
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

CBSeq: A Channel-level Behavior Sequence For
Encrypted Malware Traffic Detection

Susu Cui, Cong Dong, Meng Shen, Member, IEEE, Yuling Liu, Bo Jiang, and Zhigang Lu

Abstract—Machine learning and neural networks have become
increasingly popular solutions for encrypted malware traffic
detection. They mine and learn complex traffic patterns, enabling
detection by fitting boundaries between malware traffic and
benign traffic. Compared with signature-based methods, they
have higher scalability and flexibility. However, affected by the
frequent variants and updates of malware, current methods
suffer from a high false positive rate and do not work well for
unknown malware traffic detection. It remains a critical task
to achieve effective malware traffic detection. In this paper, we
introduce CBSeq to address the above problems. CBSeq is a
method that constructs a stable traffic representation, behavior
sequence, to characterize attacking intent and achieve malware
traffic detection. We novelly propose the channels with similar
behavior as the detection object and extract side-channel content
to construct behavior sequence. Unlike benign activities, the
behavior sequences of malware and its variant’s traffic exhibit
solid internal correlations. Moreover, we design the MSFormer,
a powerful Transformer-based multi-sequence fusion classifier. It
captures the internal similarity of behavior sequence, thereby dis-
tinguishing malware traffic from benign traffic. Our evaluations
demonstrate that CBSeq performs effectively in various known
malware traffic detection and exhibits superior performance in
unknown malware traffic detection, outperforming state-of-the-
art methods.

Index Terms—malware traffic, encrypted traffic, behavior
sequence, unknown detection, Transformer.

I. INTRODUCTION

CYBER attacks are increasingly frequent and severe.
Attackers rely on malicious bots to perform credential

stuffing attacks, denial-of-service attacks (DoS), and probe
known vulnerabilities in web applications, generating large
amounts of malware traffic [1]. To promptly detect malicious
attacks and ensure network security, deploying a network
intrusion detection system (NIDS) at the edge of the network
is a key technology. The system passively monitors network
traffic to detect malicious network activities.

Manuscript received September 2, 2022; revised May 15, 2023. This work
is supported by National Key Research and Development Program of China
(No.2019QY1300), and the Strategic Priority Research Program of Chinese
Academy of Sciences (No.XDC02040100). This work is partially supported
by NSFC (No.61902376). This work is also supported by the Program of
Key Laboratory of Network Assessment Technology, the Chinese Academy
of Sciences, Program of Beijing Key Laboratory of Network Security and
Protection Technology. (Corresponding author: Bo Jiang.)

Susu Cui, Yuling Liu, Bo Jiang and Zhigang Lu are with the Institute
of Information Engineering, Chinese Academy of Sciences, Beijing, China,
and also with the School of Cyber Security, University of Chinese Academy
of Sciences, Beijing, China (e-mail: cuisusu@iie.ac.cn, liuyuling@iie.ac.cn,
jiangbo@iie.ac.cn, luzhigang@iie.ac.cn).

Cong Dong is with the Zhongguancun Lab, Beijing, China (e-mail: dong-
cong@zgclab.edu.cn).

Meng Shen is with the School of Cyberspace Security, Beijing Institute of
Technology, Beijing, China (e-mail: shenmeng@bit.edu.cn).

Early studies build signatures by extracting payloads from
network traffic for malware traffic detection. However, traffic
encryption technology has been widely used in various net-
work services in recent years [2], [3]. To avoid the inspection
of firewalls and NIDS, a large number of malicious attacks
also use encryption technology to hide the content of the
communication. Traditional signature-based detection does not
work well since the payloads of encrypted traffic are random
ciphertext. Moreover, it requires frequent updating of signature
libraries and has great difficulty extracting signatures to cope
with complex and unknown attacks.

In order to solve the problems of encrypted malware traffic
detection, the current studies propose to use machine learning
methods to identify malware traffic [4], [5]. We summa-
rize machine learning-based detection into two categories:
(1) Statistics-based [6]–[12]. It extracts the flow statistical
features of network traffic, such as flow size and duration,
and then it performs traffic detection by fitting the boundary
between benign traffic and malware traffic. (2) Specific fields-
based [13]–[19]. It extracts specific plaintext in traffic and
builds fingerprints or vulnerable features strongly related to
malware traffic, such as TLS fingerprints, weak cipher suites,
and destination port. And then, it performs traffic detection by
determining whether the traffic matches malware fingerprints
or vulnerable features.

Unfortunately, although machine learning-based methods
have been extensively studied, they still struggle to achieve
effective performance in real-world settings due to frequent
malware variants and updates. Specifically, these methods rely
on collected known malware traffic and extracted features for
model fitting. However, in real-world environments, attackers
usually repackage old malware and reuse known attack pat-
terns, thus generating much unknown malware. Compared to
old malware, updated unknown malware commonly employs
various evasion methods, such as new transport protocols or
tunnels, to escape NIDS inspection. Therefore, the unknown
malware traffic changes the original statistical features (such as
inter arrival time of packet, packet length), making it difficult
for statistical-based methods to make effective judgments.
In addition, attackers are also gradually avoiding fingerprint
and vulnerable features. For example, attackers use cipher
stunting to randomize SSL/TLS signatures to evade detection.
As a result, this would make field-specific methods ineffective.
Based on the above, there are still significant challenges
in applying machine learning-based methods for encrypted
malware traffic detection.

To address these challenges mentioned above, we investigate
the network behavior of malware with the following aim:

ar
X

iv
:2

30
7.

09
00

2v
1

 [
cs

.C
R

]
 1

8
Ju

l 2
02

3

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

a stable traffic representation that can characterize unknown
malware traffic generated by frequent variants and updates
of malware. Our key finding is that, despite frequent updates
and variants, the attacking intent1 of malware often remains
stable and displays solid inter-behavioral correlations. Taking
Mirai [20] malware as an example, its attacking intent is
to utilize infected IOT devices for launching DDoS attacks.
During the execution of DDoS attacks, a significant amount of
network traffic is generated, and these network connections are
typically similar, such as having the same number of packets
and similar inter arrival time between connections. Moreover,
various Mirai variants, like Okiru and Satori, produce new
attack payloads or modify protocols, cipher suites, and the
addresses of their command & control (C&C) servers to evade
traffic detection. However, the attacking intent of Mirai and
its variants remains constant, that is, to utilize IOT devices
for launching DDoS attacks. Additionally, the DDoS attack
traffic of these variants also exhibits solid inter-behavioral
correlations. Similarly, malware and its variants that exe-
cute online password cracking, worm propagation, and C&C
communication share the same characteristics: fixed attacking
intent and solid inter-behavioral correlations.

In this paper, we introduce the channel-level behavior se-
quence (CBSeq), a novel approach that constructs behavior
sequence to achieve malware traffic detection, especially un-
known malware traffic detection. Our core idea is aggregating
traffic at the channel level and considering the channels
with similar behavior as the detection object. First, unlike
traditional methods, channel is the aggregation of multi-flows
with the same source IP and destination IP into a whole,
while traditional methods usually use flow as the granularity.
Using channels allows us to explore rich behavior features
more comprehensively. Second, we aggregate channels with
similar activities and extract behavior sequences to character-
ize attacking intent. Despite the presence of a large amount
of unknown malware, its attacking intent is relatively fixed.
They typically generate similar network connections in a short
period [1], [21]. Therefore, we construct behavior sequence
from the perspective of attacking intent to improve the stability
and unknown detection capability. CBSeq is performed in two
steps.

Constructing behavior sequence. Behavior sequence is a
novel traffic representation to characterize the attacking intent
of malware. It is extracted from the side-channel content [22]
based on channels with similar activities to represent the solid
inter-behavioral correlations, which are inherent to various
malware and its updates and variants. We first extract abstract
features from the channel, including duration, flow count,
total data size, uplink data size, and downlink data size, to
provide an overview of network activities. Then, clustering
is performed based on channel abstract features to converge
similar channels to the same cluster. The same cluster implies

1Attacking intent refers to the purpose or goal behind a cyber attack carried
out by malware. This can encompass a wide variety of objectives, such as
data theft, denial-of-service attacks, causing damage to a system or network,
gaining unauthorized access, or facilitating further attacks. In this study, we
focus on the attacking intent that communicates with the Internet and generates
significant network traffic.

that the channels within the cluster have similar behavior.
Next, we extract the channel sequence, which includes four
kinds of sequences: packet number (PN) sequence, inter arrival
time (IAT) sequence, source port (SP) sequence, and destina-
tion port (DP) sequence. The channel sequences of the same
cluster are fused into the behavior sequence of the cluster
to characterize the attacking intent. Finally, we transform
the behavior sequence to behavior sequence embedding by
word2vec, enhancing the representation of the sequence.

Building MSFormer detector. It is a Transformer-based
malware traffic detection model. MSFormer builds indepen-
dent sub-networks with the same structure for four types
of sequences. It learns the internal relationships of elements
within behavior sequence embeddings to distinguish malware
traffic from benign traffic. Moreover, MSFormer does not
require hand-crafted features and can achieve effective and
accurate detection.

CBSeq is cross-protocol, robust, and capable of discover-
ing unknown malware traffic. Specifically, CBSeq only uses
the side-channel content of the traffic to construct behavior
sequence. It does not involve application protocol informa-
tion such as TLS features or HTTP features. Therefore, it
enables encrypted and cross-protocol malware traffic detec-
tion. Meanwhile, we focus on channel-level analysis rather
than traditional flow analysis, which has more robust feature
representations. In addition, despite the variety of malware
variants and updates, the attacking intent of similar malware
tends to be stable. We construct behavior sequence based on
attacking intent, which can detect unknown malware traffic
generated by updates and variants.
In summary, this paper provides the following contributions:

• We novelly consider channels with similar behavior as
the detection object and construct behavior sequence to
represent attacking intent.

• We propose using word2vec to convert the behavior
sequence into a meaningful numeric vector, which can
enhance the inter-correlation of malware traffic.

• We design MSFormer, a powerful Transformer-based
multi-sequence fusion classifier. MSFormer builds inde-
pendent sub-networks for different sequences. The sub-
networks capture the sequence relationships based on the
attention mechanism for effective and accurate detection.

• We validate the effectiveness and efficiency of CBSeq
through both known and unknown malware traffic detec-
tion scenarios. Compared with the baseline methods, CB-
Seq improves the AUC value by 1.4% for known malware
traffic detection and 16.0% for unknown malware traffic
detection. CBSeq has the highest performance compared
to state-of-the-art methods.

