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Abstract—The Controller Area Network (CAN) is used for
communication between in-vehicle devices. The CAN bus has been
shown to be vulnerable to remote attacks. To harden vehicles
against such attacks, vehicle manufacturers have divided in-
vehicle networks into sub-networks, logically isolating critical de-
vices. However, attackers may still have physical access to various
sub-networks where they can connect a malicious device. This
threat has not been adequately addressed, as methods proposed
to determine physical intrusion points have shown weak results,
emphasizing the need to develop more advanced techniques. To
address this type of threat, we propose a security hardening
system for in-vehicle networks. The proposed system includes
two mechanisms that process deep features extracted from voltage
signals measured on the CAN bus. The first mechanism uses data
augmentation and deep learning to detect and locate physical
intrusions when the vehicle starts; this mechanism can detect
and locate intrusions, even when the connected malicious devices
are silent. This mechanism’s effectiveness (100% accuracy) is
demonstrated in a wide variety of insertion scenarios on a CAN
bus prototype. The second mechanism is a continuous device
authentication mechanism, which is also based on deep learning;
this mechanism’s robustness (99.8% accuracy) is demonstrated
on a real moving vehicle.

I. INTRODUCTION

The Controller Area Network (CAN) protocol has been
widely adopted for real-time communication between elec-
tronic control units (ECUs) in modern vehicles [28]]. The CAN
protocol was designed to provide a high level of fault tolerance,
however less attention was paid to security issues (e.g., authen-
tication), which were not a major source of concern when it
was developed. These unaddressed security issues make the
CAN protocol vulnerable to modern threats, such as denial-
of-service (DoS) attacks [32] and spoofing [18]], [22], [17].

As a case in point, it has been shown that an attacker can
launch a spoofing attack and send falsified frames via a ma-
licious diagnostic tool connected to the on-board diagnostics
(OBD) port or a compromised telematic control unit [17],
[24]. Spoofing and DoS attacks targeting in-vehicle ECUs have
also been shown to be feasible as well 18], [32]. Since the
CAN protocol is the automotive industry standard, the security
issues of the CAN bus have become a major concern of vehicle
manufacturers and have been the focus of a growing amount
of research. To harden vehicles against remote attackers, vehi-
cle manufacturers have divided in-vehicle networks into sub-
networks, logically isolating critical ECUs from the Internet.
However, the significant threat from attackers with physical
access to the CAN bus remains unaddressed.

In this study, we focus on the security of the CAN bus in
two different respects. The first is defending against attackers
with physical access to the CAN bus, and the second is de-
fending against spoofing attacks, whether performed remotely
or locally (e.g., through a supply chain attack).

There has been very little research attention given to: (1)
evaluating the intrusion detection method when the attack
involves replacing an existing ECU with a malicious one or
connecting a new malicious ECU to the CAN bus, or (2)
identifying a malicious ECU’s location on the CAN bus;
the latter is very important for mitigating potential attacks
originating from a malicious ECU added to the CAN bus.
The method presented in [21] represents an initial attempt
at intrusion point localization, but it is unable to accurately
localize the physical intrusion point when new ECUs have
been added to the CAN bus.

A common approach for mitigating spoofing attacks on
the CAN bus is to add a cryptography-based authentication
mechanism [11], [25]. However, cryptographic authentication
requires that all ECUs support complex cryptographic oper-
ations, which consume a lot of memory and computation.
Such an approach raises backward compatibility issues and ne-
cessitates demanding key management procedures; moreover,
accommodating cryptographic material in the limited 64-bit
payload of CAN frames is itself challenging. Consequently,
much more work is needed before CAN networks can fully
support cryptographic algorithms.

There is, however, another means of coping with spoofing
attacks that does not require any changes to the protocol —
authenticating connected ECUs by analyzing and modeling
their communication on the CAN bus. This can be done by
performing a timing analysis of the frames, using various
statistical and machine learning-based mechanisms [21], [19],
[3]], [16] or by conducting payload-based analysis [31], [35].
However, research has demonstrated that an attacker can
evade detection by such mechanisms [24], [21]; for example,
the attack can replicate the propagation delay behavior of a
legitimate frame transmitter [21]].

Taking the evasion constraint into consideration, previously
proposed methods have used the unique characteristics of volt-
age signals generated during transmissions by each individual
ECU in order to detect spoofing attacks [34], [33]. Compared
to the timing-based and payload-based methods, this approach
is more difficult to evade.

In a recent study [1], the researchers show a novel tech-
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Figure 1: Example of CAN bus line topology with a continuous monitoring unit connected to the CAN bus. This unit is
responsible for sampling and analyzing voltage signals transferred on the CAN bus.

nique to evade spoofing detection mechanisms which are based
on voltage signals analysis. In their work, they show an
exploitation to the detection mechanism retraining process by
connecting a malicious ECU to the CAN bus.

In order to secure the CAN bus, we propose CAN-LOC,
a security hardening system for in-vehicle networks, which
is based on features derived from voltage signals transferred
on the CAN bus. Our proposed system consists of two
mechanisms. The first is a physical intrusion detection and
localization mechanism, which uses a deep autoencoder that
detects changes in the network topology and convolution
neural network (CNN) classifiers that report the exact location
of malicious insertions or ECU replacements. The second is a
continuous authentication and identification mechanism, which
uses CNN classifiers and is capable of detecting spoofing
attacks by legitimate ECUs that impersonate their peers.

From a practical standpoint, the proposed system is com-
prehensive in that the physical intrusion detection and lo-
calization mechanism runs once when the vehicle is started,
attempting to detect and locate changes that have been made
to the network, and the continuous authentication and identifi-
cation mechanism runs continuously after the vehicle has been
started.

Our system design is inspired by recent power analysis
research in which classification using deep learning has been
shown to be more powerful and robust than statistical methods
[27]1, [7], [30]. In the course of our research, we derived the
novel insight that information related to physical intruders and
their location is encoded within the legitimate signals’ voltage
transferred on the CAN bus. Thus, our system is effective
against silent ECUs maliciously connected to the CAN bus.

We validate the physical intrusion detection and localiza-
tion mechanism on a CAN bus prototype using a large dataset
of ECU replacement and insertion attacks, and show that our
mechanism can detect changes in the network topology with
100% accuracy and locate physical intrusions with 100% accu-

racy for insertion scenarios and 98% to 100% for replacement
scenarios.

