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ReLoc: A Restoration-Assisted Framework for
Robust Image Tampering Localization

Peiyu Zhuang, Haodong Li, Rui Yang, Jiwu Huang,

Abstract—With the spread of tampered images, locating the
tampered regions in digital images has drawn increasing atten-
tion. The existing image tampering localization methods, however,
suffer from severe performance degradation when the tampered
images are subjected to some post-processing, as the tampering
traces would be distorted by the post-processing operations. The
poor robustness against post-processing has become a bottleneck
for the practical applications of image tampering localization
techniques. In order to address this issue, this paper proposes
a novel restoration-assisted framework for image tampering
localization (ReLoc). The ReLoc framework mainly consists of an
image restoration module and a tampering localization module.
The key idea of ReLoc is to use the restoration module to recover
a high-quality counterpart of the distorted tampered image,
such that the distorted tampering traces can be re-enhanced,
facilitating the tampering localization module to identify the
tampered regions. To achieve this, the restoration module is
optimized not only with the conventional constraints on image vi-
sual quality, but also with a forensics-oriented objective function.
Furthermore, the restoration module and the localization module
are trained alternately, which can stabilize the training process
and is beneficial for improving the performance. The proposed
framework is evaluated by fighting against JPEG compression,
the most commonly used post-processing. Extensive experimental
results show that ReLoc can significantly improve the robustness
against JPEG compression. The restoration module in a well-
trained ReLoc model is transferable. Namely, it is still effective
when being directly deployed with another tampering localization
module.

Index Terms—Image forensics, tampering localization, image
restoration, robustness against post-processing

I. INTRODUCTION

AS an important carrier of information transmission, dig-
ital images appear widely in our daily life. With the de-

velopment of image processing technology, people can easily
create realistic tampered images by using various image edit-
ing software. Once the tampered images are used for malicious
purposes, such as forging certificates, creating rumors, etc., it
is bound to result in a series of negative impacts. Therefore,
in order to prevent the abuse of tampered images, it is of great
significance to identify tampered images.

In recent years, many forensic methods have been proposed
to detect tampered images and further localize the tampered

Corresponding author: Haodong Li.
P. Zhuang, H. Li, and J. Huang are with the Guangdong Key Laboratory of

Intelligent Information Processing and Shenzhen Key Laboratory of Media
Security, Shenzhen University, Shenzhen 518060, China; and also with
the Shenzhen Institute of Artificial Intelligence and Robotics for Society,
Shenzhen 518060, China. (email: 1800261051@email.szu.edu.cn; lihaodong,
jwhuang@szu.edu.cn)

R. Yang is with the Alibaba Group, Hanzhou 311121, China. (email:
duming.yr@alibaba-inc.com)

Model #1

Plain forgery Prediction

(a)

Distorted forgery

(b) Model #1

Prediction

Model #2

Distorted forgery

(c)

Prediction

Localization 
module

Distorted forgery

(d)

ReLoc

Restoration
module

Prediction

Fig. 1. Tampering localization results in different situations. The localization
model #1 was trained with plain tampered images, model #2 was fine-tuned
with distorted images based on model #1, and the localization module in
ReLoc was fine-tuned with restored images.

regions [1], [2]. The technological paradigms of these methods
have shown a trend from relying on hand-crafted features [3]–
[5] to utilizing deep learning techniques [6]–[18]. Nowadays,
the deep learning (DL)-based forensic methods usually achieve
much better performance than the conventional ones. For one
thing, this can be attributed to the use of some effective
network architectures, such as fully convolutional network
[19], U-Net [20], faster R-CNN [21], mask-RCNN [22] and
ViT [23]. For another thing, the combination of deep learning
and domain knowledge in forensics also plays an important
role [24], [25].

Although the existing tampering localization methods can
achieve good performance on some datasets in laboratorial
evaluations, in practical applications they suffer from severe
performance degradation when the tampered images are sub-
jected to a series of post-processing operations, such as JPEG
compression, blurring, scaling, etc. Because post-processing
would seriously distort the tampering traces. For concise-
ness, hereinafter we refer the tampered images without post-
processing as plain images and the post-processed counterparts
as distorted images. The phenomenon mentioned above can
be intuitively interpreted with Fig. 1. Generally, a tampering
localization model is trained with a set of plain images.
The model works well if the investigated image is a plain
forgery (Fig. 1-a). However, if a distorted tampered image
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is fed to the model, the tampered regions are likely failed
to be identified (Fig. 1-b). As a result, post-processing has
become a stumbling stone for the practical applications of
image tampering localization.

In order to improve the robustness against post-processing,
some recent works have tried to introduce distorted images in
the training phase. Rao et al. [26] proposed to learn robust
features from JPEG proxy images. They employed a JPEG
proxy network to simulate the process of JPEG compression
and produce JPEG proxy images. The proxy images were then
used to train the localization model. To obtain a robust model
against online social networks (OSN), Wu et al. [10] firstly
simulated the noise introduced by OSN and then introduce the
noise into the training images to generate distorted images.
However, since the tampering traces have been distorted by
post-processing, it is difficult to learn discriminative features.
As shown in Fig. 1-c, even though the localization network
was fine-tuned directly with distorted images, the tampered
regions cannot be well detected.