The remainder of this paper is structured as follows. Section
II reviews related works and their limitations. Section III
describes the preliminaries. Section IV introduces the design
of CBSeq. Section V provides the experiment and evaluation.
Section VI provides the conclusion.

II. RELATED WORK

In this section, we review related works on malware traf-
fic detection. We categorize these studies into three types:

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

signature-based detection, statistics-based detection, and field-
specific detection

A. Signature-based Detection

Signature-based detection methods extract signatures and
rules that characterize attacks from malware traffic. Then, it
achieves detection by matching them, such as string matching
or regular expressions matching. Snort [23] detects attacking
or probing traffic through protocol analysis and content match-
ing based on a predefined rule set. Snort can detect buffer over-
flow, port scanning, DoS, and many other attacks. Similarly,
Suricata [24] checks network traffic with an extensive library
of rules and signatures. It supports Snort rules and Lua scripts.
And it has multi-threading, protocol detection, IP matching,
file matching, and logging capabilities. In addition to the
detection tools for industrial products, [25] proposes a method
to build signatures based on packet length. It constructs a
behavior tree based on a sequence of packet length. And
then, the behavior tree is the malicious signature to detect
the encryption remote access Trojan.

On the whole, signature-based methods rely on predefined
signature libraries for matching to achieve malware traffic de-
tection. They are characterized by low false positive rates [25],
[26]. However, with the widespread use of encryption proto-
cols, the extraction of signatures is more challenging due to
the random ciphertext [27]–[29]. Moreover, signature-based
methods face the challenges of malware updates and variants.
Any modifications to existing malware, inclusive of new
modules or changes to protocols, can render the original signa-
tures obsolete. Consequently, these signatures require frequent
manual updates, a task which is logistically demanding [30]–
[32]. Furthermore, the efficacy of these signature libraries is
inherently restricted to known malware traffic, rendering them
impotent in the face of unknown malware traffic.

B. Statistics-based Detection

Statistics-based detection extracts flow statistical features
and performs traffic detection by fitting the boundary between
malware traffic and benign traffic. Recently, the studies [6]–[9]
propose a large number of statistical features based on flow
for distinguishing malware traffic and benign traffic, such as
the packet number, flow size, inter arrival time, and duration.
Beyond regular statistical features, [10], [11] propose that the
byte distribution of flow, packet size sequence, and packet time
sequence can effectively detect malware traffic. [33] uses CNN
and LSTM to learn the spatial and temporal features of raw
flow bytes and the statistical information of the first 32 packets
for malware traffic detection. To improve data imbalance and
data drift, [34] employs an adaptive random forest (ARF)
to learn the distribution features, plaintext information, and
statistical features of the flow. In addition to conventional flow
detection or packet detection, [12] extracts the destination port
sequence at the host level to characterize malicious activities,
which can effectively detect malicious activities such as port
scanning and worms. [35] proposes using channel traffic
(packets composed of the same destination IP and destination
port) as traffic granularity, extracting the distribution features,

TLS handshake plaintext information, and statistical features
for traffic representation, and using a random forest (RF) to
enhance the malware traffic detection performance.

Many studies on statistics-based detection show extremely
high performance. While being quite effective within a con-
trolled dataset, statistics-based detection exhibits limited ro-
bustness when transposed to a real-world environment. This
environment includes known traffic and much unknown mal-
ware traffic. The unknown malware traffic introduces new
data distributions, which existing statistical methods struggle
to accommodate, thereby compromising their accuracy [10],
[36]–[38]. Although [34] uses an ARF to improve data drift,
it requires the labels of new data to calculate the error of
the model prediction results and update the model parameters
accordingly. However, when it comes to detecting unknown
malware traffic, the actual labels of the traffic cannot be known
in advance, rendering this method unsuitable for unknown
malware traffic detection. Furthermore, while [35] can gather
more flows to improve the robustness of detection, it does
not consider the behavior features of malware traffic and
still conducts statistical analysis, which is unstable in the
open-world environment. Hence, it cannot effectively detect
unknown malware traffic.

C. Field-specific Detection

Field-specific detection extracts fingerprints or vulnerable
fields strongly correlated with the attack behavior or attacker.
And then, it trains a machine learning model to implement
malware traffic detection. For example, JA3/JA3S extracted
from TLS can be used as fingerprints for malicious tool
identification [13], while vulnerable features such as self-
signed certificates and expired certificates can be used to
detect anomalous traffic [14]–[17]. [18] introduces cipher
suites, TLS extensions, and public key lengths to classify
malware families. [19] considers the contextual information of
TLS flows, DNS responses, and HTTP headers and performs
malicious family classification by them.

However, in the TLS v1.3 protocol [39], all handshake mes-
sages after ServerHello are encrypted. Therefore, they cannot
check TLS v1.3 traffic and other protocol traffic. In addition,
such methods face challenges due to the ability of update or
variant malware to modify their TLS parameters, effectively
evading detection. Thus, these methods demonstrate limited
effectiveness against unknown malware traffic.

III. PRELIMINARIES

In this section, we first introduce the traffic granularity and
the definition of malware traffic detection. Then, we briefly
introduce the self-attention mechanism.

A. Traffic Granularity

Network traffic is considered a collection of continuous
packets. In order to analyze and detect the traffic, we need
a discrete representation of the traffic, that is, to identify
the granularity of traffic. In the existing traffic identification
and detection works, the common traffic granularity mainly

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

includes packet, flow, and channel. According to [9], [40],
[41], they are defined as:

• Packet: A single packet pi in continuous traffic is an
identification object, which is defined as

pi = (xi, ti, ci) (1)

where xi is the five-tuple information (source IP, source
port, destination IP, destination port, transport layer pro-
tocol) of the pi, ti is the time the packet is sent of the pi

and ci is the payload of the pi.
• Flow: A flow si is the traffic generated using the same

five-tuple, or a bidirectional flow in which the source IP
and destination IP are interchangeable. It is defined as:

si = (xi, ti, P i)

P i = {(x1, t1, c1), . . . , (xm, tm, cm)}
(2)

where xi denotes the five-tuple information of si, ti

denotes the start time of si, P i denotes the set of packets
in si, x1 = · · · = xm, t1 < · · · < tm, and m denotes the
number of packets contained in si.

• Channel: A channel cni is the traffic generated by an IP
pair, which is defined as:

cni = (ti, Si)

Si = {(x1, t1, P 1), . . . , (xn, tn, Pn)}
(3)

where ti denotes the start time of cni, Si denotes the
flow set in cni. The source IP and destination IP in Si

are the same or interchangeable. In Si, t1 < · · · < tn ,
and n denotes the number of flow contained in cni.

B. Problem Definition

In this paper, malware traffic refers to the network traffic
that is generated by malware, and encrypted malware traffic
detection monitors whether the channel traffic is benign or
malicious. Channel is defined by Equation (3) mentioned
above. In brief, we implement malware traffic detection in
two phases. (1) Behavior sequence construction: it is a crucial
process that aims to transform raw network traffic into a
representation that can effectively characterize the network
intent, particularly the attacking intent of malware. First, we
extract abstract channel features and identify channels with
similar network activities through clustering. Next, channel
sequence features are extracted and aggregated for channels
in the same cluster to build behavior sequences. Then, they
are embedded using word2vec to transform the behavior se-
quences into vectors. This not only condenses the information
contained in the sequences but also deeply characterizes the
attacking intent of malicious activities. (2) Traffic detection:
It distinguishes whether a channel cluster is benign traffic
or malware traffic. The detection result for a channel cluster
represents the detection results for all the channel traffic within
that cluster. Note that we are not classifying the type of
malware traffic but warning of any potential malware traffic.

Our goal is to design an end-to-end detection system to
implement malware traffic detection and enhance the efficacy
of NIDS. We assume that the NIDS is deployed on an

Query
Attention
Value

Key1 Key2 Key3 Key4

Value1 Value2 Value3 Value4

Fig. 1. The attention mechanism. Given a query vector (query is an external
query) related to the task. Attention value is obtained by computing the
attention distribution of query with key and attaching it to the value.

edge device, which can replicate and forward incoming and
outgoing network traffic packets to our detection system. Thus,
the detection system only predicts traffic without intercepting
any traffic, and it can be integrated into existing traffic defense
systems as a plug-in. In addition, our system is suitable for
detecting active attacks that attempt to access, compromise
victim devices or retrieve sensitive data, such as brute force
attacks, DoS attacks, and port scanning. However, it is not
applicable to attacks that either do not generate traffic or only
generate traffic within a local area network (LAN), such as
network sniffing and privilege escalation.

C. Self-Attention Mechanism

The universal approximation theorem states that both feed-
forward and recurrent neural networks have strong capabili-
ties. However, the model becomes more complex when the
neural network has too much input information. Moreover,
the problem of long-distance dependence in recurrent neural
networks persists. The attention mechanism [42] is introduced
to improve the efficiency of neural networks. It refers to the
attention mechanism of the human brain and selects only some
key information inputs for processing.

The essence of the attention mechanism is an addressing
process, as shown in Fig. 1. The process begins with a query
vector that corresponds to a task-specific request. The query
is compared with each key, a representation of the different
parts of the input data, to generate an attention distribution.
This distribution dictates the amount of attention allocated to
each part of the input, based on its relevance to the query.

Subsequently, this attention distribution is used to weigh the
associated value, another form of input data representation.
This ensures that the most relevant parts of the input to the
query significantly influence the final outcome. The weighted
values are aggregated to generate the attention mechanism’s
output, a refined representation of the input data based on
the query. Thus, the attention mechanism effectively tailors
the focus on input data for each unique query, enhancing its
overall performance.

