
1

Query-Efficient Decision-based
Black-Box Patch Attack

Zhaoyu Chen, Bo Li, Shuang Wu, Shouhong Ding, Wenqiang Zhang

Abstract—Deep neural networks (DNNs) have been showed to
be highly vulnerable to imperceptible adversarial perturbations.
As a complementary type of adversary, patch attacks that
introduce perceptible perturbations to the images have attracted
the interest of researchers. Existing patch attacks rely on the
architecture of the model or the probabilities of predictions and
perform poorly in the decision-based setting, which can still
construct a perturbation with the minimal information exposed
– the top-1 predicted label. In this work, we first explore the
decision-based patch attack. To enhance the attack efficiency, we
model the patches using paired key-points and use targeted im-
ages as the initialization of patches, and parameter optimizations
are all performed on the integer domain. Then, we propose a
differential evolutionary algorithm named DevoPatch for query-
efficient decision-based patch attacks. Experiments demonstrate
that DevoPatch outperforms the state-of-the-art black-box patch
attacks in terms of patch area and attack success rate within a
given query budget on image classification and face verification.
Additionally, we conduct the vulnerability evaluation of ViT and
MLP on image classification in the decision-based patch attack
setting for the first time. Using DevoPatch, we can evaluate the
robustness of models to black-box patch attacks. We believe this
method could inspire the design and deployment of robust vision
models based on various DNN architectures in the future.

Index Terms—Adversarial example, patch attack, black-box
attack, differential evolutionary algorithm.

I. INTRODUCTION

Nowadays, deep neural networks (DNNs) have been em-
ployed as the fundamental techniques in the advancement of
artificial intelligence in computer vision. Despite the success of
DNNs, recent studies have identified that DNNs are vulnerable
to adversarial examples [1]. By introducing maliciously crafted
perturbations to the input images, these adversarial examples
are able to evade and mislead DNNs. Consequently, studying
the adversarial vulnerability of DNNs has emerged as an
important research area, providing the opportunity to better
understand and improve computer vision models.

Classical works [1]–[7] focus on studying the adversarial
vulnerability of DNNs against virtually imperceptible pertur-
bations that are constrained to have a small norm but are
typically applied to the whole input image. Recently, as a
complementary type of adversary, patch attacks that introduce
perceptible (large norm) but localized perturbations to the

Corresponding authors are Bo Li and Wenqiang Zhang.
Zhaoyu Chen and Wenqiang Zhang are with Academy for Engineer-

ing and Technology, Fudan University, Shanghai, China, and also with
Yiwu Research Institute of Fudan University, Yiwu, China. The emails of
these authors are: zhaoyuchen20@fudan.edu.cn, njumagiclibo@gmail.com,
wqzhang@fudan.edu.cn.

0

50

100

Query
Budget

ResNet ViT MLP

Targeted Image

Source Image

Classified as
 Wall Clock

Classified as
Indian Elephant

Indian Elephant Indian Elephant Indian Elephant

Fig. 1. Introduction of DevoPatch. With regard to limited query budgets, we
generate adversarial examples of patch attacks using DevoPatch applied to
black-box models on image classification. As the number of queries increases,
DevoPatch efficiently optimizes the quality of adversarial patches and achieves
query-efficient decision-based patch attacks under a few query budgets.

images have attracted the interest of researchers. Pioneering
works [8]–[12] perform patch attacks in the white-box setting:
with full access to the model’s parameters and architectures,
they can directly use gradient-based optimization to find
successful adversarial examples. Due to the fact that most real-
world applications do not publicly release the actual models
they use, this attack scenario usually is less practical in real-
world systems, e.g., attacking image analysis APIs [13] like
Google Cloud Vision or self-driving cars [14]–[16].

As a more practical scenario in real-world systems, black-
box patch attacks have attracted a lot of attention in recent
years. There are transfer-based attacks [17] and query-based
attacks [18]–[21] for black-box patch attacks, depending on
whether the attacker needs to query the victim’s machine
learning model. Despite the fact that transfer-based attacks
do not require query access to the model, it assumes the
attacker has access to a large training set to create a carefully-
designed substitute model [22]–[24], and there is no guarantee
of success [25]. Query-based attacks assume that attackers can
only query the target network and obtain its outputs (score or
label) for a given input. According to the output information
of the queried models, query-based attacks can be classified
into two sub-categories: score-based setting which has access
to the class probabilities of the model, and decision-based
setting which solely relies on the top-1 predicted label. Signif-
icantly, decision-based settings present more practical threats

0000–0000/00$00.00 © 2021 IEEE

ar
X

iv
:2

30
7.

00
47

7v
1

 [
cs

.C
V

]
 2

 J
ul

 2
02

3

2

to deployed systems and applications because an adversary
is still capable of exploiting the very minimal information
exposed – the top-1 predicted label – for constructing an
adversarial perturbation. Recently, some score-based patch
attacks [18]–[21] have been proposed. However, when these
methods are applied to the decision-based setting, they hardly
achieve high attack success rate and query efficiency because
the information provided by labels is limited.

In this paper, we first explore the decision-based patch
attack to better measure the practical threat of patch attacks. To
successfully conduct decision-based black-box patch attacks,
there are still non-negligible challenges to overcome:
Complex Solution Space. Performing patch attacks is ex-
tremely challenging since it involves searching for all possible
positions, shapes, and perturbations of adversarial patches,
which implies an enormous solution space. Moreover, unlike
white-box scenarios or the score-based black-box setting, in
the decision-based black-box setting, there is almost no valid
information to guide the search direction.
Query efficiency. In the query-based setting, achieving high
query efficiency with a high attack success rate is integral
to adversarial objectives. Because: i) adversaries are able to
carry out attacks at scale; ii) the cost of mounting the attack is
reduced, and iii) adversaries are capable of bypassing defense
systems that can recognize malicious activities as a fraud based
on a pragmatically large number of successive queries with
analogous inputs. Last but not least, the advantage of a smaller
query budget is that it correlates to a lower cost of evaluation
and research, which is useful for determining the robustness
of the model to adversarial attacks.

To address the aforementioned issues, we propose a dif-
ferential evolutionary algorithm named DevoPatch for query-
efficient adversarial patch attacks in the decision-based black-
box setting. Differential evolutionary algorithm is a black-
box optimization algorithm that does not need to know the
details of the model and is suitable for parameter search when
information is limited. Given the attack objective function,
DevoPatch is able to optimize it in a black-box manner through
queries only. To simplify the solution space, we restrict param-
eter optimization to the integer domain and carefully design a
differential evolution algorithm based on the integer domain.
Further, we model the patches using paired key-points and use
targeted images as the initialization of patches. Consequently,
the query efficiency of DevoPatch is significantly improved. In
addition, it is worth noting that some novel DNN architectures
have recently emerged including the Vision Transformer (ViT)
model [26] and Multi-layer Perceptron (MLP) based model
[27]. They demonstrate compelling performance, sometimes
even outperforming classical convolutional architectures. Al-
though a few studies have explored the vulnerability of ViT
against imperceptible adversarial perturbations [28], [29], the
adversarial robustness of ViT and MLP under patch attacks
has not been considered. This raises a critical security con-
cern for the reliable deployment of real-world applications
based on ViT and MLP models. Therefore, we extend our
study scope and apply DevoPatch to ViT and MLP to better
understand the vulnerability of a wide variety of DNNs under
adversarial patch attacks. We illustrate an example patch attack

with DevoPatch against ILSVRC2012 in Fig. 1 on image
classification. Extensive experiments on image classification
and face verification demonstrate that DevoPatch is a query-
efficient decision-based black-box patch attack.

We summarize our contributions and results below:
• We first explore the decision-based patch attack, which

can still construct a perturbation with the minimal infor-
mation exposed – the top-1 predicted label.

• To simplify the solution space, we model the patches
using paired key-points and use targeted images as the
initialization of patches, and parameter optimizations are
all performed on the integer domain.

• We propose a novel patch attack – DevoPatch – an
evolutionary algorithm capable of exploiting access to
solely the top-1 predicted label from a model to search
for an adversarial example, whilst minimizing the image
area that needs to be corrupted for a successful attack.

• Comprehensive experiments on image classification and
face verification show that DevoPatch achieves consider-
ably higher success rates compared to related work, while
being more efficient in terms of the number of queries.

• We conduct the vulnerability evaluation of ViT and MLP
on image classification in the decision-based black-box
patch attack setting for the first time. We compare results
with ResNet to assess the relative robustness of the ViT
and MLP models.

The remainder of the paper is organized as follows. Sec-
tion II briefly reviews the literature related to adversarial
examples and adversarial patches, white-box patch attacks,
black-box patch attacks, and adversarial attacks with evolu-
tionary algorithms. Section III first introduces the definition
of decision-based black-box patch attacks and then details
the proposed differential evolutionary patch attack. Section IV
shows the experimental results to demonstrate the effectiveness
of the proposed differential evolutionary patch attack. Firstly,
we choose appropriate hyperparameters for DevoPatch. After-
ward, we evaluate the adversarial robustness of several image
classification and face recognition models. In Section V, we
further analyze the effects of adversarial patches on different
DNN architectures. We summarize the paper in Section VI.

