&I D 47.17 5.14 1.83 3.49 2.79±0.44 1.71±1.13 2.25±0.36 2.04 2.61 2.32
R&D&I I 63.26 1.34 3.83 2.59 3.43±2.73 2.33±1.91 2.88±2.23 3.39 0.87 2.13

TABLE VI
THE RESULTS FROM THE INTRA-TESTING (ACER (%)) AND

CROSS-TESTING (HTER (%)) WHEN MODELS ARE TRAINED ON WMCA,
AND TESTED ON WMCA, MMFA, OULU AND SIW DATASETS.

Method
Tested on
WMCA

Tested on
MmFA

Tested on
OULU

Tested on
SiW

R D I R D I R R
ViT 7.33 3.68 4.66 27.56 12.61 37.40 45.99 42.16

MFA-ViT 6.06 4.05 5.24 27.86 18.47 35.48 42.61 39.32
MMA-ViT 4.78 3.13 3.51 27.53 15.79 34.45 34.43 31.66

FM-ViT 2.87 2.32 2.13 26.71 8.01 31.23 30.70 29.98

TABLE VII
ABLATION STUDY WITH DIFFERENT ARCHITECTURE ON WMCA WITH

PROTOCOL “SEEN”. THE RED COLOR INDICATES CHANGES FROM
FM-VIT(S). K , M AND L DENOTE THE NUMBER OF “STAGE” IN

TRANSFORMER ENCODER, THE NUMBER OF STB AND CMTB IN ONE
“STAGE”.

Model K [M1 ∼ MK ] L ACER
(R/D/I)

FLOPs
(G)

Params
(M)

ResNet50 - - - 10.12/6.93/5.85 4.10 25.00
ViT(S) - - - 4.32/2.83/2.34 3.02 15.34
ViT(S) w/ CMFL - - - 4.10/2.80/2.22 3.02 15.34
FM-ViT(T) 3 [4, 4, 4] 1 6.06/4.05/5.24 0.39 2.17
FM-ViT(S) 3 [2, 2, 4] 1 2.87/2.32/2.13 3.85 22.77
FM-ViT w/ CMFL 3 [2, 2, 4] 1 2.85/2.30/2.06 3.85 22.77
FM-ViT(B) 3 [4, 4, 4] 1 6.99/7.22/6.87 6.09 34.12
FM*-ViT(S) 3 [2, 2, 4] 1 3.13/3.51/1.91 3.85 22.77
FM-ViT(S) 4 [2,2,2,2] 1 3.22/3.38/4.91 4.13 25.25
FM-ViT(S) 3 [2, 2, 4] 2 6.98/3.24/5.81 4.69 30.21

In Fig. 7 (b), we verify the ability of MFA to absorb
multi-modal information. The comparison models are trained
on RGB, Depth, and IR modalities with baseline ViT. We
randomly select the samples correctly classified by the base-
line model for visualization, to ensure that class-dependent
relevance maps are generated. We can observe from Fig. 7
(b) that whether it is a live face or an attack sample, the
highlight areas (high relevancy scores) output by MFA-ViT
is expanded on the baseline method ViT. It means that MFA
interacts with other modal sequences with the help of CLS
token, and further enriches each patch token with the fused
multi-modal information.

V. CONCLUSION

In this work, we present a pure transformer-based frame-
work named FM-ViT to improve the performance of a single-
modal FAS system with the help of multi-modal data. FM-ViT
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Fig. 6. Comparison between multi-head attention visualization on the last
layer of vanilla ViT and MMA-ViT. Images are selected from WMCA.

Fig. 7. (a) Top: the mining process (“before-MMA-after”) of informative
patch tokens in each modal sequence which are covered by the red mask
and obtained by thresholding the MA maps to keep 50% (λ = 0.5) of
the mass [74]. (b) Bottom: feature map visualization using Transformer
Attribution method [67].

introduces CMTB after some specific STBs, which consists of
two cascaded attentions named MMA and MFA to guide each
branch to learn potential and modality-agnostic liveness fea-
tures, respectively. Experiments show that our approach FM-
ViT only introduces 0.80 (G) FLOPs and 7.43 (M) parameter
for the “small” variant, but gains significant improvements
compared with the baseline method ViT.
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