Different from the existing approaches, this paper tries to
improve the robustness against post-processing from a novel
perspective. Our key idea is that, once the tampering traces
distorted by post-processing can be recovered or re-enhanced,
it is able to learn effective representations for tampering
localization. To this end, we propose a restoration-assisted
framework for robust image tampering localization (ReLoc).
ReLoc is a hybrid framework that cascades a restoration
module and a localization module (Fig. 1-d). The restora-
tion module aims to re-enhancing the distorted tampering
traces and recovering a high-quality counterpart from the
distorted image. The localization module takes the restored
images as input, so that the subtle tampering traces would
be captured more efficiently. We utilize a pixel-level loss,
an image-level loss, and a forensics-oriented localization loss
to train the restoration module. In this way, the restoration
module is jointly constrained by image visual quality and
tampering localization efficacy. We also propose to optimize
the restoration and localization modules in an alternate way,
which can make the training process more stable and achieve
better performance. To evaluate the effectiveness of ReLoc, we
consider a typical case on handling against JPEG compression,
which is one of the most commonly used post-processing
operations. The extensive experiments involving three tamper-
ing localization methods on three different datasets show that
ReLoc can significantly improve the robustness against JPEG
compression, regardless of whether the compression quality
is fixed or changeable. Another merit of ReLoc is that the
restoration module in a well-trained model is transferable,
meaning that it can be directly deployed with another lo-
calization module for improving the robustness of tampering
localization.

The main contributions of this work are as follows.
• We propose a new idea to improve the robustness of

tampering localization against post-processing. That is, to
restore the distorted image before performing tampering
localization. Based on this idea, we propose a restoration-
assisted tampering localization framework (ReLoc). By
utilizing the restoration module, the distorted tampering

traces can be recovered to some extent, so that the
tampering localization module can capture tampering
traces more efficiently. Consequently, the robustness will
be improved. To our best knowledge, this is the first work
to utilize image restoration to achieve robust tampering
localization.

• We design a training schema for ReLoc that is tailored
for image tampering localization. To train the restoration
module, in addition to considering image visual quality,
we also include a forensics-oriented loss for ensuring
tampering localization performance. To make the training
process stable, we optimize the restoration and localiza-
tion modules in an alternate way. The experimental results
show that the proposed method can effectively improve
the robustness against post-processing.

• We provide a plug-and-play restoration module for robust
tampering localization via introducing the ReLoc frame-
work. We experimentally validate that the restoration
module in a well-trained ReLoc model is also effective
to work with another localization module, meaning that
ReLoc can be flexibly deployed in practical applications.

The rest of this paper is organized as follows. Section II
reviews the related works on image restoration and image
tampering localization. Section III describes the proposed
framework in detail. Section IV presents the experimental re-
sults and discussions. Finally, Section V draws the concluding
remarks.

II. RELATED WORK

A. Image Restoration

As a fundamental problem in image processing, image
restoration aims to recover visually pleasant high-quality im-
ages from degraded low-quality images. Usually, the degraded
images are subjected to different distorted operations, such as
down-sampling, blurring, and lossy compression. As a result,
image restoration includes denoising, super-resolution, deblur-
ring, etc. Image restoration is an ill-posed inverse problem.
To solve such a problem, conventional methods usually resort
to certain image priors and mathematical models [27]–[29].
Recently, the research of image restoration has been dominated
by DL-based methods, as deep learning is very effective for
improving image visual quality.

The DL-based image restoration methods usually employ
convolutional neural network (CNN) [30] or Transformer [31]
as basic architectures. Dong et al. [32] proposed the first CNN-
based image super-resolution method, in which the model
was constructed by stacking convolutional layers. They also
applied CNN to the reduction of JPEG compression artifacts
[33]. By adopting residual learning, Kim et al. [34] proposed
a method for image super-resolution. In order to make use of
the hierarchical features extracted at different levels in CNNs,
Zhang et al. [35] proposed a residual dense network for image
super-resolution, denoising, and deblurring. Recently, with the
promising performance achieved by Vision Transformer [23],
Transformer-based methods have become popular in the field
of image restoration, such as U-Former [36] and SwinConv-
Unet [37].
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In addition to network architectures, the objective functions
also play an important role in image restoration. While pixel-
level MAE and MSE losses are commonly used for optimiza-
tion, they tend to produce smooth images. To alleviate this
issue, the perceptual loss [38] is used to make the restoration
images more pleasant for human eyes.

Since image restoration can recover the information loss
caused by degradation to a certain extent, it is beneficial for
some high-level vision applications, such as image classifi-
cation, semantic segmentation, and object detection, in the
case that the given images are distorted ones. Haris et al.
[39] proposed to optimize a super-resolution network for
object detection in low-resolution images. To improve the
performance of semantic segmentation for distorted images,
Niu et al. [40] applied denoising and super-resolution to the
input images through a restoration network. In this paper, we
build a bridge between image restoration and image forensics.
To our best knowledge, this is the first work to show that
incorporating an image restoration module with a tampering
localization module can significantly improve the tampering
localization performance for distorted images.