II. RELATED WORK

In this section, we briefly review the literature related to
adversarial examples and adversarial patches, white-box patch
attacks, and black-box patch attacks. In the end, we also
discuss adversarial attacks based on evolutionary algorithms.

A. Adversarial Example and Adversarial Patch

The seminal works of Szegedy et al. [1] inspire an interest
in studying adversarial vulnerability against imperceptible
perturbations as a mean of understanding and improving deep
neural networks. Since then, a majority of prior works [2]–
[7] have focused on attacking with small and imperceptible
perturbations to the input, which can be regarded as the im-
perceptible adversarial attack. Commonly these imperceptible
perturbations are applied to the whole input image and are

3

constrained by p-distances (p ∈ {0, 2,∞}) similarity measure-
ment. Recently, as a complementary type of adversary, patch
attacks that introduce perceptible (large norm) but localized
perturbations to the images have emerged and attracted the
interest of researchers. Patch attacks (or adversarial patches)
can be regarded as the perceptible adversarial attack. The
main aim of patch attacks is to minimize the perturbation
within a continuous image region that needs to be corrupted
to mislead a target machine learning model. Only a handful
of works have investigated patch attacks and these works can
be broadly categorized based on various degrees of adversarial
access to a model. In this paper, we focus on black-box patch
attacks because they are more practical and more threatening.

B. White-box Patch Attack

In the white-box setting, an adversary has full knowledge
and access to the model, including gradients and parameters.
GAP [8] first creates universal, robust, targeted adversarial
image patches in the real world and causes a classifier to output
any target class in the white-box setting. Then LaVAN [9]
concentrates on investigating the blind spots of state-of-the-art
image classifiers in the digital domain, which crafts adversarial
patches using an optimization-based approach with a modified
loss function. Then [10] and [11] introduce position search
to improve the attack performance of adversarial patches.
Due to the enormous solution space and the trade-off be-
tween computational cost and attack performance, adversarial
patches are usually created with a fixed shape or location even
under the white-box setting. Since then, adversarial patches
have been used to attack self-driving cars [14]–[16], object
detection [30]–[32] and face cognition [33]–[35]. However,
white-box patch attacks are less practical, since most real-
world applications do not release their models and cannot
directly solve adversarial patches via gradients. In this paper,
we focus on black-box patch attacks because they are more
threatening to real-world systems.

C. Black-box Patch Attack

Black-box patch attacks can be either transfer-based [17]
or query-based [18]–[21], depending on whether the attacker
needs to query the victim’s machine learning model. However,
transfer-based attacks require access to large amounts of train-
ing data and require careful construction of surrogate models.
It does not guarantee that the attack will be successful. In
contrast, query-based attacks only require access to the output
of the victimized model and have a higher attack success rate
as the number of queries increases, which is more practical and
more threatening. In the query-based attack, an adversary can
access all or only one predicted score (score-based settings) or
call out just the predicted labels (decision-based settings) for
a given input. We need a query-efficient algorithm that helps
reduce the cost of evaluating the robustness of DNNs since
the attacker has to pay for each query.

Query-based patch attacks are first introduced in Hastings
Patch Attack (HPA) [18]. They do not optimize the pattern
of the patches and instead use the monochrome patches. The
position and shape of the rectangular patches are randomly

searched using Metropolis-Hastings sampling. To improve
the query efficiency of HPA, [19] first uses reinforcement
learning to search the position and size of monochrome
rectangular patches, called Monochrome Patch Attack (MPA).
But monochrome patches usually lead to a very low attack
success rate, especially for the targeted attack. They then
use ImageNet training data to build a class-specific texture
dictionary via style transfer [36] to craft targeted patch attacks,
termed Texture-based Patch Attack (TPA). However, in practi-
cal scenarios, it is impossible to obtain the whole training set
data of the target black-box models. Adv-watermark (AdvW)
[20] utilizes the basin hopping evolution algorithm to find
a suitable position and transparency for the watermark to
implement the patch attack. Patch-Rs [21] proposes a random
search framework and then designs an initialization scheme
and a sampling distribution specific for adversarial patches.
This outperforms previous works in both query efficiency and
attack success rates. Unfortunately, all of the aforementioned
works are only designed for the score-based black-box setting.
They perform poorly on the more challenging and restrictive
decision-based attack (Experiment IV-C). Further, decision-
based settings present more practical threats to deployed
systems. To the best of our knowledge, we make the first
investigation of the robustness of DNNs against patch attacks
using a decision-based black-box setting.

D. Adversarial Attacks with Evolutionary Algorithms

Notably, there are some related works [37]–[39] which
also leverage evolutionary algorithms to perform impercepti-
ble attacks. These methods are all under the framework of
evolutionary algorithms, with operations such as crossover
and mutation. However, these methods cannot achieve query-
efficient decision-based patch attacks due to the limitations
of the modeling of adversarial examples. One-pixel attack
[37] generates one-pixel adversarial perturbations based on
differential evolution. It is not effective when the number of
perturbations is large because the number of queries to the
model grows rapidly with respect to the number of perturbed
pixels in patches. Evo-Attack [38] utilizes the covariance ma-
trix adaptation evolution strategy to search the imperceptible
perturbations but it cannot search for the location and shape of
patches. SparseEvo [39] models sparse perturbations as binary
codes and solves them using genetic algorithms. However,
this binary representation cannot define contiguous regions,
thus making it impossible to model patches and perform patch
attacks. Our DevoPatch is based on the differential evolution
algorithm, carefully designed in the integer domain to achieve
query-efficient decision-based patch attacks. Consequently,
we first construct a dimensionality-reduced solution space in
which possible solutions (individuals of a population) are
paired key-points in the integer domain. This is quite different
from most current evolutionary attack methods.

III. METHODOLOGY

In this section, we first introduce the definition of decision-
based black-box patch attacks and then detail the proposed
differential evolutionary patch attack.

4

Source Image Targeted Image

Initialize

Population Initialization

Paired Keypoints

Initialized Populations

Population
Set

Population
Selection

Crossover

Mutation

Fitness
Calculation

Update

Gen
era
te

Differential Evolution

Adversarial
example

Initialization Rate

Fig. 2. The pipeline of DevoPatch. The Population Initialization stage creates the initialized populations. During the differential evolution, by a combination
of mutation, crossover, fitness calculation, and population selection, the population can improve over time to produce a satisfactory adversarial example.

A. Problem Definition

Patch attacks are one of the most threatening types of
adversarial examples that an adversary can arbitrarily modify
the pixels of a continuous region, and the patch of this region
leads machine learning models to make incorrect predictions.
Here, we first give the formulation of patch attack on image
classification. Face verification can be viewed as a binary clas-
sification task, similar to image classification. For an classifier
f : x → y, we are given a source image x ∈ RC×H×W

and its corresponding ground truth label y from the label set
Y = {1, 2, ...,K} where K denotes the number of classes.
C, W , and H denote the number of channels, height, and
width of an image, respectively. In the setting of patch attacks,
the adversarial patch is composed of adversarial perturbations
δ ∈ RC×H×W and location masks M ∈ {0, 1}H×W . Given
a source image x, we formulate the adversarial example x̃ as
the combination of a source image x, an adversarial patch δ
and a location mask M :

x̃ = (I −M)⊙ x+M ⊙ δ, (1)

where ⊙ represents the element-wise Hadmard product and I
represents all-one matrices with the same dimension as M .

In the decision-based black-box setting, our access is limited
to its output label. For the targeted attack, the adversary
perturbs the source image x so that the obtained adversarial
example x̃ ∈ RC×H×W is misclassified as the desired class
label ỹ ∈ Y. We refer to the desired class ỹ of the input x
as the target class and its ground-truth class y as the source
class. For the untargeted attack, the adversary perturbs the
source image x to lead the output label of the classifier to any
class label except the ground truth label y, i.e. ỹ ∈ Y where
ỹ ̸= y. In general, the patch attack (including targeted and
untargeted settings) to find the best adversarial example x∗

can be expressed as a constrained optimization problem:

x∗ = argmin
M,δ
||x− x̃||0 s.t. f(x∗) = ỹ, (2)

where || · ||0 denotes the number of perturbed pixels. For
the patch not to be perceived, Eq. 2 aims to determine the
perturbation and position with the constraint of a few perturbed
pixels, which leads to a complex solution space and hampers
the search. In addition, given the constraint and the fact that f
is not differentiable in the decision-based setting, the solution
to the optimization problem is not trivial.

