
1

Optimizing Linear Correctors: A Tight Output
Min-Entropy Bound and Selection Technique

Miloš Grujić and Ingrid Verbauwhede

Abstract—Post-processing of the raw bits produced by a true
random number generator (TRNG) is always necessary when
the entropy per bit is insufficient for security applications. In
this paper, we derive a tight bound on the output min-entropy
of the algorithmic post-processing module based on linear codes,
known as linear correctors. Our bound is based on the codes’
weight distributions, and we prove that it holds even for the real-
world noise sources that produce independent but not identically
distributed bits. Additionally, we present a method for identifying
the optimal linear corrector for a given input min-entropy rate
that maximizes the throughput of the post-processed bits while
simultaneously achieving the needed security level. Our findings
show that for an output min-entropy rate of 0.999, the extraction
efficiency of the linear correctors with the new bound can be
up to 130.56% higher when compared to the old bound, with
an average improvement of 41.2% over the entire input min-
entropy range. On the other hand, the required min-entropy of
the raw bits for the individual correctors can be reduced by up
to 61.62%.

Index Terms—Entropy, true random number generator, post-
processing, linear correctors.

I. INTRODUCTION

RANDOM numbers produced directly by a noise source
of a true random number generator (TRNG) – raw

random numbers, are rarely ideal. In order to be considered
ideal and possess full entropy, random numbers should be
independent, identically and uniformly distributed. However,
raw random numbers often display dependencies, biases, and a
lack of identical distribution. Therefore, before using them for
critical security and cryptographic applications, these numbers
should be subjugated to entropy extraction (post-processing)
to increase the entropy content per random bit to an acceptable
level. An important figure-of-merit of the post-processing
algorithms is the extraction efficiency, which represents the
ratio of the output to the input entropy. According to the US
standard for TRNGs, referred to as entropy sources in the
standard, NIST SP 800-90B [1], the raw random numbers
can be post-processed (conditioned) by either using one of
the six vetted conditioning algorithms or by using custom
algorithms with appropriate entropy estimation. On the other

The authors are with COSIC, KU Leuven, Kasteelpark Arenberg 10,
3001 Leuven – Heverlee, Belgium (e-mail: milos.grujic@esat.kuleuven.be;
ingrid.verbauwhede@esat.kuleuven.be).

This work was partially supported by CyberSecurity Research Flanders
with reference number VR20192203, the European Commission through
Horizon 2020 research and innovation program under Belfort ERC Advanced
Grant 101020005 and Twinning Grant SAFEST 952252, through Horizon
Europe program under grant agreement No.101114043 (QSNP) and through
Digital Europe Program together with the Belgian Federal Science Policy
Office (Belspo) through the Federal restart and transition plan under grant
agreement No.101091625 (BE-QCI).

hand, German AIS-31 [2], [3], which has emerged as the
leading TRNG standard and evaluation methodology within
the European Union [4], categorizes post-processing methods
into two main types: cryptographic and algorithmic post-
processing.

While the main role of cryptographic post-processing is
to ensure computational security [2], [3], it is also used to
increase the entropy rate (entropy per bit) of the random
numbers. To achieve this enhancement, it is crucial for the
cryptographic post-processing to be compressive. The well-
understood and widely used cryptographic hash functions and
block ciphers, as building blocks of one-way compression
functions, can be used for this purpose. The security and
entropy of the output from the cryptographic post-processing
can be derived by modeling it as a random mapping, as
discussed in [2], [3]. Since the random mapping behavior is
a theoretical idealization, the entropy estimation of the output
relies on the computational security of the used underlying
cryptographic primitive. Cryptographic post-processing is not
tailored to any specific distribution family of the raw random
numbers. It can often be attractive from a practical perspective
in security systems that already have software or dedicated
hardware implementations of cryptographic primitives. How-
ever, using cryptographic primitives for the sole purpose of
post-processing can also be prohibitively expensive. Most
noise sources produce raw numbers at rates significantly
lower than the operating frequencies of modern CPUs [5]–[8].
Consequently, the cryptographic post-processing tasks would
require a considerable amount of processing time due to the
resulting latency. In digital platforms with dedicated crypto-
graphic accelerators, all non-TRNG applications that require
their use would be precluded from employing them during the
post-processing. Further, performing cryptographic operations
can be power- or energy-expensive, thereby increasing the
overall cost of randomness.

Algorithmic post-processing entails using straightforward
and lightweight functions often adapted to the stochastic model
of the noise source and the family of raw bit distributions
[2], [3]. Unlike cryptographic post-processing, the algorith-
mic methods provide information-theoretical security and the
output entropy can often be precisely determined. This post-
processing is inherently future-proof when used appropri-
ately, as new and improved cryptanalytic techniques cannot
compromise its security. For the noise sources that produce
independent and identically distributed (IID) bits, the well-
known Von Neumann unbiasing [9] can be used as algorithmic
post-processing to obtain the full entropy output. While Von
Neumann’s procedure’s maximum extraction efficiency of only

ar
X

iv
:2

30
4.

05
30

6v
3

 [
cs

.C
R

]
 1

9
O

ct
 2

02
3

2

0.25 can be increased by its generalizations – Peres’ [10]
and Elias’ [11] unbiasing methods, this comes at a much
greater computational cost. Additional practical disadvantages
of these constructions are their variable output rate and the
strict IID requirement, which might be impossible to achieve
with real-world TRNGs. Another commonly used algorithmic
post-processing method is the simple XOR function of n
consecutive bits, which reduces the bias of independent but
not necessarily identically distributed raw bits at the cost of
n-fold throughput reduction [12]. While this post-processing
can never achieve full entropy of the output bits, it can increase
the entropy rate to the desired amount, has a fixed output rate
and very low implementation costs.

In [13], Dichtl proposed several XOR-based post-processing
constructions for IID bits with higher extraction efficiency than
the basic XOR function due to the reuse of input bits. These
constructions were later formalized as linear correctors by
Lacharme in [14], [15], who also gave a lower bound on the
min-entropy of their output. Linear correctors are represented
by the mappings of the form:

Y k×1 = Gk×nXn×1, (1)

where Xn×1 and Y k×1 are column vectors of n input and
k output bits, respectively, Gk×n is a generator matrix of a
binary linear code with minimum distance d and multiplication
is performed in the Galois field of size 2. If all input bits have
bias δ, then the lower bound on the min-entropy of the output
of the linear corrector can be derived as [14]:

Hout, tot
∞ ≥ k − log2

(
1 + δd2k+d

)
. (2)

In subsequent works [16], [17], it was shown that the linear
correctors could also be used on the independent raw bits that
are not identically distributed. A slightly modified version of
Lacharme’s bound, which includes a lower bound on min-
entropy of independent raw bits Hin

∞, was given in [17]:

Hout, tot
∞ ≥ k − log2

(
1 +

(
21−Hin

∞ − 1
)d

· 2k
)
. (3)

Linear correctors are recognized by the RISC-V consortium
[18], [19] as a form of admissible non-cryptographic post-
processing and are recommended to be used in several recent
TRNG designs [17], [20]–[24]. They represent an attractive
post-processing method due to a significantly smaller hardware
footprint compared to cryptographic post-processing [25], the
ability to deal with not identically distributed raw random bits
and higher extraction efficiency than simple XOR function
[13], [14]. Refining the output min-entropy bound of the cor-
rector can prevent the unnecessary dissipation of entropy from
raw bits during the post-processing stage, thereby enhancing
the performance of TRNG designs that incorporate linear
correctors.

