
1

DECLOAK: Enable Secure and Cheap Multi-Party
Transactions on Legacy Blockchains by a

Minimally Trusted TEE Network
Qian Ren , Yue Li , Yingjun Wu , Yuchen Wu , Hong Lei , Lei Wang , and Bangdao Chen

Abstract—As the confidentiality and scalability of smart con-
tracts have become a crucial demand of blockchains, off-chain
contract execution frameworks have been promising. Some have
recently expanded off-chain contracts to Multi-Party Computa-
tion (MPC), which seek to transition the on-chain states by off-
chain MPC. The most general problem among these solutions
is MPT, since its off-chain MPC takes on- and off-chain inputs,
delivers on- and off-chain outputs, and can be publicly verified
by the blockchain, thus capable of covering more scenarios.
However, existing Multi-Party Transaction (MPT) solutions lack
at least one of data availability, financial fairness, delivery
fairness, and delivery atomicity. The data availability means
entities can independently access the data required to rebuild
new states and verify outputs; financial fairness implies at least
one adversary will be punished monetarily; delivery fairness
means parties can receive their outputs at almost the same
time; delivery atomicity means that parties receive their outputs
and new states are committed must both happen or neither.
These properties are crucially valued by communities, e.g., the
Ethereum community and users. Even worse, these solutions
require high-cost interactions between the blockchain and off-
chain systems.

This paper proposes a novel MPT-enabled off-chain contract
execution framework, DECLOAK. DECLOAK is the first to
achieve data availability of MPT, and our method can apply
to other fields that seek to persist user data on-chain. Moreover,
DECLOAK solves all mentioned shortcomings with lower gas cost
and weaker assumption. Specifically, DECLOAK tolerates all-but-
one Byzantine party and TEE executors. Evaluating on 10 MPTs,
DECLOAK reduces the gas cost of the SOTA, Cloak, by 65.6%.
Consequently, we are the first to not only achieve such level
secure MPT in practical assumption, but also demonstrate that
evaluating MPT in the comparable average gas cost to Ethereum
transactions is possible. And the cost superiority of DECLOAK
increases as the number of MPT’ parties grows.

Index Terms—Confidential Smart Contract, Multi-Party Com-

This work was supported in part by the National Key R&D Program
of China (No. 2021YFB2700600); in part by the Finance Science and
Technology Project of Hainan Province (No. ZDKJ2020009); in part by the
National Natural Science Foundation of China (No. 62163011); in part by the
Research Startup Fund of Hainan University under Grant KYQD(ZR)-21071.
(Corresponding author: Hong Lei)

Q. Ren is with the The Blockhouse Technology Ltd., Oxford OX2 6XJ,
UK. (email: qianren1024@gmail).

Y. Li is with the Peking University, Beijing, China 100871. (email:
liyue cs@pku.edu.cn)

L. Wang is with the Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, Shanghai, China 200240. (email: wan-
glei@cs.sjtu.edu.cn)

H. Lei is with School of Cyberspace Security (School of Cryptology),
Hainan University, Hainan, China 570228.

Yi. Wu, Yu. Wu, H. Lei, and B. Chen are with the Oxford-Hainan
Blockchain Research Institute and SSC Holding Company Ltd., Wok Park,
Laocheng, Chengmai, Hainan, 571924 China. (email: yingjun, yuchen, lei-
hong, bangdao@oxhainan.org).

putation, Trusted Execution Environment

I. INTRODUCTION

WHILE blockchains are rapidly developed and adopted
in various domains, e.g., DeFi, NFT, IoT industries,

contract privacy and scalability of blockchains have now be-
come two of the top concerns. Unfortunately, in most existing
blockchains [1], [2], blockchain data must be publicly acces-
sible and verifiable so that miners can access the transaction
data and re-execute transactions to verify all state transitions.
Off-chain contract execution with MPC. The demand for
both privacy and scalability motivates off-chain smart contract
execution frameworks. Their common idea is to offload the
smart contract execution from the blockchain to off-chain
systems. The blockchain then functions only as a trust anchor
to verify the execution and store states. Subsequently, some
promising solutions extend the off-chain contract execution
to multi-party scenarios, including auction [3], personal fi-
nance [4] and deal matching [5], [6]. This problem is general-
ized and defined in [7] as Multi-Party Transaction (MPT) [7],
[8]. It means transitioning blockchain states by a publicly
verifiable off-chain MPC, where the MPC takes on- and off-
chain inputs from, and delivers on- and off-chain outputs to
multiple parties, without leaking their inputs/outputs to the
public or each other. For example, in a second-price auc-
tion [3], multiple mutually distrustful parties jointly perform
an auction on their confidential on-chain balance and off-chain
bids. When the auction finishes, the party with the highest bid
wins and pays the second-highest price on-chain. To enable
MPT, two kinds of solutions exist. The first is cryptography-
based solutions, which adopt MPC [9]–[11] or Homomorphic
Encryption (HE) [12] to allow parties jointly and confidentially
evaluate a program off-chain, then commit the evaluation
status/outputs on-chain. The second, TEE-based solutions [4],
[7], [8], [13], uses TEE to collect private data from parties,
evaluates a program with the data inside enclaves, and finally
commits the evaluation status/outputs on-chain.
Limitations. However, existing solutions of MPT suffer from
at least one of the following flaws: (i) Do not achieve data
availability, making them vulnerable to data lost when off-
chain systems fail. For example, even with ZKP or TEE to
prove the correct state transitions, users cannot know their
balances if an off-chain operator withholds the states. This
property is keenly required by the Ethereum community [14]
and the community has designed a series of measures to

ar
X

iv
:2

20
2.

10
20

6v
2

 [
cs

.C
R

]
 2

2
M

ay
 2

02
3

https://orcid.org/0000-0002-2617-1321
https://orcid.org/0000-0002-4137-619X
https://orcid.org/0000-0001-6567-7838
https://orcid.org/0009-0000-0231-4570
https://orcid.org/0000-0002-6564-1568
https://orcid.org/0000-0001-7170-2825
https://orcid.org/0000-0003-3225-4286

2

uphold it, e.g., calldata [15]–[17] and blob [18], which are
keys of the coming Cancun upgrade [19]; (ii) Do not achieve
financial fairness, so they can only assume a rate of honest
nodes exists but cannot monetarily urge profit-driven nodes to
behave honestly or punish the misbehaved nodes; (iii) Do not
achieve delivery fairness, which requires delivering outputs to
corresponding parties at almost the same time. Formally, we
say a MPC protocol achieves ∆-fairness if the time of different
parties receiving their outputs distributes in a ∆-bounded
period. A large ∆ will lead to several attacks, e.g., a party prior
to others knowing that the MPT buys an ERC20 token and
change the trade rate can front-run an arbitrage transaction,
so-called front-running attacks, e.g., MEV [20]. (iv) Do not
achieve delivery atomicity, i.e., either both committing new
states and delivering outputs are guaranteed, or none of
them happens. The lack of atomicity either enables adversary
knowing outputs before they are being committed on-chain to
abort or rewind the MPT, or leads party to permanently lost
their outputs when the outputs have been committed [21]; (v)
Require high-cost interactions with the blockchain.
Our work. In this paper, we propose DECLOAK, a novel
MPT-enabled off-chain contract execution framework. DE-
CLOAK solves all above problems with lower gas cost and
weaker assumption. Specifically, to enable MPTs on a legacy
blockchain, e.g., Ethereum [2], we require multiple TEE
executors to register their TEEs on a deployed DECLOAK
contract. The contract thus be aware of all TEEs and will
specify a specific TEE to serve all MPT. Then, multiple
parties can interact with the specified TEE off-chain to send
MPTs. To achieve data confidentiality and availability (cf.,
i), we propose a novel data structure of commitments. The
structure allows each party and TEE to independently access
the newest states from the blockchain, even though all other
entities are unavailable. To achieve financial fairness (cf., ii)
and low cost (cf., v), we propose a novel challenge-response
subprotocol. With the subprotocol, all honest entities among
parties and TEE executors will never lose money, and at least
one misbehaved entity will be punished. Especially, it enables
the DECLOAK contract to identify the misbehaviour of the
specified TEE and replace it with another TEE. To achieve
atomicity (cf., iv) and delivery fairness (cf., iii), we require
all TEEs to release the keys of output ciphertext only when
verifying that the output commitments have been accepted
and confirmed by the blockchain. This way, we achieve the
complete fairness of output delivery, where multiple parties
obtain their corresponding outputs in almost the same time.
Consequently, DECLOAK achieves the data availability, fi-
nancial fairness, delivery fairness, and delivery atomicity of
MPTs simultaneously with only 34.4% gas cost of the SOTA,
Cloak [8], while assuming at least one parties and TEE
executors are honest. Last, we demonstrate how to optimize
or prune DECLOAK for simpler or less secure scenarios,
including how to ignore some secure properties for lower gas
costs further.
Contributions. Our main contributions are as follows.

• We design a novel off-chain contract execution framework,
DECLOAK, which enables MPTs on legacy blockchains.

• We propose a DECLOAK protocol which handles the prob-
lem of how to maximize the security of MPTs by using a
minimally trusted TEE network. Specifically, the protocol
achieves confidentiality, data availability, financial fairness,
delivery fairness, and delivery atomicity simultaneously,
while requiring at least one party and at least one of TEE
executors to be honest.

• We implement and evaluate DECLOAK on 10 MPTs with
varying parties from 2 to 11.

• We demonstrate how to optimize further or fine-tune DE-
CLOAK protocol to make trade-offs between security and
cost for simpler scenarios.

Organization. We organize the paper as follows. Section II
introduces MPT and how DECLOAK advances related work.
Section III sketches DECLOAK. Section IV details the DE-
CLOAK protocol. Section V illustrates the implementation of
DECLOAK prototype. In Section VI, we conduct a security
analysis of DECLOAK. In Section VIII, we discuss how to
optimize the DECLOAK protocol and make trade-offs between
the security and gas cost when degenerating MPT to simpler
scenarios. Finally, we evaluate DECLOAK in Section VII and
conclude in Section IX.

II. BACKGROUND AND RELATED WORK

A. Multi-Party Transaction

Informally, Multi-Party Transaction (MPT) refers to a trans-
action which transitions states on-chain by publicly verifiable
off-chain MPC. The off-chain MPC in an MPT takes both
on-/off-chain inputs and delivers both on-/off-chain outputs.
Therefore, so far, MPT is the most general definition of off-
chain contract execution in multi-party scenarios and can be
easily applied to various domains. For example, recall the
second-price auction in Section I. During the process, the
bids should keep private to their corresponding parties, i.e.,
confidentiality is held; The public (e.g., the blockchain miners)
ought to verify that the output is the correct output of a claimed
joint auction, i.e., the correctness and public verifiability hold.
We demonstrate more MPT scenarios in Section VII.

Formally, MPT is modeled as below [7], [8].

cs1 , . . . ,csn

c f , cx1 ,...,cxn
=⇒ cs′1

, . . . ,cs′n ,cr1 , . . . ,crn , proo f

| s1, . . . ,sn
f (x1,...,xn)
=⇒ s′1, . . . ,s

′
n,r1, . . . ,rn

For a blockchain and an array of parties P where |P| =
n (n ∈ Z∗ ∧ n > 1), we denote a party P[i] as the party Pi.
An MPT takes secret transaction parameter xi and old state
si from each Pi, confidentially evaluates f off-chain, then
delivers the secret return value ri and new state s′i to Pi, while
publishing their commitments cxi ,csi ,c f ,cs′i

,cri and a proo f on
the blockchain. MPT should satisfy the following properties.
• Correctness: When each Pi providing xi,si obtains s′i,ri, it

must hold that

s1, . . . ,sn
f (x1,...,xn)
=⇒ s′1, . . . ,s

′
n,r1, . . . ,rn

• Confidentiality: Each Pi cannot know {x j,s j,s′j,r j| j 6= i}
except those that can be derived from public info and the
secrets it provides.