B. Simplification on Solution Space
The enormous solution space on patch attacks is caused

by all possible positions, shapes, and perturbations of the
patch. A naive parametric search method can be directly used
to solve this problem. Specifically, the parameter set V is
defined as a series of candidate solutions v, represented by
the coordinates and RGB values of each pixel. However, this
naive application results in very inefficient queries [37]. Fur-
thermore, in the decision-based black-box setting, there is little
effective information to guide the search direction, thus further
reducing the query efficiency. To improve the query efficiency
of decision-based attacks, we need to reduce the complexity of
the solution space. Although in the decision-based setting, the
black-box model can hardly provide effective information so
the only information we can fully utilize is the target class ỹ of
the targeted attack. To facilitate a parametric search method,
instead of searching for parameters defining RGB values of
each perturbed pixel, we consider that the perturbation δ can
be replaced by a targeted image xt. Targeted images are only
required to be classified as target class by the black-box model
and do not need to be i.i.d. with the training set (analyzed in
Section IV-G). Simultaneously, it is redundant to represent a
patch with a coordinate set of perturbed pixels. For a patch, we
only need to know a pair of points to formulate the location
mask M of the patch. Therefore, we vectorize each candidate
solution in the parameter set V as a 4-dimensional vector
v = {(i1, j1), (i2, j2)} (i1 < i2, j1 < j2) where i ∈ N and
j ∈ N denotes the coordinate of the paired key-points. Here,

5

we employ a simple mapping function T (·) to re-formulate
the location mask M = T (v) and the adversarial example x̃:

T (v) =

{
1, if 0 ≤ i1 < i2 < H, 0 ≤ j1 < j2 < W,

0, otherwise,
(3)

x̃ = (I −M)⊙ x+M ⊙ xt. (4)

In general, we transform the original complex solution
space into a coordinate programming problem for paired key-
points on the integer domain. Interestingly, this strategy of
simplification has been found to be extremely effective in a
decision-based patch attack. Next, we need to design how to
select and update suitable candidate solutions.

C. Differential Evolutionary Patch Attack

In this section, we propose the DevoPatch, an efficient
parametric search method based on the differential evolution-
ary algorithm that seeks a solution by iteratively improving
upon potential solutions in search of a desirable one. In
differential evolution, the population is the candidate solution
and the population set is the parameter set. We carefully design
the differential evolution algorithm on the integer domain,
including population initialization, mutation, and crossover.
Therefore, DevoPatch improves the differential evolution by
simplifying solution spaces to the integer domain and the
population can improve over time to produce a satisfactory
result. Moreover, our search method employs the differen-
tial evolutionary algorithm without requiring any background
knowledge of the target model, such as its architecture or
parameters, to construct the fitness function. DevoPatch can be
used to analyze and solve the non-trivial optimization problem
in Eq. 2 in a black-box setting and can provide a possible
remedy for complex solution space. The pipeline of DevoPatch
is shown in Fig. 2

First, we give the definition of fitness calculation. Fitness
is used to evaluate the quality of candidate solutions, mainly
used in population initialization and population selection.
In general, fitness function g(·) should reflect optimization
objectives. In the score-based setting, since logits can be
obtained, cross-entropy loss or margin loss [5] can be used
to measure the quality of candidate solutions. In the decision-
based setting, since only the predicted labels can be obtained,
it is difficult for us to use the change of loss to measure
the quality of new candidate solutions. The loss only changes
when the predicted label changes, which causes many potential
candidates to be discarded. Therefore, a fitness function is
required to approximate the calculation of the loss function
in the decision-based setting. Since our populations describe
a paired key-point of the patch and the method uses targeted
images as initialization, we consider an adversarial example
with a smaller patch area would have better quality. Therefore,
we formulate our fitness function as:

g(x̃) =

{
||x− x̃||0, if f(x̃) = ỹ

∞, otherwise.
(5)

Although the fitness function is l0 norm, other distance metrics
are also feasible (further analyze in Section IV-B5).

Algorithm 1 Population Initialization Algorithm
Input: source image x, ground-truth label y, targeted image
xt, target label ỹ, population size p, initialization rate µ and
model f
Output: V,G

1: V ← ∅, G←∞
2: for i← 1, 2, ..., p do
3: c← 0
4: ∆h← ⌊H · µ⌋, ∆w ← ⌊W · µ⌋
5: while True do
6: Generate v0 with ∆h,∆w using Eq. 6
7: Generate x̃ with v0,xt using Eq. 4
8: Calculate g(x∗) with f(x̃) using Eq. 5
9: if f(x̃) = ỹ and g(x∗) < Gi then

10: Gi ← g(x∗)
11: V ← V ∪ {v0}
12: break
13: end if
14: if c > 10 then
15: ∆h← 1, ∆w ← 1
16: end if
17: c← c+ 1
18: end while
19: end for
20: return V,G

Then, we initialize a population set of p various candidate
solutions named initialized population v0. In the population
initialization, it is trivial to apply targeted images directly as
initialization. The diversity among populations is conducive to
improving query efficiency, so we introduce an initialization
rate µ to control the diversity of population initialization.
Specifically, we first calculate height margin ∆h = ⌊H ·µ⌋ and
width margin ∆w = ⌊W ·µ⌋ (∆h ∈ N,∆w ∈ N) as candidate
domains. Then, every candidate solution is generated by only
a randomly sample in the following condition:

i1 ∈ [0, ∆h), i2 ∈ [H −∆h, H),

j1 ∈ [0, ∆w), j2 ∈ [W −∆w, W].
(6)

Finally, if the fitness score of the initialized population v0 is
not ∞ by using Eq. 5, the initialized population v0 will be
successfully added to the population set V . Fitness scores are
saved in a fitness score vector G for each candidate solution.
The population initialization is detailed in Algorithm 1.

Mutation is an important step in generating superior off-
spring (new candidate populations). Although the initialized
population in the population initialization stage has a certain
diversity, the overall difference is not significant, which will
cause the next generation to be very similar and reduce query
efficiency. In order to ensure the diversity of offspring, we
introduce mutation rate γ to generate better offspring. Com-
pared with the traditional differential evolutionary algorithm
[40], we need to ensure that the calculation is closed and the
solution set of offsprings is an integer domain, so mutation rate
γ must be an integer, i.e. γ = 1. Specifically, when DevoPatch
converges, the coordinate difference in candidate solutions is

6

Algorithm 2 DevoPatch
Input: source image x, ground-truth label y, targeted image
xt, target label ỹ, query budget N , population size p, initial-
ization rate µ, mutation rate γ, model f
Output: adversarial example x∗

1: V,G← PopulationInitialization(f,x,y,xt, ỹ, µ, p)
2: kbest ← argmink(G), kworst ← argmaxk(G)
3: for i← 1, 2, ..., N do
4: Random sample vj, vq from V \vkbest

5: Initial vr with vj, vq,vkbest using Eq. 7
6: Generate vm by random noises κ using Eq. 8
7: Generate x̃ with vm,xt using Eq. 4
8: Calculate g(x∗) with f(x̃) using Eq. 5
9: if g(x∗) < Gkworst

then
10: vkworst ← vm

11: Gkworst
← g(x∗)

12: end if
13: kbest ← argmink(G), kworst ← argmaxk(G)
14: end for
15: Generate x∗ with vkbest ,xt using Eq. 4
16: return x∗

often only 1. If γ is a real number (i.e. γ = 0.5), it may be 0
after rounding to coordinates, resulting in no new offspring and
reducing diversity. In practice, we first select the best vkbest

and two randomly selected candidate solutions vj , vq . Then,
vr is based on vkbest plus γ times the difference between vj

and vq . Formally, the mutation can be formulated as:

vr = vkbest + γ · (vj − vq). (7)

In order to increase the diversity of the generated population
vr, crossover is introduced. The diversity of a population
enables the exploration of the solution space for better in-
dividuals. Consequently, crossover operation is a crucial part
of our method for further promoting population diversity, and
every offspring after mutation can have the crossover. Unlike
the traditional differential evolution algorithm [40], because
the paired key-points of the modeling patches have an order
relationship, it is impossible to directly perform crossover
by element according to the probability. In practice, for any
element in a candidate solution vr after mutation, we randomly
add a noise κ = {−1, 0, 1}4 to it respectively, to help jump
out of the local optimal solution. Therefore, crossover can be
expressed as:

vm = vr + {−1, 0, 1}4. (8)

The evolution algorithm assumes that superior individuals
are selected from a population and inferior individuals are
eliminated. According to this assumption, individuals with
better fitness scores are more likely to survive over time.
Specifically, if an offspring has a smaller fitness score, it will
also be better on Eq. 2 and be a better adversarial example.
Hence, if a new offspring has a smaller fitness score than the
worst offspring in the population, the worst offspring will be
discarded and the new offspring will be selected in its place.