We validate the authentication mechanism on a CAN bus
prototype and traffic recorded from a real vehicle, i.e., a 2015
Honda Civic. We demonstrate the robustness of our mechanism
under the following demanding conditions: training using data
collected while the vehicle is stationary and testing it over a
long period of time (over an hour) when the vehicle is moving.
Our evaluation results on a real vehicle show 99.8% ECU
identification accuracy when the vehicle is moving (similar
results are achieved when the evaluation is performed on a
CAN bus prototype).

The main contributions of this study are summarized as
follows:

e We present a deep learning-based mechanism com-
bined with a data augmentation technique that allows
the detection and localization of physical intruders,
even when they are silent.

e  We perform a comprehensive evaluation of physical
intrusion detection and localization on a CAN bus
prototype, using a wide variety of intrusion attacks.

e We present a deep learning-based mechanism for
learning the unique characteristics (patterns) of in-
dividual ECUs based on the ECUs’ voltage signals
measured on the CAN bus.

e  We perform an evaluation of the authentication mech-
anism’s robustness on both a CAN bus prototype and
a real vehicle when moving.

e  This research complements a recent study presenting
a prevention solution which requires accurate local-
ization capability [2].



II. BACKGROUND
A. CAN Communication

The CAN bus is a two-wire broadcast bus. It uses the
differential voltage between the two bus lines, CAN-H and
CAN-L, in order to encode the bits. During the dominant
state, the CAN-H line is driven toward a nominal voltage of
3.5V, and the CAN-L line is driven toward a nominal voltage
of 1.5V. The resulting differential voltage Vgiff during the
dominant state must be within 0.9-2.0V, a case in which a “0”
is interpreted by the ECU transceiver. For the recessive state,
both the CAN-H and CAN-L lines are driven toward a nominal
voltage of 2.5V, and a “1” is interpreted for a differential
voltage less than 0.5V. An illustration of the differential voltage
is presented in Figure
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Figure 2: Nominal voltage of the CAN-H and CAN-L lines
during the recessive and dominant states.

Figure [3] presents a standard CAN frame structure. The
CAN frame begins with the start of frame (SOF) bit, which is
a ”’0” bit that drives the CAN bus from the recessive state
to a dominant state. The identifier field ID, which is used
in the arbitration, is next. Since multiple ECUs can write
on the CAN bus at the same time, an arbitration mechanism
is needed to avoid collisions. The arbitration mechanism is
based on the message identifier (ID), which is the first field
after the start of frame (SOF). Lower valued identifiers have
the highest priority; note that dominant bits, i.e., zeros, will
always overwrite recessive bits, i.e., ones. Several control fields
follow the identifier field ID: the RTR bit, which signals remote
frames; the IDE bit, which signals the extended identifier; a
reserved field, which signals future extensions; and the DLC
field, which represents the length of the data field. The latter,
which represents the actual data, can occupy up to eight bytes.
This field is followed by a 15-bit CRC and a delimiter. The
acknowledgement field, ACK, is written by all ECUs that
successfully receive the frame. It is followed by a delimiter
and the end-of-frame (EOF).

Since multiple ECUs can write on the CAN bus at the same
time, an arbitration mechanism is needed to avoid collisions.
The arbitration mechanism is based on the message identifier
(ID), which is the first field after the start of frame (SOF).
Lower valued identifiers have the highest priority; note that
dominant bits, i.e., zeros, will always overwrite recessive bits,
i.e., ones.
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SOF — Start of Frame

ID — Identifier

RTR - Remote Transmission Request
IDE - Identifier Extension

RES — Reserved Bits

DLC - Data Length Code

CRC - Cyclic Redundancy Check
DEL — Delimiter

ACK — Acknowledge
EOF — End of Frame

Figure 3: Structure of a standard CAN frame.

B. ECU Voltage Signals

A modern vehicle contains a variety of ECUs. Each ECU
generates unique analog signals. Even if the same CAN frames
are transmitted by two identical ECUs manufactured in the
same batch, their signals’ characteristics are different. Recent
studies showed that these characteristics are useful for highly
accurate ECU fingerprinting [9], [LO]. When analyzing the
digital representation of a sampled signal, those differences
are expressed by relatively minor changes. Figure [] visually
illustrates the difference between the signals of two ECUs, as
sampled from the rising and falling edges of a CAN frame.
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Figure 4: A demonstration of a recessive ”1” to a dominant
”0” transition and return (differential voltage Vyiff recorded
from two distinct ECUs).

Each CAN bus ECU outputs a signal that has unique
physical characteristics which are due to both manufacturer
specific designs and tiny imperfections in the components, e.g.,
the ECU’s transceiver’s internal resistance and capacitance.
Furthermore, each ECU added to the CAN bus contributes
its own resistance and capacitance, modifying the overall
electronic characteristics of the CAN bus and thus affecting
the signals of all existing ECUs. The influence of this differs
according to the connection location and the ECUs’ transceiver
characteristics.

Figure [§]illustrates the changes to the existing ECU signals
when a new ECU is introduced at various insertion locations
on the CAN bus. Figure [f] illustrates the changes to existing
ECU signals when two ECUs from different manufacturers are
introduced at the same location on the CAN bus.



Table I: Summary of related work

Ref. - Altack vector Intru519n poml Method used Features Experimental testbed Sampling
Compromise Add new Replace localization frequency
ECU ECU ECU
[20] v - - Not relevant Signal processing Raw signal CAN bus prototype 2 GS/s
41 v - - Not relevant Signal processing Statistical features extracted CAN bus prototype & 50 kS/s
from the raw signal two real cars
15 v v - - ML (SVM, NN, BDT) 9 frequency domain & 8 CAN bus prototype 2.5 GS/s
time domain features
6] Vv - - Not relevant ML (LiSVM, BDT) 9 frequency domain & 8 CAN bus prototype 2.5 GS/s
time domain features
[13] v v - - ML (logistic regression) Features extracted from ris- CAN bus prototype & 20 MS/s
ing and falling edges two real cars
[14] v v - - Signal processing Features extracted from ris- One real car 2 MS/s
ing and falling edges
18 v - - Not relevant Statistical analysis Temperature and voltage CAN bus prototype 50 MS/s
[23] - v - Additions only Statistical analysis Response to sent pulses CAN bus prototype 2 GS/s?
[33] v - - Not relevant Reinforcement learning Raw signal (sampled from CAN bus prototype N/A
a dominant (0) bit)
[34] Vv - - Not relevant ML (deep learning) Raw signal CAN bus simulation 250 MS/s
[LO] v - - Not relevant ML (deep learning) Statistical features extracted CAN bus prototype 2 GS/s
from the raw signal
CAN-LOC v v v v ML (deep learning) Raw signal sampled from | CAN bus prototype & | 500 MS/s
rising and falling edges one real car
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Figure 5: A demonstration of how existing ECU signals are
influenced when an ECU is added at different locations on
the CAN bus.