3

Table I
COMPARING DECLOAK WITH RELATED WORK. THE SYMBOLS 5, m, w AND l REFER TO “NON-RELATED”, “NOT-MATCHED”, “PARTIALLY-MATCHED”
AND “FULLY-MATCHED” RESPECTIVELY. “ADVERSARY MODEL” MEANS HOW MANY BYZANTINE ENTITIES CAN BE TOLERANT. “DATA AVAILABILITY”

MEANS WHETHER PARTIES OR TEES HOLD MPT-SPECIFIC DATA. “FINANCIAL FAIRNESS” MEANS HONEST PARTIES NEVER LOST MONEY WHILE AT
LEAST ONE MISBEHAVED NODE MUST BE PUNISHED. “DELIVERY FAIRNESS” MEANS EITHER THE MPT FAILS OR PARTIES OBTAIN THEIR OUTPUTS IN
ALMOST THE SAME TIME. “DELIVERY ATOMICITY” MEANS WHETHER BOTH COMMITTING OF OUTPUTS AND THE DELIVERY OF OUTPUT OR NONE OF

THEM ARE GUARANTEED.

Approach Adversary Model min(#TX) Confidentiality Data availability Financial
Fairness

Delivery
Fairness

Delivery
Atomicity

Parties TEE Executors Parties TEEs

Ekiden [21] 1∗ m∗−1 O(1) l m m 5 5 l
Confide [22] 1∗ b(m∗−1)/2c O(1) l m l 5 5 5
POSE [23] 1∗−1 m∗−1 O(1) l w w 5 5 m
Bhavani et al. [24] n∗ m∗ |m=n O(1) l 5 5 5 l 5
Hawk [3] n∗ 5 O(n) w m 5 l m m
ZEXE [25] n∗ 1∗ O(1) w m 5 5 5 m
Fastkitten [13] (n∗+1∗)−1 O(n) w m m l m m
LucidiTEE [4] n∗ m∗−1 O(n) l m w 5 w l
Cloak [8] (n∗+1∗)−1 O(1) l m l l m m
DECLOAK n∗−1 m∗−1 O(1) l l l l l l

The ∗ denotes the total number of the specific type of entities, e.g., 1∗ denotes the unique party/executor, n∗ denotes all n parties, and m∗ denotes all
executors.

• Public verifiability: With proo f , all nodes can verify that
the state transition from cs ← [csi |1..n] to cs′ ← [cs′i

|1..n] is
correctly caused by a unknown function f (committed by
c f) taking unknown parameter xi (committed by cxi) and old
state si (committed by csi), and obtains unknown new state
s′i (committed by cs′i

) and return value ri (committed by cri).

B. Related Work

Here we highlights the difference and novelty of DECLOAK,
as shown in Table I.
TEE-based confidential smart contract. Ekiden [21], [26],
CCF [27], Confide [22], and POSE [23] are designed for
confidential smart contracts where transaction inputs/outputs
and contract states are confidential and all transactions are
regarded as independent. These frameworks never consider
properties specific in multi-party scenarios, e.g., fairness.

Ekiden is a confidential smart contract framework which
features appointing the consensus, execution, and key man-
agement functionality to different nodes. Specifically, besides
consensus nodes, Ekiden sets up multiple TEE-enabled execu-
tors to serve users independently, where consensus nodes can
obtain outputs as long as at least one executor is honest. Yet
it requires executors’ TEEs to fetch keys from a TEE-based
key management committee to evaluate each transaction. This
requirement additionally assumes the number of available TEE
executors in the committee should be over a specific threshold,
where the threshold depends on the threshold of the distributed
key generation algorithms adopted by the committee. On atom-
icity, Ekiden proposes a two-phase protocol which delivers
keys encrypting the outputs to users off-chain when the outputs
have been committed on-chain, thus achieving atomicity. On
data availability, users cannot access their states on-chain since
the states are encrypted by TEEs. However, each executor also
cannot decrypt on-chain states without requesting keys from
the committee. Therefore, it is flawed in data availability.

Confide and CCF are permissioned network where TEE-
enabled executors maintain a consensus, e.g., RAFT, thereby

can tolerate less than 1/2 unavailable executors. They store
contract data (e.g., code, states) by encrypting data with keys
shared among TEEs, thereby achieving data availability of
TEEs. However, like Ekiden, if TEE executors are unavailable,
users will temporarily lose accessibility to and even perma-
nently lose their private data and on-chain assets. The TEEs’
data availability holds.

POSE propose an off-chain contract execution which fea-
tures high availability and no interaction with blockchain in
optimistic cases. It introduces a challenge-response mecha-
nism, ensuring the system’s availability even if all-but-one
executors are Byzantine. The protocol additionally requires the
transaction sender to be honest to initiate the challenge. Users
of POSE cannot access their states independently. Each TEE
need to synchronize with other TEEs to obtain state updates.
On atomicity, while involving reading inputs from and writing
blockchain, POSE does not consider the atomicity of the on-
chain writing and off-chain output delivery.
TEE-based smart contracts enabling MPTs. Choudhuri
et al. [24] is the first to achieve complete fairness for general-
purpose functions with the help of blockchain and TEEs. It
requires each party to hold a TEE itself. Bhavani et al. does
not consider executing contract relying on on-chain states,
committing states on blockchains, or punishing misbehaved
nodes, thus being non-related to delivery atomicity, data avail-
ability, or financial fairness.

Fastkitten [13] seeks to enable arbitrary contracts, especially
including multi-round MPC, on Bitcoin. It lets parties execute
a transaction with private inputs in TEEs, persists the outputs
locally, and only submit new state commitments with TEE
signatures on-chain. Therefore, the party must persist all its
latest private contract states and corresponding keys to ensure
its ability to transition the states next time, lacking data avail-
ability. In long-running systems, parties’ persisted data keep
growing, making it a disaster for parties to maintain. More-
over, it involves a challenge-response mechanism to achieve
financial fairness but requires each party to send a deposit
transaction before each MPT, leading to O(n) transactions.

4

LucidiTEE [4] loosely requires part of parties to hold TEEs
to achieve delivery fairness. However, the time of parties
receiving outputs distributes in a period the length of which
equals the generation time of Proof of Publication (PoP)1 [13],
[21], [28] for proving TEE that a key-releasing transaction
has been finalized on-chain, which costs more than 50 block
intervals on Ethereum 2. Moreover, LucidiTEE requires each
party to send a transaction to join an MPT or deposit,
leading to O(n) transactions. On financial fairness, LucidiTEE
lacks mechanisms to punish misbehaviours. With a similar
state confidentiality mechanism as Ekiden and commitment
as Fastkitten, LucidiTEE also lacks data availability.

Cloak [8] firstly propose a one-deposit-multi-transaction
mechanism, where each honest party deposits coins once
globally and then joins MPTs ultimately. The mechanism
reduces it required on-chain transactions to O(1). Cloak only
commits the hash of transaction data on-chain, e.g., inputs,
outputs, keys, and policies. Thereby their parties also cannot
access their states without TEE executors, i.e., lacking data
availability.

DECLOAK propose a novel commitment structure to confi-
dentially persist states on the blockchain with low cost. Each
party can access their MPT-specific data from the blockchain
with only its own account private key. Each TEE can read
MPT-specific data from the blockchain without the help of
either parties or other TEEs. Consequently, even if the whole
off-chain system is unavailable, the data availability of the
newest states is still guaranteed. As DECLOAK adopt the same
one-deposit-multi-transaction and a novel challenge-response
protocol, it only requires O(1) transactions in optimistic cases.
Finally, while achieving complete delivery fairness, DECLOAK
frees parties from maintaining TEEs
Cryptography-based smart contracts enabling MPTs.
Cryptography-based schemes usually combine MPC/HE with
ZKP to enable MPTs. Before the combination, MPC/HE-
based works like [29]–[31] achieve great confidentiality but not
targets public verifiability. ZKP-based solutions achieve public
verifiability but lack confidentiality. For example, Hawk [3]
requires a tight-lipped manager to collect parties’ secrets,
execute a contract, and generate the ZKP proof, thus the
confidentiality of Hawk is limited. ZEXE [25] proves the
satisfaction of predicates by ZKP proof without revealing party
secrets to the public. However, generating the proof requires
a party to know all predicate’s secrets, thereby violating
inter-party confidentiality. Combining MPC with ZKP, public
auditable MPC (PA-MPC) [9] achieves the publicly verifiable
MPC, allowing multiple parties jointly evaluate a program and
prove it. Nevertheless, existing PA-MPC primitives are not
designed for committing data or proving state transitions, e.g.,
MPCs expressed in Solidity that operate both on- and off-
chain inputs/outputs. Moreover, they have flaws at inefficiency
and weaker adversary model, and still fail in practically
supporting nondeterministic negotiation or achieving financial
fairness. Specifically, [9] requires trusted setup or un-corrupted

1Recall that PoP is a proof constructed for proving that a transaction has
been confirmed on a blockchain

2For achieving ≤ 0.001 false negative and false positive under an adversary
with ≤ 1/3 computing power of Ethereum

parties. [32] is function-limited. [33] very recently achieves
general-purpose PA-MPC but only support circuit-compatible
operations. None of the above solutions are for confidential
smart contracts or can punish adversaries. Instead, using the
same proof structure with Cloak, DECLOAK conforms to both
confidentiality and public verifiability. For security, while the
underlining MPC of [24], [29]–[31] requires honest-majority
parties, DECLOAK secure the system under an Byzantine
adversary corrupting all parties and all-but-one TEE executors.

III. DECLOAK DESIGN

In this section, we first overview the system model, ad-
versary model, and system goals of DECLOAK. Then, we
overview DECLOAK protocol and highlight the challenges we
handled and corresponding countermeasures.

A. System model
Figure 1 shows the framework of DECLOAK, i.e., a TEE-

Blockchain system consisting of three components.
Blockchain (BC). A blockchain, e.g., Ethereum [2], that can
deploy and evaluate Turing-complete smart contracts.
Parties (P). an array of parties who participate a specific MPT.
DECLOAK network (DN). A DECLOAK Network consists of
multiple TEE executors and TEEs, where each executor E is
a server hosting a TEE E . We denote the set of all executors
as E and all TEEs as E .

B. Adversary model
We assume that a Byzantine adversary presents in a DE-

CLOAK system. The assumptions and threats are as follows.
Blockchain. We assume that BC satisfies the common prefix,
chain quality and chain growth, so it can continuously handle
and reach consistency on new transactions. Moreover, there is
a Proof of Publication (PoP) scheme to prove to TEEs that
a transaction has been finalized on BC, which is for against
eclipse attack and also adopted by [8], [13], [21], [28]. The
PoP of a transaction is a block sequence that contains the
transaction and is provided to TEEs in the expected time.
Parities. An honest party can access the latest view of the
blockchain and trust the data it reads from the blockchain. It
trusts its platform and running code but not others. An honest
party also trusts the integrity and confidentiality of all TEEs
it attested. An honest party never reveal its secrets to others
except attested TEEs.
DECLOAK network. An honest TEE executor can access the
latest blockchain view and trust the data it reads from the
blockchain. An honest executor also trusts its platform and
running code but not others. An honest executor also trusts
the integrity and confidentiality of attested TEEs.
Threat model. A Byzantine adversary can corrupt all parties
and all-but-one TEE executors. A corrupted party or executor
can behave arbitrarily, e.g., mutating, delaying and dropping
messages, but never break the integrity/confidentiality of TEE.
Moreover, the adversary cannot interfere with the communica-
tions among honest entities, e.g., the communications among
honest parties or between honest parties and honest executors.

5

C. System goals
Informally, we seek to achieve following properties.

Correctness. If an MPT succeeds, the outputs must be the
correct results of the MPT applied to the inputs committed.
Confidentiality. The inputs and outputs of MPT are always
confidential to their corresponding parties.
Public verifiability. The public, including the blockchain,
can verify the correctness of the state transition caused by a
MPT. Particularly, to accept a state transition, the blockchain
will verify that the old states from which the new state is
transitioning match its current states.
Data availability. If an MPT successfully completes, it holds
that (i) each honest party can access the plaintext of its newest
states independently, and (ii) each honest executor’s TEE can
access the plaintext of the newest states independently to
restore the newest states. This means honest parties will never
lose their newest states, no matter how TEE executors behave.
Financial fairness. If at least one party is honest, then either
(i) the protocol correctly completes the MPT or (ii) all honest
parties know that negotiation of the MPT failed and stay
financially neutral or (iii) all honest parties know the protocol
aborted, stay financially neutral, and at least one of malicious
entities must have been financially punished.
Delivery fairness. If at least one TEE executor is honest, then
either (i) all parties know the plaintext return values and new
states in a ∆-bounded period, or (ii) the new states and return
values are not committed on-chain, and none of the parties
or executors can know the plaintext of new states and return
values.
Delivery atomicity. If at least one TEE executor is honest,
then either (i) some parties know the plaintext new states or
return values, and the new states must have been committed
on-chain, or (ii) new states are not committed on-chain, and
none of the parties obtains its plaintext new states or return
values.