A. Our Contributions

In this work, we noticeably improve Lacharme’s previously
established min-entropy bound of the linear corrector’s out-
put. The improvement is achieved by first establishing new
relations between the probabilities of a linear code and its

cosets. These relations are then used to gain new insights into
the connection between the weight distribution of a binary
linear code and the linear corrector’s output probabilities.
We show that our new bound is also suitable for TRNGs
whose noise sources produce independent and non-identically
distributed raw bits. To demonstrate the applicability of this
newly established result, we devise an optimization proce-
dure to select linear correctors that achieve the best trade-
off between the necessary input min-entropy rate and the
throughput reduction to obtain the desired output min-entropy
rate. We leverage the existing knowledge of the best known
linear codes and known weight distributions to find the optimal
performing linear correctors. Our newly introduced bound
enables us to find linear correctors that are up to 130.56%
more efficient in entropy extraction compared to those derived
from the previous bound for an equivalent input min-entropy.
Across the entire examined input min-entropy range, the new
bound averages an enhancement in extraction efficiency by
41.2%. We have made the list of optimal performing correctors
according to the new bound available at [26], along with
the weight distributions of their corresponding codes and the
input min-entropies required to use them. This resource is
intended to help TRNG designers in selecting appropriate post-
processing techniques and to facilitate the reproduction of our
work.

II. PRELIMINARIES

In this section, we introduce notation, basic definitions and
necessary background in coding theory. For a more in-depth
treatment of the coding theory fundamentals, we recommend
referring to [27] and [28] along with their respective refer-
ences.

A. Notations and Definitions

We denote binary vectors with bold lowercase italic letters
and matrices with bold uppercase italic letters. Calligraphic
uppercase letters represent random variables, while the upper-
case italic letters are reserved for denoting sets. The i-th bit
from the left of an n-bit vector x is denoted as x [i] and is
referred to as the i coordinate of x. The Hamming weight of
a binary vector x is the number of coordinates of x equal
to 1 and we denote it by HW(x). We use 1l0 to denote a
bit vector characterized by having a value of 1 exclusively at
the l0 coordinate and zeros elsewhere. The probability of an
event is denoted with P [·]. Let S be some set of n-bit vectors
x, which are realizations of an n-bit discrete random variable
X with independent coordinates. The probability of set S is
then defined as the sum of the occurrence probabilities of its
element vectors, i.e.,

P [S] =
∑
x∈S

n−1∏
i=0

(x [i] pi + (1− x [i]) (1− pi)) , (4)

where pi = P [X [i] = 1], 0 ≤ i ≤ n − 1, and pi is called
the 1-probability of bit in coordinate i. X is an independent
and identically distributed (IID) random variable (source) only
when pi is identical for all n bits of X . In this work, we use

3

min-entropy as a post-processing performance measure, as it
is the most conservative uncertainty quantity and is used by
both NIST SP 800-90B [1] and the latest version of AIS-31
standards [3]. The min-entropy of a discrete random variable
R, with the outcomes from the set R, is defined as

H∞ = − log2

(
max
r∈R

P [R = r]

)
. (5)

In this work, we formally define the extraction efficiency of
the post-processing algorithm as

η =
Hout, tot

∞
nHin∞

, (6)

where Hout, tot
∞ is the total entropy at the output, n is the

number of input raw bits and Hin
∞ is the lower bound on

the min-entropy rate of the raw bits. We also define post-
processing throughput reduction as the ratio of the number of
input bits versus the number of output bits.

B. Coding Theory

A binary linear code C0 of length n and dimension k is a k-
dimensional subspace of the vector space Fn

2 . Hence, C0 is a
set of order 2k of n-bit row vectors called codewords that form
a group under the operation of bitwise modulo 2 addition (⊕).
A minimum distance of a binary linear code is the smallest
Hamming weight of the non-zero codewords. A binary linear
code C0 of length n, dimension k and minimum distance d
is called [n, k, d]-code or just [n, k]-code when properties of
a code can be generalized independently of d. Quantity k/n is
called the code rate.
Example: Consider a [3, 2]-code. Here, n = 3 and k = 2.
A potential code could be CA

0 = {000, 110, 101, 011}, which
forms a 2-dimensional subspace in F3

2. The minimum distance
of this code is 2, as that is the smallest Hamming weight
among the non-zero codewords 110, 101, and 011. Another
potential [3, 2]-code could be CB

0 = {000, 110, 100, 010}. The
minimum distance of this code is 1, as that is the smallest
Hamming weight among the non-zero codewords 110, 100,
and 010.

The list of non-negative integers (Ai)
n
i=0, where Ai is the

number of codewords of Hamming weight i in a [n, k]-code
C0, is called the weight distribution of the code.
Example: For the [3, 2]-code CA

0 provided earlier, the weight
distribution is A0 = 1, A1 = 0, A2 = 3 and A3 = 0 since
there is one codeword of weight 0, zero codewords of weight
1, and three codewords of weight 2.

For any binary linear code and for any given coordinate,
either all codewords have a 0 at that coordinate or exactly
half of them [28]. A generator matrix G of an [n, k]-code C0

is a binary k × n full rank matrix whose rows are k linearly
independent codewords of C0.
Example: Let us consider our [3, 2]-code CA

0 again. When
we look at the first coordinate, two codewords have a 1
(110, 101) and the other two have a 0 (000, 011). A possible
generator matrix G for this code could be: (1 0 1

0 1 1). This matrix
represents two linearly independent codewords from CA

0 . If we
consider [3, 2]-code CB

0 and look at the third coordinate, we
see that all codewords have a 0 at this coordinate.

A full rank (n− k)× n binary matrix H such that for all
codewords c of an [n, k]-code C0 it holds Hc⊺ = 0 is called a
parity-check matrix of C0. For any n-bit vector x, the parity-
check matrix determines the syndrome of x as s = Hx⊺. A
binary linear [n, n− k]-code C⊥

0 whose generator matrix is the
parity-check matrix of C0 is called the dual code of C0. C⊥

0

is the null space of C0, i.e., for any codeword c of C0 and any
codeword c⊥ of its dual code C⊥

0 it holds
∑n−1

i=0 c[i]c⊥[i] =
0, where additions and multiplications are in F2. The weight
distribution of the dual code

(
A⊥

i

)n
i=0

is called the dual weight
distribution and it is related to the weight distribution (Ai)

n
i=0

of the C0 code by the MacWilliams identity [28], [29]:

n∑
i=0

Aiz
i = 2k−n (1 + z)

n
n∑

i=0

A⊥
i

(
1− z

1 + z

)i

. (7)

Example: Assuming the generator matrix G mentioned above,
a parity-check matrix H for our [3, 2]-code CA

0 is: (1 1 1).
This matrix ensures that for all codewords c in CA

0 , Hc⊺ = 0.
Matrix H is at the same time generator matrix of the dual
[3, 3− 2] code CA,⊥

0 = {000, 111} with weight distribution
A⊥

0 = 1, A⊥
1 = 0, A⊥

2 = 0 and A⊥
3 = 1.

For a binary linear [n, k]-code C0 and an n-bit vector a, the
set {a⊕ c | c ∈ C0} is called a coset of C0. Two n-bit vectors
are in the same coset if and only if they have an identical
syndrome. Hence, a syndrome uniquely determines a coset.
A coset leader is the element with the smallest Hamming
weight in its coset. If there are multiple elements with the
same minimal Hamming weight, any of them can be selected
to be the coset leader. We will also sometimes refer to the set
of codewords C0 as a coset, with the all-zero vector being its
unique coset leader. The total number of cosets of an [n, k]-
code is 2n−k, including the set of codewords.
Example: Let us continue with our [3, 2]-code CA

0 and consider
the vector a = 100. The coset for this vector will be:
{100, 010, 001, 111}. This is the result of 100 xored with each
codeword in CA

0 . The coset leader can be any of the vectors
with the smallest Hamming weight. In this case, any of the
weight 1 vectors 100, 010, or 001 could be chosen. The total
number of cosets of our [3, 2]-code CA

0 would be 23−2 = 2,
meaning that no other 3-bit vector a produces a new coset.