B. Image Tampering Localization

Image tampering detection and localization methods are
in urgent need as the increasing abuse of tampered images
in our daily life. With the development of deep learning,
many DL-based tampering detection and localization methods
have been proposed [2]. Some of them are targeted for a
certain tampering operation, such as splicing [6], [7], copy-
move [41], and inpainting [11], [12]. On the other hand, some
are designed for general detection. Wu et al. [14] trained
a feature extractor with 385 types of tampering operations,
and then built a local anomaly detection network based on
LSTM to predict the tampered regions. Liu et al. [15] proposed
a PSCC-Net, which made use of the attention mechanism
[42] and performed tampering localization at different scales
through a progressive network structure. Chen et al. [43]
proposed a MVSS-net for tampering localization by leveraging
the multi-view and multi-scale information. To capture the
subtle tampering traces, Zhuang et al. [16] designed a network
with the dense block [44] and included the commonly used
operations in Photoshop to build a dataset for pre-training.
Kwon et al. [45] performed tampering localization with dual-
domain information. They used a DCT branch to capture
JPEG compression traces and fused the features extracted
from a spatial branch. As Transformer [31] can better model
the global information, some tampering localization methods
based on Transformer have also been developed, such as
TransForensics [17] and ObjectFormer [18]. Despite the above
methods can obtain good performance on some datasets, they
did not address the robustness against post-processing through
an explicitly algorithmic design. As a result, their performance
would be significantly degraded in practical situations.

To improve the robustness against post-processing, some
efforts have been conducted. For example, Abecidan et al.
[46] improved the robustness to JPEG compression by using
domain adaptation between the source and target domains,

so that the detector was constrained to learn a robust feature
representation. Rao et al. [26] simulated the impact of JPEG
compression by generating proxy images, which can facilitate
the learning of tampering traces when the images are under-
gone JPEG compression. Wu et al. [10] considered handling
the tampering images that are transmitted through online social
networks. They firstly estimated the noise introduced by OSN
transmission. Then, they augmented the tampered images with
the predicted noise and trained the detector to make it robust to
online transmission. Although these works explicitly consider
post-processing operations, the detectors are difficult to learn
effective features from the distorted images, due to the fact that
the tampering traces have been weakened by post-processing.
Different from them, we design a new framework to address
the problem of robustness. In the proposed method, a given
distorted image is processed by a restoration module before
being fed to a tampering localization module. In this way, the
tampering traces can be recovered to some extent, promoting
the localization module to learn more robust features.

III. PROPOSED METHOD

In this section, we elaborate on the proposed restoration-
assisted framework for robust image tampering localization
(ReLoc). We first analyze the feature representation under
different situations, so as to give a better understanding of the
intrinsic mechanism of the robustness problem. After that we
give an overview of ReLoc, and then describe how to design
a forensics-oriented restoration task and how to optimize the
overall framework.

To make the descriptions concise in the following contexts,
we denote a plain image, a distorted image, and a restored
image as IP , ID, and IR, respectively. We also denote a model
as M and use a superscript to indicate its training situation.
Namely,MP andMD|P mean a model trained with a set of IP

and a model further fine-tuned with a set of ID, respectively.
For a model built with ReLoc, it is denoted as MReLoc, and
the restoration module and localization module are denoted
as MReLoc

R and MReLoc
L , respectively. To describe a testing

situation that a set of image I∗ is fed to a trained model M∗,
we refer toM∗{I∗}. In this way, the four situations shown in
Fig. 1 are denoted as MP{IP}, MP{ID}, MD|P{ID}, and
MReLoc{ID}, respectively.

A. Analysis of Feature Representations

In order to improve the robustness against post-processing,
a straightforward approach is to introduce the corresponding
post-processing operations in the training phase. Namely, to
train a model with distorted images and expect that it can
learn robust feature representation. However, as the tampering
traces in the distorted images have been weakened by post-
processing, it is tricky for the tampering localization model to
learn effective features directly from distorted images.

To better interpret what is mentioned above, we analyze the
feature representations between tampered pixels and original
pixels in different situations. Firstly, we trained tampering lo-
calization models based on the network architecture proposed
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Fig. 2. The feature representations of 1,000 original pixels and 1,000 tampered pixels projected by T-SNE in different situations. The earth mover’s distance
(EMD) is used to measure the distance between the distributions of the two types of pixels.

in [10]1. By using the trained models, we then tested the
tampered images in the Certificate PS dataset (self-created,
refer to Section IV-A1 for details), DEFACTO dataset [47],
and IMD2020 dataset [48], respectively. We randomly selected
1000 original and 1000 tampered pixels from the tampered
images in each dataset and used T-SNE [49] to project their
feature representations extracted by the encoder of the trained
models to a 2-D space. The scatter plots of the 2-D represen-
tations are shown in Fig. 2. As shown in the leftmost column
of Fig. 2, in the case MP{IP} (i.e., a model trained with
plain images is used to test plain images), the distribution gaps
between the representations of tampered pixels and original
pixels are large. At this time, the model can well localize the
tampered regions. However, when the tampered images are
subjected to lossy post-processing, the tampering traces would
be distorted. As shown in the second column of Fig. 2, the
distributions of original pixels and tampered pixels become
confused, and the distances between the distributions of the
two types of pixels are significantly reduced. In this case, the
performance of the localization model will be very poor, as
shown in Fig. 1-b.

In order to improve the tampering localization performance
for distorted images, we can fine-tune the model MP with
distorted images and obtain a fine-tuned model MD|P , and
then test ID with MD|P . In this case, as shown in the third

1Similar results can be obtained by using other tampering localization
methods, such as [16], [43].

column of Fig. 2, the distances between the distributions
of original pixels and tampered pixels increase compared to
the case MP{ID}. However, it is observed that the two
distributions are still not as distinguishable as that in the
case MP{IP}. Based on these observations, we conclude
that it is difficult to improve the robustness of tampering
localization methods by simply training on distorted images.
A possible reason is that the post-processing operations have
inevitably led to information loss on the tampering traces, and
the localization model is difficult to learn effective feature
representations for the tampering traces from distorted images
due to information loss. To alleviate this issue, there is a need
to recover the information loss caused by post-processing.