D. Protocol workflow
Figure 1 shows the workflow of πDECLOAK. We assume all

TEEs have been registered on-chain as a TEE list E before
the protocol started. Then, πDECLOAK starts to serve an MPT
in four phases, i.e., global setup, negotiation, execution, and
delivery phases. The global setup phase happens only once for
any party. Other three phases of πDECLOAK happen in evaluating
each MPT.
• (0) Global setup phase: All parties and TEEs deposit some

coins to the network account adE on BC.
• (1) Negotiation phase: A party sends an MPT proposal p

to the first executor E ∗ in the registered TEE executor list to
initiate an MPT. Upon receiving the proposal, the TEE E ∗

starts a nondeterministic negotiation subprotocol Procnneg.
Specifically, the E ∗ signs and broadcasts the proposal to
all parties. If any party want to join or is required by the
proposal, it responds with an acknowledgement to E ∗. The
E ∗ keeps collecting parties’ acknowledgements. When the
collected acknowledgements match the settlement condition
of the negotiation phase (e.g., The number of parties exceeds
the number specified in the policy), E ∗ settles the proposal,

deducts parties’ collaterals from their coins cached in E ∗,
and broadcasts the settled MPT proposal p′ to all parties.

• (2) Execution phase: Upon receiving p′, each party involved
in the proposal submits its signed plaintext inputs (i.e.,
parameters) to E ∗. E ∗ first read old states on the blockchain
with their PoP3. Then, E ∗ evaluates the MPT to obtain the
outputs (i.e., return values and new states) inside.

• (3.1-3.2) Delivery phase: When the E ∗ gets the MPT
outputs, it starts a ∆-fair delivery subprotocol Procfdel.
First, it generates one-time symmetric keys to compute the
commitments of the outputs and sends a Commit T Xcmt
to publish output commitments on BC with the ciphertext
of the symmetric keys (encrypted by the network key
kE). Upon T Xcmt being confirmed on the blockchain, each
E ∈ E independently verifies the PoP of T Xcmt , obtains the
symmetric keys from T Xcmt , then sends a T Xcom to reveal the
committed outputs to each party respectively. Consequently,
both parties and executors do not need to persist any MPT-
specific commitments or keys.
If any misbehaviour appears during the negotiation, execu-

tion, or delivery phase, we adopt a novel challenge-response
mechanism to identify the misbehaved entities in parties and
TEE executors.

Design Idea and Workflow

The workflow of Cloak, a development framework of general-purpose confidential smart contract

DeCloak Network

Enclave

…

Executor
Multi-Party Programs

1 negotiate
and lock
deposits

0 register
and deposit

3.2 reveal
keys to
complete

($)

Parties

…

coins

2 submit
inputs,
execute and
unlock

e.g., Ethereum.

Blockchain

3.1 verify
and commit

Figure 1. The framework and workflow of DECLOAK.

E. Design challenges and highlights
1) Achieve data availability of both TEEs and parties
The challenge here is (i) how to achieve the data availability

of both parties and TEEs and (ii) ensuring confidentiality and
living in harmony with the protocol for delivery atomicity
and fairness. To achieve these, we introduce a novel data
commitment subprotocol. Specifically, say each party Pi has
its account (ski, pki,adi), where ski, pki,adi refer to the private
key, public key and address of the account. As each party Pi
is identified by its address, we refer Pi to adi indiscriminately.
We assume a common TEE network account (skE , pkE ,adE)
has been synchronized among all TEEs. Then, we require
all entities commit private data di on blockchain in the
following structure cdi . kdi denotes a one-time symmetric key

3We use the same PoP as [8], [13], [28]

6

for encrypting di. kie denotes the symmetric key generated by
ECDH, i.e., kie← ECDH(ski, pkE) and kie← ECDH(skE , pki).
Consequently, on the one hand, either Pi or TEEs can indepen-
dently obtain kie without interacting with the other. And a party
needs only to hold the account private key ski to access and
operate its all commitments on-chain. On the other hand, when
DECLOAK release c∗di

(cdi without Enckie(kdi)) to commit
and verify the state transition on-chain first for atomicity and
fairness, any adversary cannot obtain kdi to decrypt Enckdi

(di).

cdi := [Enckdi
(di),Enckie(kdi),Pi]

2) Achieve complete delivery fairness
In DECLOAK, when a TEE executor evaluated the MPT

inside its TEE, the TEE cannot release the output immediately.
Instead, the TEE first generates one-time symmetric keys to
encrypt the outputs, then sends a T Xcmt to publish the output
ciphertext and the ciphertext of the keys on-chain. The keys’
ciphertext can be decrypted by all TEEs independently but
each TEE only releases the decrypted keys after T Xcmt has
been finalized on-chain. Since we assume the blockchain is
ideally available, all honest TEE executors can feed the PoP of
T Xcmt to their TEE. Therefore, if at least one honest executor
exists, parties communicating with all executors can obtain the
keys to decrypt the output ciphertext at almost the same time.

3) Resist Byzantine adversary with minimal transactions
In this paper, we propose a novel challenge response sub-

protocol Procrcha. At a high level, Procrcha is designed with
the following idea: when an honest party does not receive
protocol messages off-chain from the specified TEE, it can
publicly challenge the TEE with the proposal on-chain. The
TEE can only avoid being punished if it can respond with
expected outputs or prove that the problem is caused by some
misbehaved parties rather than itself. Specifically, an MPT
proposal only has three possible results: (i) NEGOFAILED, which
means the negotiation of the proposal failed; (ii) COMPLETED,
which means the completion of the MPT, i.e., an T Xcom is
sent and accepted by the blockchain (iii) ABORTED, i.e., some
entities misbehaved, making the MPT aborted. Therefore, the
challenged TEE needs to respond with one of the following
three results to prove its honesty: (i) sending a transaction
T X f neg to prove that the negotiation of the MPT failed; (ii)
sending a transaction T Xcom to complete the MPT and release
its outputs; (iii) sending a transaction T XpnsP to prove that it
cannot complete the MPT as expected because some parties
misbehaved after the negotiation succeeded rather than itself.
If none of the above transactions can be sent, the TEE will
be punished. However, while (ii) is inherited by the success
of MPT, how to achieve (i) and (iii) becomes challenging.
To achieve (i), we require each MPT proposal should specify
a block height hneg to notify when the negotiation phase is
expected to finish. Then, a TEE can send a T X f neg to fail
the proposal on-chain if it verifies that the collected acknowl-
edgements from both off-chain ack and on-chain TXack before
hneg-th block still cannot satisfy the settlement condition of the
proposal. To achieve (iii), when a TEE cannot complete the
MPT, the TEE needs to challenge those misbehaved parties
to prove that the reason is some parties did not submit their
inputs rather than itself.

IV. DECLOAK PROTOCOL

In this section, we present the DECLOAK protocol πDECLOAK

in detail. Given a blockchain BC, a DECLOAK Network DN
having an array of executors E and TEEs E , we assume a
common network account (skE , pkE ,adE) has been synchro-
nized among all TEEs E . For an MPT F with its party set
P, we assume |E| = |E| = m and |P| = n. Since πDECLOAK

involves data from different parties, we use di to denote the
private data of Pi (e.g., xi,si,ksi), d to denote an array [di|1..n]
including all di from n parties (e.g., x,s,ks). We let Hdi denote
hash(di) and Hd denote [hash(di)|1..n] (e.g., Hcx denotes the
hash of the array of transaction parameters [hash(cxi)|1..n]).
The main symbols we will use are summarized in Table II.
Next, we picture the whole protocol in Figure 2.

A. Global setup phase

Before evaluating any MPT, each party Pi is supposed to
register their account public key pki and deposit some coins
with amount Qi to the DECLOAK contract V (Algorithm 1).
We stress that each party only needs to do it once.

B. Negotiation phase

An MPT is started from its negotiation phase, where
DECLOAK uses the nondeterministic negotiation subprotocol
(Procnneg) to guide parties to reach a agreement on an MPT
proposal. In detail, Procnneg proceeds in two steps.

1.1: A party who wants to call an MPT F sends an MPT
proposal p = (F ,P,q,hneg) to the first executor E∗ in the
registered TEE executor list, i.e., E∗=E[0], to initiate an MPT.
Sending proposals to other TEEs will be rejected by the TEEs.
P denotes a privacy policy of F . Briefly, P captures what
data are needed by the MPT F and how to confide these
data. We detail and formalize the P in Appendix IX-A. q
denotes the collateral required for joining or executing the
proposed MPT. hneg denotes that the proposal is expected to
be negotiated before the block height hneg. Then, the specified
executor’s TEE E ∗ computes hashp to be the proposal id idp
and broadcasts a signed (idp, p) to parties.

1.2: Upon receiving (idp, p), each Pi interested in the MPT
autonomously responds with a signed acknowledgement acki
to E∗. The E ∗ receiving acki knows Pi’s intent of joining
the proposal idp. E ∗ keeps collecting acki until the acknowl-
edgements match the settlement condition4 in P . Then, E ∗

constructs a settled proposal p′ that expands p with the
settled parties’ addresses P. Meanwhile, E ∗ caches its and
parties’ coin balances and deducts q collateral from their
balance, respectively, ensuring that any involved entity has
enough collateral to be punished when it misbehaves. Then,
E ∗ broadcasts p′ to notify the involved parties of the settled
proposal.

Otherwise, if E ∗ does not collect satisfied acknowledge-
ments, a challenge-response subprotocol Procrcha in sec-
tion IV-E will be triggered to identify misbehaviour. We defer
the detail in section IV-E.

4Settlement condition of negotiation is flexible, e.g., the number of parties
exceeds a specified threshold.

7

DECLOAK Clients (P) DECLOAK Network (DNF ,P) DECLOAK Blockchain (BCV)

↑ 1.1

↑ 1.2

↑ 2

↑ 3.1

↑ 3.2

f ailNegotiation

challengeParties

punishParties

+ generateIDp

negotiate

execute

commit

complete

Global
setup
phase

Negotiation
phase

(Procnneg)

Execution
phase

Delivery
phase

(Procfdel)

X

X

X

send T Xregi ← V .register(pki)

send T Xdepi ← V .deposit(Qi)

initializes p← (HF ,HP ,q,hneg)

sends p

generates idp← Hp

broadcasts (idp, p)

generates acki

sends (idp,acki)

generates p′← (HF ,HP ,q,hneg,P)
broadcasts (idp, p′)

sends T X f neg← V . f ailNegotiation(idp)

hneg

sends T XchaT ← V .challengeT EE(p)

sends T Xacki ← V .acknowledge(idp,Enckie (acki)))

if Pj ∈ P∗M ⊂ P fail to submit inputs
send T XchaP← V .challengeParties(idp,P∗M)if Pi ∈ P∗M is challenged

ini← (xi,kxi)

sends T XresPi ← V .partyResponse(idp,Enckie (ini))

checks PoPchaT , reads T XchaT and TXack

checks PoPresP and reads T XresP

if P′M ⊂ PM still fail to submit
send T XpnsP← V .punishParties(idp,PM)

generates ini← (xi,kxi)

sends (idp, ini) checks PoPs and read cs, pki

s′,r←FP (s,x)
generate ks′ ,kr and ek ← EnckE (ks,kr)

generate c∗s′i
← [Encks′i

(s′i),0,Pi]

generate c∗ri
← [Enckri

(ri),0,Pi]

generate proo f ← [Hcs ,Hcs′]

send T Xcmt ← V .commit(idp, proo f ,c∗s′ ,c
∗
r ,ek)

read PoPcmt , decrypt ek

broadcast T Xcom

send T Xcom←
V .complete(idp, [Enckie (ks′i

)|i∈[n]], [Enckie (kri)|i∈[n]])
hneg + τcom

sends T XpnsT ← V .punishT EE(idp)

Figure 2. The DECLOAK protocol πDECLOAK . The DNF ,P denotes a DECLOAK Network in which all executors hold TEEs with deployed
F ,P . BCV ,V denotes a blockchain with deployed DECLOAK contract V . Procnneg and Procfdel denote the nondeterministic negotiation,
and ∆-fair delivery subprotocols, respectively. Double dashed arrows denote reading BC and double arrows denote writing BC. Orange arrows
denote the messages of challenge-response. Other arrows denote off-chain communications in secure channels. Specifically, messages sent
by parties are signed by parties and encrypted by kie of DN, where kie← ECDH(ski, pkE). All messages broadcast by DN are plaintext in
default and signed by skE . For simplicity, we omit marking ciphertext of messages that parties are sending to DN, but mark the ciphertext
explicitly in each transaction sent to BC.