Algorithm 2 summarizes the pipeline of DevoPatch. First,
we obtain the initial population set and fitness scores through

population initialization. Then, new offspring is generated by
mutation and crossover to enhance diversity during each query.
Next, the fitness score is calculated for the new population.
Finally, the new population will be selected and updated
according to the fitness score. Note that each time a new
population is generated, we need perform boundary processing
on the new population to ensure that 0 ≤ i1 < i2 < H, 0 ≤
j1 < j2 < W .

IV. EXPERIMENTS

In this section, we show the experimental results to demon-
strate the effectiveness of the proposed differential evolution-
ary patch attack. First, we choose appropriate hyperparameters
for DevoPatch. Then we evaluate the adversarial robustness
of several image classification models and face recognition
models. We further conduct ablation studies and analyze the
factors for the effectiveness of DevoPatch.

A. Experimental Settings

1) Datasets: To evaluate the effectiveness of our method,
we conduct experiments on image classification and face
verification. For image classification, we follow [19] and con-
duct experiments on a challenging dataset, ILSVRC2012 [41],
which has 1,000 object categories in total. For the evaluation
sets, we randomly draw 1,000 correctly classified images from
ILSVRC2012 validation set. Target images are also randomly
chosen correctly classified images corresponding to target
classes from the ILSVRC2012 validation set. These selected
images are evenly distributed among the 1,000 classes. For
face verification, we select 400 pairs in dodging the attack,
where each pair belongs to the same identity, and another
400 pairs in impersonation attack, where the images from the
same pair are from different identities. The images are selected
from LFW [42] and CelebA [43]. Target images are also
randomly chosen correctly recognized images corresponding
to identities from LFW and CelebA. All the selected images
can be correctly recognized by the face recognition models.

2) Models: To evaluate the effectiveness of DevoPatch on
different network architectures of image classification models,
we select three different architecture models as threat models.
For convolution-based models, we use a pre-trained ResNet-
152 (ResNet) [44] for ILSVRC2012. For attention-based mod-
els, we select a pre-trained ViT-B-16/224 model (ViT-B) [26].
For multi-layer-based models, we select MLP-Mixer-B-16/224
model (Mixer-B) [27]. We also study three face recognition
models, including FaceNet [45], CosFace [46] and ArcFace
[47], which all achieve over 99% accuracies on the validation
set. The threshold for the face recognition model is the one
that achieves the highest accuracy on the validation set.

3) Attack Methods: Decision-based settings present more
practical threats to deployed systems because it is hard to
get the score in the system. To solve the practical issue of
the score-based setting, our work first explores decision-based
patch attacks, which can still construct a perturbation with
the minimal information exposed – the top-1 predicted label.
Therefore, to reveal the issues of the score-based setting,

7

TABLE I
ABALATION STUDY ON POPULATION SIZE p.

Population Size p
Untargeted Attack Targeted Attack

ASR APA ANQ ASR APA ANQ

5 100.0 16.48 769.2 100.0 29.47 738.9
10 100.0 12.16 1327.2 100.0 25.45 1317.2
15 100.0 10.09 1918.6 100.0 23.89 1989.0
20 100.0 9.36 2619.7 100.0 22.81 2678.4
30 100.0 8.08 4163.6 100.0 22.29 4125.1

all experimental comparisons are performed in the decision-
based setting. For a fair comparison with score-based patch
attacks, we choose HPA [18], MPA [19], TPA [19], Adv-
watermark (AdvW) [20] and Patch-RS [21] as the baseline
under the decision-based setting. Inspired by [48], we leverage
the label smoothing [49] to turn the hard-label into the score
for the compared score-based methods without increasing the
number of queries, where ε = 0.1. Following [21], the patch
areas of TPA, AdvW, and Patch-RS are fixed. For white-
box patch attacks, we choose GAP [8] as the baseline. GAP
and DevoPatch share the same location mask M and query
(inference) budgets.

4) Evaluation Metrics: Following [19] and [21], there are
three metrics to measure the performance of black-box patch
attacks. Patch area (%) is the number of perturbed pixels
divided by the total number of pixels of an image. To control
how noticeable a patch is, we define an Average Patch Area
(APA) as the average area across all successful attacks. To
evaluate the efficiency of the patch attack, we calculate the
Average Number of Queries (ANQ) over the images finished
with patch attacks, followed by [21]. Following decision-based
adversarial attacks [22], [23], we select the number of queries
that reach the minimum value of the patch area during the
query process as the calculated value of ANQ. Finally, a
measure used to evaluate the adversarial robustness of a model
is Attack Success Rate (ASR). ASR (%) is the ratio of
adversarial examples that are successfully misrecognized.

B. Effects of Hyperparameters

Here, we analyze the key factors of DevoPatch, including
population size p, initialization rate µ, and mutation rate γ
and fitness measure. All ablation experiments are performed
on ResNet-152 for the image classification task.

1) Population Size: Table I shows the effect of different
population sizes on performance, where µ = 0.1 and γ = 1.
As the population size p gets larger, the ASR can still remain
at 100%, while the APA will decrease further and the ANQ
will get greater. In particular, when p = 30, its APA is 4.08%
less than p = 10, but the ANQ is about 2 times larger. For the
sake of query efficiency, we choose p = 10.

2) Initialization Rate: Table II shows the effect of different
initialization rates on performance, where p = 10 and γ = 1.
As the initialization rate µ gradually increases, the APA will
become less, and the ANQ will not change much. Due to the
trade-off between areas and queries, we choose µ = 0.35.

3) Mutation Rate: Table III shows the effect of different
mutation rates on performance, where µ = 0.35 and p =

TABLE II
ABALATION STUDY ON INITIALIZATION RATE µ.

Initialization Rate µ
Untargeted Attack Targeted Attack

ASR APA ANQ ASR APA ANQ

0.05 100.0 12.69 1324.3 100.0 26.55 1322.5
0.10 100.0 12.16 1327.2 100.0 25.45 1317.2
0.15 100.0 11.64 1306.0 100.0 24.69 1287.7
0.20 100.0 10.96 1320.5 100.0 24.63 1290.7
0.25 100.0 10.19 1355.5 100.0 24.35 1263.1
0.30 100.0 10.25 1391.1 100.0 23.94 1239.1
0.35 100.0 10.00 1349.7 100.0 23.78 1261.6
0.40 100.0 9.99 1349.8 100.0 23.91 1260.4

TABLE III
ABALATION STUDY ON MUTATION RATE γ .

Mutation Rate γ
Untargeted Attack Targeted Attack

ASR APA ANQ ASR APA ANQ

1 100.0 10.00 1349.7 100.0 23.78 1261.6
2 100.0 7.75 6487.8 100.0 21.50 6205.2
3 100.0 7.32 7294.9 100.0 21.24 7062.1
4 100.0 6.91 7082.6 100.0 21.22 6909.2

10. Obviously, a larger mutation rate can indeed achieve a
smaller adversarial patch, but it greatly increases the ANQ.
Specifically, when γ = 4, the APA is 3.09% less than when
γ = 1, but the ANQ is 4 times greater. Considering query
efficiency and average area, we choose γ = 1.

4) Convergence: Further, we analyze the convergence of
DevoPatch. Fig. 3 describes the variation curve of area with
query budget under different initialization rates µ. Intuitively,
our method converges quickly. When the number of queries
is about 1,000, the best adversarial example has been solved.

5) Fitness Measure: The fitness measure directly affects the
efficiency of the solution. In DevoPatch, we choose l0 norm for
the fitness calculation according to the optimization objective
in Eq. 2. However, other norms can also be used to calculate
Eq. 5. Table IV shows the ablation study about different norms
on fitness calculation. l0 norm consistently outperforms other
norms in terms of queries and areas. The main reason may
be that the optimization objectives of l0 norm and Eq. 2 are
consistent. Since other norms calculate the distance similarity
with the image, they tend to place the patch in the place where
the source image and the targeted image are similar, which will
fall into the local optimal solution.

C. Attacks on Image Classification

In this section, we compare the attack performance of
various black-box patch attacks on image classification. We
set the query budgets for untargeted and targeted attack
to 10,000 and 50,000, respectively. The hyperparameters of
DevoPatch are: p = 10, µ = 0.35, γ = 1. For targeted
attacks, we consider a randomly chosen correctly classified
image corresponding to the target class ỹ from the dataset.
For untageted attacks, we use a randomly chosen correctly
classified image corresponding to the random class except
the ground-truth label from the dataset, followed by [19].
DevoPatch takes about 6.33 hours to perform 10,000 queries

8

(a) untargeted attack (b) targeted attack

Fig. 3. Convergence analysis. DevoPatch is query-efficient and can already
generate high-quality adversarial examples when the ANQ is around 1,000.

TABLE IV
ABALATION STUDY ON FITNESS MEASURE.