Since there is an equivalence between binary linear codes
and linear correctors [14], we will sometimes interchangeably
use the terms corrector and code.

III. PREVIOUS WORK

The relationship between a code’s weight distribution and
the output of a linear corrector was first noted by Lacharme in
[15], although the previously established min-entropy bound in
[14] was not improved. Zhou et al. [30], [31] studied the exact,
average, and asymptotic performance of linear correctors and
more general random binary matrices, but only in terms of
their statistical distance from the uniform distribution, without
considering the entropy rate. In [25], Kwok et al. compared the
performance of Von Neumann unbiasing, XOR function, and
linear correctors with respect to throughput reduction, post-
processed bit bias, and adversarial bias reduction. However,

4

their study did not consider the performance of these post-
processing techniques for non-identically distributed input bits,
nor did it account for the correlation between the output bits
of a linear corrector and, therefore, the total entropy of the
output. In contrast, Meneghetti et al. [32] and Tomasi et al.
[16] provided a bound on the statistical distance of linear
correctors’ output from the uniform distribution based on the
code’s weight distribution, and they also determined a lower
bound on the Shannon entropy using Sason’s theorem [33],
which relates statistical distance and entropy. However, this
bound is loose because it relies on the statistical distance
bound and does not apply to the min-entropy, which is always
lower than the Shannon entropy.

In the following section, we will use and expand on
two older results from coding theory to improve Lacharme’s
bound: Sullivan’s subgroup-coset inequality [34] and its gener-
alization by Živković [35]. Sullivan showed in [34] that when
all coordinate 1-probabilities of n-bit vectors are smaller than
0.5, the probability of the set of codewords is the highest
among all coset probabilities. Živković later demonstrated in
[35] that this relation also holds for any q-ary linear code,
where q is a prime power, even when individual coordinate
1-probabilities are different but all smaller than 0.5.

IV. IMPROVING THE MIN-ENTROPY BOUND

We improve the min-entropy bound for linear correctors
by first generalizing Sullivan’s subgroup-coset inequality [34]
for binary linear codes and cases when the coordinate 1-
probabilities are different and not upper limited to 0.5. First,
we recall a lemma from [34] that will also be used in our
proofs.

Lemma 1 (adapted from [34]). Let C0 be a binary linear
[n, k]-code, and let e, HW(e) = l, be a coset leader in
some coset of C0. Then the code C ′

0, obtained by deleting l
coordinates in which e is 1, is a binary linear [n− l, k]-code.

We now introduce our first inequality theorem, named the
coset-coset inequality. This theorem establishes a relationship
between the probabilities of two distinct cosets belonging to
a specific binary linear code. It offers a distinctive perspective
when compared to the subgroup-coset inequalities proposed
by Sullivan and Živković. The proof of this theorem builds
upon the foundations laid out in [34] and [35].

Theorem 1. Let Ci, 0 ≤ i ≤ 2n−k − 1, denote sets of n-
bit element vectors x, which are realizations of the n-bit row
vector random variable X with independent coordinates. Let
C0 be a binary linear [n, k]-code, and all other Ci, i ̸= 0, are
cosets of C0. Let Cimax

denote the set that contains the most
probable element vector xmax with coordinates

xmax [j] =

{
1, if 0.5 ≤ pj ≤ 1,

0, if 0 ≤ pj < 0.5,

where pj is the 1-probability of bit in j coordinate, 0 ≤ j ≤
n − 1. Then it holds P [Cimax] ≥ P [Ci], and we call Cimax

the most probable set.

Proof. First, we arrange all possible 2n vectors in the standard
array such that the i-th row contains elements of the set Ci.

The first entry in each row ci, 0 is a coset leader ei, i.e., a
vector with the lowest weight in the corresponding set, while
all other row entries ci, j are obtained by adding ei and the
corresponding entry in the 0-th row: ci, j = ei⊕c0, j , 1 ≤ j ≤
2k − 1. Consider now the set that contains the most probable
vector Cimax

with coset leader eimax and some arbitrary but
fixed set Ci, Ci ̸= Cimax , with coset leader ei, as well as their
corresponding rows in the standard array. If ei ⊕ eimax is in
some set Cl, but is not equal to its coset leader el, we rearrange
the entries in the imax-th row so that for the first entry cimax, 0

we select an element of Cimax
that is equal to ei ⊕ el. All

other row entries are rearranged so that the j-th element is
equal to cimax, j = cimax, 0 ⊕ c0, j = ei ⊕ el ⊕ c0, j . On the
other hand, no rearrangements are made if ei ⊕ eimax = el
already holds. After possible rearrangement, any entry in the
i-th row ci, j is related to the entry cimax, j in the imax-th
row by relation ci, j = cimax, j ⊕ el. Since all entries in the
i-th and imax-th row are also elements of the sets Ci and
Cimax , respectively, this shows that every element in Cimax

has exactly one corresponding element in Ci from which it
differs only in coordinates in which el is 1. We will prove
the theorem by double induction over the code dimension k,
0 ≤ k < n, and the Hamming weight of the coset leaders
HW(el) ≥ 1.

Base case. For k = 0 and HW(el) = 1, we have C0 = {0},
where 0 is the all-zero vector. Since, in this case, each set
contains only one n-bit vector, it is clear that the set that
includes the most probable vector xmax will have probability
P [Cimax

] = P [xmax] and that P [Cimax
] ≥ P [Ci] always

holds.

Outer induction hypothesis. Assume that the theorem is true
for all binary linear codes of dimension k ≤ k′ and HW(el) =
1.

Outer induction step. We will show that the outer induction
hypothesis implies that the theorem also holds for all binary
linear codes of dimension k = k′ + 1 and HW(el) = 1.
Suppose that el has 1 in coordinate l0 and let Il0 =
{0, . . . , n− 1} \ {l0}. We now partition sets Ci and Cimax

into two subsets, depending on the value in coordinate l0 of
their element vectors: Cl0, b

imax
= {x ∈ Cimax

| x[l0] = b} and
Cl0, b

i = {x ∈ Ci | x[l0] = b}, b ∈ {0, 1}.

Case 1a: Suppose first that x[l0] = b̂ holds for all x ∈
Cimax

, where b̂ is fixed to either 0 or 1. Then the order of
Cl0,b̂

imax
is 2k

′+1 since Cl0,b̂
imax

= Cimax
and Cl0,1−b̂

imax
= ∅. Given

that the elements in Cl0,1−b̂
i differ from the elements in Cl0,b̂

imax

only in the l0 coordinate, we have that the order of Cl0,1−b̂
i

is also 2k
′+1 and Cl0,1−b̂

i = Ci, while Cl0,b̂
i = ∅. Therefore,

we can express the probabilities of the sets Cimax and Ci as

P [Cimax
] = P

[
Cl0,b̂

imax

]
=(

b̂pl0 +
(
1− b̂

)
(1− pl0)

)
·∑

x∈Cimax

∏
i∈Il0

(x [i] pi + (1− x [i]) (1− pi)) , (8)

5

and

P [Ci] = P
[
Cl0,1−b̂

i

]
=((

1− b̂
)
pl0 + b̂ (1− pl0)

)
·∑

x∈Ci

∏
i∈Il0

(x [i] pi + (1− x [i]) (1− pi)) . (9)

Note that∑
x∈Ci

∏
i∈Il0

(x [i] pi + (1− x [i]) (1− pi)) =∑
x∈Cimax

∏
i∈Il0

(x [i] pi + (1− x [i]) (1− pi)) , (10)

holds since the elements in Ci and Cimax differ only in the l0
coordinate.