8

Table II
A SUMMARY OF MAIN SYMBOLS

Topic Symbol Name Description

Framework

BC Blockchain A BC enables Turing-complete smart contracts
P Parties An array of an MPT’s participants

DN (E,E) DECLOAK network A network DN consisting of an array of executors E and TEEs E
E∗ TEE executor The server hosting the specified TEE E ∗

E ∗ TEE The specified TEE running the enclave program E .

Protocol

adE ,skE Enclave account The address and private key of the common network account controlled by E
Procnneg - Nondeterministic negotiation subprotocol
Procrcha - challenge-response subprotocol
Procfdel - ∆-fair delivery subprotocol

MPT

T XchaT challengeTEE A transaction from the specified TEE E[0] to publicly challenge the malicious parties
T Xacki acknowledge A transaction from the party Pi to publicly join the MPT proposal
T X f neg failNegotiation A public response from the specified TEE E[0] to T XchaT to signal the negotiation failure
T XchaP challengeParties A transaction from the specified TEE E[0] to publicly challenge the malicious parties
T XresPi partyResponse A public response from the party Pi to T XchaP
T Xcmt commit A transaction from the specified TEE E[0] to commit and lock the MPT outputs
T Xcom complete A public response from the specified TEE E[0] to T XchaT to complete the MPT
T XpnsP punishParties A public response from the specified TEE E[0] to T XchaT to punish malicious parties
T XpnsT punishTEEx A transaction from anyone to punish the misbehaved TEE

C. Execution phase

In this phase, E ∗ collects plaintext inputs from parties and
executes F to obtain outputs inside TEE.

2: Upon receiving (idp, p′), each party Pi knowing they are
involved in the settled proposal p′ feeds their inputs (i.e.,
parameters xi and old states si) to E ∗. The E ∗ keeps collecting
parties’ inputs and, especially, reads F -needed old state s from
BC according to the policy P . If all involved parties’ inputs
are collected and matched, E ∗ executes F (s,x) to obtain the
MPT outputs, i.e., return values r and new states s′ inside.
Then, E ∗ goes to the step 3.1.

Otherwise, if some parties do not submit their inputs as
expected, the Procrcha will identify them and punish them.
We defer the detail in section IV-E.

D. Delivery phase

This phase adopts an ∆-fair delivery subprotocol (Procfdel)
to reveal the plaintext outputs (i.e., s′i,ri) to corresponding
parties in a ∆-bounded period. The Procfdel proceeds in two
steps.

3.1 E ∗ generates two arrays of symmetric keys ks′ ,kr to
computes the commitments of old state and return values
s′i,ri, i.e., cs′i

,cri , and generates a proo f ← [Hcs ,Hcs′]. The
transaction with proo f signed by E ∗ can prove the MPT-
caused state transition. Then, E ∗ sends a Commit transac-
tion T Xcmt ← V .commit(idp, proo f ,c∗s′ ,c

∗
r ,ek) to commit the

outputs on-chain. We note that the published c∗s′ ,c
∗
r do not

include the ciphertext of ks,kr so that parties cannot reveal
the commitments of s′,r. Instead, we require E ∗ encrypts the
keys with the network key kE , where kE ← ECDH(skE , pkE),
and attaches the obtained ciphertext ek ← EnckE (ks′ ,kr) in
T Xcmt . So when T Xcmt is confirmed, all E ∈ E can read ks′ ,kr
on-chain without interacting with each other. Moreover, the
proo f in T Xcmt proves the validity of state transition caused
by the MPT F . V will validate the proo f and lock the
on-chain states corresponding to old and new states, which
signals the acceptance of the state transition and prevents its

corresponding on-chain states from being updated by other
concurrent MPTs before this MPT completes.

3.2: When T Xcmt becomes confirmed on-chain, each E ∈ E
feeds the PoPcmt (The PoP of the transaction T Xcmt which is an
enough long and timely block sequence that contains T Xcmt
to prove T Xcmt has been finalized) of T Xcmt to its E . Each
E reads key array ks′ ,kr from the T Xcmt , then sends an trans-
action T Xcom =V .complete(idp, [Enckie(ks′i

)], [Enckie(kri)]) to
add the ciphertext of ks′ ,kr to c∗s′ ,c

∗
r . The T Xcom signals the

COMPLETED of this MPT.
Here, the delivery fairness is achieved as follows: In 3.1,

each party Pi has received the incomplete output commitments
c∗s′ ,c

∗
r but cannot decrypt them without corresponding ks′i

,kri .
In 3.2, each E first verifies PoPcmt to ensure that MPT outputs
have been committed on BC. Then, each E can send a T Xcom
to complete the protocol with COMPETED. Since parties can
directly communicate with all executors to obtain T Xcom, they
can obtain the ks,kr within the network latency ∆, as long as
at least one E honestly respond parties with T Xcom. Otherwise,
if T Xcmt is rejected by V , any E cannot feed valid PoPcmt to
its TEE E . Therefore, no TEE can release T Xcom to reveal
the plaintext outputs or complete the MPT before hneg +τcom-
th block. Therefore, DECLOAK guarantees the ∆-fairness of
delivery, where ∆ is the network latency of the blockchain.

E. Challenge-response subprotocol

When in any phase one of the honest parties did not receive
TEE’s protocol messages as expected, the party can initiate an
challenge-response subprotocol Procrcha. Specifically, it can
send a challengeTEE transaction T XchaT to challenge the TEE
on-chain publicly. The TEE being challenged can only avoid
being punished by successfully responding with one of the
following transactions:
• (i) T X f neg: If the hneg-th block has not been produced, the

TEE E ∗ should keep collecting ack, which are sent by
parties from off-chain channels, and TXack, which are sent
by parties to the blockchain and accepted before the hneg-th

9

block. Only if all collected acknowledgement cannot satisfy
the settlement condition of MPT policy P (If a party Pi
send different acki by the off-chain channel and the on-
chain transaction T Xacki , respectively, the off-chain acki will
be chosen), E ∗ then is allowed to send a T X f neg to fail
the proposal on-chain. In all other cases where the hneg-th
has not been confirmed, or the E ∗ has successfully settled
the proposal, it’s impossible for a TEE to release a T X f neg.
T X f neg will finish the MPT as NEGOFAILED.

• (ii) T Xcom: If the negotiation phase succeeds and the MPT
completes, a T Xcom will be sent to the blockchain inherently.
T Xcom will finish the MPT as COMPLETED.

• (iii) T XpnsP: If the negotiation phase succeeds, but the E ∗

cannot complete the MPT as expected, both parties and the
specified TEE’s executor E∗ can be misbehaved entities.
Therefore, to avoid being punished in default, E∗ should
call its E ∗ to challenge parties publicly. Specifically, if E ∗

does not receive some parties’ inputs or match some parties’
inputs with their on-chain commitments, E ∗ marks these
parties as suspicious parties P∗M and returns P∗M to its host
E∗. The E∗ calls E ∗.challengeParties to send a T XchaP
to challenge all parties in P∗M on-chain. When T XchaP is
confirmed on-chain, honest parties in P∗M are supposed to
send a T XresP to publish the ciphertext of their inputs xi,si.
All published T XresP are required to be confirmed before
block height hneg + τresP. Otherwise, the late T XresP will be
regarded as invalid by E ∗. Upon the confirmation of the
hneg + τresP-th block, E ∗ reads the PoPresP of all TXresP. If
E ∗ successfully reads matched inputs of a party Pi ∈ P∗M
from its T XresPi , it removes Pi from P∗M . Otherwise, if PoPresP
shows that no T XresPi is published on-chain or the inputs in
T XresPi are still mismatched, E ∗ retains Pi in P∗M . After that,
if P∗M becomes empty, which means all inputs are collected,
E ∗ goes to the step 2. Otherwise, if P∗M is not empty,
which means the misbehaviour of parties left is confirmed,
E ∗ marks these parties as PM . Then, E ∗ sends a T XpnsP.
T XpnsP calls punishParties to punish the misbehaved parties
in finance and signal the MPT with ABORTED.
If the E ∗ being challenged by a party either fails (by

T X f neg), stops (by T XpnsP), or completes (by T Xcom) the MPT,
anyone can send a T XpnsT after the hneg + τcom-th block to
punish E ∗ and signal the MPT with ABORTED.

V. IMPLEMENTATION

DECLOAK is designed to depend on contract-based in-
frastructure. A service provider of DECLOAK can deploy a
contract V on a legacy BC. Then, anyone can interact with
the BC and TEEs in DN to transition the states of BC by
MPTs.

A. DECLOAK contract

We implement the DECLOAK contract in Solidity
0.8.10 [34]. As shown in Algorithm 1, V is constructed by the
config of DN, e.g., adE , so that parties can authenticate and
build secure channels with all E ∈ E . Moreover, V provides
functions to manage the life cycle of each MPT. Specifically,
a party calls V .challengeT EE by T XchaT to challenge the

specified TEE. and signal the negotiation as NEGOTIATED.
When an MPT was evaluated, a E calls V .commit by T Xcmt to
validate the state transition and commit the outputs. Finally, a
E calls V .complete by T Xcom to release keys’ ciphertext and
signal the MPT as COMPLETED.

Algorithm 1: DECLOAK contract V

// This contract is constructed by the network
config adE and a T EE list E. adE is the
network account for managing coins deposited
by parties. For simplicity, we ignore the
register and deposit functions here.

1 Function challengeTEE(p)
// called by T XchaT from one of parties

2 idp← hash(p)
3 require(prsls[idp] = /0)
4 prsls[idp].{q,hneg,τcom,E }← p.{q,hneg},τcom,E[0]
5 prsls[idp].sta← PROPOSED

6 Function acknowledge(idp,EnckE (acki))
// called by T Xack from parties

7 require(BC.getHeight()< hneg)

8 Function failNegotiation(idp)
// called by T X f neg from the specified TEE

9 require(msg.sender = prsls[idp].E)
10 prsls[idp].sta← NEGOFAILED

11 Function challengeParties(idp,P∗M)
// called by TXchaP from the specified TEE

12 Function partyResponse(idp,EnckE (in))
// called by TXresP from parties

13 require(BC.getHeight()< hneg + τresP)

14 Function punishParties(idp,PM)
// called by T XpnsP from the specified TEE

15 require(msg.sender = prsls[idp].E)
// update coins for punishment

16 for Pi ∈ PM do
17 coins[Pi]← coins[Pi]−q
18 prsls[idp].sta← ABORTED

19 Function commit(idp, proo f ,c∗s′ ,c
∗
r ,ek)

// called by T Xcmt from the specified TEE
20 require(msg.sender = prsls[idp].E)
21 require(verify(proo f , Hcs)) // match old states

22 Function complete(idp, [Enckie (ks′i
)|1..n], [Enckie (kri)|1..n])

// called by T Xcom from any registered TEE
23 require(msg.sender ∈ E)
24 Hcs ← proo f .Hcs′ // set new states
25 prsls[idp].sta← COMPLETED

26 Function punishTEE(idp)
// called by T XpnsT from anyone

27 require(prsls[idp] 6= /0 and BC.getHeight()> hneg + τcom)
28 require(prsls[idp].sta /∈

{NEGOFAILED,ABORTED,COMPLETED})
29 coins[prsls[idp].E]← coins[prsls[idp].E]−q
30 prsls[idp].sta← ABORTED

B. DECLOAK network

To construct the DN, we instantiate each TEE E (Algo-
rithm 2) based on SGX [35]. Anyone with a TEE device can
instantiate a E (Algorithm 2) to become a executor E. The first
E generates the network account (skE , pkE ,adE) to initialize
a network DN. Then, other E must be attested by one of E
in the DN to join the DN and obtain the network key and
account.