III. RELATED WORK

In contrast to timing-based or payload-based analysis, our
mechanism relies on CAN bus electrical signals, which are
difficult to fake. Therefore, as related work, we only consider
physical intrusion and spoofing detection mechanisms that are
based on features extracted from electrical signals.

In previous studies, several methods to detect spoofing at-
tacks based on ECUs’ electrical signals were proposed. Table
summarizes and compares this research based on the following
criteria: attack vector, intrusion point localization, detection
methods used, extracted features, experimental testbed setup,
and signal sampling frequencies.

The first study presenting the idea of using voltage signals
for ECU fingerprinting used simple signal processing tech-
niques that were applied on the raw signal sampled from
the CAN frame’s arbitration field [20]. Another study [4]
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Figure 6: A demonstration of how existing ECU signals are
influenced when two different ECUs are added at the same
location on the CAN bus.

proposed adaptive signal processing applied on statistical fea-
tures extracted from the raw signal; the proposed mechanism
enables modification of the fingerprints and hence allows the
mechanism to adapt to possible environmental changes.

In other research presented by Choi et. al. [3], the authors
presented improvements related to signal processing. In this
study, 17 features were extracted from the extended identifiers,
and a variety of machine learning algorithms were employed in
order to improve the identification accuracy obtained in prior
work.

Further improvements were presented in a subsequent study
[13] in which higher accuracy was achieved although simpler
machine learning algorithms were used. The core idea behind
that study is the observation that the identification accuracy
can be significantly improved by processing the samples of
the rising and falling edges of the transmitted signals over
the CAN bus; the samples are acquired after the arbitration



field. Other research presented an improvement in terms of
the sampling frequency used during data collection [15].

Choi et. al [6] have presented additional improvements.
Similarly to [13]], they sampled the rising and falling edges of
the transmitted signals while using the same feature extraction
presented in [5].

Significant improvements in terms of computational and
data collection resources were achieved in another study [8]
in which statistical analysis was applied on either temperature
or voltage variations, serving as an adaptive approach for
addressing environmental changes.

One property shared by the studies presented above is that
they are all passive. A different approach was taken in a study
[23] that used time-domain reflectometry (TDR), in which a
pulse is sent on the CAN bus, and the response is measured.
While this technique can locate the connected ECUs on the
CAN bus and detect changes in the CAN bus topology, it
has two significant drawbacks in contrast to our approach: (1)
it does not allow ECU fingerprinting (thus, it cannot detect
replacement scenarios or spoofing scenarios), and (2) it is an
active technique that depends on an active operation on the
CAN bus to detect topology changes.

In another line of research, optimization of the passive
authentication techniques mentioned above was suggested
[33]. This approach is based on reinforcement learning, which
allows authentication optimization via a trial and error mecha-
nism without prior knowledge regarding the signal or spoofing
model.

More recently, deep learning techniques have been sug-
gested [34]. This study used an RNN-LSTM multiclass clas-
sifier for the authentication of ECUs on the CAN bus given a
raw voltage signal. In other research, a combination of feature
extraction and a deep learning-based mechanism was suggested
[LO]. Both methods achieved good identification accuracy,
however the proposed models’ robustness to environmental
changes was not demonstrated; the studies also did not address
the detection and localization of a malicious ECU device
connected to the CAN bus.

In order to address the limitations of the prior work
mentioned above, in this work, we propose a robust system
which focuses on the security of the CAN bus in two different
respects. The first is defending against attackers with physical
access to the CAN bus and the second is defending against
spoofing attacks, whether performed remotely or locally (e.g.,
through a supply chain attack).

Based on the legitimate ECUs’ signals transferred on the
CAN bus, our proposed system determines whether the CAN
bus has been physically modified. To ensure driver safety, this
process is executed when the vehicle is started. Our system
takes advantage of the fact that each CAN bus topology change
influences all of the voltage signals transferred on the CAN
bus. Moreover, we show that those legitimate signals are also
useful for locating the physical intruder on the CAN bus; we
derived the novel insight that the intruder’s location is encoded
within the legitimate ECUs’ signals. Thus, our mechanism
can detect and locate silent ECUs introduced at an available
location of the CAN bus.

In addition, we propose a robust ECU authentication mech-
anism that allows the detection of spoofing attempts continu-
ously after the vehicle has been started. Regarding intrusion
localization scenarios, thanks to the ability of the proposed
authentication mechanism to generalize, we show that the
proposed authentication mechanism is also useful for locating
physical intruders when a legitimate ECU is replaced. This is
done by applying a process of monitoring (and identifying)
legitimate signals until the missing ECU which was replaced
is detected.

In order to evaluate our proposed system, we used a CAN
bus prototype identical to that of [21], which used timing
analysis in order to authenticate and locate a malicious device
connected to the CAN bus. The current study differs in the
following ways. First, in [21]], only the difference in the arrival
time was used (extracted by setting a threshold for the voltage
level); the shape of the signal on the CAN bus is ignored.
In our study, we show how deep learning techniques can be
used to delve further into specific patterns of the voltage signal
that are unique to each ECU. Second, their method requires a
connection to each end of the CAN bus, whereas our method
only requires one connection to the CAN bus, which simplifies
the wiring harness. Third, their method was unable to localize
the physical intruder in cases in which a new ECU was inserted
into the CAN bus, i.e., a change in the voltage characteristics of
the CAN bus. By using deep learning with data augmentation,
we can localize malicious ECUs, even when they are unknown
to the mechanism and/or silent.

In order to demonstrate the robustness of our authentication
mechanism compared to approaches proposed in prior studies,
we used voltage signals collected from both a CAN bus
prototype and a real vehicle. The current study differs from
prior research in the following ways. First, by using a variety
of insertion scenarios on a CAN bus prototype, we show that
our authentication mechanism is robust to CAN bus topology
changes. Second, we generate the ECU fingerprints using a
relatively small amount (a few thousands) of voltage signals
collected while the vehicle is stationary and test it for a long
period of time (over an hour) when the vehicle is moving.

IV. NETWORK AND THREAT MODEL
A. Network Model

Our proposed detection system requires physical access to
the network. While in-vehicle networks may have more than
a hundred ECUs, they are always grouped together in sub-
networks of less than a dozen ECUs.