Subcase 1.1a: For b̂ = 0, it holds 1 − pl0 > pl0 since 0 ≤
pl0 < 0.5, which follows from the fact that xmax ∈ Cimax

and all vectors in Cimax
have 0 in coordinate l0 for b̂ = 0.

Therefore, from (8) and (9), we have the inequality

P [Cimax] =

(1− pl0)
∑

x∈Cimax

∏
i∈Il0

(x [i] pi + (1− x [i]) (1− pi)) >

P [Ci] = pl0
∑
x∈Ci

∏
i∈Il0

(x [i] pi + (1− x [i]) (1− pi)) . (11)

Subcase 1.2a: For b̂ = 1, all vectors in Cimax
have 1 in

coordinate l0 and xmax ∈ Cimax
. Thus, pl0 ≥ 1− pl0 , since

0.5 ≤ pl0 ≤ 1. Hence, P [Cimax] ≥ P [Ci] holds in this case
as well, which can be seen by substituting b̂ = 1 in (8) and
(9):

P [Cimax
] =

pl0
∑

x∈Cimax

∏
i∈Il0

(x [i] pi + (1− x [i]) (1− pi)) ≥

P [Ci] = (1− pl0)
∑
x∈Ci

∏
i∈Il0

(x [i] pi + (1− x [i]) (1− pi)) .

(12)

Case 2a: Suppose the values in coordinate l0 are not
identical for all vectors in Cimax

. The orders of Cl0,0
imax

, Cl0,1
imax

,
Cl0,0

i and Cl0,1
i are all equal to 2k

′
. We now delete component

in coordinate l0 of every element in both Ci and Cimax

and denote the resulting sets by Cl0
i and Cl0

imax
, and the

corresponding partitioning subsets by Cl0, 0
i , Cl0, 1

i , Cl0, 0
imax

and

Cl0, 1
imax

. Since Ci and Cimax
are either equivalent to C0 or are

its proper cosets, from Lemma 1, we have that the orders of
Cl0

i and Cl0
imax

are 2k
′+1. Consequently, the orders of Cl0, 0

i ,

Cl0, 1
i , Cl0, 0

imax
and Cl0, 1

imax
will be 2k

′
. Since the elements in Ci

differ from the elements in Cimax
only in the coordinate l0,

it follows that Cl0, 0
i = Cl0, 1

imax
and Cl0, 1

i = Cl0, 0
imax

. The set
probabilities P [Cimax] and P [Ci] can be expressed as

P [Cimax
] = P

[
Cl0,1

imax

]
+ P

[
Cl0,0

imax

]
=

pl0P
[
Cl0, 1

imax

]
+ (1− pl0)P

[
Cl0, 0

imax

]
(13)

and

P [Ci] = P
[
Cl0,1

i

]
+ P

[
Cl0,0

i

]
=

pl0P
[
Cl0, 1

i

]
+ (1− pl0)P

[
Cl0, 0

i

]
=

pl0P
[
Cl0, 0

imax

]
+ (1− pl0)P

[
Cl0, 1

imax

]
. (14)

Thus, we obtain

P [Cimax
]− P [Ci] =

pl0P
[
Cl0, 1

imax

]
− (1− pl0)P

[
Cl0, 1

imax

]
+ (1− pl0)P

[
Cl0, 0

imax

]
− pl0P

[
Cl0, 0

imax

]
=

(1− 2pl0)
(
P
[
Cl0, 0

imax

]
− P

[
Cl0, 1

imax

])
. (15)

Subcase 2.1a: If xmax ∈ Cl0,0
imax

, then the
most probable (n− 1)-bit vector obtained from
xmax by deleting its l0 coordinate xl0

max =
(xmax [0] ...xmax [l0 − 1]xmax [l0 + 1] ...xmax [n− 1])

will be in the subset Cl0, 0
imax

. Hence, from the induction

hypothesis P
[
Cl0, 0

imax

]
≥ P

[
Cl0, 1

imax

]
. We note that since

xmax ∈ Cl0,0
imax

, we have 0 ≤ pl0 < 0.5, and thus,
1 − 2pl0 > 0. Based on this observation and the outer
induction hypothesis, we have that both multiplication terms
in the last line of (15) are non-negative, implying that
P [Cimax

] ≥ P [Ci].
Subcase 2.2a: If xmax ∈ Cl0,1

imax
, then xl0

max will be an

element of the subset Cl0, 1
imax

. From the induction hypothesis,

in this case, we have P
[
Cl0, 1

imax

]
≥ P

[
Cl0, 0

imax

]
. Furthermore,

since xmax ∈ Cl0,1
imax

, we have 0.5 ≤ pl0 ≤ 1, and thus,
1−2pl0 ≤ 0. Therefore, both terms in the last line of (15) are
non-positive, implying that their product is non-negative, and
P [Cimax] ≥ P [Ci] holds in this case as well.

By induction, the theorem is true for all binary linear codes’
dimensions k, 0 ≤ k < n, and HW(el) = 1.
Inner induction hypothesis. Assume that the theorem holds for
all binary linear codes of dimension k and HW(el) values not
greater than m.
Inner induction step. We proceed with the second induc-
tion step by showing that the inner induction hypothesis
implies that the theorem holds for HW(el) = m + 1 and
all binary linear codes of dimension k. Let lm be one of
the m + 1 possible positions in which el has 1, and let
Ilm = {0, . . . , n− 1} \ {lm}. We separate all elements in both
Ci and Cimax

into two subsets according to their coordinate
value in coordinate lm: Clm, b

imax
= {x ∈ Cimax

| x[lm] = b}
and Clm, b

i = {x ∈ Ci | x[lm] = b}, b ∈ {0, 1}. Let Clm
imax

and Clm
i be sets obtained from Cimax

and Ci by removing
the component in coordinate lm in all vectors in both sets.
According to Lemma 1, the orders of Clm

imax
and Clm

i will
remain 2k and the elements in Clm

i will differ from the
elements in Clm

imax
in coordinates in which vector elml =

(el[0]... el[lm−1], el[lm+1]... el[n−1]) is 1. Since the most
probable (n− 1)-bit vector xlm

max = (xmax[0], ...xmax[lm−

6

1],xmax[lm + 1], ...xmax[n − 1]) will be in set Clm
imax

and

HW
(
elml

)
= m, by the inner induction hypothesis, we obtain

P
[
Clm

imax

]
=

∑
x∈Cimax

∏
i∈Ilm

(x [i] pi + (1− x [i]) (1− pi))

≥ P
[
Clm

i

]
=
∑
x∈Ci

∏
i∈Ilm

(x [i] pi + (1− x [i]) (1− pi)) .

(16)

Case 1b: Suppose x[lm] = b̂ holds for all x ∈ Cimax
, where

b̂ is fixed to either a 0 or a 1. The order of Clm,b̂
imax

is then 2k

and Clm,1−b̂
imax

= ∅. Since el has 1 in coordinate lm, all vectors
in Ci will have 1 − b̂ in coordinate lm. Hence, the order of
Clm,1−b̂

i is also 2k and Clm,b̂
i = ∅. For the probabilities of

sets Cimax and Ci, we have

P [Cimax
] = P

[
Clm,b̂

imax

]
=(

b̂plm +
(
1− b̂

)
(1− plm)

)
·∑

x∈Cimax

∏
i∈Ilm

(x [i] pi + (1− x [i]) (1− pi)) , (17)

and

P [Ci] = P
[
Clm,1−b̂

i

]
=((

1− b̂
)
plm + b̂ (1− plm)

)
·∑

x∈Ci

∏
i∈Ilm

(x [i] pi + (1− x [i]) (1− pi)) . (18)

By substituting P
[
Clm

imax

]
and P

[
Clm

i

]
from (16) in (17) and

(18), and then subtracting P [Ci] from P [Cimax], we obtain

P [Cimax]− P [Ci] =

b̂
(
plmP

[
Clm

imax

]
− (1− plm)P

[
Clm

i

])
+(

1− b̂
)(

(1− plm)P
[
Clm

imax

]
− plmP

[
Clm

i

])
. (19)

Subcase 1.1b: For b̂ = 0, since xmax ∈ Cimax
, we have

0 ≤ plm < 0.5, thus, (1− plm) > plm . Equation (19) then
becomes

P [Cimax]− P [Ci] =

(1− plm)P
[
Clm

imax

]
− plmP

[
Clm

i

]
. (20)

By multiplying both sides of (16) by (1− plm) and combining
this result with (1− plm) > plm , we have the inequality

(1− plm)P
[
Clm

imax

]
≥ (1− plm)P

[
Clm

i

]
> plmP

[
Clm

i

]
.