The self-attention mechanism [43], a variant of the attention
mechanism, reduces the dependence on external information
and better captures the internal relevance of features. In
self-attention, each input vector has three different vectors,
which are query vector (Q), key vector (K), and value
vector (V). First, Q = [q1, . . . , qN], K = [k1, . . . ,kN],

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

010101
010101
010101

010101
010101
010101

cn1cn1

cn2cn2
cn5cn5

cn8cn8

cn3cn3

cn7cn7

cn4cn4

cn6cn6

c1

c2

c3

c4

c5

PN sequence

IAT sequence

1. Channel traffic aggregation

DP sequence

SP sequence

2. Channel abstract features extraction 3. Clustering

5. Embedding

connection

channel time content

cn1 0.0000 [s11, s12, s13, s14]

cn2 0.0254 [s21]

cn3 0.7405 [s31, s32, s33, s34, s35, s36, s37]

cn4 1.8601 [s41, s42]

cn5 1.8803 [s51]

cn6 2.3940 [s61, s62]

cn7 3.6857 [s71, s72, s73, s74, s75]

cn8 6.2703 [s81]

s11

duration
flow count

total data size
uplink data size

downlink data size

s12 s13 s14cn1

cn1cn1

Abstract
feature

En
co

d
e

r b
lo

ck

En
co

d
e

r b
lo

ck

En
co

d
e

r b
lo

ck

En
co

d
e

r b
lo

ck

En
co

d
e

r b
lo

ck

En
co

d
e

r b
lo

ck

En
co

d
e

r b
lo

ck

A
verage p

o
o

l
&

 Lin
ear

So
ftm

ax

A
verage p

o
o

l
&

 Lin
ear

A
verage p

o
o

l
&

 Lin
ear

A
verage p

o
o

l
&

 Lin
ear +

Encoder Classifier Detection

DP

word2vec

DP

word2vec

SP

word2vec

SP

word2vec

IAT

word2vec

IAT

word2vec

PN

word2vec

PN

word2vec

DP

word2vec

SP

word2vec

IAT

word2vec

PN

word2vec

C1 behavior sequence

embedding

 x 6

Behavior Sequence Construction
MSFormer Detector

4. Behavior sequence extraction and construction

Malware

Benign

Raw offline

traffic

cn1

cn2cn2

cn4cn4

cn5cn5

cn6cn6

cn8cn8

cn7cn7

cn3cn3

cn1

cn2

cn4

cn5

cn6

cn8

cn7

cn3

cn1

cn2cn2

cn4cn4

cn5cn5

cn6cn6

cn8cn8

cn7cn7

cn3cn3

cn1

cn2

cn4

cn5

cn6

cn8

cn7

cn3

cn1

cn2cn2

cn4cn4

cn5cn5

cn6cn6

cn8cn8

cn7cn7

cn3cn3

cn1

cn2

cn4

cn5

cn6

cn8

cn7

cn3

cn1

cn2cn2

cn4cn4

cn5cn5

cn6cn6

cn8cn8

cn7cn7

cn3cn3

cn1

cn2

cn4

cn5

cn6

cn8

cn7

cn3

cn1

cn2

cn4

cn5

cn6

cn8

cn7

cn3

cn1

cn2

cn4

cn5

cn6

cn8

cn7

cn3

cn1

cn2

cn4

cn5

cn6

cn8

cn7

cn3

cn1

cn2

cn4

cn5

cn6

cn8

cn7

cn3

C1
(cn1)

C3

(cn3)

C4
(cn4+cn6)

C5
(cn7)

C2
(cn2+cn5+cn8)

C1
(cn1)

C3

(cn3)

C4
(cn4+cn6)

C5
(cn7)

C2
(cn2+cn5+cn8)

C1
(cn1)

C3

(cn3)

C4
(cn4+cn6)

C5
(cn7)

C2
(cn2+cn5+cn8)

C1
(cn1)

C3

(cn3)

C4
(cn4+cn6)

C5
(cn7)

C2
(cn2+cn5+cn8)

C1
(cn1)

C3

(cn3)

C4
(cn4+cn6)

C5
(cn7)

C2
(cn2+cn5+cn8)

C1
(cn1)

C3

(cn3)

C4
(cn4+cn6)

C5
(cn7)

C2
(cn2+cn5+cn8)

C1
(cn1)

C3

(cn3)

C4
(cn4+cn6)

C5
(cn7)

C2
(cn2+cn5+cn8)

C1
(cn1)

C3

(cn3)

C4
(cn4+cn6)

C5
(cn7)

C2
(cn2+cn5+cn8)

C1
(cn1)

C3

(cn3)

C4
(cn4+cn6)

C5
(cn7)

C2
(cn2+cn5+cn8)

C1
(cn1)

C3

(cn3)

C4
(cn4+cn6)

C5
(cn7)

C2
(cn2+cn5+cn8)

C1
(cn1)

C3

(cn3)

C4
(cn4+cn6)

C5
(cn7)

C2
(cn2+cn5+cn8)

C1
(cn1)

C3

(cn3)

C4
(cn4+cn6)

C5
(cn7)

C2
(cn2+cn5+cn8)

Behavior sequence

Channel sequence

Fig. 2. The framework of CBSeq. It includes behavior sequence construction and MSFormer detector. First, 1. channel traffic aggregation is conducted on
the raw offline traffic. Then, we execute 2. channel abstract features extraction and utilize the abstract features to implement 3. clustering, thereby clustering
similar channel traffic into a singular cluster. In the 4. behavior sequence extraction and construction, we extract the four types of sequence to compose the
channel sequence. After that, the channel sequences from the same cluster are connected to formulate the behavior sequence. In 5. Embedding, we enhance the
representation of the behavior sequence to generate the behavior sequence embedding, which is the input for the MSFormer Detector. Finally, the MSFormer
detector distinguishes malware traffic from benign traffic.

V = [v1, . . . ,vN] are obtained from the input sequence
X = [x1, . . . ,xN]. qi , ki, vi are defined as:

qi = W qxi

ki = W kxi

vi = W vxi

(4)

where W q , W k, W v are the parameter matrixs of the linear
mapping.

We calculate the dot product between Q and K. Then, to
prevent the result from being too large, we divide it by a scale√
dk, where

√
dk is the dimension of qi and ki. Next, we use

Softmax to normalize the result to a probability distribution.
Finally, we multiply result by the matrix V to obtain a weight
summation representation. The operation is defined as:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (5)

IV. METHOD

In this section, we present the design of CBSeq. Firstly, we
introduce the core idea. Secondly, we describe the process
of behavior sequence construction and give the proposed
MSFormer detector.

A. Core Idea

In this paper, we introduce CBSeq, and the framework is
shown in Fig. 2. It first characterizes the attacking intent of
malware traffic by behavior sequence construction. And then,
it builds a detector named MSFormer to distinguish malware
traffic from benign traffic. Our key finding is that, despite
malware updates and variants having different functional mod-
ules, their attacking intent tends to remain fairly fixed. They
typically generate a large number of similar network activities
in a short period, such as targeting the same victim host with

a large number of connections for online password cracking
and DoS attacks and sending the same worm-containing emails
to a large number of email addresses. Overall, the activities
between the attacking host and the victim host exhibit strong
inter-behavioral correlations.

Therefore, we propose a behavior sequence for character-
izing attacking intent. Firstly, we perform traffic aggregation
based on the channel, which aggregates the traffic between the
attacking host and the specific victim host. Since the network
activities of the malware are similar, it also indicates that
the flows within the channel have similar behavior features
among themselves. In addition, attacks like worms usually
present similar network activities between the attacking host
and multiple victim hosts. Thus, we group similar channels
together based on channel abstract features, including duration,
flow count, total data size, uplink data size, and downlink data
size. Channels within the same cluster have similar behavior
features among themselves. In order to characterize the solid
intre-behavioral correlations of the malware traffic, firstly, we
extract four types of sequence of channel traffic: PN sequence,
IAT sequence, SP sequence, and DP sequence, which are
defined as follows.

• PN sequence: The sequence consists of the number of
packets sent by the client in each flow within the channel.

• IAT sequence: The sequence consists of the inter arrival
time between flows in the channel. It is the subtracted
value of the current flow’s start time and the previous
flow’s start time. Thus, the first value of the time interval
sequence is always 0.

• SP sequence: The sequence consists of the source ports
of each flow in the channel.

• DP sequence: The sequence consists of the destination
ports of each flow in the channel.

Secondly, we join and fuse the sequences of channels in the
same cluster and obtain the behavior sequence. Unlike benign
traffic, behavior sequences of malware traffic have solid intre-

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

behavioral correlations and similarities. Moreover, in order to
deeply capture the behavior features and attacking intent inside
the sequences, we introduce word2vec to convert the behavior
sequence into behavior sequence embedding.

Based on the behavior sequence, we build an MSFormer
detector to distinguish malware traffic from benign traffic.
MSFormer is a Transformer-based multi-sequence fusion clas-
sifier. It builds independent sub-networks for four sequences to
learn the behavior embeddings, and the sub-networks capture
the sequence information based on the attention mechanism.
Finally, it fuses the sequences together and builds a Softmax
classifier to achieve effective and accurate malware traffic
detection, especially unknown malware traffic detection.

In addition, CBSeq effectively counters evasion techniques
employed by malware. First, CBSeq’s focus on traffic behavior
analysis to characterize the attacking intent provides more
stability against malware evasion techniques than traditional
features. Moreover, CBSeq uses side-channel content like
packet count and inter arrival time, which are accessible under
encryption and tunnel techniques. Finally, CBSeq does not rely
on TLS handshake information, thereby effectively identifying
malware traffic even when the malware uses random cipher
suites.

B. Behavior Sequence Construction

In this section, we describe the process of behavior sequence
construction. First, we perform channel traffic aggregation and
extract channel abstract features to represent the channel’s
network activity overview. The channel abstract features are
then used for clustering to discover channels with similar
activities and we perform behavior sequence extraction and
construction from the aggregated channel clusters. Finally,
the behavior sequence is converted into behavior sequence
embedding.

1) Channel Traffic Aggregation: Network traffic is a col-
lection of continuous packets. To perform traffic analysis and
detection, we first split the continuous traffic according to
the time window of 24 hours. We set this 24-hour window
considering the daily activity similarity and the time preference
bias. First, some infected hosts, such as the host infected by
Zeus malware, could maintain communication with a specific
server for several days. Despite this extended duration, the
behavior exhibited within every 24 hours tends to be similar.
As a result, splitting the traffic into 24-hour windows did not
lead to a loss of significant behavior patterns. Second, we
consider the tendency of certain malware to exhibit activity
more frequently during specific times of the day. For instance,
some malware may be programmed to be more active during
nighttime hours. Using a 24-hour window, we could capture
these daily fluctuations in activity, thereby avoiding this time
preference bias and providing a more comprehensive view of
the malware’s network behavior.

Next, in order to analyze and detect the traffic, it is primary
to determine the granularity of the traffic. We aggregate the
daily traffic according to the channel. The traffic from different
channels is arranged by the start time, and each channel
usually contains multiple flows.