B. Overview of ReLoc

Based on the above analysis, we are aware of that the
information loss introduced by post-processing increases the
difficulty for distinguishing the tampered pixels from the
original pixels. Consequently, we propose a new idea to im-
prove the robustness against post-processing. Namely, restor-
ing the distorted images first and then performing tampering
localization on the restored images. It is expected that the
information loss would be remedied via restoration, so that the
tampering localization performance can be further improved.
Based on this idea, we propose a restoration-assisted image
tampering localization framework, named ReLoc. As shown
in Fig. 3, ReLoc mainly consists of a restoration module, a
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Fig. 3. The diagram of the proposed ReLoc framework. Note that the process represented by the red dotted lines are only applicable for the training process.
The restoration and localization modules are shown with encoder-decoder structures in this figure, but they are not limited to such a specific type of structure.

localization module, and a discriminator. For a given distorted
image, the restoration module takes it as input and produces
a restored image. Then, the tampering localization module
infers the tampered regions by using the restored image. The
discriminator, aiming to help the restoration module generate
better restored images, is utilized only in the training phase.
To make the restoration effective, we design different loss
functions to optimize the restoration network, including the
pixel-level and image-level losses, as well as a loss regarding
to forensic performance (Section III-C). To make the whole
framework be trained in a stable way, we develop an alternate
training strategy for the restoration module and the localization
module (Section III-D). As shown in the rightmost column of
Fig. 2, by using ReLoc, the distances between the distributions
of original pixels and tampered pixels become larger than the
cases of MD|P{ID} and MP{ID}, implying that ReLoc can
effectively improve the robustness of tampering localization
against post-processing.

C. Forensics-oriented Restoration

As we know, the degradation process is irreversible and
image restoration is an ill-posed inverse problem, meaning
that it is unable to completely transform a distorted image
to its plain version via restoration. To restore a low-quality
image to a visually pleasant high-quality image, existing image
restoration methods utilize MAE, MSE, or other perceptual
losses to optimize a restoration model. Such losses consider
only the visual quality. However, the focuses of human eyes
and machines are different [50], [51]. If an image is restored
by optimizing only visual quality, the restored image may not
suitable for the task of tampering localization. Therefore, it
needs to make a restored image as close as possible to its
plain version in several aspects at the same time. To this end,
we introduce three different losses to optimize the restoration
module, including a pixel-level loss, an image-level loss, and a

forensics-oriented loss. The used losses are described in detail
as follows.

1) Pixel-level loss: As did in traditional restoration meth-
ods, we use a pixel-level MAE loss to measure the distance
between every single pixel in a restored image and the
corresponding plain image. The pixel-level MAE loss LMAE
is given as

LMAE =
1

mn

m∑
i=1

n∑
j=1

|IPi,j − IRi,j |, (1)

where IP denotes the plain tampered image, IR denotes the
restored image output from the restoration module, and m and
n denote the height and width of an image, respectively.

2) Image-level loss: The LMAE mentioned above focusses
on the restoration of each individual pixel, but does not con-
sider the overall statistical distribution of an image. Inspired
by adversarial training in the field of image generation, we use
an adversarial training strategy to make the restored image as
close as possible to the plain tampered image at the image
level. We treat the restoration module as a generator and use
a discriminator to classify the restored image and the plain
image. The discriminator in DCGAN [52] is adopted here.
The generative and discriminative losses are formulated as

LG = − log f(IR; θD), (2)

LD = − log f(IP ; θD)− log(1− f(IR; θD)), (3)

where θD denotes the parameters of the discriminator,
f(IR; θD) and f(IP ; θD) represent the probabilities output
from the discriminator when the inputs are IR and IP , re-
spectively.

3) Forensics-oriented loss: Since the purpose of restoration
in ReLoc is to make the tampering localization module work
better, we should ensure that the distributions of the tampered
and original pixels in the restored image are distinct enough,
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Fig. 4. The training restoration and localization losses for joint training and
alternate training.

so that the tampering localization module can distinguish them
from each other after restoration. To this end, the localization
loss for training the localization module is also used to
optimize the restoration module. Specifically, the localization
loss is composed of the cross-entropy loss and the dice loss,
which are defined as

LCE = − 1

mn

m∑
i=1

n∑
j=1

[Gi,j log(Pi,j)

+(1−Gi,j) log(1−Pi,j)],

(4)

LDICE = 1−
2
∑m

i=1

∑n

j=1
Pi,j ∗Gi,j∑m

i=1

∑n

j=1
P2
i,j +

∑m

i=1

∑n

j=1
G2
i,j + ε

, (5)

where G is the ground-truth map, P is the predicted proba-
bility map output by the localization module, and ε is a small
constant to avoid zero division. The total localization loss is
a weighted sum of LCE and LDICE:

LL = λ1LCE + (1− λ1)LDICE, (6)

where λ1 represents the weighting parameter.
On the whole, we incorporate LL with LMAE and LG to

optimize the restoration module. The total restoration loss is
given by

LR = λ2LMAE + λ3LG + λ4LL, (7)

where λ2, λ3, and λ4 are the weights for LMAE , LG and LL,
respectively.