The typical sub-network topology is bus oriented. In this
topology, a two-wire cable connects multiple ECUs that im-
plement various car functionalities, as illustrated in Figure
To protect the entire vehicle, our system must be connected to
each sub-network in order to sample signals from each of the
existing buses. Alternatively, our system can be deployed on
critical sub-networks only.

B. Threat Model
We consider two types of attackers:

e An attacker with physical access to the CAN bus,
aiming to replace an existing ECU with a malicious



device or insert an additional device at a specific
location.

e A remote attacker that exploits a vulnerable device,
aiming to write spoofed messages on the CAN bus
and take control of critical sub-systems.
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Figure 7: Surfaces that can be used to conduct attacks on the
CAN bus.

An illustration of the attack surfaces is presented in Figure
[/} These include both open entry points to the CAN bus (e.g.,
the OBD port), as well as existing ECUs that can be corrupted
(e.g., infotainment systems), and other bus taps that can be
installed by an adversary in accessible locations.

We assume that an attacker is aware of the presence of
the detection mechanism and how it works. The attacker
can obtain this information by reverse engineering or inside
information. Therefore, our proposed method is based on
analyzing the hardware’s unique physical characteristics which
makes evasion infeasible.

V. HIGH-LEVEL DESCRIPTION OF THE SYSTEM

In order to secure the CAN bus from physical intruders
and remote/local spoofing attacks, we propose a system which
is based on continuous monitoring of the analog signals
transferred on the CAN bus. The proposed system (illustrated
in Figure [8) consists of two mechanisms:

1)  Physical Intrusion Detection and Localization - this
mechanism is active once when the vehicle is started.
It detects CAN bus network topology changes and
locates physical intruders.

2)  Continuous ECU Authentication and Identification -
this mechanism runs continuously after the vehicle
has been started. It detects spoofing attempts and
identifies the real origin of the spoofed message.

The advantages of the proposed system are twofold. First,
the entire system is based on analyzing voltage signals trans-
ferred on the CAN bus. We claim that such signals are uniquely
generated by each device due to hardware inconsistencies.
Thus, our system is more robust to detection evasion related to
other detection solutions like timing-based and payload-based
solutions. Second, for intrusion detection and localization, our
method does not depend on signals transferred by the intruder
device. Our method only analyzes known ECUs’ signals, and
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Figure 8: High-level architecture of the proposed system.

based on these signals, it is able to detect and locate new
intruders.

A new ECU can be introduced by inserting a new ECU
into an available location on the CAN bus or by replacing an
existing ECU. Other cases (e.g., swapping the locations of two
existing legitimate ECUs) are not considered in this work.

A. Data Acquisition

When data is acquired from the CAN bus, CAN-LOC
samples the physical signal of CAN frames. Each CAN frame
can be associated with a particular sender based on its ID field.
While the CAN bus is a broadcast bus, in existing practical
implementations, each ECU is associated with a set of IDs that
it uses to send data on the CAN bus. Remote frames (which
request specific data) with the same ID as data frames can
be sent by distinct ECUs, but since this type of frame does
not carry any data, it cannot be a source of an impersonation
attack and is not relevant to our analysis. Remote frames are
easily distinguished by the RTR bit, which is set at one.

One of our goals is to authenticate each of the legitimate
ECUs based on the sampled signals. Therefore, when gen-
erating the fingerprints we need to associate each sampled
signal with its ECU. Since other ECUs are allowed to transmit
information in the arbitration and acknowledgement fields, the
only fields that can be sampled for ECU identification are the
control, data, and CRC fields (gray fields in Figure E[) As
shown in previous studies [13]], rising or falling edges should
be sampled in order to increase the detection accuracy.

In this study, we assume that the original topology of the
CAN bus is known to the system. In particular, the locations
of the legitimate ECUs are known.



B. Proposed System Description

Physical Intrusion Detection and Localization. This
mechanism is responsible for detecting changes in the network
topology of the CAN bus. In particular, it determines whether
the CAN bus is clean (no ECU was replaced or added to
the CAN bus) or dirty (a new ECU was added or replaced
an existing ECU), i.e., the CAN bus is compromised. If the
CAN bus is compromised, an alert is generated, and the
intrusion point location is returned. As illustrated in Figure
two modules are proposed: (i) the physical intrusion detection
module, and (ii) the intrusion point localization module.

Algorithm 1 describes the physical intrusion detection
and localization mechanism. The input to the algorithm is
the inspected signal (denoted by Sig), which is a list of
voltage samples collected from the CAN bus during a frame
transmission. First, the physical intrusion detection module is
used to detect whether the CAN bus is compromised (line 2).
If the CAN bus is compromised, an alert is generated (line 3),
and then the physical intrusion localization module is used to
locate the physical intrusion point (line 4).

The physical intrusion localization module is based on
a process of monitoring legitimate ECUs signals (line 6).
The main building block of the monitoring process is the
authentication mechanism, which is applied on the transmitted
frames when the CAN bus is compromised. This process is
performed to distinguish between insertion and replacement
scenarios:

e All known ECUs have been identified within a given
time period (line 7). In this case, we conclude that
it is an insertion attack, and an insertion localization
procedure is executed (line 8) to return the insertion
location (line 9).

e If the time period has ended, and there is a known
ECU that has not been identified (line 10), we con-
clude that it is a replacement attack. In this case, the
location of the missing ECU is returned (line 11).

Algorithm 1 Physical Intrusion Detection & Localization

1: procedure DETECTPHYSICALINTRUSION(S(Q)
2: if IsBusCompromised(sig) then

3: GenerateAlert()

4: return LocatePhysicallntrusion()
5: procedure LOCATEPHYSICALINTRUSION

6: M — Monitor.getMissingECUs()

7
8:

if M = & then
S — Monitor.getMonitoredSignals()
9: location <« LocatelnsertionPoint(S)
10: else
11: location — LocateReplacementPoint(M)

12: return location

In this study, we assume that in-vehicle ECUs transmit
frames periodically, although the presence of a silent ECU is
technically possible. However, this would be uncommon, since
each ECU handles several functionalities and must periodically
report data from various sensors/actuators.

Continuous ECU Authentication and Identification.
This mechanism is responsible for continuously detecting
spoofing attempts. In this case, an alert is generated, and the
real origin of the spoofed message is returned. As illustrated

in Figure [§] two modules are proposed: (i) the ECU authenti-
cation module, and (ii) the ECU identification module.