2) Channel Abstract Features Extraction: We extract ab-
stract features from the channel traffic. According to the
malware’s function, the network activities generated by the
infected hosts are varied. However, despite the wide variety
of malware and attack activities, they can be summarized and
categorized in terms of traffic statistics. We summarize and
focus on the following two types of attacks.

• Single-node persistent attack. It mainly targets a specific
server for port scanning or access. For example, Trickbot
sends messages to the C&C server periodically [44].
This type of attack usually results in a large number of
connections between the infected host and the specific
server, and the connections behave similarly. At the traffic
level, it manifests itself as channel traffic containing
multiple flows inside and with similar behavior between
flows. For example, there is a greater similarity in the
inter arrival time, duration, amount of data transferred,
and ports accessed by the flows.

• Multi-node transient attack. It mainly targets many victim
hosts for malware propagation. Unlike the single-node
persistent attack, in the multi-node transient attack, the
channel traffic within the infected host consists of fewer
flows, and there is rarely similar behavior between flows.
However, there is a similar behavior between the flows
from different channels. For example, Geodo works to-
gether with a worm that uses email as an attack vector,
which obtains a large number of target email addresses
from the C&C server and sends similar emails to these
email addresses to spread malware [45]. Therefore, at
the traffic level, there is a large similarity in the amount
of data transferred, flow count, and duration between
different channels.

Since the channel traffic generated by the single-node per-
sistent attack has similar behavior among its internal flows,
the attacking intent can be characterized by the single-channel
traffic. However, the multi-node transient attack mainly man-
ifests itself as similar behavior among multiple channels.
Therefore, it is required to correlate similar channel traffic
to characterize the attacking intent.

To mine the network behavior of the multi-node transient
attack, we first extract the abstract features from the channel
traffic. We use duration, flow count, total data size, uplink data
size, and downlink data size as channel abstract features and
consider them as the overview of the channel.

3) Clustering: To discover channels with similar behavior,
we cluster the channels based on the similarity of the abstract
feature. First, we use the density-based spatial clustering of
applications with noise (DBSCAN) [46] algorithm for channel
clustering. Since attack activities are usually completed within
a specific time interval, we consider similar activities of
malicious channels to be time-limited. For this reason, we
slice the clusters based on time windows such that individual
channels of the same cluster belong to the same time window.

DBSCAN is a basic algorithm for density-based clustering.
It can discover clusters of different shapes and sizes from
a large amount of data containing noise and outliers. The
DBSCAN algorithm uses two parameters:

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

h1h1

h2h2 h5h5

h8h8

h3h3

h7h7

h4h4

h6h6

c1

c2

c3

c4

c5

channel time content

cn3 0.7405 [s31, s32, s33, s34 , s35, s36, s37]

channel time content

cn2 0.0254 [s21]

cn5 1.8803 [s51]

cn8 6.2703 [s81]

PN sequence [5,8,5,5,8,5,5]

IAT sequence [0,0,600,600,418,600,600]

SP sequence [49159,49160,49162,49163,49165,49167,49168]

DP sequence [495,27177,27177,27177,27177,27177,27177]

 cn2 cn5 cn8

PN sequence [1] [1] [1]

IAT sequence [0] [0] [0]

SP sequence [3935] [3935] [3935]

DP sequence [7156] [3010] [4724]

PN sequence [1,1,1]

IAT sequence [0,0,0]

SP sequence [3935,3935,3935]

DP sequence [7156,3010,4724]

Channel traffic

Channel sequence (Behavior sequence)

Channel sequence Behavior sequenceChannel traffic

Fig. 3. The example of behavior sequence extraction and construction from channel cluster.

• MinPts: It refers to the minimum number of points (a
threshold) needed to be clustered together for a region to
be considered dense.

• Eps: It is a distance measure that is used to locate points
in the neighborhood of any point.

The purpose of clustering in this paper is to group together
channels exhibiting similar behavior during multi-node tran-
sient attacks. If the eps is large, it will lead to both malware
and benign traffic in the same cluster. Therefore, the eps setting
should be small to ensure a single traffic label in the same
cluster. Meanwhile, the single-node persistent attack mainly
shows the high similarity within the channel and the low
similarity between different channels. Therefore, this should
be a separate cluster for each channel traffic. More details are
shown in Section V-A2.

4) Behavior Sequence Extraction and Construction: After
clustering, we extract the behavior sequences of channel
clusters to characterize the network behavior and attacking
intent, and an example of the process is shown in Fig. 3.
First, the clustering in the previous step divides the channels
into different clusters. It is worth noting that the clustering
divides all the channels into different clusters, including the
clusters containing only a single channel. Then, for each
cluster, we sort the channels by their start times. Next, we
extract sequences for each channel, including PN sequence,
IAT sequence, SP sequence, and DP sequence, and connect
each channel sequence of the same cluster to form the behavior
sequence.

For a cluster containing only one channel, the extracted
channel sequence represents the cluster behavior sequence.
And for the clusters containing multiple channels, the extracted
channel sequences are further connected in the time order of
channels to construct the behavior sequence. Regardless of
whether the clusters consist of a single channel or multiple
channels, it is evident from the example that the afore-
mentioned four types of sequences bear internal similarities.
Therefore, we consider that the above four types of sequences
can effectively reveal the attacking intent.

5) Embedding: Although the packet number, inter arrival
time, source port, and destination port are numerically repre-
sented, the raw numbers cannot better represent the channel’s
activity intent. The reasons are summarized as follows. (1)
Packet numbers exhibit significant differences. The packet

number takes values from 1 to 3203169 in the observed traffic.
Although normalization can address the problem influenced
by significant numerical differentiation, in theory, there is no
maximum value for packet numbers. This could considerably
impact the normalization results due to the data distribution
of the actual traffic. Therefore, this will directly reduce the
detection results of the model. (2) Despite the numerical
representation, the source port and destination port do not have
similar meanings between closer numbers [12]. For example,
port 80 and port 8080 indicate the same web service, though
they are far apart. However, port 22 and port 23 are closely
spaced, while port 22 is used for SSH and port 23 is used
for Telnet. Therefore, to better capture the behavior features
and activity intent within the sequence, we employ word
embedding to represent the original behavior sequence.

Word embedding has been successfully used for various
natural language processing tasks and speech processing [47].
It maps each word into a dense vector in a low-dimensional
space (50-300 dimensions). Semantically similar words are
more similar in the vector space. Word2vec is a widely used
algorithm in word embedding. The core idea of word2vec
is predicting the relationship between each word and its
contextual words. Word2vec has two algorithms, a skip-
grams algorithm and a continuous bag of words (CBOW)
algorithm [48]. In this paper, we use the CBOW algorithm
to train the word2vec model, and CBOW aims to predict a
word given its context.

In this paper, we transform four types of sequences into
embedding representations through the trained word2vec mod-
els. Each number in a sequence is considered a word, and
the whole sequence is considered a sentence. We train the
corresponding word2vec models for the PN sequences, IAT
sequences, SP sequences, and DP sequences, respectively.
Each number within the sequences is converted into a mean-
ingful numerical vector. Meanwhile, within the same type of
sequence, the output vectors have higher similarity than the
original input numbers, which addresses the issue of significant
differences in the numbers and also characterizes the intent of
the malware’s network activity.

C. Proposed MSFormer Detector
MSFormer is a model based on Transformer [43] for

malware traffic detection. Its framework is shown in Fig. 2.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

TABLE I
THE STATISTICS OF EXPERIMENTAL DATASETS.

Dataset Class
Channel Traffic Samples Number in Samples Number in Unique Source Unique Destination

Number Known Detection Unknown Detection Port Frequency Port Frequency
Benign-ALL Benign 32860 3965 32860 1.68% 0.00%

CTU-6

Zeus 6548 6548

16430
6.93% 17.21%

Emotet 2864 2864
Miuref 1286 1286

Trickbot 6314 6314
Dridex 6320 6320

Downloadguide 457 457
CTU-ALL Unknown Malware 75781 - 16430

The input of the MSFormer is behavior sequence embedding,
and the encoder module of Transformer is used to deep mine
each of the four types of sequences. It learns the relationship
between elements inside the sequences and captures the in-
ternal behavior features of the sequences. Finally, MSFormer
classifies the output sequence of the encoder based on Softmax
to achieve malware traffic detection. MSFormer consists of
input layer, encoder, and classifier.

1) Input Layer: The input of MSFormer is the behavior se-
quence embedding. In this paper, we utilize behavior sequence
extracted based on channel-level to characterize attacking
intent. The behavior sequence contains PN sequence, IAT
sequence, SP sequence, and DP sequence. Next, we use the
trained word2vec model to transform the original values of
sequence elements into word embedding, thereby forming the
behavior sequence embedding. Employing word2vec can more
deeply reveal the channel’s internal relationships.

2) Encoder: Encoder contains four sub-encoders with iden-
tical structures, each consisting of six same encoder blocks.
Encoder performs deep learning on the behavior sequence
embedding from the input layer. The encoder block consists of
two sub-layers, the multi-head attention, and the feed-forward
network. In addition, each sub-layer has an Add & Norm
module.

Multi-head attention is a module for attention mechanisms
that runs through an attention mechanism several times in
parallel. The independent attention outputs are then concate-
nated and linearly transformed into the expected dimension.
Intuitively, multi-head attention allows for attending to parts
of the sequence differently. It is defined as:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)W
o

headi = Attention(QW q
i ,KW k

i ,V W v
i)

(6)

where W o, W q
i ,W k

i and W v
i are all learnable parameter

matrices.
Next, the second sublayer is a fully connected feed-forward

network, consisting of two linear transformations with rectified
linear unit (ReLU) activation in between. It is defined as:

FFN(x) = ReLU(W1x+ b1)W2 + b2 (7)

where W1 and W2 are the weight parameters, b1 and b2 are
the bias parameters.

Add & Norm is connected after each sublayer in each
encoder block. Specifically, Add represents the residual con-
nection. It is the same as the residual connections in other
neural network models, which are used to transfer the infor-
mation deeper and enhance the fitting ability of the model.
Norm represents the normalization layer. As the network’s
layer count increases, the parameters may enlarge or exhibit
greater variances after computations across multiple layers.
This leads to anomalies in the learning process and very
slow convergence of the model. Therefore, normalization can
improve the performance of the model.