To evaluate MPT, we express F in Solidity 0.8.10 [34]
and port EVM [36] into SGX. P is expressed in JSON. P

10

Algorithm 2: DECLOAK enclave program (E)

// For simplicity, we assume each E has
obtained the network config and cached the
balances of parties’ coins by
synchronization. The config includes a
secure parameter κ, a checkpoint bcp of BC,
and the network account (skE , pkE ,adE).

1 Procedure generateIDp(p)
// check this is the specified TEE

2 if sel f 6= BC.E[0] then abort
3 idp← hash(p)
4 return (idp, p)
5 Procedure negotiate(idp,ack)
6 if status = NEGOTIATED then return (idp, p′)
7 if status 6= /0 or conform(ack,P) 6= 1
8 or cacheCoins[sel f]−q < 0
9 or ∃Pi ∈ P,cacheCoins[Pi]−q < 0 then abort

10 p′,status← (p.{HF ,HP ,q,hneg}), NEGOTIATED
11 return (idp, p′)
12 Procedure failNegotiation(idp,T XchaT ,PoPchaT)
13 if status 6= /0 or veriPoP(bcp,PoPchaT ,T XchaT) 6= 1 then abort
14 if PoPchaT .getComfHeight()> p.hneg then
15 TXack ← all PoPchaT .TXacki before p.hneg
16 ack ← ack∪TXack.ack
17 if conform(ack,P) = 1 then abort
18 return TX f neg(idp)

19 Procedure execute(idp, in,PoPs)
20 if status 6= NEGOTIATED then abort
21 P∗M ← P
22 for xi,kxi in in.{x, kx}
23 P∗M ← P∗M\{Pi}
24 if |P∗M |> 0 then return (idp,P∗M)

// evaluates F (x) on states s
25 s′,r←F (PoPs.s,x)
26 bcp← PoPs.getLastComfBlock()
27 status← EXECUTED

28 Procedure commit(idp)
29 if status 6= EXECUTED then abort
30 ks′ ,kr ← Gen(1κ)
31 cs′i

← [Encks′i
(s′i),Enckie (ks′i

),Pi]

32 proo f ← [PoPs.Hcs ,Hcs′]
33 c∗s′i

,c∗ri
← [Encks′i

(s′i),0,Pi], [Enckri
(ri),0,Pi]

34 return T Xcmt(idp, proo f ,c∗s′ ,c
∗
r ,ek)

35 Procedure challengeParties(P∗M)
36 if status 6= NEGOTIATED then abort
37 if |P∗M |> 0 then
38 return TXchaP(idp,P∗M)

39 Procedure punishParties(TXchaP,TXresP,PoPresP)
40 if status 6= NEGOTIATED or

veriPoP(bcp,TXchaP,PoPresP) 6= 1 then abort
41 PM ← P∗M
42 for Pi ∈ P∗M do
43 if xi,kxi ← T XresPi .{xi,kxi} then
44 PM ← PM\{Pi}
45 if |PM |> 0 then
46 return T XpnsP(idp,PM)

47 Procedure complete(T Xcmt ,PoPcmt)
48 if status 6= NEGOTIATED or veriPoP(bcp,T Xcmt ,PoPcmt) 6= 1

then abort
49 status← COMPLETED
50 return T Xcom(idp, [Enckie (ks′i

)|i∈[n]], [Enckie (kri)|i∈[n]])

is introduced to specify the parameters, states to read and
write, and return values of F , which is for TEE to know the
I/O of the MPT. The hash of both F and P are registered
and updated on BC , while their codes are provided by the
MPT’ developers/initiators and cached by E . Admittedly, P
is now pre-specified thus restricting that the I/O of F should

be statically identified. However, this problem could solved by
hooking EVM’s sstore and sload instructions [26], and we
leave it for future work.

VI. SECURITY ANALYSIS

A. Assumption reliability

Our assumption that TEE’s confidentiality and attestable
integrity hold is still practical now. While attacks against SGX,
e.g., memory-corruption attacks and side-channel attacks, keep
coming out, the community has developed efficient software-
based [37]–[39] and hardware-based countermeasures [40],
[41]. So far, most of existing attacks against SGX are either
function-limited [42], [43], solved, or patched [44], [45]. For
some very recent and considerable attacks like xAPIC and
MMIO, they are also mitigated in Dec. 22 and will be solved
in Jan. 23 [46].

B. Protocol security

Informally, we claim that the following theorem holds. We
leave the formal security property definition and corresponding
game theory-based proof in Appendix IX-C. Limited by space,
here we will briefly outline the idea of how we prove financial
fairness, and delivery fairness.

Theorem 1 (Informal statement). The protocol
πDECLOAK satisfies correctness, confidentiality, public
verifiability, data availability, financial fairness, de-
livery fairness, and delivery atomicity

To prove DECLOAK holds financial fairness, we prove
that there are only three possible statuses of an MPT, i.e.,
/0 (negotiation not started or gets failed), ABORTED (negotia-
tion succeeded, but the MPT did not complete as expected)
and COMPLETED (the MPT complete as expected). Then, we
exhaustively prove that parties’ balance will stay fair in any
of the three statuses: i) if the status of an MPT stays at /0,
all entities’ balances would have no change; ii) if an MPT’s
status is ABORTED, then either some parties misbehaved and
were punished, or the specified TEE executor misbehaved and
were punished; iii) if an MPT’s status becomes COMPLETED,
the MPT succeeds, and all entities’ balances would have no
change.

To prove the delivery fairness being held, we utilize the
ideal availability of blockchain and the assumption that all-
but-one TEE executors are Byzantine. Specifically, to release
outputs, the T Xcmt , which contains data ciphertext and the ci-
phertext of their corresponding keys, must have been published
on the blockchain. Therefore, if each party communicate with
all TEE executors directly and at least one TEE node is honest,
all parties can obtain their corresponding outputs in the ∆-
bounded period. The ∆ equals to the message delivery upper
bound of the (semi-)synchronous network among parties and
TEE nodes.

11

VII. EVALUATION

Methodology and setup. To evaluate the effectiveness of
DECLOAK, we propose 3 research questions.
• Q1: Can DECLOAK capably serve real-world MPTs?
• Q2: What is the cost of enabling MPTs on a blockchain?
• Q3: What is the cost of evaluating MPTs using DECLOAK?

The experiment is based on a server with Ubuntu 18.04, 32G
memory, and 2.2GHz Intel(R) Xeon(R) Silver 4114 CPU. The
memory used by TEE is set up to 200M.
Answering Q1. We evaluate DECLOAK on 5 contracts which
involve 10 MPTs in different scenarios. All them are in
Solidity and the number of parties they involved varies from
2-11.

SupplyChain is a contract allowing suppliers to negotiate
and privacy-preservedly bids off-chain, and commit the eval-
uation with their new balances on-chain. It has 39 LOC and
contains one MPT.

Scores is a contract allowing students to join and get mean
scores off-chain and commit the evaluation on-chain. It has 95
LOC and contains one MPT.

ERC20Token is a contract allowing accounts to pair and
transfer without revealing balances off-chain, and commit the
evaluation with new balances on-chain. It has 55 LOC and
contains three MPTs.

YunDou is a fine-tuned ERC20 token contract with co-
managed accounts where account managers self-selectly vote
to transfer tokens without revealing the votes. It has 105 LOC
and contains three MPTs.

Oracle is a Oracle contract that allows parties to negotiate
to join then jointly and verifiably generate random numbers.
It has 60 LOC and contains three MPTs.
Answering Q2. Table III shows the gas cost of all methods
of V in different phases. To answer Q2, here we focus on the
initialization and global setup phase.

Table III
ON-CHAIN COST OF CHALLENGE-RESPONSE SUBMISSION PHASE. FOR

EACH MPT, WE ASSUME ALL PARTIED INVOLVED ARE
CHALLENGED

Phase TX Gas cost

Global setup register (T Xregi) 127068
deposit (T Xdepi) 42325

MPT commit (T Xcmt) 104568
complete (T Xcom) 110570

Procrcha

challengeTEE (T XchaT) 131762
acknowledge (T Xacki) 26999

failNegotiation (T X f neg) 30563
challengeParties (T XchaP) 33786
partyResponse (T XresPi) 34313
punishParties (T XpnsP) 45518
punishTEE (T XpnsT) 53254

DeFi: ERC20: Transfer 65000
DeFi: Uniswap V3: Swap 184523

DeFi: Balancer: Swap 196625
NFT: OpenSea: Sale 71645

NFT: LooksRare: Sale 326897

Gas cost of initialization. It costs 4.9M gas to deploy V
to enable DECLOAK on a blockchain. This cost is only once
paid by DECLOAK service provider, thereby is irrelevant.

Gas cost of global setup. A party pays 12.7k to register its
public key and 4.2k gas to deposit coins. This setup happens
once for each party, thus being acceptable.
Answering Q3. We analyze the gas and off-chain cost for
evaluating each MPT, respectively. Especially, we compare the
gas cost of DECLOAK with the most related MPT-oriented
work, Fastkitten [13] and Cloak [8].

On-chain cost of MPTs. Figure 3 shows the gas cost of
each MPT. Overall, DECLOAK reduces gas by 72.5% against
Fastkitten. Specifically, for six 2-party MPTs, DECLOAK costs
0.27-0.46X gas. For two 3-party and two 10/11-party MPTs,
the gas significantly reduces to 0.22-0.25X and 0.09-0.11X,
respectively. For Cloak, the cost of DECLOAK decreases by
65.6% in average. Specifically, DECLOAK costs 0.27-0.56X
gas against Cloak in 2/3-party MPTs, while just 0.17-0.22X
gas in 10/11-party MPTs. Therefore, DECLOAK enables a
more secure MPTs with lower on-chain cost. The on-chain
cost not only surpasses Cloak, but is comparable to typical
single-party transactions, e.g., NFT sale and ERC20 swap, on
Ethereum. Moreover, as the number of parties growing, the
cost superiority of DECLOAK improves.

Off-chain cost of MPTs. All 10 MPTs complete in constant
2 transactions. Specifically, the negotiation, execution, and
delivery phases cost 0.21-0.58s, 0.39-1.15s, and 0.30-0.77s,
respectively, which can be ignored.

2-p 2-p 2-p 3-p 2-p 3-p 2-p 11
-p 2-p 10
-p

Multi-party transactions

0.0x104

50.0x104

100.0x104

150.0x104

200.0x104

250.0x104

Ga
s c

os
t

Fastkitten
Cloak
TXcmt
TXcom

Figure 3. The gas cost of DECLOAK. “Fastkitten” refers to the gas cost
sum of n+1 transactions for each MPT. Here we adapt the protocol
of Faskkitten to Ethereum. “Cloak” refers to the gas cost sum of its
2 transactions for each MPT. “TXcmt” and “TXcom” refers to gas
cost of T Xcmt ,T Xcom in πDECLOAK, respectively.

VIII. OPTIMIZATION AND FINE-TUNING

A. Improve the scalability of DECLOAK

1) Reduce gas cost in optimistic cases
Recall that serving an MPT in optimistic scenarios only

involves 2 transactions, T Xcmt and T Xcom. Therefore, to serve
a n-party MPT without adversary, DECLOAK needs to send
O(1) transactions. We note that we can adopt the following
measures to furthermore reduce the optimistic cost of DE-
CLOAK.
batch processing. According to the height of the blockchain,
we can split the execution of MPT to different slots. In each
slot, DECLOAK handles λ MPTs (λ ≥ 1) and sends only two
transactions, i.e. T Xcmt ,T Xcom, to finish all MPTs in the slot
in a batch. This way, it can reduce the complexity to O(1/λ)
without sacrificing the security or changing the adversary
model.

12

making trade-off. We note that by intentionally sacrificing
some of our system goals, DECLOAK can furthermore reduce
its on-chain cost. First, we can drop data availability to delete
the last transaction T Xcom. Specifically, in the delivery phase,
TEEs will first send T Xcmt to commit outputs on-chain. If
the proo f in T Xcmt passes, V will accept the state transition
immediately. Then, upon T Xcmt being accepted and confirmed,
TEEs will release the keys of the output ciphertext in T Xcmt
to parties by off-chain channels, rather than sending a T Xcom.
Consequently, the required transactions of DECLOAK reduce
to only 1, i.e., T Xcmt . However, in this variant, parties need to
keep all received keys to access their plaintext states. Second,
we can furthermore drop delivery atomicity and delivery
fairness to delete T Xcmt , meaning that no transactions are
required in the optimistic case. Specifically, MPT involves
reading on-chain inputs. If we delete T Xcmt , when the specified
TEE obtains outputs, the blockchain has no change to ensure
that old states that MPT read have not been mutated. This way,
the MPT outputs that TEE regard as valid cannot be accepted
by the blockchain, breaking the atomicity. Moreover, as we
cannot utilize the T Xcmt to ensure that output ciphertext can
be ideally delivered to all TEEs, delivery fairness is broken.