D. Optimization Strategy

As the functions of the restoration module and the localiza-
tion module in ReLoc are different, an appropriate optimiza-
tion strategy is important for training the whole framework.
Ideally, we can improve the training efficiency of the whole
framework by initializingMReLoc

L with the parameters ofMP

and only training MReLoc
R . However, since image restoration

is ill-posed, we cannot perfectly restore the distorted tampered

Algorithm 1 The Optimization Algorithm
Input: D: training dataset;

t: total training epochs;
`R: learning rate of restoration module;
`D: learning rate of discriminator;
`L: learning rate of localization module.

Output: θR: trained restoration module;
θL: trained localization module.

1: Randomly initialize θR and θD , and initialize θL
with the weights in MP .

2: for epoch = 1, 2, ..., t do
3: if epoch mod 2 6= 0 then
4: for minibatch (xPi , x

D
i , yi) ⊂ D do

5: gθD ← ∇θDLD
6: θD ← θD − `D · gθD
7: gθR ← ∇θRLR
8: θR ← θR − `R · gθR
9: end for

10: else
11: for minibatch (xPi , x

D
i , yi) ⊂ D do

12: gθL ← ∇θLLL
13: θL ← θL − `L · gθL
14: end for
15: end if
16: end for

images to plain images. Therefore, this training strategy would
lead to sub-optimal performance. To achieve better perfor-
mance, it is better to optimize both the restoration module
and the localization module. Intuitively, one can optimize
the restoration and localization modules simultaneously in a
joint training manner. However, we found this strategy did
not work well. The reason is that the restoration module is
in a relatively poor state in the early stage of training, and
the localization module would be misled by the poor restored
images produced in the early stage, finally resulting in poor
localization performance. To verify our analysis, we plotted the
training restoration and localization losses in Fig. 4. As shown
in this figure, when the two modules are jointly optimized, the
localization loss decreases slowly and takes more iterations
to converge. This is due to the fact that the restoration loss
is relatively large in the early stage, and the poor restored
images make the localization module learn undesirable feature
representations.

To better optimize the two modules in ReLoc, we should
make both of them in a relatively good state. Therefore,
we alternately optimize the restoration module and the lo-
calization module, the optimization algorithm is shown in
Algorithm 1. Specifically, we optimize either the restoration
module or the localization module in one epoch. At the first,
we start to optimize the restoration module. We firstly use
the discriminator to classify the plain images and the restored
images, and optimize the discriminator based on LD. Then,
we optimize the restoration module with the guidance of LR.
After training the discriminator and the restoration module
with the whole dataset, we start another epoch and only
optimize the localization module with LL. The above process
is repeated until the whole model becomes convergent. As
shown in Fig. 4, compared to joint training, the localization
loss in alternate training decreases faster and converges earlier.
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TABLE I
LOCALIZATION PERFORMANCE OF DIFFERENT RESTORATION LOSSES.

F1 IOU AUC

LMAE 0.515 0.396 0.940
LMAE + LG 0.523 0.404 0.944
LMAE + LL 0.542 0.419 0.958

LMAE + LG + LL 0.567 0.444 0.955

According to our experiments, by optimizing the restoration
and localization modules in such an alternate way, the training
process of ReLoc is more stable, and the model can achieve
better localization performance and robustness (please refer to
Table II).

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed
method. As JPEG compression is one of the most commonly
used post-processing operations, we consider it as a typical
example of post-processing and investigate the robustness of
tampering localization against JPEG compression.

A. Experimental Setup

1) Datasets: Three tampering datasets are used for perfor-
mance evaluations.
• Certificate PS dataset. This dataset is generated from

4,840 original certificate images that were captured by
77 different mobile phones. There are five commonly
used tampering operations for certificate images, i.e.,
splicing, copy-move, removal, text addition, and text
replacement. We invited 25 experts to choose one of
the five operations to tamper with every original image.
The resulting tampered images are saved in uncompressed
PNG format.

• DEFACTO dataset [47]. The tampered images in this
dataset are created from the MS-COCO dataset [53] in
an automatic way. Various common tampering operations
are used to generate the tampered images, including
copy-move, splicing, and removal. In our experiments,
we randomly selected 98,000 tampered images from this
dataset.

• IMD2020 dataset [48]. This dataset consists of 35,000
original images and 70,000 tampered images generated by
GAN and inpainting methods. In addition, it also contains
2,010 tampered images collected from real scenes. We
used the 2,010 realistic tampered images in our experi-
ments.

All the aforementioned tampered images are regarded as plain
images in the experiments, and we applied JPEG compression
to them to obtained the distorted images. For each dataset, we
randomly selected 75% images for training and used the left
25% for testing.

2) Backbone networks: We used SwinConv-Unet2 [37]
as our restoration module, which has achieved good image

2https://github.com/cszn/SCUNet

TABLE II
LOCALIZATION PERFORMANCE OF DIFFERENT OPTIMIZATION

STRATEGIES.

F1 IOU AUC

Joint training 0.499 0.373 0.938
Alternate training 0.567 0.444 0.955

restoration performance via combining swin transformer and
convolutional block. As for the localization module, we im-
plemented it with three state-of-the-art tampering localization
methods, including DFCN3 [16], MVSS-net4 [43], and SCSE-
Unet5 [10], so as to verify that ReLoc can universally improve
the robustness against post-processing.

3) Performance metrics: As image tampering localization
is a pixel-level binary classification task, we use some com-
monly used metrics for binary classification to evaluate the
performance of the proposed framework, including F1-score,
IOU (Intersection over Union), and AUC (Area Under the
ROC Curve). For computing the F1-score and IOU, we ap-
plied thresholding to the predictions of all images with a fix
threshold of 0.5.