(21)
From the preceding inequality and (20), it holds P [Cimax

] >
P [Ci].

Subcase 1.2b: Similarly, for b̂ = 1, we have 0.5 ≤ plm ≤ 1,
thus, plm ≥ (1− plm) and (19) becomes

P [Cimax]− P [Ci] =

plmP
[
Clm

imax

]
− (1− plm)P

[
Clm

i

]
. (22)

By multiplying both sides of (16) by (1− plm) and combining
this result with the inequality plm ≥ (1− plm), we obtain

plmP
[
Clm

imax

]
≥ (1− plm)P

[
Clm

imax

]
≥ (1− plm)P

[
Clm

i

]
.

(23)
From (22) and (23), it follows that P [Cimax

] ≥ P [Ci] holds
in this case as well.

Case 2b: Suppose that x [lm] is not identical for all
x ∈ Cimax

. Let Clm, b
imax

and Clm, b
i , b ∈ {0, 1}, be subsets

of Clm
imax

and Clm
i , respectively, obtained from Clm,b

imax
and

Clm,b
i by deleting the l0 coordinate in the element vectors.

We can express the probabilities of sets Clm
imax

and Clm
i

as P
[
Clm

imax

]
= P

[
Clm,0

imax

]
+ P

[
Clm,1

imax

]
and P

[
Clm

i

]
=

P
[
Clm,0

i

]
+ P

[
Clm,1

i

]
, respectively, and rewrite (16) as

P
[
Clm

imax

]
= P

[
Clm,0

imax

]
+ P

[
Clm,1

imax

]
≥ P

[
Clm

i

]
= P

[
Clm,0

i

]
+ P

[
Clm,1

i

]
. (24)

The probabilities P [Cimax
] and P [Ci] can be expressed as

P [Cimax] = P
[
Clm,0

imax

]
+ P

[
Clm,1

imax

]
=

plmP
[
Clm,1

imax

]
+ (1− plm)P

[
Clm,0

imax

]
(25)

and

P [Ci] = P
[
Clm,0

i

]
+ P

[
Clm,1

i

]
=

plmP
[
Clm,1

i

]
+ (1− plm)P

[
Clm,0

i

]
. (26)

By subtracting (26) from (25), we obtain

P [Cimax]− P [Ci] =

(1− plm)
(
P
[
Clm,0

imax

]
− P

[
Clm,0

i

])
− plm

(
P
[
Clm,1

i

]
− P

[
Clm,1

imax

])
. (27)

Subcase 2.1b: First, suppose that xmax[lm] = 0, i.e.,
xmax ∈ Clm,0

imax
. This implies 0 ≤ plm < 0.5 and (1− plm) >

plm . By multiplying both sides of (24) by (1− plm) and
rearranging the terms, we have

(1− plm)
(
P
[
Clm,0

imax

]
− P

[
Clm,0

i

])
≥

(1− plm)
(
P
[
Clm,1

i

]
− P

[
Clm,1

imax

])
>

plm

(
P
[
Clm,1

i

]
− P

[
Clm,1

imax

])
, (28)

where the last inequality comes from (1− plm) > plm . Thus,
from (28) and (27), we can see that P [Cimax] > P [Ci] holds.

Subcase 2.2b: Finally, suppose that xmax[lm] = 1, i.e.,
xmax ∈ Clm,1

imax
. This implies 0.5 ≤ plm ≤ 1 and plm ≥

(1− plm). By multiplying both sides of (24) by plm and
rearranging the terms, we have

plm

(
P
[
Clm,1

imax

]
− P

[
Clm,1

i

])
≥

plm

(
P
[
Clm,0

i

]
− P

[
Clm,0

imax

])
≥

(1− plm)
(
P
[
Clm,0

i

]
− P

[
Clm,0

imax

])
, (29)

7

where the last inequality comes from plm ≥ (1− plm). By
again rearranging the terms in the first and the last line of the
inequality (29), we get the inequality

(1− plm)
(
P
[
Clm,0

imax

]
− P

[
Clm,0

i

])
≥ plm

(
P
[
Clm,1

i

]
− P

[
Clm,1

imax

])
. (30)

From (27) and (30), it directly follows P [Cimax
] ≥ P [Ci].

By the principle of double induction, the theorem is true for
all binary linear codes of any dimension k, 0 ≤ k < n, and
all Hamming weights of their coset leaders HW(el) ≥ 1.

The results of the coset-coset inequality theorem will be
helpful in determining the exact output min-entropy of the
linear corrector when the distributions of all raw input bits are
precisely known. For most real-world TRNGs, these distribu-
tions are unknown during the design time and vary, in some
range, between TRNG instances and during the operation.
Often, the only thing that can be guaranteed and required
by the standardization bodies [1]–[3] is the lower bound on
entropy. Hence, to practically apply the finding of Theorem 1,
that the most probable coset is the one that contains the most
probable vector, we will use it in the following lemma to show
how this probability can be bounded.

Lemma 2. Let C0 (p0, . . . , pn−1) be the set of code-
words of a binary linear code and Cimax

(p0, . . . , pn−1)
be the most probable set as defined in Theorem 1
with corresponding coordinate 1-probabilities given by tu-
ple (p0, . . . , pn−1), where all pi might be different. Let
δmax = max {|0.5− pi|}n−1

i=0 be the maximum coordi-
nate bit bias, and let (0.5− δmax, . . . , 0.5− δmax) repre-
sent a tuple of coordinate 1-probabilities all equal to 0.5 −
δmax. Then, it holds P [C0 (0.5− δmax, . . . , 0.5− δmax)] ≥
P [Cimax

(p0, . . . , pn−1)].

Proof. We will decompose the proof into two cases, depending
on whether the most probable vector xmax is an all-zero
vector, and prove both cases by simple induction.