2) Reduce gas cost in pessimistic cases
In the pessimistic scenarios, the challenge-response protocol

(Procrcha) will be triggered. In the protocol, each party being
challenged on-chain has to respond with their acknowledge-
ments or inputs independently. We can introduce an off-chain
third-party service to collect parties’ responses and publish an
aggregated T XresP to the blockchain. In this, way, even though
a Procrcha is being triggered, the on-chain transaction com-
plexity is still O(1). And combining with the batch processing
technique of MPT, the complexity of Procrcha can furthermore
reduce to O(1/m), where m is the number of MPTs in a batch.

3) Reduce storage cost
To minimize the trust of off-chain TEE network, DECLOAK

stores parties’ privacy-preserved data on blockchain and ensure
the plaintext of the stored data are still accessible to parties
even without DECLOAK. This sounds indicating a heavy
storage cost. However, as we demonstrated in Section VII, the
storage cost is acceptable. Actually, storing off-chain states on-
chain as calldata has been well-adopted in Ethereum Rollup
projects [16], [17]. Moreover, reducing the storage cost is also
a main issue of Ethereum 2.0. Specifically, Ethereum propose
to reduce the gas cost of calldata from 16 to 3, which
means a 81% decrease [15]. Furthermore, Ethereum 2.0 will
introduce blob [18], a new storage mechanism which allows
different Ethereum Layer-2 projects to cheaply store all their
transactions and states on the Beacon chain. Therefore, the
design of DECLOAK strongly match the need and tendency of
Ethereum.

B. Improve the availability of DECLOAK

An industry tee service usually has a robust error-handling
mechanism and is DDoS-resistant. Therefore, we practically
assume that the service provided by the specified honest TEE
executor is highly available. However, it does mean we cannot
further improve the availability of DECLOAK. For example,

DECLOAK can adopt a similar availability enhancement mech-
anism as in POSE [23]. Specifically, every time the specified
TEE executor changes its local state, it should synchronize
the state updates to all other registered TEEs and collect their
signatures in off-chain channels to carry on the next state
transfer. If the specified TEE is not available off-chain, parties
can publicly change it on-chain. If the unavailability of the
specified TEE is because that other TEE executors do not
respond with signatures as expected, the specified TEE can
publicly challenge other unavailable TEEs on the blockchain.
Finally, if the on-chain challenge-response mechanism finally
punishes the specified TEE, it will be kicked out, and the next
TEE in the registered list will be specified to serve MPTs. As
a result, in an optimistic scenario, i.e., all other TEEs honestly
respond with their signatures, DECLOAK will not lose its off-
chain states if at least one TEE is available. In a word, we
stress that improving the availability of TEE network is an
orthogonal field with DECLOAK, and DECLOAK can combine
with the related work [23] to further improve its availability.

IX. CONCLUSION

In this paper, we develop a novel framework, DECLOAK,
which can support MPT-enabled off-chain contract execution
on legacy blockchains by using a TEE network. DECLOAK
features maximising the security of MPT and minimising
the gas cost and the network’s trust. Comparing with the
SOTA, Cloak [8], DECLOAK not only realizes all security
properties the SOTA claimed but also additionally achieves
data availability, delivery fairness, and delivery atomicity.
To our knowledge, DECLOAK achieves the most general
and secure MPT. Meanwhile, it assumes at least one party
and executor are honest, which is also one of the weakest
assumptions compared to related work. Moreover, according
to our evaluation, DECLOAK reduces the gas cost of the SOTA
by 65.6%, and the superiority of DECLOAK increases as the
number of parties grows.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[2] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, 2014.

[3] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The Blockchain Model of Cryptography and Privacy-Preserving Smart
Contracts,” 2016 IEEE Symposium on Security and Privacy (SP), pp.
839–858, 2016.

[4] R. Sinha, “Luciditee: A tee-blockchain system for policy-compliant
multiparty computation with fairness,” 2020.

[5] K. Govindarajan, D. Vinayagamurthy, P. Jayachandran, and C. Re-
beiro, “Privacy-preserving decentralized exchange marketplaces,” in
2022 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), 2022, pp. 1–9.

[6] F. Massacci, C. N. Ngo, J. Nie, D. Venturi, and J. Williams, “Futuresmex:
Secure, distributed futures market exchange,” in 2018 IEEE Symposium
on Security and Privacy (SP), 2018, pp. 335–353.

[7] Q. Ren, H. Liu, Y. Li, and H. Lei, “Demo: Cloak: A framework
for development of confidential blockchain smart contracts,” in 2021
IEEE 41st International Conference on Distributed Computing Systems
(ICDCS), 2021, pp. 1102–1105.

[8] Q. Ren, Y. Wu, H. Liu, Y. Li, A. Victor, H. Lei, L. Wang, and B. Chen,
“Cloak: Transitioning states on legacy blockchains using secure and
publicly verifiable off-chain multi-party computation,” in Proceedings
of the 38th Annual Computer Security Applications Conference, 2022,
pp. 117–131.

13

[9] C. Baum, I. Damgård, and C. Orlandi, “Publicly auditable secure
multi-party computation,” in Security and Cryptography for Networks,
M. Abdalla and R. De Prisco, Eds. Cham: Springer International
Publishing, 2014, pp. 175–196.

[10] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai,
“Zero-knowledge proofs on secret-shared data via fully linear pcps,”
Cryptology ePrint Archive, Paper 2019/188, 2019, https://eprint.iacr.or
g/2019/188. [Online]. Available: https://eprint.iacr.org/2019/188

[11] H. Cui, K. Zhang, Y. Chen, Z. Liu, and Y. Yu, “Mpc-in-multi-heads:
A multi-prover zero-knowledge proof system,” in European Symposium
on Research in Computer Security. Springer, 2021, pp. 332–351.

[12] S. Steffen, B. Bichsel, R. Baumgartner, and M. Vechev, “Zeestar:
Private smart contracts by homomorphic encryption and zero-knowledge
proofs,” in 2022 IEEE Symposium on Security and Privacy (SP), 2022,
pp. 179–197.

[13] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: Practical smart contracts
on bitcoin,” in 28th USENIX Security Symposium (USENIX Security
19). Santa Clara, CA: USENIX Association, Aug. 2019, pp. 801–818.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
19/presentation/das

[14] EthHub, “Data availability,” https://ethereum.org/en/developers/docs/da
ta-availability, accessed on 05/21/2023.

[15] V. Buterin and A. Dietrichs, “Eip-4488: Transaction calldata gas cost
reduction with total calldata limit,” https://eips.ethereum.org/EIPS/eip
-4488, Nov 2021. [Online]. Available: https://eips.ethereum.org/EIPS/e
ip-4488

[16] EthHub, “Zk-rollups,” https://docs.ethhub.io/ethereum-roadmap/layer-
2-scaling/zk-rollups/, accessed on 07/13/2022.

[17] ——, “Optimistic rollups,” https://docs.ethhub.io/ethereum-roadmap/la
yer-2-scaling/optimistic rollups/, accessed on 07/13/2022.

[18] V. Buterin, D. L. Dankrad Feist, G. Kadianakis, M. Garnett,
and A. Dietrichs, “Eip-4844: Shard blob transactions,” https:
//eips.ethereum.org/EIPS/eip-4844, Feb 2022. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-4844

[19] Ethereum, “Cancun network upgrade specification,” https://github.com
/ethereum/execution-specs/blob/master/network-upgrades/mainnet-upg
rades/cancun.md#included-eips, accessed on 05/21/2023.

[20] K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain extractable
value: How dark is the forest?” in 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 2022, pp. 198–214.

[21] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A Platform for Confidentiality-
Preserving, Trustworthy, and Performant Smart Contracts,” 2019 IEEE
European Symposium on Security and Privacy (EuroS&P), vol. 00, pp.
185–200, 2019.

[22] D. Maier, R. Pottinger, A. Doan, W.-C. Tan, A. Alawini, H. Q. Ngo,
Y. Yan, C. Wei, X. Guo, X. Lu, X. Zheng, Q. Liu, C. Zhou, X. Song,
B. Zhao, H. Zhang, and G. Jiang, “Confidentiality Support over Financial
Grade Consortium Blockchain,” 2020, pp. 2227–2240.

[23] T. Frassetto, P. Jauernig, D. Koisser, D. Kretzler, B. Schlosser, S. Faust,
and A.-R. Sadeghi, “Pose: Practical off-chain smart contract execution,”
in Proceedings of the 2022 Network and Distributed System Security
Symposium, vol. abs/2210.07110, 2022.

[24] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers,
“Fairness in an Unfair World: Fair Multiparty Computation from Public
Bulletin Boards,” ser. Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2017, pp. 719–728.

[25] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu, “ZEXE:
Enabling Decentralized Private Computation,” 2020 IEEE Symposium
on Security and Privacy, 2020.

[26] S. State and O. Labs, “Confidential Ethereum Smart Contracts,” Tech.
Rep., 12 2020.

[27] M. Russinovich, E. Ashton, C. Avanessians, M. Castro, A. Chamayou,
S. Clebsch, and et al., “Ccf: A framework for building confidential
verifiable replicated services,” Microsoft Research and Microsoft Azure,
Tech. Rep., Apr. 2019.

[28] L. Cavallaro, J. Kinder, X. Wang, J. Katz, I. Bentov, Y. Ji, F. Zhang,
L. Breidenbach, P. Daian, and A. Juels, “Tesseract: Real-Time Cryp-
tocurrency Exchange Using Trusted Hardware,” ser. Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 1521–1538.

[29] E. Weippl, S. Katzenbeisser, C. Kruegel, A. Myers, S. Halevi, R. Ku-
maresan, and I. Bentov, “Amortizing Secure Computation with Penal-
ties,” Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 418–429, 2016.

[30] E. Weippl, S. Katzenbeisser, C. Kruegel, A. Myers, S. Halevi, R. Ku-
maresan, V. Vaikuntanathan, and P. N. Vasudevan, “Improvements to
Secure Computation with Penalties,” Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pp.
406–417, 2016.

[31] I. Ray, N. Li, C. Kruegel, R. Kumaresan, T. Moran, and I. Bentov, “How
to use bitcoin to play decentralized poker,” Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
pp. 195–206, 2015.

[32] F. Baldimtsi, A. Kiayias, T. Zacharias, and B. Zhang, “Crowd verifiable
zero-knowledge and end-to-end verifiable multiparty computation,”
in Advances in Cryptology – ASIACRYPT 2020: 26th International
Conference on the Theory and Application of Cryptology and
Information Security, Daejeon, South Korea, December 7–11, 2020,
Proceedings, Part III. Berlin, Heidelberg: Springer-Verlag, 2020, p.
717–748. [Online]. Available: https://doi.org/10.1007/978-3-030-6484
0-4 24

[33] A. Ozdemir and D. Boneh, “Experimenting with collaborative zk-
SNARKs: Zero-Knowledge proofs for distributed secrets,” in 31st
{USENIX} Security Symposium ({USENIX} Security 22). Boston,
MA: USENIX Association, Aug. 2022, pp. 4291–4308. [Online].
Available: https://www.usenix.org/conference/usenixsecurity22/present
ation/ozdemir

[34] Ethereum, “Solc 0.8.10,” https://github.com/ethereum/solidity/releases/
tag/v0.8.10, July 2021. [Online]. Available: https://github.com/ethereu
m/solidity/releases/tag/v0.8.10

[35] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[36] E. Foundation, “Ethereum virtual machine,” Dec 2020. [Online].
Available: https://ethereum.org/en/developers/docs/evm/

[37] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware trans-
actional memory,” in 26th {USENIX} Security Symposium ({USENIX}
Security 17), 2017, pp. 217–233.

[38] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs.” in NDSS, 2017.