Model Norm Untargeted Attack Targeted Attack

ASR APA ANQ ASR APA ANQ

ResNet
0 100.0 10.00 1349.7 100.0 23.78 1261.6
1 100.0 10.52 1395.3 100.0 24.64 1287.9
2 100.0 11.21 1394.7 100.0 25.77 1266.9

ViT-B
0 100.0 13.84 1314.0 100.0 25.99 1256.6
1 100.0 14.79 1331.1 100.0 26.85 1285.4
2 100.0 15,40 1333.5 100.0 28.07 1290.5

Mixer-B
0 100.0 14.76 1336.9 100.0 25.54 1274.6
1 100.0 15.29 1360.0 100.0 26.32 1286.0
2 100.0 16.39 1340.0 100.0 27.42 1282.1

on 1,000 images on ResNet-152, based on an NVIDIA Tesla
V100. The experimental results against decision-based patch
attacks in untargeted and targeted setting on ILSVRC2012 are
summarized in Table V. The experimental results show that our
DevoPatch consistently outperforms HPA, MPA, TPA, AdvW
and Patch-RS in terms of queries and patch areas with a higher
ASR, which shows the effectiveness of DevoPatch.

In the untargeted setting, TPA, AdvW, and Patch-RS achieve
the trade-off on ASR and ANQ. Although the label returns
little information, TPA achieves higher ASR in the decision-
based setting due to its strong texture prior. Although HPA
has a high ASR, its ANQ and APA are extremely large. MPA
achieves sub-optimal ASR, but it is inefficient and always
uses the whole query budget since it takes 10,000 queries and
chooses the best one. DevoPatch achieves 100% ASR with
one-seventh of MPA on ANQ under a smaller average area.
Under the more challenging targeted setting, due to the lack
of effective information about the target class, HPA, MPA,
AdvW, and Patch-RS are almost useless. Because TPA has a
texture prior, it still has a high ASR, but the ANQ is extremely
high. Because of our simplification of solution space, our
DevoPatch outperforms TPA by 18.0%, 28.2%, and 9.0% ASR
on ResNet, ViT, and MLP, respectively, while the average
queries are only one-tenth, one-twentieth and one-seventh of
TPA. Also, we choose to compare with GAP, the most basic
white-box patch attack. We expect DevoPatch to reach the
lower bound of white-box patch attacks in attack performance.
Table VI illustrates that DevoPatch achieves ASR equivalent
to GAP. Both black-box and white-box experiments show that

TABLE V
DECISON-BASED BLACK-BOX PATCH ATTACKS ON ILSVRC2012.

Model Method Untargeted Attack Targeted Attack

ASR APA ANQ ASR APA ANQ

ResNet

HPA [18] 98.8 28.48 10000.0 0 - 50000.0
MPA [19] 99.5 14.10 10000.0 1.8 35.87 50000.0
TPA [19] 84.8 10.05 2768.0 82.0 24.12 12614.0

AdvW [20] 44.7 10.05 5913.0 - - -
Patch-RS [21] 55.4 10.05 4754.4 0.1 24.12 49950.3

Ours 100.0 10.00 1349.7 100.0 23.78 1261.6

ViT-B

HPA [18] 98.1 34.04 10000.0 0 - 50000.0
MPA [19] 98.2 14.32 10000.0 2.1 66.38 49750.0
TPA [19] 82.3 14.06 3108.8 71.8 26.36 23794.6

AdvW [20] 30.6 14.06 7288.1 - - -
Patch-RS [21] 42.1 14.06 6151.8 0.2 26.36 49940.2

Ours 100.0 13.84 1314.0 100.0 25.99 1256.6

Mixer-B

HPA [18] 87.6 39.53 10000.0 0 - 50000.0
MPA [19] 98.5 18.79 9850.0 2.2 80.58 49500.0
TPA [19] 96.1 15.08 1710.4 91.0 25.90 8037.0

AdvW [20] 40.7 15.08 6206.1 - - -
Patch-RS [21] 63.5 15.08 3985.4 0.5 25.90 49801.2

Ours 100.0 14.76 1336.9 100.0 25.54 1274.6

TABLE VI
COMPARISONS WITH WHITE-BOX PATCH ATTACKS ON ASR (%).

Source Model Method Untargeted Attack Targeted Attack

ResNet ViT-B Mixer-B ResNet ViT-B Mixer-B

ResNet GAP [8] 100 5.3 9.3 100 0 0.2
Ours 100 7.5 10.3 100 10.4 14.6

ViT-B GAP [8] 19.6 100 15.5 0 100 0
Ours 24.7 100 15.8 18.2 100 18.2

Mixer-B GAP [8] 21.6 11.0 100 0 0 100
Ours 30.5 15.7 100 20.3 15.5 100

DevoPatch is a query-efficient decision-based black-box patch
attack with high attack performance against different network
architectures on image classification.

We provide the visualization of patch attacks on different
network architectures as shown in Fig. 4. The labels below the
image indicate the predicted classes. Labels in black, red, and
blue represent the ground truth, target classes, and the classes
after the targeted attack has failed, respectively. HPA and MPA
use gray or colored patches to achieve attacks (the second and
third rows), but their patch area is large and it is difficult to
achieve targeted attacks. TPA uses the ImageNet pre-trained
texture dictionary for patch attack (shown in the fourth row)
and has a higher ASR in the decision-based setting, but its
area is also larger. AdvW selects pre-defined logos for patch
attacks, but it is difficult to implement targeted attacks because
logos have little category information (shown in the fifth row).
Patch-Rs is based on a random search framework (shown
in the sixth row), but it is difficult to implement targeted
attacks because the top-1 labels have too little information. Our
DevoPatch achieves the query-efficient attack in a decision-
based setting with a smaller area and higher ASR.

D. Attacks on Face Verification

In this section, we compare the attack performance of
various black-box patch attacks on face verification. We set the
query budgets for dodging and impersonation attacks to 10,000
and 50,000, respectively. The hyperparameters of DevoPatch
are: p = 10, µ = 0.35, γ = 1. For dodging attacks, for

9

Clean
Image

ResNet-152 ViT-B

Coffee Mug

HPA

Coffee Mug

Lorikeet Lorikeet

MPA

Patch-Rs

TPA

Electric Fan

GAP

Lorikeet

Devo
Patch

Lorikeet

Coffee Mug

Coffee Mug

Coffee Mug

Lorikeet

Lorikeet

Electric FanElectric Fan Electric Fan

Mixer-B

Bolete Bolete Bolete Loafer Loafer Loafer

ResNet-152 ViT-B Mixer-B ResNet-152 ViT-B Mixer-B

Tool Kit

Strainer

Lorikeet

Coffee Mug

Lorikeet

Lorikeet

Pot

Mushroom

Mousetrap

Mushroom

Mousetrap

Mousetrap

T-shirt

Mousetrap

Bolete

Mousetrap

Mousetrap

Mushroom

Mushroom

Mousetrap

Mushroom

Mousetrap

Mousetrap

Buckle

Buckle

Pekinese

Buckle

Pekinese

Pekinese

Pekinese

Joystick

Pekinese

Loafer

Pekinese

Pekinese

Holster

Holster

Pekinese

Holster

Pekinese

Pekinese

Electric Fan Loafer

Mousetrap

BoleteElectric Fan LoaferMower

Adv-
Watermark

Electric Fan Bolete Holster

Fig. 4. Visualization of patch attacks in the targeted setting on different network architectures. The labels below the image represent the predicted classes.
Black, red and blue labels represent ground-truth labels, target classes, and the classes after the targeted attack has failed, respectively. DevoPatch successfully
achieves the targeted attack of all examples with a small patch area.

randomly selecting a pair of faces with the same identity, the
adversary generates an adversarial face to make the model
recognize them as different identities. For impersonation at-
tacks, the adversary generates an adversarial face to make the
model recognize them as the same identity, which originally
belonged to different identities. Here, we use cosine similarity
and threshold to determine whether it is the same identity.
When the cosine similarity of a pair of faces is greater than
the threshold, the faces belong to the same identity.

Table VII shows decision-based patch attacks on face
verification. Note that TPA exploits ILSVRC2012 on image
classification to implement the attack through a class texture
dictionary generated by style transfer. Here, because the face
can directly represent the identity, we choose targeted images
as the texture dictionary of TPA. These targeted images are
the same as DevoPatch. AdvW and Patch-Rs achieve very few

ASR in the dodging attack. Although HPA and MPA have
extremely high ASR in the dodging attack, they tend to cover
the face with a larger area and complete the attack with larger
APA and extremely low query efficiency. Further, HPA, MPA,
and Patch-Rs have very little ASR in the more challenging
impersonation attack due to the limited information of the
output of the label by the model. Because TPA has the targeted
image as a prior, it achieves a good trade-off in ASR and
ANQ in the dodging and impersonation attack. But even so,
the performance of TPA in the impersonation attack can not
achieve an extremely high ASR. Our DevoPatch and TPA
share the same prior information (targeted images) in face
verification, but DevoPatch significantly outperforms TPA in
attack performance and query efficiency. In a dodging attack,
the ANQ of TPA is usually three times that of DevoPatch.
In the harder impersonation attack, the ANQ of DevoPatch

10

TABLE VII
DECISON-BASED BLACK-BOX PATCH ATTACKS ON FACE VERIFICATION.