3) Classifier: The classifier converts the output sequence
into detection probabilities. First, it performs an average
pooling of the output sequence to produce a single vector that
characterizes the whole sequence. Then, this vector is mapped
to a two-dimensional vector using the linear layer. Finally,
the four vectors generated for the four types of sequence are
summed, and Softmax is used to generate detection probabil-
ities for encrypted malware traffic detection.

V. EXPERIMENT AND EVALUATION

In this section, we conduct the experiment and evaluation.
Firstly, we describe the experiment settings, including eval-
uation traffic, parameter tuning, setting of the CBSeq, and
baseline methods. We focus on evaluating the performance
of CBSeq for both known malware traffic detection and
unknown malware traffic detection. In addition, we perform
analysis on embedding and analysis on behavior sequence to
comprehensively evaluate CBSeq.

A. Experiment Settings

1) Evaluation Dataset: To perform and evaluate CBSeq, we
use a traffic capture tool to store the mirrored data from the
switches at the enterprise network offline in a traffic database
as PCAP files. In the traffic database, we randomly selected 28
local devices whose traffic data is generated by communicating
with the internet from the benign traffic dataset. The dataset
is named Benign-ALL.

In the Benign-ALL, the number of IPs communicated by
each monitoring device is shown in Fig. 4. Each device
generates traffic data with at least 302 IP addresses. Benign-
ALL includes 32860 channels, in total 45GB.

In addition, we use malware traffic captured by the malware
capture facility project [49] over the long term (2013-now) as

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 9

de
vi

ce
0

de
vi

ce
1

de
vi

ce
2

de
vi

ce
3

de
vi

ce
4

de
vi

ce
5

de
vi

ce
6

de
vi

ce
7

de
vi

ce
8

de
vi

ce
9

de
vi

ce
10

de
vi

ce
11

de
vi

ce
12

de
vi

ce
13

de
vi

ce
14

de
vi

ce
15

de
vi

ce
16

de
vi

ce
17

de
vi

ce
18

de
vi

ce
19

de
vi

ce
20

de
vi

ce
21

de
vi

ce
22

de
vi

ce
23

de
vi

ce
24

de
vi

ce
25

de
vi

ce
26

de
vi

ce
27

Local device

0

200

400

600

800

1000
Du

ra
tio

n(
m

in
ut

e)

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f c
ha

nn
el

s

Duration
Number of channels

Fig. 4. Traffic statistical distribution of the Benign-ALL, including each
device’s duration and the number of channels.

the malware traffic in our evaluation. This dataset is widely
used in the evaluation of malware traffic detection. It covers
many types of malware, such as Zeus, Cridex, Emotet, and
Trickbot. The types of attacks include DoS, brute force guess-
ing, information leakage, scanning, and C&C communication.

In this paper, we remove the benign samples from the CTU-
ALL dataset since the labels are unreliable. We select the six
malware traffic types (Zeus, Emotet, Miuref, Trickbot, Dridex,
and Downloadguide) from the malware capture facility project
that exhibit the highest number of channels to form the CTU-
6 dataset. Meanwhile, we include all other malware traffic
from the malware capture facility project to evaluate unknown
malware traffic. It comprises 328 malware traffic samples,
in total 75781 channel traffic. Table I shows the experiment
dataset statistics.

To address data imbalance, we employ undersampling
across detection tasks to keep the data balanced. Specifically,
in known malware traffic detection, we sample benign traffic
to 3965, which is the average of the number of six malware
channel traffic. In the unknown malware traffic detection,
we sample 16430 channel traffic in CTU-6 and CTU-ALL
respectively to balance with the benign traffic. To avoid
sampling bias, we repeat each experiment set ten times and
take the average value as the final evaluation result.

In addition, to ensure that both datasets share similar
distributions and to prevent overfitting, we collect traffic from
enterprise networks for benign traffic. Meanwhile, we perform
traffic preprocessing on every dataset, which includes ran-
domizing IP and MAC addresses and modifying timestamps.
Moreover, an analysis of port usage shows a significant overlap
between benign and malware traffic. The unique ports make
up less than 2% of benign traffic and 6.93% and 17.21% of
source and destination ports in malware traffic. Despite some
discrepancies resulting from malware design, the overall port
usage similarity between the two types of traffic reduces the
potential for classification bias.

2) Parameter Tuning: Parameters directly affect the per-
formance of CBSeq. Here, we introduce the selection of
main parameters, including (1) the eps of clustering, (2) the
dimensionality of embedding, and (3) the maximum sequence
length.

• The eps of clustering: We cluster channels with similar
activities together by DBSCAN, and the channels with

0 1 2 3 4 5 6 7 8 10 12
DBSCAN Eps

0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f c
ha

nn
el

 tr
af

fic

0

2500

5000

7500

10000

12500

15000

17500

20000

Nu
m

be
r o

f c
lu

st
er

s

Misclassified
channel traffic
Cluster

Fig. 5. Results on the eps of clustering.

the same cluster share the same label, whether benign
traffic or malware traffic. Our goal is to aggregate as much
similar channel traffic as possible while guaranteeing that
the traffic within each cluster shares the same label.
Therefore, we vary the eps parameter to observe the
clustering results, as illustrated in Fig. 5. We observe that
when the eps is set to 1, channels within the same cluster
possess a single label. However, we observe some channel
traffic with misclassified labels when setting a larger
eps. For instance, when eps is set to 2, the DBSCAN
cluster channel traffic into 17289 clusters. However, 173
instances of channel traffic are misclassified. Therefore,
to ensure that each cluster comprises channels with the
same label, we set the eps parameter for clustering to 1.

• The dimensionality of embedding: The dimensionality
of the embedding will directly affect the effectiveness
and efficiency of the detector. If the dimensionality is
too low, the representation capability of the word vector
is insufficient. If the dimensionality is too high, it will
easily cause overfitting and affect the detection efficiency.
For this reason, we train word vectors with different di-
mensions and evaluate them for malware traffic detection.
The experimental results are shown in Fig. 6. When the
dimension is 100, the detection of each malware traffic
can satisfy high and stable performance. Therefore, we
choose 100 as the dimension of the word vector.

• The maximum sequence length: MSFormer can train the
entire sequence to obtain a model for malware traffic
detection. However, if the entire sequence is used, it
needs to be filled to the maximum sequence length
for shorter sequences, which can affect the efficiency
of model training and detection. For this reason, we
set different maximum sequence lengths to evaluate the
effect of sequence length on malware detection. The
experimental results are shown in Fig. 7. It performs
accurately and efficiently when the sequence length is set
to 16. Therefore, we set the maximum sequence length
to 16.

3) Setting of the CBSeq: We use a grid search to determine
the parameters used in CBSeq. Specifically, in clustering, we
set the time window to 4 hours, eps of DBSCAN to 1, and
minPts to 1. In embedding, we set the dimension of embedding
to 100. In MSFormer, we set the number of blocks to 6 and the
number of headers in multi-head attention to 8. In addition,
we use the Adam algorithm with a batch size of 8 to train

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

20 40 60 80 100 120 140
Embedding size

0.90

0.92

0.94

0.96

0.98

1.00
AU

C

Zeus
Emotet
Miuref
Trickbot
Dridex
Downloadguide

(a) AUC

20 40 60 80 100 120 140
Embedding size

0.7

0.8

0.9

1.0

TP
R

Zeus
Emotet
Miuref
Trickbot
Dridex
Downloadguide

(b) TPR

20 40 60 80 100 120 140
Embedding size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

FP
R

Zeus
Emotet
Miuref
Trickbot
Dridex
Downloadguide

(c) FPR
Fig. 6. Results on the dimensionality of embedding.

5 10 15 20 25 30
Sequence length

0.95

0.96

0.97

0.98

0.99

1.00

AU
C

Zeus
Emotet
Miuref
Trickbot
Dridex
Downloadguide

(a) AUC

5 10 15 20 25 30
Sequence length

0.80

0.85

0.90

0.95

1.00
TP

R

Zeus
Emotet
Miuref
Trickbot
Dridex
Downloadguide

(b) TPR

5 10 15 20 25 30
Sequence length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

FP
R

Zeus
Emotet
Miuref
Trickbot
Dridex
Downloadguide

(c) FPR
Fig. 7. Results on the maximum sequence length.

MSFormer. Moreover, the learning rate is set to 0.00001, and
the learning epoch is set to 20. Our model is implemented
using PyTorch.

4) Beseline Methods: In order to evaluate and compare the
performance of CBSeq, we summarize the following baseline
methods:

• Joy and Joy-enhanced [10], [11]: Joy creates flow features
based on statistical analysis, byte distribution matrix,
markov chain of packet length/packet time. And then,
it uses an RF to build a classifier for malware detection.
Joy-enhanced extends the features of Joy by adding TLS
ClientHello cipher suite and extension features.

• CIC-Flow: According to the statistical-based studies [6]–
[8], CIC-Flow extracts flow statistical features related
to time [50], [51] by CICFlowmeter [52], such as time
interval, number of packets, duration, TCP flags, and uses
an RF to build a classifier for detection.

• DANTE [12]: DANTE extracts the destination port se-
quence of the channel, performs sequence embedding
using word2vec and builds an RF classifier for detection.

• TCC [35]: TCC extracts distribution features, TLS plain-
text information, and statistical features from the channel
traffic. These features are then processed using a genetic
algorithm for extraction, and an RF algorithm is used for
malware traffic detection.

5) Metrics: We evaluate all the methods based on the
true positive rate (TPR) and false positive rate (FPR). The

definitions are as follows:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

(8)

In addition, we use ROC and AUC to evaluate the general
performance of the detector. AUC is the probability that a
randomly-chosen positive example is ranked more highly than
a randomly-chosen negative example. An AUC close to 1
indicates a more effective detector, whereas an AUC of 0.5
implies random identification by the detector.

B. Encrypted Known Malware Traffic Detection

In this section, we evaluate the CBSeq’s performance un-
der encrypted known malware traffic detection, including six
malware. Specifically, for each type of malware, we train a
binary detector using the CTU-6 dataset for malware traffic
and the Benign-ALL dataset for benign traffic, which allows
us to analyze and evaluate CBSeq’s ability to detect different
malware. Moreover, we utilize the same benign traffic to
compare the detection capability across each malware type.
We also employ 5-fold cross-validation to ensure more reliable
results.