Case 1: Suppose that the most probable vector xmax

is the all-zero vector, i.e., all coordinate 1-probabilities pi,
0 ≤ i ≤ n− 1, are lower than 0.5 and possibly different from
each other. According to Theorem 1, the most probable set will
be C0, i.e., Cimax

= C0. If in some coordinate l0, we change
its probability pl0 to p∗l0 = 0.5−δmax, the all-zero vector will
remain the most probable vector for the tuple of 1-probabilities(
p0, . . . , p

∗
l0
, . . . , pn−1

)
and therefore C0 remains the most

probable set. We partition C0 into two subsets Cl0, b
0 =

{x ∈ C0 | x[l0] = b}, b ∈ {0, 1}, according to the value of
the element vectors’ coordinate in l0. We now remove the l0
coordinate of each element in Cl0, b

0 and obtain subsets Cl0, b
0 ,

b ∈ {0, 1}. Note that P
[
Cl0, b

0 (p0, . . . , pl0 , . . . , pn−1)
]

=

P
[
Cl0, b

0

(
p0, . . . , p

∗
l0
, . . . , pn−1

)]
= P

[
Cl0, b

0

]
, since the

vectors in Cl0, b
0 do not have coordinate l0 with modified

probability. The probability of C0 before and after the l0
coordinate probability change will be

P [C0 (p0, . . . , pl0 , . . . , pn−1)] =

pl0P
[
Cl0,1

0

]
+ (1− pl0)P

[
Cl0,0

0

]
, (31)

and

P
[
C0

(
p0, . . . , p

∗
l0 = 0.5− δmax, . . . , pn−1

)]
=

p∗l0P
[
Cl0,1

0

]
+
(
1− p∗l0

)
P
[
Cl0,0

0

]
=

(0.5− δmax)P
[
Cl0,1

0

]
+ (0.5 + δmax)P

[
Cl0,0

0

]
, (32)

respectively. By subtracting (31) from (32), we obtain

P
[
C0

(
p0, . . . , p

∗
l0 = 0.5− δmax, . . . , pn−1

)]
− P [C0 (p0, . . . , pl0 , . . . , pn−1)] =

(0.5− δmax − pl0)P
[
Cl0,1

0

]
+ (pl0 − 0.5 + δmax)P

[
Cl0,0

0

]
= (δmax − (0.5− pl0))

(
P
[
Cl0,0

0

]
− P

[
Cl0,1

0

])
. (33)

The first multiplication term in the last line of (33) is non-
negative since, by the definition of δmax, it holds δmax ≥
0.5− pl0 .

Subcase 1.1: If for all x ∈ C0 it holds x[l0] =

0, then Cl0,0
0 = C0 and Cl0,1

0 = Cl0,1
0 = ∅.

This implies that the second multiplication term in
(33) is also non-negative, since P

[
Cl0,1

0

]
= 0 and

therefore P
[
C0

(
p0, . . . , p

∗
l0
= 0.5− δmax, . . . , pn−1

)]
≥

P [C0 (p0, . . . , pl0 , . . . , pn−1)].
Subcase 1.2: If x[l0] is not identical for all x ∈ C0, we have

two additional subcases depending on whether C0 contains the
vector element 1l0 – an n-bit vector with Hamming weight 1
that has a 1 in coordinate l0.

Subsubcase 1.2.1: If 1l0 ∈ C0, then every element
c in Cl0,0

0 has exactly one corresponding element c′ in
Cl0, 1

0 to which it is related by c′ = c ⊕ 1l0 . Then
Cl0,1

0 = Cl0,0
0 , and the second multiplication term in (33)

is 0. Hence, P
[
C0

(
p0, . . . , p

∗
l0
= 0.5− δmax, . . . , pn−1

)]
=

P [C0 (p0, . . . , pl0 , . . . , pn−1)].
Subsubcase 1.2.2: Suppose that 1l0 /∈ C0. Then

by Theorem 1, P
[
Cl0,0

0

]
≥ P

[
Cl0,1

0

]
, since the

set Cl0,0
0 contains the (n− 1)-bit all-zero vector and

Cl0,1
0 is its proper coset. Hence, the second multi-

plication term in the last line of (33) is also non-
negative and P

[
C0

(
p0, . . . , p

∗
l0
= 0.5− δmax, . . . , pn−1

)]
≥

P [C0 (p0, . . . , pl0 , . . . , pn−1)].
By a trivial induction over coordinates li, 0 ≤ i ≤ n − 1,

and iteratively applying the described coordinate probability
substitution, one can easily arrive at the lemma’s inequality
for Case 1:

P [C0 (0.5− δmax, . . . , 0.5− δmax)] ≥ P [C0 (p0, . . . , pn−1)] .
(34)

Case 2: Suppose that the most probable vector xmax is
not the all-zero vector, i.e., HW(xmax) = r ≥ 1 with 1-
probabilities not smaller than 0.5 in coordinates l0, . . . , lr−1.

8

If we change one of the coordinate 1-probabilities pl0 , that
was not smaller than 0.5, to p∗l0 = 0.5 − δmax, the new
most probable vector xl0,0

max will be equal to xmax in all
coordinates except l0, in which xl0,0

max has a 0.
Subcase 2.1: If 1l0 ∈ C0, then xmax and xl0,0

max are
in the same set Cimax

since xmax = xl0,0
max ⊕ 1l0 . All

vectors in Cimax can be divided into two subsets Cl0, b
imax

=
{x ∈ Cimax | x[l0] = b}, b ∈ {0, 1}. We now remove the co-
ordinate l0 of each element in Cl0, b

imax
to obtain subsets Cl0, b

imax
,

b ∈ {0, 1}. Since every element cimax in Cl0, b
imax

has exactly
one corresponding element c′imax

in Cl0,1−b
imax

to which it is re-

lated by c′imax
= cimax⊕1l0 , it is clear that Cl0, b

imax
= Cl0,1−b

imax
.

Then, for the probabilities of Cimax
(p0, . . . , pl0 , . . . , pn−1)

and Cimax

(
p0, . . . , p

∗
l0
, . . . , pn−1

)
, we have

P [Cimax
(p0, . . . , pl0 , . . . , pn−1)] = pl0P

[
Cl0,1

imax

]
+ (1− pl0)P

[
Cl0,0

imax

]
= P

[
Cl0,0

imax

]
= P

[
Cl0,1

imax

]
, (35)

and

P
[
Cimax

(
p0, . . . , p

∗
l0 , . . . , pn−1

)]
= p∗l0P

[
Cl0,1

imax

]
+
(
1− p∗l0

)
P
[
Cl0,0

imax

]
= P

[
Cl0,0

imax

]
= P

[
Cl0,1

imax

]
, (36)

respectively. Therefore, P [Cimax
(p0, . . . , pl0 , . . . , pn−1)] =

P
[
Cimax

(
p0, . . . , p

∗
l0
= 0.5− δmax, . . . , pn−1

)]
.

Subcase 2.2: If 1l0 /∈ C0, then xmax and xl0,0
max will be

in different sets, which we denote by Cimax and Cimax,l0 . Let
exmax be a vector element of the lowest weight in Cimax

and
let c0,xmax be the codeword such that xmax = exmax ⊕
c0,xmax . Similarly, let exmax,l0 be a vector element of the
lowest weight in Cimax,l0 and let c0,xmax,l0 be the codeword
such that xl0,0

max = exmax,l0 ⊕ c0,xmax,l0 . Since xmax =
xl0,0
max ⊕ 1l0 , it holds

1l0 = c0,xmax ⊕ c0,xmax,l0 ⊕ exmax ⊕ exmax,l0 . (37)

Every element exmax ⊕c0,j from Cimax
has one correspond-

ing element in the set Cimax,l0 from which it differs only in
the coordinate l0:

exmax ⊕ c0,j ⊕ 1l0 =

exmax,l0 ⊕ c0,j ⊕ c0,xmax ⊕ c0,xmax,l0 . (38)