Dataset LFW CelebA

Model Method Dodging Attack Impersonation Attack Dodging Attack Impersonation Attack

ASR APA ANQ ASR APA ANQ ASR APA ANQ ASR APA ANQ

ArcFace

HPA [18] 100 25.81 10000.0 4.25 22.47 50000.0 100 10.78 10000.0 32.75 15.28 50000.0
MPA [19] 100 14.29 10000.0 5.00 17.24 50000.0 100 4.80 10000.0 38.00 8.40 50000.0
TPA [19] 80.75 11.51 3530.0 52.5 12.76 27352.5 86.50 4.98 2754.0 58.50 7.66 25030.0

AdvW [20] 5.75 11.51 9508.3 - - - 5.00 4.98 9549.8 - - -
Patch-Rs [21] 24.00 11.51 7837.6 1.00 12.76 49513.9 56.00 4.98 4838.3 16.00 7.66 42597.1

Ours 100 11.13 1016.4 100 12.28 960.0 100 4.71 1043.4 100 7.48 992.9

CosFace

HPA [18] 100 14.14 10000.0 10.75 15.74 50000.0 100 3.27 10000.0 43.75 4.73 50000.0
MPA [19] 100 8.36 10000.0 9.00 14.57 50000.0 100 2.71 10000.0 59.50 4.82 50000.0
TPA [19] 76.5 7.29 3741.0 56.6 12.05 25827.5 88.50 2.69 2428.0 67.00 4.92 20177.5

AdvW [20] 8.00 7.29 9303.0 - - - 13.00 2.69 8742.7 - - -
Patch-Rs [21] 55.25 7.29 5024.3 5.5 12.05 47744.4 80.00 2.69 2504.1 38.75 4.92 31729.5

Ours 100 7.02 1040.7 100 11.40 1025.2 100 2.56 1041.7 100 4.63 1080.2

FaceNet

HPA [18] 100 15.13 10000.0 16.00 18.05 50000.0 100 8.68 10000.0 23.75 17.27 50000.0
MPA [19] 100 10.46 10000.0 18.50 18.97 50000.0 100 5.50 10000.0 31.50 13.37 50000.0
TPA [19] 87.50 6.56 2748.0 76.00 12.69 16027.5 78.25 3.52 3889.0 71.50 7.22 19640.0

AdvW [20] 18.75 6.56 8596.8 - - - 17.00 3.52 8608.4 - - -
Patch-Rs [21] 32.25 6.56 7257.0 6.00 12.69 47388.6 38.25 3.52 6659.0 8.25 7.22 46345.8

Ours 100 6.56 1055.2 100 12.38 1035.0 100 3.21 1129.3 100 7.17 1058.3

TABLE VIII
ATTACKS ON THE EMPIRICAL AND CERTIFIABLE PATCH DEFENSES.

Type Model Method Untargeted Attack Targeted Attack

ASR APA ANQ ASR APA ANQ

Empirical ResNet
-152

Clean 0 - - 0 - -
Only Attack 100 10.00 1349.7 100 23.78 1261.6

Only DW 0.4 - - 0.4 - -
Attack DW 100 10.00 1346.8 100 23.78 1262.5

Only LGS 3.1 - - 3.1 - -
Attack LGS 100 9.87 1383.8 100 23.63 1280.9

Certifiable

ResNet
-50

Only DS 10.0 - - 10.0 - -
Attack DS 100 9.80 1159.1 100 22.72 1232.0

ECViT-B Only ECViT 2.9 - - 2.9 - -
Attack ECViT 100 17.43 1181.0 100 26.11 1138.7

is about one-twentieth of TPA. More importantly, in such a
limited number of queries, DevoPatch has a smaller patch area
and ASR, which is enough to illustrate the effectiveness of the
proposed differential evolution patch attack algorithm.

Table 5 shows the visualization of different patch attacks
on face verification. Here, we choose ArcFace as the base
model and visualize it on the LFW dataset. The color of
the face frame represents whether the attack is successful.
Blue represents a failed attack and red represents a successful
attack. Because of the different semantic categories in image
classification, the generated patches are easy to perceive. In
face verification, since the color of patches is irrelevant to
semantics, a similar situation also occurs in HPA, MPA,
AdvW, and Patch-Rs. However, TPA and DevoPatch select
faces as a prior and have face-related features, the resulting
patches are relatively imperceptible. Further, since DevoPatch
can better determine the location and shape of patches, it can
improve attack performance and imperceptibility. DevoPatch
has strong applicability and achieves query-efficient decision-
based patch attacks on both image classification and face
verification.

E. Attacks on Patch Defenses

We also evaluate the performance of DevoPatch against
the patch defense methods on image classification, including
Local Gradient Smoothing (LGS) [50], Digital Watermarking
(DW) [51], Derandomized Smoothing (DS) [52] and Efficient
Certifiable Vision Transformer (ECViT) [53]. For empirical
defenses, DW and LGS are regarded as pre-processing oper-
ations to remove adversarial patches. For certifiable defenses,
we attack models including certifiable mechanisms. The back-
bone of DS is ResNet-50 and the backbone of ECViT is
ECViT-B. Table VIII shows the adversarial robustness against
empirical and certifiable patch defenses on DevoPatch. The
above defenses cause very few images to be misclassified.
For empirical patch defenses, DW and LGS do not take
effect in the face of DevoPatch. A possible reason is that
the adversarial patches produced by DevoPatch are part of
natural images rather than adversarial perturbations generated
by gradients. The former has semantics and harmony in visual
understanding. For certifiable patch defenses, ECViT is the
state-of-the-art certifiable patch defense, but it also cannot
maintain certification in large rectangular patch areas (greater
than 10%). However, ECViT increases APA and reduces the
quality of patches compared to DS. This experiment exposes
deficiencies in existing patch defenses, so it is critical to
improve the robustness and certification of defenses.

F. Ablation Study on Differential Evolution

Both genetic algorithm (GA) [54] and differential evolution
algorithm (DE) [40] are evolutionary algorithms, which sim-
ulate mutation, crossover, and selection in genetics to solve
optimization problems. Due to different encoding, crossover,
mutation, and selection strategies, DE generally has faster
convergence speed [40]. However, directly applying DE to
this task encounters the challenges of complex solution space

11

HPA MPA TPA Adv-
Watermark Patch-Rs DevoPatch

Dodging
Attack

Impersonation
Attack

Clean Face Pairs

Fig. 5. Visualization of patch attacks with ArcFace on face verification. The color of the face frame represents whether the attack is successful. Blue represents
a failed attack, and red represents a successful attack. DevoPatch successfully achieves the attack of all examples with a small patch area.

(a) untargeted attack (b) targeted attack

Fig. 6. Ablation study on differential evolution. DevoPatch can better jump out
of the local optimal solution and generate higher-quality adversarial patches.

and efficient query efficiency. Therefore, we simplify solution
spaces to the integer domain and improve the traditional DE.

We conduct ablation studies on differential evolution with
ResNet-152, and the parameter settings are consistent with
Section IV-C. Fig. 6 shows how APA changes as the number
of queries increases under different differential evolutions.
Here, w.o. crossover and w.o. mutation mean that the crossover
and mutation improved by DevoPatch are not used, but the
crossover and mutation of traditional DE [40] are used. Under
the premise of guaranteeing 100% ASR, the mutation and
crossover of DevoPatch have a fast convergence speed, and
can better jump out of the local optimal solution, thereby
generating higher-quality adversarial patches.

G. Analysis on Target Images
To explore the impact of the selection of target images

on attack performance, we conduct experimental analysis on
image classification with ResNet-152 from three perspectives,
including color, randomness, and data source. The parameter
settings are consistent with Section IV-C.

TABLE IX
ANALYSIS ON DIFFERENT COLORS OF TARGET IMAGES.

Color Untargeted Attack Targeted Attack

ASR APA ANQ ASR APA ANQ

White 100.0 15.26 1403.8 0.07 0.24 119.6
Blue 100.0 13.98 1333.5 0.10 0.33 122.6

Green 100.0 13.68 1296.6 0.12 0.44 123.2
Yellow 99.9 13.54 1351.3 0.07 0.25 120.6
Pink 100.0 15.06 1380.4 0.09 0.30 117.9

Ours 100.0 10.00 1349.7 100.0 23.78 1261.6

TABLE X
ANALYSIS ON THE RANDOMNESS OF TARGET IMAGES.