To fully explore the contribution of CBSeq, we utilize the
five baseline methods mentioned above for comparison. Note
that we use RF as the classifier for the baseline methods since
RF exhibits better detection capabilities than other machine
learning classifiers.

In this experiment, we evaluate the detection performance
of CBSeq for different malware traffic by measuring TPR,

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 11

TABLE II
RESULT ON KNOWN MALWARE TRAFFIC DETECTION.

Joy Joy-enhanced CIC-Flow DANTE TCC CBSeq
Metrics TPR FPR AUC TPR FPR AUC TPR FPR AUC TPR FPR AUC TPR FPR AUC TPR FPR AUC

Zeus 0.994 0.054 0.983 0.997 0.044 0.982 0.997 0.021 0.991 0.969 0.434 0.769 0.982 0.016 0.991 0.991 0.018 0.998
Emotet 0.880 0.006 0.961 0.959 0.005 0.981 0.889 0.002 0.957 0.896 0.062 0.920 0.904 0.015 0.988 0.981 0.010 0.996
Miuref 0.964 0.056 0.967 0.964 0.049 0.970 0.988 0.041 0.978 0.779 0.079 0.862 0.918 0.053 0.971 0.964 0.044 0.981

Trickbot 0.944 0.027 0.968 0.954 0.027 0.973 0.978 0.017 0.988 0.897 0.050 0.942 0.926 0.011 0.963 0.958 0.010 0.997
Dridex 0.902 0.016 0.964 0.917 0.017 0.963 0.973 0.025 0.980 0.932 0.064 0.947 0.937 0.011 0.989 0.956 0.007 0.992

Downloadguide 0.920 0.003 0.959 0.868 0.002 0.946 0.972 0.021 0.984 0.989 0.048 0.992 0.891 0.010 0.973 0.989 0.005 0.999

Average 0.934 0.027 0.967 0.943 0.024 0.969 0.966 0.021 0.980 0.910 0.123 0.905 0.926 0.019 0.979 0.973 0.016 0.994
*Bold indicates the best value compared to other baseline methods.

FPR, and AUC. Table II illustrates the results. We find that
CBSeq can perform better in detecting all six types of malware
traffic, with their AUC reaching between 0.981 and 0.999. In
all the detections, the TPR values are above 0.95, and the FPR
values are below 0.05. Moreover, the detection performance
of CBSeq is closely related to the network behavior of the
malware. For example, Miuref, which has the highest FPR
in our results, involves advertisement click fraud in its attack
process. Miuref simulates user behavior on infected devices,
clicking on advertisements to generate revenue from adver-
tisers. This behavior closely resembles benign traffic, leading
to a higher FPR. In general, CBSeq is effective at detecting
malware traffic. Compared to other baseline methods, CBSeq
achieves higher AUC for all malware traffic, lower FPR for
five malware traffic, and higher TPR for two malware traffic.

In terms of Joy and Joy-enhanced, Joy achieves a TPR
of above 0.95 for only two malware and an FPR of below
0.05 for four malware. Joy does not achieve a TPR above
0.95 and an FPR below 0.05 for any malware. Joy-enhanced
achieves a TPR above 0.95 for four types of malware traffic
and an FPR below 0.05 for six types of malware traffic. We
observe that Joy-enhanced has better detection capability than
Joy. However, Joy-enhanced does not have a more significant
improvement because our dataset contains a large amount of
other protocol traffic in addition to TLS traffic, especially
malware traffic, which only accounts for a minority of TLS
connections. Therefore, Joy-enhanced is unable to extract TLS
fingerprint information from traffic using other protocols, such
as HTTP.

In terms of CIC-Flow, we find that it outperforms Joy and
Joy-enhanced. In CIC-Flow detection, only Emotet has a TPR
below 0.95, while all other malware meets more than 0.95 of
TPR and less than 0.05 of FPR. In addition, Zeus, Miuref,
Trickbot, and Dridex achieve the highest TPR, and Miuref
reaches the lowest FPR in comparing all methods.

In terms of DANTE, only Downloadguide’s detection ca-
pability meets more than 0.95 of TPR and less than 0.05
of FPR. The detection FPR for Zeus traffic exceeds 0.434,
and the TPRs for three types of malware traffic are below
0.9. Therefore, the destination port sequence only achieves
effective detection for specific malware. It cannot effectively
detect general malware traffic.

In terms of TCC, out of the six types of malware traffic,

only Zeus achieves a TPR exceeding 0.95. Aside from Miuref,
the FPRs for detecting the other five types of malware traffic
are less than 0.05. Therefore, only Zeus could satisfy the TPR
above 0.95 and FPR below 0.05. Moreover, similar to Joy-
enhanced, TCC also uses plaintext content from the TLS as a
feature, which hinders these methods from maintaining high
accuracy rates in detecting traffic from other protocols.

The experimental results conclusively demonstrate the ef-
fectiveness of CBSeq in encrypted known malware traffic
detection.

C. Encrypted Unknown Malware Traffic Detection

In this section, we evaluate the performance of CBSeq
in encrypted unknown malware traffic detection by detecting
malware traffic in CTU-ALL. We train a binary classifier
using the CTU-6 dataset and 50% of Benign-ALL dataset and
utilize this detector to identify malware traffic in the CTU-
ALL dataset and benign traffic in another 50% of Benign-
ALL dataset. Note that the detector’s task is to distinguish
whether the traffic is malicious or not, rather than identifying
the specific type of malware.

Meanwhile, we train a binary classifier for detecting known
malware traffic, utilizing the CTU-6 and Benign-ALL datasets.
The detection results from this process are considered the
theoretical upper limit for detecting unknown malware traffic.
In order to more closely match the actual environment, when
dividing the training and test sets in Benign-ALL, the traffic
of the same channel can only exist in the training set or only
in the test set.

To evaluate CBSeq’s performance, we compare it to Joy-
enhanced, CIC-Flow, and TCC, which are known to be more
effective at detecting known malware traffic. Fig. 8 shows
the ROC curves and AUC values for their detection. Since
our experiments could not be applied to cross-validation, we
randomly sample the test set and repeat it ten times to obtain
more reliable detection results.

CBSeq achieves an AUC value of 0.984 for known mal-
ware traffic detection and 0.889 for unknown malware traffic
detection. It indicates that CBSeq achieves effective detection
in closed known malware traffic detection and maintains the
AUC value above 0.88 in unknown malware traffic detection.
Compared with the baseline methods, CBSeq improves the
AUC value by 0.160 for unknown malware traffic detection.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Known Detection Mean ROC
(AUC = 0.955 ± 0.002)
Unknown Detection Mean ROC
(AUC = 0.676 ± 0.024)
random
± 1 std. dev.

(a) Joy-enhanced

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Known Detection Mean ROC
(AUC = 0.980 ± 0.002)
Unknown Detection Mean ROC
(AUC = 0.625 ± 0.047)
random
± 1 std. dev.

(b) CIC-Flow

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Known Detection Mean ROC
(AUC = 0.961 ± 0.001)
Unknown Detection Mean ROC
(AUC = 0.729 ± 0.008)
random
± 1 std. dev.

(c) TCC

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Known Detection Mean ROC
(AUC = 0.984 ± 0.001)
Unknown Detection Mean ROC
(AUC = 0.889 ± 0.009)
random
± 1 std. dev.

(d) CBSeq
Fig. 8. The ROC curves and the AUC values of CBSeq and baseline methods under unknown malware traffic detection.

Training dataset
 PN value

0.0

0.2

0.4

0.6

0.8

1.0

Training dataset
 PN embedding

0.0

0.2

0.4

0.6

0.8

1.0

Test dataset
 PN value

0.0

0.2

0.4

0.6

0.8

1.0

Test dataset
 PN embedding

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 9. The comparison results of embedding in PN sequence.

For Joy-enhanced, we observe that it has an AUC value of
0.955 for known detection. However, there is a large amount of
unknown malware traffic in the real world that is not present in
the training set, which will result in lower performance of the
detector. With unknown malware detection, the Joy-enhanced
detector only achieves an AUC of 0.676.

In terms of CIC-Flow, it can achieve the AUC value of 0.980
for known malware detection while only 0.625 for unknown
malware detection. It can be seen that the features extracted by
Joy-enhanced and CIC are only applicable to known malware
detection in the closed environment. They cannot effectively
characterize unknown malware traffic.

In terms of TCC, it achieves an AUC of 0.961 for known
malware traffic detection and 0.729 for unknown malware
traffic detection. Moreover, we observe that TCC conducts
statistical analysis at the channel granularity, which performs
better than Joy-enhanced and CIC at the traditional flow
granularity. However, CBSeq has a higher AUC than TCC
by 0.160. It validates that the behavior sequence proposed by
CBSeq in this paper is more stable in unknown malware traffic
detection.

The experimental results conclusively demonstrate the effec-
tiveness of CBSeq in encrypted unknown malware detection.

D. Analysis on Embedding

In this section, we analyze the behavior sequence em-
bedding proposed by CBSeq, which employs word2vec to
convert the original behavior sequence. To train the word2vec
model, we utilize a variety of long-term collected public traffic
datasets. These datasets include the WIDE Project backbone
traffic (from 2013 to now) [53], malware-traffic-analysis.net

Training dataset
 IAT value

0.0

0.2

0.4

0.6

0.8

1.0

Training dataset
 IAT embedding

0.0

0.2

0.4

0.6

0.8

1.0

Test dataset
 IAT value

0.0

0.2

0.4

0.6

0.8

1.0

Test dataset
 IAT embedding

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 10. The comparison results of embedding in IAT sequence.

0.0 0.2 0.4 0.6 0.8 1.0
TSNE-1

0.0

0.2

0.4

0.6

0.8

1.0

TS
NE

-2

Word Embedding Space

(a) Global

0.98020.98370.98720.99070.99420.9977
TSNE-1

0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630

TS
NE

-2

58999

58924

58958

58910

58988

59022

58904
58914

5889858901

58981

59014

5894658940

59006
58997
58983

Word Embedding Space

(b) Local
Fig. 11. The TSNE visualization of embedding in SP sequence. The picture
on the right is a local enlargement on the left.

0.0 0.2 0.4 0.6 0.8 1.0
TSNE-1

0.0

0.2

0.4

0.6

0.8

1.0

TS
NE

-2

Word Embedding Space

(a) Global

0.980 0.982 0.984 0.986 0.988 0.990
TSNE-1

0.610

0.615

0.620

0.625

0.630

0.635

0.640

TS
NE

-2

53

17788
53551900

5353
547

80443
8080

8000

Word Embedding Space

(b) Local
Fig. 12. The TSNE visualization of embedding in DP sequence. The picture
on the right is a local enlargement of the left.