[39] F. Lang, W. Wang, L. Meng, J. Lin, Q. Wang, and L. Lu, “Mole:
Mitigation of side-channel attacks against sgx via dynamic data location
escape,” Proceedings of the 38th Annual Computer Security Applications
Conference, 2022.

[40] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus:
Low-cost trustworthy extensible networked devices with a zero-software
trusted computing base,” in 22nd {USENIX} Security Symposium
({USENIX} Security 13), 2013, pp. 479–498.

[41] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in 25th {USENIX} Security
Symposium ({USENIX} Security 16), 2016, pp. 857–874.

[42] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi, “The
guard’s dilemma: Efficient Code-Reuse attacks against intel SGX,” in
27th USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, Aug. 2018, pp. 1213–1227. [Online].
Available: https://www.usenix.org/conference/usenixsecurity18/present
ation/biondo

[43] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi, “Software grand exposure: SGX cache attacks
are practical,” in 11th USENIX Workshop on Offensive Technologies
(WOOT 17). Vancouver, BC: USENIX Association, Aug. 2017.
[Online]. Available: https://www.usenix.org/conference/woot17/works
hop-program/presentation/brasser

[44] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel SGX kingdom
with transient Out-of-Order execution,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, p. 991–1008. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/bulck

[45] Intel, “Resources and response to side channel l1 terminal fault,” Dec
2021. [Online]. Available: https://www.intel.com/content/www/us/en/ar
chitecture-and-technology/l1tf.html?wapkw=l1tf

[46] “How stuff gets exposed,” https://sgx.fail/, Jan 2022.

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://www.usenix.org/conference/usenixsecurity19/presentation/das
https://www.usenix.org/conference/usenixsecurity19/presentation/das
https://ethereum.org/en/developers/docs/data-availability
https://ethereum.org/en/developers/docs/data-availability
https://eips.ethereum.org/EIPS/eip-4488
https://eips.ethereum.org/EIPS/eip-4488
https://eips.ethereum.org/EIPS/eip-4488
https://eips.ethereum.org/EIPS/eip-4488
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups/
https://eips.ethereum.org/EIPS/eip-4844
https://eips.ethereum.org/EIPS/eip-4844
https://eips.ethereum.org/EIPS/eip-4844
https://github.com/ethereum/execution-specs/blob/master/network-upgrades/mainnet-upgrades/cancun.md#included-eips
https://github.com/ethereum/execution-specs/blob/master/network-upgrades/mainnet-upgrades/cancun.md#included-eips
https://github.com/ethereum/execution-specs/blob/master/network-upgrades/mainnet-upgrades/cancun.md#included-eips
https://doi.org/10.1007/978-3-030-64840-4_24
https://doi.org/10.1007/978-3-030-64840-4_24
https://www.usenix.org/conference/usenixsecurity22/presentation/ozdemir
https://www.usenix.org/conference/usenixsecurity22/presentation/ozdemir
https://github.com/ethereum/solidity/releases/tag/v0.8.10
https://github.com/ethereum/solidity/releases/tag/v0.8.10
https://github.com/ethereum/solidity/releases/tag/v0.8.10
https://github.com/ethereum/solidity/releases/tag/v0.8.10
https://ethereum.org/en/developers/docs/evm/
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html?wapkw=l1tf
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html?wapkw=l1tf
https://sgx.fail/

14

Supplementary Material for “DECLOAK: Enable Secure and Cheap Multi-Party
Transactions on Legacy Blockchains by a Minimally Trusted TEE Network”

A. MPT-enabled contracts

We have introduced the program F , verifier V , and enclave
for achieving an MPT. Here we model the privacy policy P
we used for better managing parties’ private data on-chain and
specify the privacy demand of the MPT.

Since each E need to encrypt/decrypt states before evaluat-
ing F , E must aware about the states sets to read and write
sets of F . Therefore, we bind a privacy policy P to each F .

adrV := {0,1}∗
v := [a− zA− z0−9]+
P := {0,1}∗
Pv := /0 | (v : P) |

(
v : P?

)
PF := {

Px := {Pv}∗
Ps := {Pv}∗
Ps′ := {Pv}∗
Pr := {Pv}∗

}

A privacy policy P is modeled as the above. adrV ,adrV

denote the address of its corresponding deployed V and veri-
fier contract V on BC, respectively. v refers to the identifiers
of variables. The P refers to parties’ addresses. (Px) refers to
transaction parameters of F . Ps refers to states variables to
be read to evaluate F . Ps′ refers to states variables to update
by the F . Pr refers to return variables of F . Each variable
is denoted by the tuple (v : P), containing its identifier v and
the address of of its owner P (i.e., the party that the variable
private to). v is owned by P meaning that v is confidential to
P. Consequently, E expect to receive the v from P and commit
v with P’s public key. If the owner of an variable is unknown
before MPT, we write (n : P?). The unknown party will be
settled after the negotiation phase in Section III.

B. Notations and Definitions

In this section, we fine-tuned the notation system of [8],
[13] to denote variables involved in DECLOAK.

1) Common notations
Generally, we denote a domain as S and its n-ary Cartesian

power S× S× ·· · × S as Sn. Therefore, each s ∈ Sn is a
array [s1, · · · ,sn] and we refer s[i] or si to the i-th element
of s. Moreover, Sn×m denotes the set of all n-ny-m matrices
consisting of elements from S. Similarly, we denote S[i][j] as
the element in i-th row and j-th column of S, S[i][·] as the i-th
row, and S[·][j] as the j-th column.

2) Coins
We define a set Dcoin as a coin domain, which includes all

possible balance of parties’ global coins and is a subset of
non-negative rational numbers Q≥ 0. Therefore, we define a
coin array q∈Dn

coin where Qi denotes the balance of party Pi’s
global coins. Then, we define the set Ddep← Dcoin\{0} as a

deposit domain, and define a deposit array d ∈ Dn
dep where

d[i] denotes the deposit of party Pi for joining an MPT.
3) Multi-Party Transactions
We define a set Dpa as a plaintext domain which is

application-specific. Therefore, for each MPT, we have its
plaintext parameter array x, old state array s, new state
array s′, and return array array r, where x,s,s′,r ∈ Dn

pa.
Correspondingly, we define a set Dcm as a cryptography
commitment domain which is specific to the cryptography
commitment algorithm we adopted in Section III. Then, for
each MPT, we denote its parameter commitment array, old
state commitment array, new state commitment array, and
return value commitment array as cx,cs,cs′ ,cr, respectively,
where cx,cs,cs′ ,cr ∈ Dn

cm.
We define a party domain Daddr. Daddr is the set of all

possible addresses of parties, thus depends on the address
generation algorithm the BC adopted. Then, the parties of an
MPT are modeled as a party array P where Pi denotes the
i-th party of P and Pi ∈ Daddr. We define the target function
of an MPT which multiple parties jointly evaluate as F , and
the privacy policy of an MPT as P which specifies the meta
data of F , e.g., expected x,s,s′,r. Then, we denote FP as a
P-conformed F .

Algorithm 3: Evaluation function
Input: An n-party MPT F and its policy P , a parameter

array x, a parameter key array kx, a old state array s,
a a old state key array ks, a old state commitment
array cs, and a party array P.

Output: A new state array s′, new state key array ks′ , return
value array r, return value key array kr, new state
commitment array cs′ , return value commitment
array cr, parameter commitment array cx, and a
proo f .

1 Function eval(F ,P,x,kx,cs,P)
2 foreach csi in cs
3 assert csi = [Encksi

(si),Enckie(ksi),Pi]

4 s′,r←FP (s,x)
5 ks′ ,kr← Gen(1κ)
6 cs′i ← [Encks′i

(s′i),Enckie(ks′i),Pi]

7 cri ← [Enckri
(ri),Enckie(kri),Pi]

8 cxi ← [Enckxi
(xi),Enckie(kxi),Pi]

9 proo f ← [HP ,HF ,Hcs]
10 return (s′,ks′ ,r,kr,cs′ ,cr,cx, proo f)

4) Protocol execution
While P, E, and E denote the party array, executor array

and TEE array of an MPT, respectively, we define PH and
EH as the honest parties in P and E respectively. PM and EM
denote the malicious parties in P and malicious executors of
TEEs, i.e., PM ← P\PH , EM ← E\EH . For convenience, we
also define P+← P∪E and P+

M ← PM ∪EM .
According to our adversary model in Section III, DECLOAK

protocol πDECLOAK, or simply π , proceeds in presence of an

15

byzantine adversary A who can corrupts all-but-one Pi ∈ P+.
And we define a coin balance array Q∈Dn+m

coin . Qi|i<n denotes
the coin balance of Pi ∈ P pre-deposited to kE . Qn+i|i<m
denotes the coin pre-deposited balance of Ei ∈ E .

Classically, we define any protocol execution of π under the
adversary A as REALπ,A . The inputs of an execution include
an n-party MPT F and its policy P , a parameter array x, a
parameter key array kx, a old state array s, a a old state key
array ks, a old state commitment array cs, a party array P, a
deposit array q and a account coin balance array Q. Therefore,
we formalize a protocol execution as follows.

Q′,s′,ks′ ,r,kr,cs′ ,cr,cx, proo f ,sta

← REALπ,A (Q,F ,P,x,kx,cs,P,q)

The outputs of π include a new coin balance array Q′ after
the execution, new state array s′, new state key array ks′ ,
return value array r, return value key array kr, and the
commitment array of new states, return values, and parameters,
i.e., cs′ ,cr,cx, respectively, and proo f of the MPT-caused state
transition.

5) Security goals
We first define the basic correctness property. Intuitively,

correctness states that if all entities in P+ behave honestly,
∀Pi ∈ P obtain their correct MPT outputs correspondingly and
collateral back.

Definition 1 (Correctness). For any n-party MPT FP ,
q ∈ Dn

dep, s ∈ Dn
pa, x ∈ Dn

pa and Q ∈ Dn
coin, there is a

negligible function ε that for the output of the protocol
REALπ(Q,F ,P,x,kx,cs,P,q) and ∀Pi ∈ P∣∣∣∣∣∣∣∣Pr


(s′,ks′ ,r,kr,cs′ ,cr,cx, proo f)

= eval(F ,P,x,kx,cs,P)
Q′i ≥ Qi

sta = COMPLETED

−1

∣∣∣∣∣∣∣∣≤ ε

Definition 2 (Confidentiality). For any n-party MPT FP , any
adversary A corrupting parties from P+

M in which PM $ P,
any q ∈ Dn

dep, s ∈ Dn
pa, x ∈ Dn

pa and Q ∈ Dn
coin, the protocol

REALπ,A (Q,F ,P,x,kx,cs,P,q) is such that: There is a neg-
ligible function ε ensuring that ∀x∗1,s∗1,s

′∗
1 ,r
∗
1,x
∗
2,s
∗
2,s
′∗
2 ,r
∗
2,∈

Dpa and ∀Pi ∈ PH :

|Pr[xi,si = x∗1,s
∗
1]−Pr[xi,si = x∗2,s

∗
2]| ≤ ε

and∣∣∣Pr[s′i,ri = s
′∗
1 ,r
∗
1]−Pr[s′i,ri = s

′∗
2 ,r
∗
2]
∣∣∣ ≤ ε

Definition 3 (Data availability). For any n-party MPT
FP , any adversary A corrupting parties from P+, any
q ∈ Dn

dep, s ∈ Dn
pa, x ∈ Dn

pa and Q ∈ Dn
coin, the protocol

REALπ,A (Q,F ,P,x,kx,cs,P,q) is such that: There is a
negligible function ε satisfies that if sta = COMPLETED, one of
the following statements must be true.