Random Untargeted Attack Targeted Attack

ASR APA ANQ ASR APA ANQ

(1) 100.0 10.00 1349.7 100.0 23.78 1261.6
(2) 100.0 9.85 1348.7 100.0 22.78 1238.0
(3) 100.0 9.86 1357.4 100.0 22.19 1227.8
(4) 100.0 9.81 1350.2 100.0 22.52 1223.1
(5) 100.0 9.83 1331.9 100.0 22.57 1220.6

Mean 100.0 9.86±0.07 1347.6±9.4 100.0 22.77±0.60 1234.2±16.6

Color. HPA [18] and MPA [19] introduce monochrome
patches to implement the attack. Therefore, monochrome im-
ages have the potential to become target images. Here, we se-
lect White, Blue, Green, Yellow and Pink as target images. Ta-
ble IX illustrates the attack performance and query efficiency
when images of different colors are used as target images.
Under the untargeted setting, DevoPatch with monochrome
images has a similar ASR and APA as MPA, but the query
efficiency is one-seventh of MPA. However, monochrome
images have almost no target attack performance, because
monochrome images have almost no semantic information
of the corresponding class. The above experiment shows the

12

TABLE XI
ANALYSIS OF DIFFERENT SOURCES OF TARGET IMAGES.

Model Data Sources Untargeted Attack Targeted Attack

ASR APA ANQ ASR APA ANQ

ResNet Same 100 10.77 1262.9 100 24.10 1256.9
Different 100 10.49 1374.2 100 25.55 1210.1

ViT-B Same 100 15.79 1359.3 100 29.80 1257.3
Different 100 14.83 1332.2 100 26.34 1236.6

Mixer-B Same 100 15.01 1240.9 100 25.73 1229.6
Different 100 15.91 1302.4 100 25.43 1298.6

efficiency of DevoPatch and the necessity of random natural
images as target images.

Randomness. Considering that target images on image
classification are randomly selected from the ILSVRC2012
validation set, randomness may affect attack performance
and query efficiency. Here, we fix the clean images and
randomly sample the target images five times, then evaluate
the performance. Table X illustrates the impact of different
random target images on attack performance and query effi-
ciency. From the experiments, we can find that although the
marginal improvement can be obtained through randomness,
the impact of random target images on performance is very
small, and APA and ANQ are very close. Although the optimal
performance is randomly selected multiple times, the query
cost is multiplied, which is not feasible in real-world scenarios.
From the perspective of the target images themselves, how to
generate a more powerful target image is a future work that
has the potential to improve the attack efficiency.

Data Source. This work is carried out in a black-box
decision-based setting. For the black-box model, we can only
obtain the output label, which is difficult to obtain full training
data or access the model architecture. As described in Sec-
tion III-C, we use targeted image priors to reduce the complex-
ity of the solution space and achieve effective targeted attacks.
In Section IV-C, we choose the targeted images randomly
sampled from the validation set of ILSVRC2012 and show the
effectiveness of DevoPatch, which belong to the same source
data as the training set of the models. To further demonstrate
the generalization capability of the proposed method in real-
world scenarios, we collect 100 images from the Internet as
the targeted images, which are not from the same source
as ILSVRC2012. In the case of using different-source data,
ASR equivalent to same-source data can be obtained on image
classification, as described in Table XI. DevoPatch based on
different-source data has very subtle differences in areas and
queries, which shows DevoPatch is not sensitive to the domain
of targeted images. It is worth noting that TPA uses ImageNet
to generate a texture dictionary to attack the classification
model, which is impossible in real-world scenarios. However,
DevoPatch can arbitrarily select a correctly identified image
from the Internet as the targeted image, thereby realizing a
black-box patch attack with high operability and flexibility.

H. Effectiveness Analysis

In this section, we analyze why DevoPatch has a very
high targeted attack success rate. We utilize the gradient-

based class activation mapping (Grad-CAM) [55] to visualize
the attention maps of various classes, as shown in Figure 7.
First, we use Grad-CAM to generate the attention maps of
the source image and targeted image of their corresponding
classes (such as column 2 and column 4). We can find that
the most discriminative regions are all in the regions with
the most salient category objects. Then, we visualize the
attention map of the source image corresponding to the target
class and find that it is not focused on the objects of the
source class. Among the limited queries, we notice that the
class activation map of the class predicted by the model
focuses on the adversarial patch, indicating that DevoPatch can
become the most discriminative region without having access
to any details of the model. Since adversarial patches based
on targeted classes cover the most discriminative regions, the
model outputs predictions for the targeted class. Therefore,
DevoPatch is a query-efficient decision-based patch attack
because of paired key-points and targeted image prior.

V. DISCUSSION

In this section, we compare the robustness of ResNet, ViT,
and MLP models to patch perturbation on image classification.
In Table V, we find that our method needs a relatively larger
area to craft successful patch attacks on ViT and MLP models
compared with ResNet model with similar query budgets. It
means ViT and MLP models are relatively more robust than
ResNet model under the most threatening decision-based patch
attack. Probably because ViT and MLP split the image into
multiple non-overlapping patches which reduce the impact of
noises on one local region to the final classification results
[28]. As shown in Table VI, all kinds of models are equally
vulnerable to perturbations computed using white-box attack
GAP. We then find that adversarial perturbations computed
using ResNet rarely transfer to ViT or MLP in the white-box
setting especially for the targeted attack, which is also ob-
served by [28] in imperceptible attacks. Interestingly, different
from the conclusion in [28], we find that adversarial pertur-
bations computed using ViT and MLP do transfer to ResNet.
Particularly, the adversarial perturbations crafted by our black-
box method transfer more easily over different architectures,
even for the targeted attack. In addition, we first present the
lower bound on the area required for the targeted patch attack
in the decision-based setting. Targeted attacks of any category
can be completed in about 25% of the patch area under about
1,300 queries. This is an important safety reference for real-
world systems. The above observations suggest that studying
the adversarial robustness of DNNs from the perspective of
decision-based black-box patch attacks is necessary to better
understand and improve DNNs.

VI. CONCLUSIONS

In this work, we explore the practical threat of decision-
based black-box patch attack to the robustness of existing
DNNs for the first time. Compared with transfer-based and
score-based settings, decision-based settings do not require
access to a large amount of training data and only rely
on minimal information, the labels by the model’s output,

13

1010 50 100 500 1000 10000Source
Image

Adversarial
example

Targeted
Image

Targeted
Class

Source
Class

Fig. 7. Demonstration of the different discriminative regions of ResNet-152 on image classification. We utilize the gradient-based class activation mapping
[55] to visualize the attention maps of various classes. Among the limited queries, we notice that the class activation map of the class predicted by the model
focuses on the adversarial patch, indicating that DevoPatch can become the most discriminative region without having access to any details of the model.
Since adversarial patches based on targeted classes cover the most discriminative regions, the model outputs predictions for the targeted class.

to achieve the adversarial attack. To simplify the solution
space and improve query efficiency, we propose a differential
evolutionary algorithm named DevoPatch for query-efficient
adversarial patch attacks in the decision-based black-box set-
ting. In DevoPatch, we model adversarial patches as paired
key-points and utilize targeted images as priors. With paired
key-points and targeted image priors, the differential evolution
algorithm based on the integer domain greatly improves the
query efficiency. As a result of our comprehensive results, De-
voPatch outperforms the state-of-the-art black-box patch attack
in terms of patch area and ASR both on image classification
and face verification. More importantly, with a reduced so-
lution space, DevoPatch illustrates significant query-efficiency
when compared with the existing patch attacks in the decision-
based black-box setting. We also investigate the robustness of
various DNN architectures against DevoPatch.

DevoPatch exposes the shortcomings of existing DNNs
against patch attacks. In future research, we can use De-
voPatch to evaluate the robustness of the model to black-box
adversarial patches. In addition, our work provides a deep
understanding of the robustness of DNNs against decision-
based patch attacks. We believe this work could be used to
inform and inspire the design and deployment of robust vision
models based on various DNN architectures in the future.

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foun-
dation of China (No.62072112), Scientific and Technological
innovation action plan of Shanghai Science and Technology
Committee (No.22511102202), Fudan Double First-class Con-
struction Fund (No. XM03211178).

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in Int. Conf. Learn. Represent., Y. Bengio and Y. LeCun, Eds., 2014.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Int. Conf. Learn. Represent., 2015.

[3] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in Int. Conf. Learn. Represent. Worksh., 2017.

[4] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in Int. Conf. Learn.
Represent., 2018.

[5] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” in IEEE Symp. Secur. and Priv., 2017, pp. 39–57.

[6] H. Zhang, Y. Avrithis, T. Furon, and L. Amsaleg, “Walking on the edge:
Fast, low-distortion adversarial examples,” IEEE Trans. Inf. Forensics
Secur., vol. 16, pp. 701–713, 2021.

[7] F. Croce and M. Hein, “Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks,” in Int. Conf. Mach.
Learn., vol. 119, 2020, pp. 2206–2216.

[8] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial
patch,” in Adv. Neural Inform. Process. Syst. Worksh., 2017.

14

[9] D. Karmon, D. Zoran, and Y. Goldberg, “Lavan: Localized and visible
adversarial noise,” in Int. Conf. Mach. Learn., J. G. Dy and A. Krause,
Eds., vol. 80, 2018, pp. 2512–2520.