We partition Cimax into subsets Cl0, b
imax

=
{x ∈ Cimax | x[l0] = b} and Cimax, l0 into subsets
Cl0, b

imax,l0
= {x ∈ Cimax, l0 | x[l0] = b}, b ∈ {0, 1}, according

to the value of the coordinate l0. We also remove components
in coordinate l0 of each element in Cl0, b

imax
and Cl0, b

imax,l0
,

b ∈ {0, 1}, and obtain Cl0, b
imax

and Cl0, b
imax,l0

, respectively.
Due to (38), the elements in Cimax

and Cimax, l0 differ only
in the l0 coordinate, and it follows Cl0, b

imax
= Cl0,1−b

imax,l0
. Then

for the probabilities of Cimax
(p0, . . . , pl0 , . . . , pn−1) and

Cimax, l0

(
p0, . . . , p

∗
l0
, . . . , pn−1

)
, we have

P [Cimax (p0, . . . , pl0 , . . . , pn−1)] =

pl0P
[
Cl0,1

imax

]
+ (1− pl0)P

[
Cl0,0

imax

]
, (39)

and

P
[
Cimax, l0

(
p0, . . . , p

∗
l0 , . . . , pn−1

)]
=

p∗l0P
[
Cl0,1

imax,l0

]
+
(
1− p∗l0

)
P
[
Cl0,0

imax,l0

]
=

(0.5 + δmax)P
[
Cl0,1

imax

]
+ (0.5− δmax)P

[
Cl0,0

imax

]
, (40)

respectively. By subtracting (39) from (40), we obtain

P
[
Cimax, l0

(
p0, . . . , p

∗
l0 = 0.5− δmax, . . . , pn−1

)]
− P [Cimax (p0, . . . , pl0 , . . . , pn−1)] =

(0.5 + δmax − pl0)P
[
Cl0,1

imax

]
+(pl0 − 0.5− δmax)P

[
Cl0,0

imax

]
= (δmax − (pl0 − 0.5))

(
P
[
Cl0,1

imax

]
− P

[
Cl0,0

imax

])
. (41)

By the definition of δmax, it follows δmax ≥ pl0 − 0.5, and
thus, the first multiplication term in the last line of (41) is
non-negative. Since in this case xmax has a 1 in coordinate
l0, we have two possibilities for the vectors in Cimax

: either
x[l0] = 1 holds for all x ∈ Cimax

or half of the vectors have
a 0 and the other half have a 1 in coordinate l0.

Subsubcase 2.2.1: If x[l0] = 1 holds for all x ∈
Cimax

, then Cl0,1
imax

= Cimax
and Cl0,0

imax
= Cl0,0

imax
=

∅. Since P
[
Cl0,0

imax

]
= 0, the second multiplication

term in the last line of (41) is also non-negative and
thus, P

[
Cimax, l0

(
p0, . . . , p

∗
l0
= 0.5− δmax, . . . , pn−1

)]
≥

P [Cimax
(p0, . . . , pl0 , . . . , pn−1)].

Subsubcase 2.2.2: If not all x ∈ Cimax have iden-
tical bit in position l0, then the most probable (n− 1)-
bit vector obtained from xmax by deleting its l0 coor-
dinate xl0

max will be in Cl0,1
imax

. By Theorem 1, we have

P
[
Cl0,1

imax

]
≥ P

[
Cl0,0

imax

]
. Thus, the second multiplication

term in the last line of (41) is also non-negative, and we
have P

[
Cimax, l0

(
p0, . . . , p

∗
l0
= 0.5− δmax, . . . , pn−1

)]
≥

P [Cimax
(p0, . . . , pl0 , . . . , pn−1)].

Similarly to Case 1, we can use trivial induction over all
coordinates li, 0 ≤ i ≤ r − 1, in which xmax has value 1.
By iteratively applying the described coordinate probability
substitutions, we are saddled with the most probable vector
x
l0,0;...;lr−1,0
max , which is an all-zero vector since all ones are

replaced by zeros and therefore Cimax, l0,...,lr−1
= C0. Hence,

we arrive at the inequality:

P
[
C0

(
p0, . . . , p

∗
l0 , . . . , p

∗
lr−1

, . . . , pn−1

)]
=

P
[
Cimax, l0,...,lr−1

(
p0, . . . , p

∗
l0 , . . . , p

∗
lr−1

, . . . , pn−1

)]
≥ P

[
Cimax

(
p0, . . . , pl0 , . . . , plr−1

, . . . , pn−1

)]
, (42)

where p∗l0 = · · · = p∗lr−1
= 0.5 − δmax. We can now apply

the inequality (34) from Case 1 when the all-zero is the most
probable vector to obtain the lemma’s inequality:

P [C0 (0.5− δmax, . . . , 0.5− δmax)] ≥

P
[
C0

(
p0, . . . , p

∗
l0 , . . . , p

∗
lr−1

, . . . , pn−1

)]
≥

P
[
Cimax

(
p0, . . . , pl0 , . . . , plr−1 , . . . , pn−1

)]
. (43)

9

Since we have shown that the lemma’s inequality is satisfied
for all possible Hamming weights of the xmax, this concludes
the proof.

We use the previous results from Theorem 1 and Lemma 2
for the main theorem that provides a lower bound on the min-
entropy of the output of a linear corrector when only a lower
bound on the min-entropy of the noise source of independent
bits is known.

Theorem 2. Let X be a row vector n-bit random variable
with independent but not necessarily identically distributed
coordinates and let the min-entropy per bit of X be at least
Hin

∞ > 0. Let G be a k × n generator matrix of a binary
linear [n, k]-code C0 and let (Ai)

n
i=0 be its weight distribution.

Then, the total min-entropy of the output of the linear corrector
Y = GX ⊺ is lower-bounded by:

Hout, tot
∞ ≥ − log2

(
2−k

n∑
i=0

Ai

(
21−Hin

∞ − 1
)i)

. (44)

Proof. The proof will be a straightforward application of
Theorem 1 and Lemma 2. Consider the min-entropy of the
i-th bit of X with 1-probability 0 < pi < 1:

Hin,i
∞ = − log2 (max {pi, 1− pi}) =

− log2 (0.5 + |0.5− pi|) . (45)

If we also denote the maximal bit bias with δmax =
max {|0.5− pi|}n−1

i=0 , then the lower bound on the min-entropy
per bit of X is simply given by

Hin
∞ = min

{
Hin,i

∞
}n−1

i=0
=

− log2

(
0.5 + max {|0.5− pi|}n−1

i=0

)
=

− log2 (0.5 + δmax) . (46)

By definition of the linear corrector Y = GX ⊺ and the fact
that the generator matrix G of the C0 code is equivalent to the
parity-check matrix of its dual code C⊥

0 , every k-bit output y
of the linear corrector will be a syndrome for the dual code
C⊥

0 of an n-bit vector x which is a realization of X . Since
all n-bit vectors belonging to the same coset of C⊥

0 have the
same syndrome, determining the probability of each output is
equivalent to determining the probability of the corresponding
coset of C⊥

0 . By Theorem 1, the most probable output will
correspond to the syndrome of the most probable input vector.
From (46) and the Lemma 2, it holds

max
y∈Y

P [Y = y] = P
[
C⊥

imax
(p0, . . . , pn−1)

]
≤

P
[
C⊥

0

(
p = 1− 2−Hin

∞ , . . . , p = 1− 2−Hin
∞

)]
, (47)

where C⊥
imax

is a coset of C⊥
0 that contains the most probable

vector x. Since the number of vectors of C⊥
0 with Hamming

weight i is given by its weight distribution
(
A⊥

i

)n
i=0

, we can
determine the lower bound of the total output min-entropy as

Hout, tot
∞ = − log2

(
max
y∈Y

P [Y = y]

)
≥

− log2

(
n∑

i=0

A⊥
i pi (1− p)

n−i

)

= − log2

(
2−nHin

∞

n∑
i=0

A⊥
i

(
2H

in
∞ − 1

)i)
. (48)

By substituting 21−Hin
∞ − 1 for z in the MacWilliams identity

(7), we have
n∑

i=0

A⊥
i

(
2H

in
∞ − 1

)i
= 2nH

in
∞2−k

n∑
i=0

Ai

(
21−Hin

∞ − 1
)i

,

(49)
and thus the theorem follows.