The input to the module is the inspected signal, which is a
list of voltage samples collected from the CAN bus during a
frame transmission and the identifier of the ECU transmitting
it. First, the ECU authentication module is used to authenticate
the frame given the voltage signal and the claimed identifier.
If there is no match, an alert is generated, and then the ECU
identification module is used to return the real sender of the
frame.

VI. LOw-LEVEL DESCRIPTION OF THE SYSTEM

In this section, we provide a detailed description of the
proposed system.

A. Physical Intrusion Detection

The physical intrusion detection module is responsible for
detecting changes in the network topology of the CAN bus.
In particular, it determines whether the CAN bus is clean (no
ECU was replaced or added to the CAN bus) or dirty (a new
ECU was added or replaced an existing ECU), i.e., the CAN
bus is compromised.

The physical intrusion detection module is implemented
by an autoencoder which receives a voltage signal that is
transferred on the CAN bus and determines whether the
CAN bus is compromised. An autoencoder is an unsupervised
algorithm that represents input data in a lower dimensionality
and then reconstructs the data to its original dimensionality;
thus, the normal instances are reconstructed properly, and the
outliers are not. In this way, anomalous input data can be
identified.

As described earlier in Section the basis for this
module is the electric property of CAN bus topologies, in
which each network topology change influences all of the
signals transferred on the CAN bus. Since any new ECU that
taps the CAN bus affects the voltage signals of all of the ECUs,
a single CAN frame (regardless of the sender) is sufficient for
detecting whether the CAN bus topology has changed.

Autoencoder architecture. The autoencoder consists of
two parts: the encoder and the decoder. The encoder learns
how to interpret the input and compresses it to an internal
representation. The decoder takes the output of the encoder and
attempts to reconstruct the input. We define the encoder so it
has two hidden layers set at decreased sizes of 50 percent and
25 percent of the input layer’s dimension. To ensure that the
model learns well, we use batch normalization and leaky ReLU
activation. The decoder is defined with a similar structure,
although in reverse.

Training set. The voltage signals transferred on the CAN
bus when the network is clean.

Training phase. During the training phase, we use two
separate chronological datasets that only contain benign data
(i.e., voltage signals transferred on the CAN bus when the
network is clean), from which the autoencoder learns the
patterns of the original CAN bus topology.

The first dataset is the training set (T R¢jean), and the sec-
ond dataset is the validation set (VALciean). Given TRciean,



we train the autoencoder until the mean squared error (MSE)
reaches its minimum on VALcieqn. We use the Adam opti-
mizer and a learning rate of 0.001. Once the model training
is complete, a threshold (thr) is determined to discriminate
between benign (i.e., voltage signals transferred on the CAN
bus when the CAN bus is clean) and malicious signals (i.e.,
voltage signals transferred on the CAN bus when the latter is
dirty).

The threshold (thr) is calculated as the sum of the
samples’ mean and the standard deviation of the MSE on

VAL clean:

thr = mean(MSEvaL oqn) + StAMSEvAL ieqn) (1)

Intrusion detection phase. Given a voltage signal trans-
ferred on the CAN bus, we execute the autoencoder and mea-
sure the reconstruction error of the signal. If the reconstruction
error exceeds thr, an alert is generated, and the intrusion point
localization module is used to locate the intrusion point on the
CAN bus.

B. Intrusion Point Localization

The intrusion point localization module is responsible for
physically locating the intrusion point on the CAN bus when
the latter is dirty. First, we need to eliminate a case in which
the CAN bus is dirty due to the replacement of a legitimate
ECU. We identify the replacement of an ECU by monitoring
the CAN bus for a certain period of time TP, in order to
determine whether all of the ECUs are present.

To do so, an authentication method is proposed. The
authentication method proposed for this module is identical
to the method described in Section [VI-Cl Note that this is a
case in which the ECUs are being authenticated while their
corresponding voltage signals are influenced by an intruder
device.

As illustrated in Figure [9} when the vehicle starts, the
monitoring process collects authenticated signals during time
period TP (one per ECU, and only the last authentication is
stored). If all of the ECUs have been successfully authenticated
during time period TP, the insertion point localization module
is used to locate the intruder. Otherwise, the location of the
missing ECU is returned.

In order to localize the malicious ECU, one CAN frame
from each legitimate ECU needs to be collected. Given the
cyclical nature of in-vehicle traffic in which there are prede-
fined cycles (usually in the range of 10-100 ms) and each
ECU is in charge of multiple such frames, a few dozen
milliseconds, on average, should be sufficient to collect the
minimum number of frames and localize the intrusion.

In order to physically locate the intruder in insertion
scenarios, a multiclass CNN classifier is proposed.

CNN multiclass classifier architecture. The proposed
architecture is a 1-dimensional variant of VGG16 [26]] in which
a softmax output layer is attached, providing a probability
distribution over the predicted output classes.

Authenticated ECUs during TP
Last authenticated ECUs during TP _

—— - - = -I-I-H—.—»
t

‘ Time period TP of ECU monitoring ‘

Decision-making point:
Is there a missing ECU?

Compromised CAN bus
detected

Figure 9: Authenticated signal monitoring process on a CAN
bus containing five legitimate ECUs.

Let P = {p1, p2,..., Pn} be a set of insertion points on
the CAN bus. These points are represented by the classes of
the model’s output layer.

Training set. The transmitted signals are collected for a
predefined time period at each point p € {p1, p2,..., Pn}
when a new ECU is inserted. The transmitted signals collected
in each time period are labeled with insertion point p. During
this phase, only signals that are associated with legitimate
ECUs are considered.

As demonstrated in Section when inserted into the
CAN bus, different ECUs influence the transmitted signals
differently. Therefore, in order to train a model that estimates
the location in general cases, we suggest employing a data
augmentation technique.

Data augmentation is the creation of data from original
data, typically by applying a transformation to the original
data. Data augmentation is commonly used to improve the
versatility of machine learning models, as well as to provide
more training examples for datasets of a limited size. In signal
data, for example, it is common to use data augmentation
techniques like Gaussian noise addition, cyclic rolling-off
(shifting), clipping distortion, and frequency masking [36],
[12].

Given the changes to existing ECU signals when two
ECUs from different manufacturers are introduced at the same
location on the CAN bus, adding synthetic data to the training
set helped us induce a model that generalizes better and is more
accurate. Specifically, given a basic set of signal examples,
we extend the set by using the following data augmentation
techniques: (1) Gaussian noise addition, and (2) cyclic rolling-
off (shifting).