[10] T. Wu, L. Tong, and Y. Vorobeychik, “Defending against physically re-
alizable attacks on image classification,” in Int. Conf. Learn. Represent.,
2020.

[11] S. Rao, D. Stutz, and B. Schiele, “Adversarial training against location-
optimized adversarial patches,” in Eur. Conf. Comput. Vis. Worksh.,
A. Bartoli and A. Fusiello, Eds., vol. 12539, 2020, pp. 429–448.

[12] Z. Chen, B. Li, S. Wu, J. Xu, S. Ding, and W. Zhang, “Shape matters:
Deformable patch attack,” in Eur. Conf. Comput. Vis., 2022, pp. 529–
548.

[13] H. Hosseini, B. Xiao, and R. Poovendran, “Google’s cloud vision API is
not robust to noise,” in Int. Conf. Mach. Learn. App., 2017, pp. 101–105.

[14] C. Sitawarin, A. N. Bhagoji, A. Mosenia, M. Chiang, and P. Mittal,
“DARTS: deceiving autonomous cars with toxic signs,” CoRR, vol.
abs/1802.06430, 2018. [Online]. Available: http://arxiv.org/abs/1802.
06430

[15] Z. Kong, J. Guo, A. Li, and C. Liu, “Physgan: Generating physical-
world-resilient adversarial examples for autonomous driving,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2020, pp. 14 242–14 251.

[16] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks on
deep learning visual classification,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2018, pp. 1625–1634.

[17] Z. Xiao, X. Gao, C. Fu, Y. Dong, W. Gao, X. Zhang, J. Zhou, and J. Zhu,
“Improving transferability of adversarial patches on face recognition
with generative models,” in IEEE Conf. Comput. Vis. Pattern Recog.,
2021, pp. 11 845–11 854.

[18] A. Fawzi and P. Frossard, “Measuring the effect of nuisance variables
on classifiers,” in Brit. Mach. Vis. Conf., 2016.

[19] C. Yang, A. Kortylewski, C. Xie, Y. Cao, and A. L. Yuille, “Patchattack:
A black-box texture-based attack with reinforcement learning,” in Eur.
Conf. Comput. Vis., A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds.,
vol. 12371, 2020, pp. 681–698.

[20] X. Jia, X. Wei, X. Cao, and X. Han, “Adv-watermark: A novel watermark
perturbation for adversarial examples,” in ACM Int. Conf. Multimedia,
2020, pp. 1579–1587.

[21] F. Croce, M. Andriushchenko, N. D. Singh, N. Flammarion, and
M. Hein, “Sparse-rs: a versatile framework for query-efficient sparse
black-box adversarial attacks,” in AAAI, 2022.

[22] J. Chen, M. I. Jordan, and M. J. Wainwright, “Hopskipjumpattack: A
query-efficient decision-based attack,” in IEEE Symp. Secur. and Priv.,
2020, pp. 1277–1294.

[23] H. Li, X. Xu, X. Zhang, S. Yang, and B. Li, “QEBA: query-efficient
boundary-based blackbox attack,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2020, pp. 1218–1227.

[24] Y. Zhong and W. Deng, “Towards transferable adversarial attack against
deep face recognition,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp.
1452–1466, 2021.

[25] F. Tramèr, A. Kurakin, N. Papernot, I. J. Goodfellow, D. Boneh, and
P. D. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
in Int. Conf. Learn. Represent., 2018.

[26] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in Int. Conf. Learn. Represent.,
2021.

[27] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Un-
terthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, M. Lucic, and
A. Dosovitskiy, “Mlp-mixer: An all-mlp architecture for vision,” in
Adv. Neural Inform. Process. Syst., M. Ranzato, A. Beygelzimer, Y. N.
Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021, pp. 24 261–24 272.

[28] S. Bhojanapalli, A. Chakrabarti, D. Glasner, D. Li, T. Unterthiner,
and A. Veit, “Understanding robustness of transformers for image
classification,” CoRR, vol. abs/2103.14586, 2021.

[29] R. Shao, Z. Shi, J. Yi, P. Chen, and C. Hsieh, “On the adversarial
robustness of visual transformers,” CoRR, vol. abs/2103.15670, 2021.

[30] H. Huang, Y. Wang, Z. Chen, Z. Tang, W. Zhang, and K. Ma, “Rpat-
tack: Refined patch attack on general object detectors,” in Int. Conf.
Multimedia and Expo, 2021, pp. 1–6.

[31] Z. Wu, S. Lim, L. S. Davis, and T. Goldstein, “Making an invisibility
cloak: Real world adversarial attacks on object detectors,” in Eur. Conf.
Comput. Vis., A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., vol.
12349, 2020, pp. 1–17.

[32] A. Zolfi, M. Kravchik, Y. Elovici, and A. Shabtai, “The translucent
patch: A physical and universal attack on object detectors,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2021, pp. 15 232–15 241.

[33] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a
crime: Real and stealthy attacks on state-of-the-art face recognition,” in
ACM Conf. Comput. Commun. Secur., E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, Eds., 2016, pp. 1528–1540.

[34] S. Komkov and A. Petiushko, “Advhat: Real-world adversarial attack on
arcface face ID system,” in Int. Conf. Pattern Recog. IEEE, 2020, pp.
819–826.

[35] B. Yin, W. Wang, T. Yao, J. Guo, Z. Kong, S. Ding, J. Li, and C. Liu,
“Adv-makeup: A new imperceptible and transferable attack on face
recognition,” in IJCAI, Z. Zhou, Ed., 2021, pp. 1252–1258.

[36] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2016, pp. 2414–2423.

[37] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 828–
841, 2019.

[38] Y. Dong, H. Su, B. Wu, Z. Li, W. Liu, T. Zhang, and J. Zhu, “Efficient
decision-based black-box adversarial attacks on face recognition,” in
IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp. 7714–7722.

[39] V. Q. Vo, E. Abbasnejad, and D. C. Ranasinghe, “Query efficient
decision based sparse attacks against black-box deep learning models,”
in Int. Conf. Learn. Represent., 2022.

[40] R. Storn and K. V. Price, “Differential evolution - A simple and
efficient heuristic for global optimization over continuous spaces,” J.
Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997.

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and
L. Fei-Fei, “Imagenet large scale visual recognition challenge,” Int. J.
Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[42] G. B. Huang, M. A. Mattar, H. Lee, and E. G. Learned-Miller, “Learning
to align from scratch,” in Adv. Neural Inform. Process. Syst., P. L.
Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, Eds., 2012, pp. 773–781.

[43] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in Int. Conf. Comput. Vis., 2015, pp. 3730–3738.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 770–
778.

[45] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2015, pp. 815–823.

[46] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu,
“Cosface: Large margin cosine loss for deep face recognition,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2018, pp. 5265–5274.

[47] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2019, pp. 4690–4699.

[48] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial
attacks with limited queries and information,” in Int. Conf. Mach. Learn.,
vol. 80, 2018, pp. 2142–2151.

[49] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2016, pp. 2818–2826.

[50] M. Naseer, S. H. Khan, and F. Porikli, “Local gradients smoothing:
Defense against localized adversarial attacks,” in IEEE Wint. Conf. App.
Conput. Vis., 2019, pp. 1300–1307.

[51] J. Hayes, “On visible adversarial perturbations & digital watermarking,”
in IEEE Conf. Comput. Vis. Pattern Recog. Worksh., 2018, pp. 1597–
1604.

[52] A. Levine and S. Feizi, “(de)randomized smoothing for certifiable
defense against patch attacks,” in Adv. Neural Inform. Process. Syst.,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,
2020.

[53] Z. Chen, B. Li, J. Xu, S. Wu, S. Ding, and W. Zhang, “Towards
practical certifiable patch defense with vision transformer,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2022.

[54] D. Golderg, “Genetic algorithm in search,” Optimization & Machine
Learning, Addison Wesley, 1989.

[55] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” Int. J. Comput. Vis., vol. 128, no. 2, pp.
336–359, 2020.

http://arxiv.org/abs/1802.06430
http://arxiv.org/abs/1802.06430

	Introduction
	Related Work
	Adversarial Example and Adversarial Patch
	White-box Patch Attack
	Black-box Patch Attack
	Adversarial Attacks with Evolutionary Algorithms

	Methodology
	Problem Definition
	Simplification on Solution Space
	Differential Evolutionary Patch Attack

	Experiments
	Experimental Settings
	Datasets
	Models
	Attack Methods
	Evaluation Metrics

	Effects of Hyperparameters
	Population Size
	Initialization Rate
	Mutation Rate
	Convergence
	Fitness Measure

	Attacks on Image Classification
	Attacks on Face Verification
	Attacks on Patch Defenses
	Ablation Study on Differential Evolution
	Analysis on Target Images
	Effectiveness Analysis

	Discussion
	Conclusions
	References