(i) EM $ E : ∀Ei ∈ EH , there is a polynomial function fEi

that s′i = fEi(skE ,Pi,cs′i
)

(ii) EM = E & PM $ P : ∀Pi ∈ PH , there is a polynomial

f unction fPi that s′i = fEi(skPi ,adE ,cs′i
)

Definition 4 (Financial fairness). For any n-party MPT FP ,
any adversary A corrupting parties from P+

M $ P+, any
q ∈ Dn

dep, s ∈ Dn
pa, r ∈ Dn

pa and Q ∈ Dn
coin, the output of the

protocol REALπ,A (Q,F ,P,x,kx,cs,P,q) is such that one of
the following statements must be true:

(i) sta ∈ {NEGOFAILED,COMPLETED}, ∀Pi ∈ P+ : Q′i ≥ Qi

(ii) sta = ABORTED, ∀Pi ∈ P+
H : Q′i ≥ Qi and

∑
j∈P+

M

Q′j < ∑
j∈P+

M

Q j

Definition 5 (Delivery fairness). For any n-party MPT FP ,
any adversary A corrupting parties from P+

M in which EM $
E, any q ∈ Dn

dep, s ∈ Dn
pa, r ∈ Dn

pa and Q ∈ Dn
coin, there is

a negligible function ε that for the output of the protocol
REALπ,A (Q,F ,P,x,kx,cs,P,q), one of the following state-
ments must be true:

(i) s′,r = /0, /0
(ii) s′,r, 6= /0, /0, and the following two hold simultaneously :

(a) ∀Pi ∈ PH : |tsi − tri | ≤ ∆

(b) ∀Pi,Pj ∈ PH :
∣∣tsi − ts j

∣∣≤ ∆ and
∣∣tri − tr j

∣∣≤ ∆

Definition 6 (Delivery atomicity). For any n-party MPT
FP , any adversary A corrupting parties from P+

M in which
EM $ E, any q ∈ Dn

dep, s ∈ Dn
pa, r ∈ Dn

pa and Q ∈ Dn
coin, there

is a negligible function ε that for the output of the protocol
REALπ,A (Q,F ,P,x,kx,cs,P,q), one of the following state-
ments must be true:

(i) sta ∈ { /0,NEGOFAILED,ABORTED}, and s′,r = /0, /0
(ii) sta = COMPLETED, and s′,r, 6= /0

C. Security Proof

In this section, we claim that the following theorem holds
in the DECLOAK protocol πDECLOAK.

Theorem 1 (Formal statement). Assume a EUF-CMA
secure signature scheme, a IND-CCA2 encryption
scheme, a hash function that is collision-resistant,
preimage and second-preimage resistant. a TEE em-
ulating the TEE ideal functionality and a BC em-
ulating the BC ideal functionality, πDECLOAK holds
correctness, confidentiality, public verifiability, data
availability, financial fairness, delivery fairness, and
delivery atomicity.

1) Proof of correctness
Consider adversaries absent in πDECLOAK. The evaluation of

an MPT starts by the specified E ∗ receiving an MPT proposal
p← (HF ,HP ,q,hneg) and starting the negotiation phase. E ∗

first deterministically generates an id idp of the proposal and
broadcast the idp with the proposal to Pi ∈ P. When E ∗s
collects satisfied acknowledgement from P, it broadcasts the
settled p′. In the execution phase, E ∗ collects the plaintext
inputs in from P and read si from BC.cs. Then, E ∗ obtains
the MPT’s outputs by

s′,ks′ ,r,kr,cs′ ,cr,cx, proo f ← eval(F ,P,x,kx,cs,P)

16

Then it moves to the delivery phase. E ∗ releases a T Xcmt
to commit the outputs without publishing the symmetric key
ciphertext. Upon the only one T Xcmt is confirmed on BC,
each E reads the T Xcmt to obtain the shared symmetric keys
ks′i
,kri . Then, each E encrypts the keys ks′i

,kri with the kie and
broadcasts a T Xcom to both P and BC immediately. As no
Pi ∈ P+ is punished, we have Q′i← Qi ≥ Qi.

Since all protocol messages are sent in secure channels
between P and E s and we ignore the leakage caused by F and
parties’ voluntarily revealing, the confidentiality is axiomatic.
Therefore, we proves data availability, financial fairness, and
delivery (∆−)fairness in the following.

2) Proof of data availability
According to the Algorithm 1, when sta = COMPLETED, there

must be cs published on BC. Recall the data structure of
cs′i
← [Encks′i

(s′i),Enckie(ks′i
),Pi], we construct a polynomial

function in Algorithm 4. With the function, any E ∈ E or
Pi ∈ P can construct the newest states of all completed MPT
independently. Therefore, the data availability holds.

Algorithm 4: States construction function
Function constructStates(sk, pk,cs′i)

kie← ECDH(sk, pk)
ks′i ← Deckie(cs′i [1])
s′i← Decks′i

(cs′i [0])
return s′i

3) Proof of financial fairness
Here we prove that in all possible sta, the financial fairness

of πDECLOAK holds. First, we consider the Negotiation phase.
Briefly, we prove that if the phase does not complete suc-
cessfully then the proposal will have sta = NEGOFAILED and
∀Pi ∈ PH stays financially neutral.

Lemma 2. If there ∃Pi ∈ PH stays at sta =
NEGOFAILED, then the statement (i) of the financial
fairness property holds.

Proof: There is only one cases when an Pi ∈ PH has sta =
NEGOFAILED:
• (i) T X f neg is confirmed on BC after Procnneg.

Specifically, this scenario happens when the collected ack
from both on-chain and off-chain channels cannot satisfy the
settlement condition of MPT proposal or ∃Pi ∈ P holds that
Qi ≤ q. No matter what reasons cause the failure, we require
∀Pi ∈ PH identifying the sta of an MPT by reading it from the
BC. As we assume that the BC emulates the ideal blockchain
functionality which achieves ideal consistency and availability,
∀Pi ∈ P can access the consistent BC view. Therefore, if a
T X f neg is successfully confirmed on-chain. The result will
be the unique result of the proposal ensured by DECLOAK
contract V , and ∀Pi ∈ PH will immediately identify that
sta = NEGOFAILED. Then Q′i = Qi, i.e., Q′i ≥ Qi holds.

Lemma 3. If ∃Pi ∈ PH such that sta = COMPLETED,
then the statement (i) of the financial fairness property
holds.

Proof: According to Algorithm 1 , the protocol outputs
sta = COMPLETED iff a transaction T Xcom is contained on
BC before the hcp + τcom-th block. Therefore, ∀Pi ∈ P+ the
Q′i = Qi ≥ Qi holds.

Next, we show that the financial fairness also holds even
if an MPT fails by ABORTED after an successful Negotiation
phase.

Lemma 4. If ∃Pi ∈ PH is such that sta = ABORTED,
then the statement (ii) of the financial fairness property
holds.

Proof: There are two cases when ∃Pi ∈ PH outputs ABORTED:
• (i) Before the hcp + τcom-th block, T XpnsP(idp,P′M) is

published on BC.
• (ii) After the hcp+τcom-th block, T XpnsT (idp) is published

on BC.
We first consider the case (i) where ∃Pj ∈ P′M does not

provide inputs in j after the negotiation succeeded. According
to Algorithm 2, the E ∗ releases a transaction T XpnsP(idp,PM)
iff E∗ calls the E ∗.punishParties with a PoPresP which proves
that Pj ∈ PM|PM 6= /0 did not provide their inputs even though
they were challenged by a T XchaP. The T XpnsP will deduct
coins of ∀Pi ∈ PM by the MPT-specific collaterals q. In other
word, for ∀Pi ∈ PM , it holds that Q′i = Qi−qi. Since Qi > qi,
which has been ensured by Procnneg, and PM 6= /0, it holds
that ∑ j∈PM Q′j <∑ j∈PM Q j. Notably, no malicious party earned
coins in this case.

Second, we consider the case (ii) which indicates that T Xcom
fails to be contained before the hcp +τcom-th block. Since the
case (i) not happens, then either E ∗ have collected correct
inputs from all parties, which means that PM = /0, or E∗ detains
the T XpnsT or T Xcmt , or T Xcmt fails on validation, e.g., the old
state commitments cs that E ∗ read from and executed MPT on
has been changed, which fails the veri f y(proo f ,HF ,HP ,Hcs)
in T Xcmt . In any case, when the timeout transaction T XpnsT is
posted by an honest party on the BC, it p′ will be marked as
ABORTED and ∀Pi ∈ P gets i.e., Q′i = Qi. The Q′i ≥ Qi holds.

Lemma 5. When πDECLOAK terminates, it must hold
sta ∈ {NEGOFAILED,NEGOFAILED,COMPLETED}.

Proof: As we stressed, ∀Pi ∈ PH and ∀E ∈ EH ,E ∈
E identify current sta from the V on BC. If an MPT
succeeds, a T Xcom must be sent, which leads to std ←
COMPLETED. Otherwise, we claim that there must be std ←
NEGOFAILED/NEGOFAILED. According to the Algorithm 1, there
are additionally one temporary status. When T Xcmt is accepted,
it indicates that the MPT outputs are successfully validated.
Recall that BC can continuously serve new transactions, T Xcom
has no output validation logic, and at least one executor is
honest. There must be a executor who can send T Xcom to set
sta← COMPLETED.

4) Delivery (∆-)fairness
Recall that the Lemma 5 holds. In the following, we prove

that the delivery (∆-)fairness holds in all three values of sta
that πDECLOAK terminates at. We first consider the negotia-
tion phase. Intuitively, if no sufficient acknowledgement is

17

collected, E ∗ cannot move to the Execution phase, therefore
no outputs are obtained or delivered.

Lemma 6. If there exist an honest party Pi staying at
sta= NEGOFAILED, then the statement (i) of the delivery
(∆−)fairness holds.

Proof: As proved in Lemma 2, an honest party Pi stays
at sta = NEGOFAILED only when there is a T X f neg being
successfully confirmed on the BC. Consequently, the E ∗ with
the Execution phase. Therefore, parties in P obtain no outputs,
i.e., s′,r = /0, /0.

Lemma 7. If there exist an honest party Pi such that
sta = ABORTED, then the statement (i) of the delivery
(∆−)fairness holds.

Proof: One of E releases the T Xcom only when it validates
that the predecessor T Xcmt has been confirmed on BC. When
sta = ABORTED, it means that, according to Algorithm 1, the
protocol terminates and there is no possibility for sta =
COMMITTED, so as to releasing T Xcom. Therefore, it holds that
s′,r = /0, /0.

Lemma 8. If there exist an honest party Pi such that
sta= COMPLETED, then the statement (ii) of the delivery
(∆−)fairness holds.

Proof: According to Algorithm 1, sta = COMPLETED only
when T Xcom is accepted and confirmed by BC, which means
that T Xcom is released by at least one E s. In fact, if T Xcmt
has been confirmed on BC, any E ∈ E can validate the PoPcmt
of T Xcmt and read the ks′ ,kr from T Xcmt to constructs and
releases a T Kcom. As we assume that BC is ideally accessible
to any honest entity. Therefore, say T Xcmt is confirmed on
BC in a wall-time tcom, then the time of all honest entities
in P+ knowing that T Xcmt has been confirmed is also tcom,
i.e., ti← tcom|ti∈t+com

. Moreover, as Pi ∈ PH undisturbedly obtain
T Xcom from honest Es within the network latency ∆, then we
conclude that ts = tr, i.e., the (a) and (b) of (ii) are satisfied,
if at least one honest E exists.

	I Introduction
	II Background and Related Work
	II-A mpt
	II-B Related Work

	III DeCloak Design
	III-A System model
	III-B Adversary model
	III-C System goals
	III-D Protocol workflow
	III-E Design challenges and highlights
	III-E1 Achieve data availability of both tees and parties
	III-E2 Achieve complete delivery fairness
	III-E3 Resist Byzantine adversary with minimal transactions

	IV DeCloak Protocol
	IV-A Global setup phase
	IV-B Negotiation phase
	IV-C Execution phase
	IV-D Delivery phase
	IV-E Challenge-response subprotocol

	V Implementation
	V-A DeCloak contract
	V-B DeCloak network

	VI Security Analysis
	VI-A Assumption reliability
	VI-B Protocol security

	VII Evaluation
	VIII Optimization and fine-tuning
	VIII-A Improve the scalability of DeCloak
	VIII-A1 Reduce gas cost in optimistic cases
	VIII-A2 Reduce gas cost in pessimistic cases
	VIII-A3 Reduce storage cost

	VIII-B Improve the availability of DeCloak

	IX Conclusion
	References
	IX-A mpt-enabled contracts
	IX-B Notations and Definitions
	IX-B1 Common notations
	IX-B2 Coins
	IX-B3 mpts
	IX-B4 Protocol execution
	IX-B5 Security goals

	IX-C Security Proof
	IX-C1 Proof of correctness
	IX-C2 Proof of data availability
	IX-C3 Proof of financial fairness
	IX-C4 Delivery (-)fairness