The proposed data augmentation process is described in
Algorithm 2. The input to the algorithm consists of the
collected signals associated with ECU i (denoted by S*). Other
input to the algorithm is a set of discrete insertion points
(denoted by P) and two integers K and R. For each insertion
point p € P (line 5) for each signal s € S! (line 7), we

generate K copies of the signal S (line 8). To each copy (line
9), we first add Gaussian noise that is distributed with mean
1 = 0 and standard deviation 0 = 1 (lines 10-11) and then
apply a rolling-off (shifting) of a random amount (line 12) of



steps. Finally, we assign class p to each signal generated in
this loop (line 13).

Training phase. During the training phase, we use the
root mean square propagation (RMSProp) optimizer, with a
learning rate of 0.00001., and categorical cross-entropy is used
as the loss function. First, we chronologically extract 30% of
the training set to serve as the validation set. Then, we train
the network until the loss function reaches its minimum on the
validation set.

Intrusion localization phase. As illustrated in Figure [0
for each legitimate ECU, the most recent authenticated signal
during time period TP is stored. These signals serve as the
input to the multiclass classifier in order to locate the intrusion
point.

Given m represents the number of legitimate ECUs that
are connected to the CAN bus, let S = {S1,52,...5m} be
a set of signal vectors (one per ECU). Let P be a matrix
such that the column P; is the multiclass classifier prediction
given the input S;. As previously mentioned, P; represents the
probability distribution over the classes (insertion locations on
the CAN bus).

The location estimation technique is presented in Algo-
rithm 3. The input to the algorithm is a group of M signals
where signal i is associated with legitimate ECU i (the group
is denoted by S). First, we call the multiclass classifier and
obtain |P| = m predictions (line 2). Then, we take the most
probable class from each column P; as a class candidate (lines
4-5) and apply a majority over the candidates (line 6). If one
candidate remains (line 7), it is returned (line 8). Otherwise, a
randomized candidate is returned (line 10).

Algorithm 2 Generate Augmented Signals

1: procedure GENERATESIGNALS(S!, P, K, R)

2: AS' <@

3: H—0

4: o<1

5: for p € P do

6: AS:7 - @

7. for each s € SL do

8: C « GenerateCopies(K, s)

9: for c € C do

10: n «— RandomizeGaussian(u, o)
11: ¢’ — AddNoise(n, c)

12: r < RandomizeUniform([0, R])
13: AS;) «— RollOff(r, c’)

14: ASt — AS;'7

15: return AS¢

Algorithm 3 Locate Insertion Point

—_

: procedure LOCATEINSERTIONPOINT(S)
P — Classifier(S)
C—0@
for P; € P do
C.add(argmax(P;))
L — majority(C)
if size(L) = 1 then
location < L
else
location — RandomizeElement(L)
return location

Co0RND AW

C. ECU Authentication

The ECU authentication module is responsible for detect-
ing unauthorized data transmissions on the CAN bus. For each
legitimate ECU i, a binary classifier is built based on a CNN.

CNN binary classifier architecture. The following set-
tings are used:

e The classifier includes two convolutional layers fol-
lowed by a max pooling layer to reduce the size. Each
convolution layer has 32 filters.

e One fully connected layer is attached, which contains
100 neurons.

e  All layers use the rectified linear unit (ReLU) as an
activation function.

e A sigmoid layer with a single unit is attached; this
layer is aimed at producing the probability that a given
example is associated with ECU i.

Training set. The voltage signals transferred on the CAN
bus and associated with the legitimate ECUs to authenticate.
To train the binary classifier for ECU i, each signal is classified
according to the associated frame’s origin ('1’ if the origin of
the signal is ECU i and "0’ otherwise).

Training phase. To address a possible data unbalance,
we use the cost-sensitive learning method described in [29].
The idea behind this method is that the training procedure is
modified so that some examples have more or less errors than
others. In addition, to avoid overfitting, we define two dropouts
set at 0.5; one is for the max pooling layer, and the other is
for the fully connected layer.

During the training phase of each binary classifier, we use
the RMSProp optimizer, with a learning rate of 0.0001., and
binary cross-entropy is used as the loss function. First, we
chronologically extract 30% of the training set to serve as
the validation set. Then, we train the network until the loss
function reaches its minimum on the validation set.

Authentication phase. Given a signal associated with a
CAN frame, we extract its ID and apply the appropriate binary
classifier to the signal. The output returned from the classifier
is the probability that the given signal matches the CAN frame
ID. If the network output is less than 0.5, an alert is generated,
and the ECU identification module is used to return the real
origin of the CAN frame.

D. ECU Identification

The ECU Identification module focuses on identifying
the real origin of a CAN frame. Its main building block
is the binary classifiers which are generated as part of the
Continuous ECU Authentication module. Each binary classifier
is associated with one ECU. Thus, given a signal, we call each
of the binary classifiers and return the appropriate identifier
according to highest value returned. If the highest value is
less than 0.5, and the CAN bus is compromised, we conclude
that this signal is associated with a new device introduced on
the CAN bus.



VII. EXPERIMENTS AND RESULTS

A. Evaluation Setups

1) CAN Bus Prototype: As shown in Figure [T0] our exper-
imental setup is identical to the setup that was used in prior
research [21]). In this section, we show that significantly better
results are achieved when using the proposed physical intrusion
detection and localization mechanism.

The CAN bus prototype is also used for the evaluation
of the proposed ECU authentication and identification mecha-
nism.

VN5610A
(TJA1051)

EVBS12XF512
(TJA1050)

USB-CANmodul1l
(PCA82C251)

Figure 10: CAN bus prototype.

Network configurations. As illustrated in Figure [TT} 10
connection points are located on the CAN bus. Some of them
(green) are for legitimate ECUs, and the others (gray) are left
open for malicious ECUs to be connected to the CAN bus.

A number of network configurations are built using the
available ECUs, in order to provide a range of specific test
cases on which to evaluate the CAN-LOC system:

e Network 0 - a clean network in which all of the
legitimate ECUs (and only those ECUs) are connected
and transfer CAN frames, as depicted in Figure [T1]

o  Networks 1-3 - dirty networks in which a malicious
ECU replaces a legitimate ECU at one of the locations
depicted by the red circles in Figure [T2] (i).

e  Networks 4-8 - dirty networks in which a malicious
ECU is inserted into the CAN bus at one of the
locations depicted by the red circles in Figure [I2] (ii).