(from 2013 to now) [54]. These datasets contain authentic and
diverse network activities and malicious attacks, providing a
large-scale and diversified traffic pool. Moreover, to ensure
comprehensive training and representation of various types of
traffic, we implement the undersampling for data balancing,
obtaining improved results.

Fig. 9 and Fig. 10 show the comparison of the original

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 13

TABLE III
RESULT OF ANALYSIS ON BEHAVIOR SEQUENCE.

Zeus Emotet Miuref Trickbot Dridex Downloadguide
Metrics TPR FPR AUC TPR FPR AUC TPR FPR AUC TPR FPR AUC TPR FPR AUC TPR FPR AUC

PN Sequence 0.996 0.479 0.872 0.330 0.001 0.951 0.741 0.077 0.925 0.460 0.0 0.948 0.863 0.0 0.975 0.966 0.0 0.999
IAT Sequence 0.970 0.131 0.956 0.708 0.034 0.935 0.829 0.185 0.871 0.383 0.040 0.873 0.643 0.107 0.866 0.315 0.019 0.868

SP Sequence 0.979 0.049 0.994 0.689 0.013 0.976 0.596 0.114 0.859 0.732 0.019 0.941 0.751 0.014 0.959 0.730 0.0 0.961

DP Sequence 0.979 0.676 0.764 0.774 0.044 0.898 0.438 0.117 0.707 0.739 0.046 0.895 0.651 0.096 0.834 0.337 0.012 0.806

No PN Sequence 0.994 0.041 0.998 0.943 0.012 0.989 0.849 0.097 0.951 0.920 0.073 0.979 0.928 0.026 0.984 0.910 0.004 0.997

No IAT Sequence 0.989 0.044 0.998 0.962 0.005 0.996 0.920 0.154 0.959 0.973 0.035 0.997 0.948 0.018 0.988 0.978 0.0 1.0

No SP Sequence 0.988 0.099 0.983 0.877 0.023 0.989 0.922 0.074 0.968 0.908 0.032 0.985 0.908 0.010 0.984 0.966 0.0 0.999

No DP Sequence 0.988 0.027 0.997 0.906 0.006 0.994 0.962 0.098 0.980 0.950 0.020 0.995 0.944 0.006 0.991 1.0 0.0 1.0

*Bold denotes values that meet TPR>0.95, FPR<0.05, and AUC>0.98 in PN/IAT/SP/DP Sequence.
*Underline denotes values that don’t meet TPR>0.95, FPR<0.05 and AUC>0.98 in No PN/IAT/SP/DP Sequence.

values and embeddings within the PN sequence and IAT
sequence. We first apply the PCA algorithm to reduce both the
original values and embeddings to one dimension, followed by
a box plot to visualize the data distribution. We observe that
there are more outliers in the PN value and IAT value, and
the distribution range of the test dataset and training dataset is
inconsistent, which will directly affect the detection effect of
the model. The embedding process leads to the training and
test datasets having the same distribution, and it significantly
reduces the number of outliers. Therefore, embedding can
solve the problem of large data differentiation.

Fig. 11 and Fig. 12 show the TSNE visualization of the
port embedding within the SP sequence and the DP sequence.
We observe that the embedding distributions of both SP and
DP are uniform, and there are no outliers. In SP embedding,
ports with similar values are embedded at similar distances
because the attacking channels usually access the specified
server through multiple continuous ports. Moreover, port num-
bers with the same service are closer in DP embedding.
For example, ports 443, 80, and 8080 are usually found in
web services, so they are closer in embedding space. Thus,
embedding can correlate behavior connections between port
numbers to characterize the channel’s activity behavior.

Through our analysis of the embedding, we observe that it
effectively addresses the issue of large data differentiation and
can correlate sequence behavior intent.

E. Analysis on Behavior Sequence

In this section, we analyze four sequences proposed in
CBSeq: PN sequence, IAT sequence, SP sequence, and DP
sequence. First, we evaluate the importance of each sequence
for malware detection using a single sequence. Second, by
removing one sequence at a time, we evaluate the interactions
between the remaining three sequences. The experimental
results are shown in Table III.

We observe that each of the four sequences characterizes
malware traffic at different levels. They show different advan-
tages for different malware. For example, the PN sequence
can better characterize the Downloadguide, but it has too high
FPR for Zeus and too low TPR for Emotet and Trickbot.

Next, we remove a specific sequence for the behavior
sequence. We observe that removing any of the sequences
degrades the detection performance to varying degrees. There-
fore, there is no redundant relationship among the four se-
quences. Using the four sequences together to construct the
behavior sequence can better mine the attacking intent.

VI. CONCLUSION

In this paper, we present a method to detect malware
traffic from a large amount of complex benign traffic. The
approach provides a behavior sequence and designs a detector
for known and unknown malware traffic detection. It is cross-
protocol, robust, and capable of discovering unknown attacks.
By evaluating CBSeq, it can detect different known malware
traffic and unknown malware traffic. Moreover, we compare
CBSeq with other baseline methods, demonstrating the best
performance.

In future work, we plan to design an algorithm to mea-
sure the similarity between channel activities, aggregating
behaviorally associated channels based on similarity scores. In
addition, we will improve MSFormer by learning the relative
positions of elements inside the behavior sequence. Moreover,
we aim to extend our work to encompass malware behavior
beyond network traffic, including intranet lateral movement,
boot survival, and privilege escalation. This can potentially be
achieved by integrating an endpoint-deployed IDS with our
existing system to detect and analyze malicious activities more
comprehensively.

REFERENCES

[1] X. Li, B. A. Azad, A. Rahmati, and N. Nikiforakis, “Good bot, bad bot:
Characterizing automated browsing activity,” in 2021 IEEE Symposium
on Security and Privacy (SP), 2021, pp. 1589–1605.

[2] M. Shen, Y. Liu, L. Zhu, X. Du, and J. Hu, “Fine-grained webpage
fingerprinting using only packet length information of encrypted traffic,”
IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 2046–2059, 2021.

[3] M. Shen, M. Wei, L. Zhu, and M. Wang, “Classification of encrypted
traffic with second-order markov chains and application attribute bi-
grams,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 8, pp. 1830–1843,
2017.

[4] K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, and M. Xu, “A
survey on machine learning techniques for cyber security in the last
decade,” IEEE Access, vol. 8, pp. 222 310–222 354, 2020.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 14

[5] M. E. Zadeh Nojoo Kambar, A. Esmaeilzadeh, Y. Kim, and K. Taghva,
“A survey on mobile malware detection methods using machine learn-
ing,” in 2022 IEEE 12th Annual Computing and Communication Work-
shop and Conference (CCWC), 2022, pp. 0215–0221.

[6] A. C. Vega, I. S. Crespo-Martı́nez, Á. M. G. Higueras, and C. F. Llamas,
“Flow-data gathering using netflow sensors for fitting malicious-traffic
detection models,” Sensors, vol. 20, no. 24, p. 7294, 2020.

[7] M. Gohari, S. Hashemi, and L. Abdi, “Android malware detection and
classification based on network traffic using deep learning,” in 2021 7th
International Conference on Web Research (ICWR), 2021, pp. 71–77.

[8] A.-H. Vu, M.-Q. Nguyen-Khac, X.-T. Do, and K.-H. Le, A Real-Time
Evaluation Framework For Machine Learning-Based IDS. Cham:
Springer International Publishing, 2022, pp. 317–329.

[9] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
25th Annual Network and Distributed System Security Symposium, NDSS
2018, San Diego, California, USA, February 18-21, 2018. The Internet
Society, 2018.

[10] B. Anderson and D. A. McGrew, “Machine learning for encrypted
malware traffic classification: Accounting for noisy labels and non-
stationarity,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Halifax, NS,
Canada, August 13 - 17, 2017. ACM, 2017, pp. 1723–1732.

[11] D. A. McGrew and B. Anderson, “Enhanced telemetry for encrypted
threat analytics,” in 24th IEEE International Conference on Network
Protocols, ICNP 2016, Singapore, November 8-11, 2016. IEEE
Computer Society, 2016, pp. 1–6.

[12] D. Cohen, Y. Mirsky, M. Kamp, T. Martin, Y. Elovici, R. Puzis, and
A. Shabtai, “DANTE: A framework for mining and monitoring darknet
traffic,” in Computer Security - ESORICS 2020 - 25th European Sym-
posium on Research in Computer Security, ESORICS 2020, Guildford,
UK, September 14-18, 2020, Proceedings, Part I, ser. Lecture Notes in
Computer Science, L. Chen, N. Li, K. Liang, and S. A. Schneider, Eds.,
vol. 12308. Springer, 2020, pp. 88–109.

[13] O. Roques, S. Maffeis, and M. Cova, “Detecting malware in tls traffic,”
in The IEEE Conference on Local Computer Networks 30th Anniversary
(LCN’05), 2019.

[14] R. Dai, C. Gao, B. Lang, L. Yang, H. Liu, and S. Chen, “SSL malicious
traffic detection based on multi-view features,” in ICCNS 2019: The
9th International Conference on Communication and Network Security,
Chongqing, China, November 15-17, 2019. ACM, 2019, pp. 40–46.

[15] W. Lee and S. Jin, “Encrypted malware traffic detection using tls features
and random forest,” in Computational and Experimental Simulations
in Engineering, S. N. Atluri and I. Vušanović, Eds. Cham: Springer
International Publishing, 2021, pp. 85–100.

[16] I. Torroledo, L. D. Camacho, and A. C. Bahnsen, “Hunting malicious
TLS certificates with deep neural networks,” in Proceedings of the
11th ACM Workshop on Artificial Intelligence and Security, CCS 2018,
Toronto, ON, Canada, October 19, 2018, S. Afroz, B. Biggio, Y. Elovici,
D. Freeman, and A. Shabtai, Eds. ACM, 2018, pp. 64–73.

[17] C. Zhao, S. Li, X. Wu, W. Han, Z. Tian, and M. Chen, “A novel malware
encrypted traffic detection framework based on ensemble learning,” in
Sixth IEEE International Conference on Data Science in Cyberspace,
DSC 2021, Shenzhen, China, October 9-11, 2021. IEEE, 2021, pp.
614–620.