4) Implementation details and evaluation protocol: We
implemented the proposed method with PyTorch 1.9.0 and
ran all the experiments with an NVIDIA V100 GPU6. In the
training phase, we used 128×128 image blocks for training.
Due to the limitation of GPU memory, we set the batch
size as large as possible for different localization networks,
namely, 56 for DFCN, 40 for SCSE-Unet, and 48 for MVSS-
net. The restoration and localization modules were optimized
with Adam optimizer with the default setting in PyTorch. The
initial learning rate was set to 10−4 for both the restoration and
localization modules. When the validation loss did not descend
in two consecutive epochs, we decreased the learning rate by
a factor of 0.8. For the Certificate PS dataset, λ1, λ2, λ3, and
λ4 were set to 0.2, 100, 1, and 0.05, respectively, while for
DEFACTO and IMD2020 datasets, λ1, λ2, λ3, and λ4 were set
to 0.2, 100, 1, and 0.1, respectively. During the testing phase,
some high-resolution images could not be tested directly due
to memory limitation. Hence, we used the sliding window
strategy in all experiments. The window size was 512×512 and
the sliding step was 512. We combined the testing results of
all image blocks within an image to compute the performance
metrics.

B. Ablation Study

In this subsection, we evaluate the effectiveness of the
design of ReLoc through ablation experiments. Two key
factors that would affect the performance of ReLoc has been
investigated, i.e., the restoration loss and optimization strategy
for training the two modules. Note that the experiments were
conducted on the Certificate PS dataset by using DFCN as the
localization module.

3https://github.com/ZhuangPeiyu/Dense-FCN-for-tampering-localization
4https://github.com/dong03/MVSS-Net
5https://github.com/HighwayWu/Tianchi-FFT2
6Code available at: https://github.com/ZhuangPeiyu/ReLoc

https://github.com/cszn/SCUNet
https://github.com/ZhuangPeiyu/Dense-FCN-for-tampering-localization
https://github.com/dong03/MVSS-Net
https://github.com/HighwayWu/Tianchi-FFT2
https://github.com/ZhuangPeiyu/ReLoc
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TABLE III
LOCALIZATION PERFORMANCE FOR THREE DATASETS IN DIFFERENT TRAINING/TESTING SITUATIONS. THE FIRST SITUATION (GRAY BACKGROUND)
SHOWS THE RESULTS FOR PLAIN IMAGES AND CAN BE REGARDED AS THE PERFORMANCE UPPER BOUND OF EACH METHOD. THE REST SITUATIONS

SHOW THE RESULTS FOR DISTORTED IMAGES, WHERE THE BEST RESULTS ARE IN BOLD.

Certificate PS DEFACTO IMD2020
Localization methods Sistuations

F1 IOU AUC F1 IOU AUC F1 IOU AUC

DFCN

MP {IP } 0.912 0.858 0.993 0.556 0.484 0.950 0.352 0.245 0.859

MP {ID} 0.062 0.034 0.626 0.026 0.019 0.715 0.259 0.171 0.808

MD|P {ID} 0.484 0.369 0.905 0.404 0.338 0.880 0.281 0.182 0.834

MReLoc{ID} 0.567 0.444 0.955 0.429 0.359 0.888 0.329 0.223 0.849

SCSE-Unet

MP {IP } 0.925 0.878 0.996 0.706 0.635 0.978 0.501 0.389 0.921

MP {ID} 0.031 0.019 0.587 0.281 0.238 0.896 0.391 0.296 0.879

MD|P {ID} 0.604 0.484 0.949 0.582 0.516 0.949 0.416 0.306 0.898

MReLoc{ID} 0.651 0.538 0.962 0.611 0.543 0.953 0.454 0.340 0.915

MVSS-net

MP {IP } 0.789 0.687 0.993 0.558 0.478 0.943 0.384 0.280 0.838

MP {ID} 0.011 0.006 0.642 0.161 0.126 0.849 0.228 0.161 0.756

MD|P {ID} 0.391 0.270 0.916 0.507 0.429 0.910 0.314 0.216 0.819

MReLoc{ID} 0.410 0.288 0.942 0.515 0.438 0.917 0.323 0.228 0.810

1) Restoration loss: To investigate the impact of different
restoration losses on the performance of ReLoc, we used dif-
ferent losses and their combinations to optimize the restoration
module. The experimental results are shown in Table I. We
can observe that compared with using only LMAE , adding
LG is effective to help the restoration module to produce
better restored images. The F1-score is improved from 0.515
to 0.523. On the other hand, introducing LL to optimize
the restoration module is also beneficial for improving the
performance. The F1-score is increased from 0.515 to 0.542 in
this case. This implies that by introducing the localization loss,
the restoration module can be guided to pay more attention to
strengthening the differences between the original pixels and
the tampered pixels. In such a way, the distorted tampering
traces can be re-enhanced. Finally, by combining LMAE , LG,
and LL together, the restoration module can work better, and
the F1-score is improved from 0.542 to 0.567.

2) Optimization strategy: To evaluate which strategy is
better for optimizing the two modules in ReLoc, we separately
conducted experiments to train the two modules jointly and
alternately. It can be seen from Table II that by alternately
training the restoration and localization modules, the obtained
performance is better than training them jointly. The net
increases of F1-score, IOU, and AUC are 0.068, 0.071, and
0.017, respectively.