Specific ECUs and their placement. As depicted in Figure
[I0] we employ PC-to-CAN adapters (USB-CANmodull and
VN5610A) and the EVBS12XF512 automotive grade develop-
ment board, equipped with an external transceiver (TJA1050),
to build our setup. For each ECU, Table [[I] lists the assigned
abbreviated notation, the device type, the transceiver type, the
amount, and the role in our experiment. L; is the legitimate
ECU i (1 <i <5), A stands for the malicious ECU used
for training, and A2 (a completely different ECU related to A1)
stands for the malicious ECU used for testing. The network
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Figure 11: Location of legitimate ECUs (green) and open
entry points (gray) for intruders on our CAN bus prototype.
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(ii) dirty network configurations with inserted nodes (Nw 4-8).

Figure 12: The adversarial network configurations examined.

configurations, along with their designations, are listed in Table

Table II: ECU devices and transceiver types and their role in
the experiments.

l [ Abbrev. Device Transceiver Amount Role [ ]
L; USB-CANmodull PCAS82C251 5 legitimate
A1 VN5610A TIA1051 1 adversary
Ay EVBS12XF512 TIA1050 1 adversary

Table III: Experimental network configurations.

Nw. Connection point

Conf. A B C D E F G H 1 J
NwO Ly Ly L3 Lg Ls

Nwl A1 Ly L3 Lg Ls

Nw2 L1 Ly A2 Lg Ls

Nw3 Ly Ly L3 Lg A1

Nw4 Ly A1 Ly L3 La Ls

NwS Ly Ly A1, L3 La Ls

Nw6 L1 Ly L3 A1 Lg Ls

Nw7 L1 Lo L3 Lg A1, Ls

Nw8 Ly Ly L3 Lg Ls A1




2) Real vehicle: One car, a 2015 Honda Civic (Figure @),
was used to evaluate the robustness of the proposed ECU
authentication method. Through the OBD-II port, the voltage
signals were sampled from the in-vehicle CAN bus containing
six ECUs, running at 500 Kbps.

Figure 13: 2015 Honda Civic.

B. Results

1) Evaluation of the Physical Intrusion Detection Module:
As described in the previous section, this module focuses on
detecting whether the CAN bus is compromised or not. The
CAN bus prototype (Figure[I0) is used to evaluate this module.
For training and evaluation, we sample CAN-H values only.

Training set collection. Hundreds of signals are collected
to train the autoencoder, all of which are collected from
network 0. A detailed description of the training procedure
was provided in the previous section.

Test set collection. Thousands of signals are collected
to test the autoencoder. All of which are collected from
network 0, and the expected prediction for each signal is clean.
Thousands more signals are collected from networks 1-8, and
the expected prediction for each of those signals is dirty. The
malicious ECUs used for insertion and replacement are Aj
and A>.

Detection evaluation. Figure [T4] presents the average MSE
of clean and dirty signals as a function of the number of
autoencoder training epochs. As can be seen, there is a
large margin between the reconstruction errors of clean and
dirty scenarios. Unsurprisingly, our evaluation results show
100% detection accuracy. The sampling frequency used in this
experiment was 125 MS/s.

2) Evaluation of the Intrusion Point Localization Module:
As described in the previous section, this module is responsible
for physically locating the intruder on the CAN bus when it
has been compromised. The CAN bus prototype (Figure
was used to evaluate this module. For training and evaluation,
we sample CAN-L values only.
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Figure 14: The average MSE of clean and dirty signals as a
function of the number of autoencoder training epochs.

Since replacement point localization relies on the ability to
authenticate the legitimate ECUs, its performance is derived
from the evaluation performed on the authentication method.
The evaluation results of the authentication method for both
the CAN bus prototype and a real vehicle are presented in the
next section. We now focus on the evaluation results of the
insertion point localization module.

Training set collection. Thousands of signals are collected
from networks 4-8 (hundreds per legitimate ECU) and assigned
respectively with points B, D, F, H, and J (see Figure @) For
each ECU, hundreds of signals per each point are collected.
Those signals are provided to the data augmentation algorithm
(Algorithm 2, the S! parameter) which generates more sig-
nal examples for training. To generate the entire dataset for
training, Algorithm 2 is executed five times, once against one
legitimate ECU that the CAN bus prototype contains.

On a call i to Algorithm 2, we provide the collected signals
associated with ECU i as input (denoted by S'). Another input
to the algorithm is the set of the insertion points P=B, D,
F, H, J, a parameter K set at 20, and a parameter R set
at 10. The resulting signals are used to train the VGGI16
multiclass classifier (the training procedure was described in
the previous section). The malicious ECU used for insertion
and replacement is Aj.

Test set collection. Thousands of signals are collected from
networks 4-8. For each ECU, hundreds of signals per each
point are collected. The malicious ECU used for insertion and
replacement is A.

Localization evaluation. The localization evaluation is
performed by providing the multiclass classifier with five
signals as input (one per legitimate ECU). Then, a majority
is executed to return a final prediction, as described in the
previous section (Algorithm 3). As can be seen in Table
excellent results were achieved. These results reflect the ability
of the proposed module to localize inserted intruder using
legitimate ECUs’ signals only. The sampling frequency used
in this experiment was 500 MS/s.



Table IV: Confusion matrix of the proposed insertion
localization module.

Predicted
B [ D [ F [ H [ J
B{[100{ O | O | O | O
Tg D[ 0 [100] O | O] O
SF[l O[] O0][100]O0]O
<H[[0[O0]0][I00] 0
JITOTOT] O] O [100

Table V: Authentication experiment results evaluated on a
CAN bus prototype.

ECU1 ECU2 ECU3 ECU4 ECUS5
FRR [FAR| FRR | FAR |FRR[FAR |FRR[FAR |FRR[FAR
clean network
0O JOJTOJTOTJOJOJOJTOTOTO
dirty (A; is silent)

0.002] 0 [0001] 0 [0 [0 JOJOJOJO
dirty (A3 is silent)

008 0 [ 0 [0 [OJOJOJ[OJ[O]O
dirty (A; is active)

0.002] 0 [ 0 J0001] 0 O JOJOJOJO
dirty (A; is active)

008 0T 0T 0OJTOJTOTJTOTOT O Jo04

Table VI: Authentication experiment results evaluated on a
real vehicle.