[18] B. Anderson, S. Paul, and D. A. McGrew, “Deciphering malware’s use
of TLS (without decryption),” J. Comput. Virol. Hacking Tech., vol. 14,
no. 3, pp. 195–211, 2018.

[19] B. Anderson and D. A. McGrew, “Identifying encrypted malware
traffic with contextual flow data,” in Proceedings of the 2016 ACM
Workshop on Artificial Intelligence and Security, AISec@CCS 2016,
Vienna, Austria, October 28, 2016, D. M. Freeman, A. Mitrokotsa, and
A. Sinha, Eds. ACM, 2016, pp. 35–46.

[20] T. S. Gopal, M. Meerolla, G. Jyostna, P. R. L. Eswari, and E. Magesh,
“Mitigating mirai malware spreading in iot environment,” in 2018
International Conference on Advances in Computing, Communications
and Informatics (ICACCI). IEEE, 2018, pp. 2226–2230.

[21] S. Garcia, “Modelling the network behaviour of malware to block
malicious patterns. the stratosphere project: a behavioural ips,” Virus
Bulletin, pp. 1–8, 2015.

[22] D. Arp, F. Yamaguchi, and K. Rieck, “Torben: A practical side-channel
attack for deanonymizing tor communication,” in Proceedings of the
10th ACM Symposium on Information, Computer and Communications
Security, 2015, pp. 597–602.

[23] A. Gupta and L. S. Sharma, “A categorical survey of state-of-the-art
intrusion detection system-Snort,” Int. J. Inf. Comput. Secur., vol. 13,
no. 3/4, pp. 337–356, 2020.

[24] Z. Chiba, N. Abghour, K. Moussaid, A. E. Omri, and M. Rida, “Newest
collaborative and hybrid network intrusion detection framework based
on suricata and isolation forest algorithm,” in Proceedings of the
4th International Conference on Smart City Applications, SCA 2019,
Casablanca, Morocco, October 02-04, 2019. ACM, 2019, pp. 77:1–
77:11.

[25] C. Dong, Z. Lu, Z. Cui, B. Liu, and K. Chen, “Mbtree: Detecting
encryption rats communication using malicious behavior tree,” IEEE
Trans. Inf. Forensics Secur., vol. 16, pp. 3589–3603, 2021.

[26] M. Masdari and H. Khezri, “A survey and taxonomy of the fuzzy
signature-based intrusion detection systems,” Appl. Soft Comput.,
vol. 92, p. 106301, 2020.

[27] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: techniques, datasets and challenges,”
Cybersecur., vol. 2, no. 1, p. 20.

[28] D. F. Isingizwe, M. Wang, W. Liu, D. Wang, T. Wu, and J. Li, “Analyzing
learning-based encrypted malware traffic classification with automl,”
in 21st International Conference on Communication Technology, ICCT
2021, Tianjin, China, October 13-16, 2021. IEEE, 2021, pp. 313–322.

[29] N. A. Azeez, T. M. Bada, S. Misra, A. Adewumi, C. Van der Vyver,
and R. Ahuja, “Intrusion detection and prevention systems: An updated
review,” in Data Management, Analytics and Innovation, N. Sharma,
A. Chakrabarti, and V. E. Balas, Eds. Singapore: Springer Singapore,
2020, pp. 685–696.

[30] S. Applebaum, T. Gaber, and A. Ahmed, “Signature-based and machine-
learning-based web application firewalls: A short survey,” in Fifth In-
ternational Conference On Arabic Computational Linguistics, ACLING
2021, June 4-5, 2021, Virtual Event, ser. Procedia Computer Science,
K. Shaalan and S. R. El-Beltagy, Eds., vol. 189. Elsevier, 2021, pp.
359–367.

[31] Y. Otoum and A. Nayak, “AS-IDS: anomaly and signature based IDS
for the internet of things,” J. Netw. Syst. Manag., vol. 29, no. 3, p. 23,
2021.

[32] N. F. Firoz, M. T. Arefin, and M. R. Uddin, “Performance optimization
of layered signature based intrusion detection system using snort,” in
Cyber Security and Computer Science, T. Bhuiyan, M. M. Rahman, and
M. A. Ali, Eds. Cham: Springer International Publishing, 2020, pp.
14–27.

[33] O. Bader, A. Lichy, C. Hajaj, R. Dubin, and A. Dvir, “Maldist:
From encrypted traffic classification to malware traffic detection and
classification,” in 2022 IEEE 19th Annual Consumer Communications
& Networking Conference (CCNC). IEEE, 2022, pp. 527–533.

[34] Z. Niu, J. Xue, D. Qu, Y. Wang, J. Zheng, and H. Zhu, “A novel approach
based on adaptive online analysis of encrypted traffic for identifying
malware in iiot,” Information Sciences, vol. 601, pp. 162–174, 2022.

[35] Y. Fang, K. Li, R. Zheng, S. Liao, and Y. Wang, “A communication-
channel-based method for detecting deeply camouflaged malicious traf-
fic,” Computer Networks, vol. 197, p. 108297, 2021.

[36] D. Han, Z. Wang, Y. Zhong, W. Chen, J. Yang, S. Lu, X. Shi, and X. Yin,
“Evaluating and improving adversarial robustness of machine learning-
based network intrusion detectors,” IEEE J. Sel. Areas Commun., vol. 39,
no. 8, pp. 2632–2647, 2021.

[37] G. Andresini, F. Pendlebury, F. Pierazzi, C. Loglisci, A. Appice, and
L. Cavallaro, “INSOMNIA: towards concept-drift robustness in network
intrusion detection,” in AISec@CCS 2021: Proceedings of the 14th ACM
Workshop on Artificial Intelligence and Security, Virtual Event, Republic
of Korea, 15 November 2021, N. Carlini, A. Demontis, and Y. Chen,
Eds. ACM, 2021, pp. 111–122.

[38] T. van Ede, R. Bortolameotti, A. Continella, J. Ren, D. J. Dubois,
M. Lindorfer, D. R. Choffnes, M. van Steen, and A. Peter, “Flowprint:
Semi-supervised mobile-app fingerprinting on encrypted network traf-
fic,” in 27th Annual Network and Distributed System Security Sympo-
sium, NDSS 2020, San Diego, California, USA, February 23-26, 2020.
The Internet Society, 2020.

[39] H. Krawczyk and H. Wee, “The OPTLS protocol and TLS 1.3,” in
IEEE European Symposium on Security and Privacy, EuroS&P 2016,
Saarbrücken, Germany, March 21-24, 2016. IEEE, 2016, pp. 81–96.

[40] A. Dainotti, A. Pescapè, and K. C. Claffy, “Issues and future directions
in traffic classification,” IEEE Netw., vol. 26, no. 1, pp. 35–40, 2012.

[41] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, “Accurate decentralized
application identification via encrypted traffic analysis using graph
neural networks,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 2367–
2380, 2021.

[42] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models
of visual attention,” in Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, Z. Ghahramani,

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 15

M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.,
2014, pp. 2204–2212.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,
R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp. 5998–
6008.

[44] Z. Gittins and M. Soltys, “Malware persistence mechanisms,” in
Knowledge-Based and Intelligent Information & Engineering Systems:
Proceedings of the 24th International Conference KES-2020, Vir-
tual Event, 16-18 September 2020, ser. Procedia Computer Science,
M. Cristani, C. Toro, C. Zanni-Merk, R. J. Howlett, and L. C. Jain,
Eds., vol. 176. Elsevier, 2020, pp. 88–97.

[45] S. Kuraku and D. Kalla, “Emotet malware—a banking credentials
stealer,” Iosr J. Comput. Eng, vol. 22, pp. 31–41, 2020.

[46] K. Khan, S. ur Rehman, K. Aziz, S. Fong, S. Sarasvady, and A. Vishwa,
“DBSCAN: past, present and future,” in The Fifth International Confer-
ence on the Applications of Digital Information and Web Technologies,
ICADIWT 2014, Chennai, India, February 17-19, 2014. IEEE, 2014,
pp. 232–238.

[47] F. Almeida and G. Xexéo, “Word embeddings: A survey,” CoRR, vol.
abs/1901.09069, 2019.

[48] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference on
Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2013.

[49] Stratosphere, “Stratosphere laboratory datasets,” 2015, retrieved March
13, 2020, from https://www.stratosphereips.org/datasets-overview.

[50] A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of tor traffic using time based features,” in Proceedings
of the 3rd International Conference on Information Systems Security and
Privacy, ICISSP 2017, Porto, Portugal, February 19-21, 2017, P. Mori,
S. Furnell, and O. Camp, Eds. SciTePress, 2017, pp. 253–262.

[51] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and VPN traffic using time-related fea-
tures,” in Proceedings of the 2nd International Conference on Informa-
tion Systems Security and Privacy, ICISSP 2016, Rome, Italy, February
19-21, 2016, O. Camp, S. Furnell, and P. Mori, Eds. SciTePress, 2016,
pp. 407–414.

[52] A. H. Lashkari, Y. Zang, G. Owhuo, M. Mamun, and G. Gil, “Ci-
cflowmeter,” 2017.

[53] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at the WIDE
project,” in 2000 USENIX Annual Technical Conference (USENIX ATC
00). San Diego, CA: USENIX Association, Jun. 2000.

[54] B. Duncan, “Malware traffic analysis.” [Online]. Available: http:
//malware-traffic-analysis.net

https://www.stratosphereips.org/datasets-overview
http://malware-traffic-analysis.net
http://malware-traffic-analysis.net

	Introduction
	Related Work
	Signature-based Detection
	Statistics-based Detection
	Field-specific Detection

	Preliminaries
	Traffic Granularity
	Problem Definition
	Self-Attention Mechanism

	Method
	Core Idea
	Behavior Sequence Construction
	Channel Traffic Aggregation
	Channel Abstract Features Extraction
	Clustering
	Behavior Sequence Extraction and Construction
	Embedding

	Proposed MSFormer Detector
	Input Layer
	Encoder
	Classifier

	Experiment and Evaluation
	Experiment Settings
	Evaluation Dataset
	Parameter Tuning
	Setting of the CBSeq
	Beseline Methods
	Metrics

	Encrypted Known Malware Traffic Detection
	Encrypted Unknown Malware Traffic Detection
	Analysis on Embedding
	Analysis on Behavior Sequence

	Conclusion
	References