C. Robustness against Fixed JPEG Compression

For a given JPEG image, its compression quality factor (or
quantization table) is available in the JPEG file. To perform
tampering localization, ideally we can build a matched detec-
tion model by collecting training images with the same quality

factor. Therefore, in this subsection we evaluate the robustness
of the proposed framework against a fixed JPEG compression,
where the JPEG quality factor (QF) is set to 75. We separately
used DFCN, SCSE-Unet, and MVSS-net as the localization
module in ReLoc, and conducted experiments in four different
training/testing situations. The result are shown in Table III.
From this table, we mainly obtain two observations.

Firstly, when a model trained with plain images is used
to test distorted images (i.e., the case MP{ID}), the local-
ization performance would be significantly degraded. This is
not surprising as the tampering traces are weak in distorted
images. The performance decline for the Certificate PS dataset
is the worst, where the F1-scores are decreased close to 0. The
reason is that the plain tampered images in this dataset are
uncompressed, and there are considerable differences between
the tampered and original regions. The localization model can
easily learn discriminative features from the plain images,
but the learned features are not suitable for resisting JPEG
compression. In the DEFACTO and IMD2020 datasets, some
plain tampered images have been undergone JPEG compres-
sion after tampering, so the models MP trained with these
datasets could somewhat adapt to JPEG compression and thus
perform relatively better.

More importantly, we observe that using distorted tampered
images to directly train the localization network can improve
the robustness against JPEG compression to a certain extent,
but the improvement is not as significant as the use of ReLoc.
For example, by using DFCN as the localization module, the
average improvement of F1-score between MD|P{ID} and
MP{ID} is 0.274, while the average improvement is 0.326
when using ReLoc. Similar results can be obtain by consider-
ing SCSE-Unet and MVSS-net. On average, the improvements
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TABLE IV
THE LOCALIZATION PERFORMANCE REGARDING TO DIFFERENT JPEG COMPRESSIONS.

Dataset Localization methods Sistuations
QF60 QF70 QF80

F1 IOU AUC F1 IOU AUC F1 IOU AUC

Certificate PS

DFCN
MD|P {ID} 0.443 0.335 0.880 0.466 0.357 0.891 0.494 0.381 0.903

MReLoc{ID} 0.479 0.370 0.900 0.513 0.396 0.938 0.584 0.470 0.957

SCSE-Unet
MD|P {ID} 0.509 0.391 0.928 0.531 0.407 0.939 0.578 0.453 0.951

MReLoc{ID} 0.510 0.391 0.930 0.609 0.486 0.955 0.700 0.589 0.969

MVSS-net
MD|P {ID} 0.328 0.216 0.874 0.337 0.222 0.886 0.348 0.231 0.899

MReLoc{ID} 0.337 0.222 0.893 0.374 0.254 0.920 0.441 0.316 0.938

DEFACTO

DFCN
MD|P {ID} 0.402 0.338 0.889 0.409 0.345 0.890 0.463 0.398 0.907

MReLoc{ID} 0.421 0.354 0.896 0.432 0.365 0.896 0.485 0.415 0.910

SCSE-Unet
MD|P {ID} 0.588 0.518 0.951 0.594 0.525 0.953 0.629 0.562 0.959

MReLoc{ID} 0.600 0.533 0.950 0.604 0.538 0.952 0.634 0.567 0.958

MVSS-net
MD|P {ID} 0.461 0.392 0.914 0.467 0.398 0.916 0.507 0.432 0.900

MReLoc{ID} 0.477 0.404 0.910 0.489 0.415 0.911 0.532 0.455 0.925

IMD2020

DFCN
MD|P {ID} 0.287 0.186 0.829 0.289 0.188 0.835 0.290 0.189 0.836

MReLoc{ID} 0.338 0.229 0.841 0.344 0.233 0.854 0.357 0.244 0.861

SCSE-Unet
MD|P {ID} 0.429 0.320 0.897 0.429 0.321 0.900 0.436 0.356 0.903

MReLoc{ID} 0.446 0.334 0.897 0.454 0.340 0.901 0.459 0.347 0.905

MVSS-net
MD|P {ID} 0.320 0.224 0.813 0.331 0.234 0.814 0.323 0.231 0.813

MReLoc{ID} 0.331 0.230 0.812 0.334 0.233 0.814 0.325 0.228 0.812

of F1-score between the cases MReLoc{ID} and MD|P{ID}
are 0.052, 0.038, and 0.012, respectively for DFCN, SCSE-
Unet, and MVSS-net. Based on these experimental results, it
can be concluded that the proposed framework can indeed
effectively improve the robustness of tampering localization
against fixed JPEG compression.

D. Robustness against Multiple JPEG Compressions

As we all know, in real-world scenarios, different tampered
images are usually subjected to different JPEG compressions.
Training a specific ReLoc model for each JPEG compression
under investigation is impractical because it would be time-
consuming and the implementations of JPEG compression
would vary from manufacturers and software. Therefore, in
this subsection, we evaluate the robustness against different
JPEG compressions by using a single model.