ECU1 ECU2 ECU3 ECU4 ECU5 ECU6
FRR [ FAR [ FRR [ FAR | FRR [ FAR | FRR [ FAR | FRR [ FAR | FRR [ FAR
0 minutes
0 [ 0 ] 0 ] 0 Joo02] 0 [ 0 [ 0 ] 0 [ 0 J0.003] 0
15 minutes
0.008] 0 [ 0 J0.003]0.006]0.003] 0 [ 0 [ 0 [ 0 J0.005] 0
30 minutes
0 [T OJTO0OTJOTJTOTJTOTJOTOT O 0 J0.005] 0
60 minutes
0 [ 0 [ 0 J0.002] 0 J0.003] 0 [ 0 [ 0 [ 0 J0.008] 0

3) Evaluation of the ECU Authentication Module: As
described in the previous section, this module focuses on
detecting unauthorized data transmissions on the CAN bus.
Both the CAN bus prototype and a real vehicle were used
to evaluate this module. We found that using the differential
between the CAN-H and CAN-L values contributes to the
robustness of the proposed ECU authentication module.

Training set collection (CAN bus prototype). To train
the binary classifiers, hundreds of signals (legitimate only)
are collected from networks 0-8. The malicious ECU used for
insertion and replacement is A1.

Test set collection (CAN bus prototype). To evaluate the
binary classifiers, thousands of signals (legitimate and non-
legitimate) are collected from networks 0-8. The malicious
ECUs used for insertion and replacement are A1 and A>.

Classification evaluation (CAN bus prototype). Each
binary classifier’s performance is evaluated in terms of the
false rejection rate (FRR) and false acceptance rate (FAR).
As illustrated in Table [V] we evaluate each classifier’s perfor-
mance separately in three scenarios. First, we evaluate each
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classifier’s performance on a clean CAN bus only (network
0). Then, we evaluate each classifier’s performance in a dirty
scenario in which the malicious ECU is silent (networks 1-8,
excluding the malicious ECU’s signals). Finally, we evaluate
each classifier’s performance in a dirfy scenario in which the
malicious ECU is active (networks 1-8, including the malicious
ECU’s signals).

As can be seen in Table [V] excellent results were achieved
for both the clean network and the dirty network with silent
intruders. In addition, good results were achieved when the
signals generated by A1 and Az were used. The sampling
frequency used in this experiment was 500 MS/s.

Training set collection (real vehicle). To train the binary
classifiers, several thousands of signals are collected when the
vehicle is turned on. All of them are collected while the vehicle
is stationary.

Test set collection (real vehicle). To evaluate the robust-
ness of the binary classifiers, signals are collected while the
vehicle is moving. The signals are grouped into four separate
datasets according to the length of time the car has been
running: (i) 0 minutes (immediately after the car was started),
(i) 15 minutes, (iii) 30 minutes, and (iv) 60 minutes. Each
group contains thousands of signals for each ECU.

Classification evaluation (real vehicle). We evaluate each
classifier’s performance in terms of the FRR and FAR, sep-
arately on each dataset. Table presents the performance
of the proposed method on each dataset. We can see that
a low FRR and FAR were achieved on each dataset. Since
the fingerprints are generated based on signals collected for
just a few minutes once the car has started, we conclude that
the results achieved indicate the robustness of our method to
vibrations and temperature variations. The sampling frequency
used in this experiment was 250 MS/s.

VIII. SYSTEM DEPLOYMENT

Similar to the mechanism proposed in [2]], our system can
be implemented on an external node attached to the CAN bus.
This proposed deployment can address the large number of
vehicles that are already on the road. The dataset required
to induce the models of the system for vehicles on the road
can be collected at the garage. For new vehicles, the dataset
required to induce the system’s models can be collected after
the vehicle has been produced, i.e., during the vehicle testing
phase on the production line. To achieve the accurate detection
demonstrated in Section a DSP with a sampling rate of
500 MS/s should be used in the deployed system.

As for the computational power, on a 2.11GHz Intel Core
17-8665U processor, it took about three seconds to parse 15K
frames during authentication, which corresponds to a process-
ing time in the order of 200us per frame. This corresponds
to the time required to process frames in real time since the
time spent by a frame on a 500 Kbps CAN bus is around
200pus. This amount of computational power is available on a
modern high-end DSP. The identification evaluation performed
on the one-hour experiment on the Honda Civic did not require
retraining when a sufficient number of samples (i.e., around
1,000 per ECU) was provided when the vehicle was started.
This number of samples can usually be collected from an



ECU in a matter of seconds or minutes. Moreover, since all
of the models presented in this work are based on neural
networks, which are known to be adaptive and thus support
online training, only a small amount of data can be stored in
the memory at any given time.

As stated in Section [I, our proposed system complements a
prevention mechanism proposed in [2] that requires accurate
localization of the intrusion point, which our proposed system
facilitates by using deep learning. From a data collection
perspective, the mechanism described by the authors in [2]
can also be used for the automatic examination and diagnosis
of specific segments of the CAN bus.

IX. SUMMARY AND CONCLUSION

In this study, we demonstrate how CAN bus voltage signals
can be used to identify and locate unauthorized topology
changes on the CAN bus network with high accuracy. Since
we do not depend on an adversary’s transmission, our physical
intrusion detection and localization mechanism is effective
against silent intruders.

Methods proposed in other studies that used an identical
setup but were based on timing analysis were unable to localize
the intruder in cases in which a new ECU was inserted into the
CAN bus. By using deep learning with data augmentation, we
are able to localize the intruder, even when a new (unknown)
ECU is connected to the CAN bus.

In addition, we show that the proposed mechanism can suc-
cessfully authenticate ECUs, even when the network topology
has changed. We demonstrate that our proposed authentication
module allows us to identify the legitimate ECUs on a variety
of network topologies (e.g., when a new ECU is introduced
on the bus or replaces an existing one).

Using a real vehicle, we also show that our proposed
authentication mechanism is robust to environmental changes.
We demonstrate this under the following demanding con-
ditions: training using data collected while the vehicle is
stationary and testing over a long period of time (over an
hour) when the vehicle is moving. Since we rely on electrical
properties, which are unique to each ECU, spoofing attacks
are largely infeasible.

The high identification accuracy obtained in the real vehicle
evaluation indicates that the neural network created for the
authentication task can generalize and does not overfit certain
environmental conditions. Moreover, the fact that an identical
authentication method works well in two different demanding
environments (a real vehicle and a CAN bus prototype),
together with neural networks’ adaptive property, indicate that
our proposed system can be easily transformed into a plug and
play solution. No hyperparameter tuning is required.

In future research, we plan to test the proposed system in
additional scenarios, e.g., when one ECU goes into bus off
or low-power mode, when the supply voltage from the ECUs’
fluctuates, and when other distinct types of ECUs are added
to the CAN bus by the attacker.
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