To generate distorted images for model training, we sampled
uniformly the JPEG QFs between 70 and 100, similar to what
was done in [10]. In the testing phase, three different QFs
were considered, i.e., 60, 70, and 80. Two training/testing
situations, MD|P{ID} and MReLoc{ID}, were involved in
this experiment. The experimental results are shown in Ta-
ble IV. From this table, we observe that no matter which
localization method was adopted, the localization performance
of MReLoc{ID} is better than that of MD|P{ID}. When the

testing QF is 80, the improvements of F1-score averaged over
three datasets are 0.060, 0.050, and 0.040 for DFCN, SCSE-
Unet, and MVSS-net, respectively. The average improvements
for QF 70 are relatively slighter, which are 0.042, 0.037, and
0.021 for DFCN, SCSE-Unet, and MVSS-net, respectively.
When the testing QF is unseen in the training phase (i.e., QF
60), the average improvements achieved by ReLoc for DFCN,
SCSE-Unet, and MVSS-net are 0.035, 0.010, and 0.012,
respectively, which are still considerable. These experimental
results indicate that ReLoc is also effective for improving the
robustness against multiple JPEG compressions.

E. Qualitative Comparisons

In order to assess the performance intuitively, we show
some examples of tampering localization results in Fig. 5.
In each example in this figure, from top to bottom, ID was
generated through compressing IP with QFs 60, 70, and
80, respectively. By comparing the results of MP{IP} and
MP{ID}, we can see that the latter case would lead to much
more false alarms and/or missed detections. Although this
phenomenon can be mitigated via fine-tuning the localization
network with distorted images (i.e., MD|P{ID}), there are
still more false predictions compared to the proposed method
(i.e., MReLoc{ID}). For instance, the tampered region in the
fourth example is the tennis ball. The localization result is
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Fig. 5. Examples of tampering localization results in different situations. Each super-row (separated by dashed lines) corresponds to an example. In each
example, the distorted images ID from top to bottom were compressed with JPEG quality factors 60, 70, and 80, respectively. Examples #1 and #2 are from
the Certificate PS dataset, examples #3 and #4 are from the DEFACTO dataset, while the last example is from the IMD2020 dataset.
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TABLE V
THE LOCALIZATION RESULTS OBTAINED BY RELOC VIA REPLACING THE
LOCALIZATION MODULE (MReLoc

L ) IN A WELL-TRAINED RELOC MODEL
WITH ANOTHER LOCALIZATION MODULE TRAINED WITH PLAIN IMAGES

(MP ). THE COLUMNS MReLoc
L AND MP DENOTE THE TYPES OF

NETWORK STRUCTURES. THE VALUES IN PARENTHESES ARE THE
IMPROVEMENTS COMPARED TO THE CASE MP {ID}.

Dataset MReLoc
L MP F1 IOU AUC

Certificate PS

DFCN SCSE-Unet
0.441

(+0.410)
0.349

(+0.330)
0.844

(+0.257)

SCSE-Unet DFCN
0.404

(+0.342)
0.309

(+0.275)
0.891

(+0.265)

DEFACTO

DFCN SCSE-Unet
0.612

(+0.331)
0.543

(+0.305)
0.953

(+0.057)

SCSE-Unet DFCN
0.293

(+0.267)
0.248

(+0.229)
0.859

(+0.144)

correct in the MP{IP} situation. However, there are missed
detections in the MP{ID} situation, especially when the QF
is low. In the MD|P{ID} situation, missed detections are
decreased, but false alarms are introduced. By contrast, in the
MReLoc{ID} situation, via employing the ReLoc framework,
we can accurately locate the tampered region for different QFs.

F. Transferability of the Restoration Module

In this subsection, we evaluate the transferability of restora-
tion module of a well-trained ReLoc model. We firstly trained
the restoration module together with a localization module
using the proposed method. Then, we deployed the trained
restoration module with another localization model trained
with plain tampered images (MP ). We aim to evaluate
whether the performance of another localization model would
be improved or not by feeding it the images output by the
restoration module.

As shown in Table V, compared to the results in the case
MP{ID} (see Table III), when directly combining the restora-
tion module trained along with DFCN and the SCSE-Unet
localization model, the F1-score of SCSE-Unet is improved
from 0.031 to 0.441 on the Certificate PS dataset and improved
from 0.281 to 0.612 on the DEFACTO dataset. The same
phenomenon can be observed when the restoration module
trained along with SCSE-Unet was deployed with the DFCN.
the improvements of F1-score are 0.342 and 0.267 on the
Certificate PS dataset and the DEFACTO dataset, respectively.
Such experimental results have verify that the restoration
module in ReLoc is transferable.

V. CONCLUSION

In this paper, in order to improve the robustness of
tampering localization against post-processing, we propose
a restoration-assisted framework named ReLoc. The ReLoc
framework is composed of an image restoration module and a
tampering localization module. We utilize the image restora-
tion module to recover tampering traces from distorted images.
By optimizing the restoration module with pixel-level, image-
level, and forensics-oriented losses, it is able to produce a
restored image that is closer to the plain image, which can

help the localization module learn more discriminative and
robust features. By adopting an alternate training strategy, we
make the training process more stable and further improve the
localization performance. Via considering JPEG compression
as a typical example of post-processing, we have conducted
extensive experiments to evaluate the effectiveness of ReLoc.
The experimental results show that ReLoc can significantly
improve the robustness of tampering localization. Moreover,
our experiments show that the trained restoration module is
transferable, meaning that it can be individually and flexibly
deployed with other tampered localization methods.

In the future, we will further study to employ ReLoc for
improving the robustness against other post-processing oper-
ations. For example, blurring, scaling, noise corruption, etc.
On the other hand, the restoration module and the localization
module in ReLoc are flexible, we will update the modules with
newly proposed and more effective restoration/localization
methods to further improve the robustness against various
post-processing operations.
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