According to Lemma 2, our new bound (44) is tight when
independent input bits are not identically distributed and only
the lower bound on the input min-entropy is known, and it is
met with equality when independent input bits are identically
distributed with p < 0.5. In addition, thanks to Theorem 1,
it is possible to determine the value and probability of the
linear corrector’s most probable output when the distributions
of the input bits are precisely known. Since

∑n
i=d Ai = 2k−1

and
(
21−Hin

∞ − 1
)i

≤
(
21−Hin

∞ − 1
)d

for i ≥ d, it is
straightforward to show that the lower bound from Theorem 2
is always tighter than the overly conservative state-of-the-art
bound given by (3):

− log2

(
2−k

n∑
i=0

Ai

(
21−Hin

∞ − 1
)i)

=

− log2

(
2−k + 2−k

n∑
i=d

Ai

(
21−Hin

∞ − 1
)i)

≥

− log2

(
2−k + 2−k

(
2k − 1

) (
21−Hin

∞ − 1
)d)

>

− log2

(
2−k +

(
21−Hin

∞ − 1
)d)

. (50)

Finally, it is worth mentioning, as pointed out by one of
the reviewers, that the results presented in this section can
alternatively be obtained using established Fourier techniques
outlined in the works of Redinbo [36] and Meneghetti [37].

V. SELECTION OF THE LINEAR CORRECTORS

Improvement of the new bound over the old one given
by (3) varies depending on the corrector’s underlying code
for which the bounds are calculated. From (3), it can be
observed that for identical Hin

∞ and fixed corrector length n and
dimension k, the total output entropy is largest for the corrector
based on a code with the greatest possible minimum distance
d. Linear codes that achieve the greatest minimum distance
among all known [n, k]-codes are called the best known linear
codes (BKLCs) [38], [39]. On the other hand, it is clear from

10

(44) that the relationship between Hin
∞ and Hout, tot

∞ is more
complex and the codes’ complete weight distribution should
be considered. However, computing the weight distribution
of a general binary linear code is an NP-hard problem [40]
and requires a significant computing effort for codes with
high dimensions and high differences between the length and
dimension. In this section, we first calculate the new bound for
the correctors based on the codes from the set of linear codes
whose weight distributions can be conveniently determined
or already available in the literature. We then outline the
process of selecting the optimal corrector for a given min-
entropy rate of raw bits that maximizes the throughput of post-
processed bits while maintaining the desired security level. To
demonstrate the practical advantages of our new bound, we
compare the efficiencies and output min-entropies of correctors
selected using the new bound against those selected using the
old one.

A. Optimal Extracting Linear Correctors

Both large output min-entropy and low throughput reduction
are desirable corrector’s properties. Most security applications
and standards [1]–[3] specify the output entropy requirements
in terms of the min-entropy per bit Hout, 1

∞ . To conservatively
guarantee the entropy rate Hout, 1

∞ for every output bit, we
require the total output min-entropy to be at least Hout, tot

∞ =
k−1+Hout, 1

∞ . This requirement is more strict than Hout, tot
∞ =

kHout, 1
∞ , which would only guarantee the average min-entropy

rate Hout, 1
∞ across all output bits, while the min-entropy of

individual bits might be lower. Since the throughput reduction
is equal to the inverse of the underlying code’s rate, a corrector
based on a linear code is optimal extracting if there are no
codes in the considered set with simultaneously higher code
rate k/n and a lower or equal required Hin

∞ to achieve Hout, 1
∞ .

We denote this value of Hin
∞ as Hin, req

∞ . Post-processing of
the raw bits with some specific (targeted) min-entropy rate is
performed by selecting an optimal extracting corrector whose
Hin, req

∞ is closest to the targeted min-entropy from below. By
doing so, Hout, 1

∞ can be obtained at the corrector’s output with
the lowest possible throughput reduction.

B. Construction of Corrector Sets

We first construct two sets from which the optimal extract-
ing correctors will be determined: the set of correctors with
output min-entropy determined according to the old bound
(OBC) and the set of correctors with output min-entropy
calculated by the new bound from Theorem 2 (NBC). The
OBC is a set of 32, 741 elements and consists of the correctors
based on the non-trivial (n ̸= k) BKLCs from [39], BCH codes
up to length 511 from [28] and binary linear codes available
at [41]–[48]. On the other hand, the NBC set has a total of
16, 613 elements. It comprises correctors that are derived from
binary linear codes with known weight distributions. These
weight distributions are obtained from various sources, namely
[41]–[48]. Additionally, the NBC set includes all non-trivial
BKLCs and BCH codes found in the OBC. The length of these
codes is restricted to n < 81, except for those with n ≥ 81
that satisfy the condition min (k, n− k) ≤ 38. Computing

0.0 0.2 0.4 0.6 0.8 1.0

Hin∞

0.0

0.2

0.4

0.6

0.8

1.0

H
o
u
t,

1
∞

(0.275, 0.999) (0.715, 0.999)(0.408, 0.999) (0.854, 0.999)

Code [512, 130, 64]:
New bound

Code [512, 130, 64]:
Old bound

Code [256, 93, 32]:
New bound

Code [256, 93, 32]:
Old bound

Fig. 1. Relation between input and output min-entropy rate according to
both old and new bounds for Reed-Muller [512, 130, 64] and [256, 93, 32]
code-based correctors. The output min-entropy rate is computed as Hout, 1

∞ =

max
(
Hout, tot

∞ − k + 1, 0
)

, where Hout, tot
∞ = f

(
Hin

∞
)

is determined for
both the old and the new bound. All min-entropy values are rounded to three
decimals.

TABLE I
OPTIMAL LINEAR CORRECTORS AND PERFORMANCES FOR

Hout, 1
∞ ≥ 0.999

Target Hin
∞

Corrector construction Extraction efficiency (η)
OBC NBC Old bound New bound

0.1 [511, 31, 219]a [511, 31, 219]a 0.60665234
0.60665360
(+0.0002%)

0.2 [254, 31, 96]* [243, 38, 83]* 0.61022
0.78187

(+28.13%)

0.3 [255, 47, 85]a,b [512, 130, 64]c 0.61437
0.84635

(+37.76%)

0.4 [126, 29, 42]* [122, 38, 31]* 0.57538
0.77867

(+35.33%)

0.5 [127, 35, 36]* [127, 50, 27]a,b 0.55117
0.78740

(+42.86%)

0.6 [87, 29, 24]* [127, 64, 19]d 0.55554
0.83989

(+51.19%)

0.7 [59, 23, 16]* [256, 163, 16]c 0.55688
0.90960

(+63.34%)

0.8 [46, 22, 12]* [512, 382, 16]c 0.59781
0.93262

(+56.01%)

0.9 [63, 35, 12]* [255, 219, 10]* 0.61727
0.95424

(+54.59%)

* BKLC code from [39] a BCH code from [28] b BCH code from [41]
c Reed-Muller code from [41], [42] d Quadratic residue code from [43]

the weight distributions using MAGMA [38] of BKLCs and
BCH codes under these restrictions requires at most 60s per
code of the real CPU time on Intel(R) Xeon(R) Gold 6248R
CPU @ 3.00GHz with 24 cores and 48 threads. To handle
the BKLCs with generator matrices that contain one or more
all-zero columns, we used codes with equivalent minimum
distances but modified generator matrices to ensure that each
column had at least one non-zero entry.

For hardware implementations of the correctors, opting for

11

0.0 0.2 0.4 0.6 0.8 1.0

Hin, req∞

0.0

0.2

0.4

0.6

0.8

1.0

C
o
d

e
ra

te

Extraction limit

Appropriate correctors from OBC

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Hin, req∞

0.0

0.2

0.4

0.6

0.8

1.0

C
o
d

e
ra

te

Extraction limit

Appropriate correctors from NBC

(b)

0.0 0.2 0.4 0.6 0.8 1.0

Hin, req∞

0.0

0.2

0.4

0.6

0.8

1.0

C
o
d

e
ra

te

Extraction limit

OBC PF correctors (366)

NBC PF correctors (698)

(c)

0.0 0.2 0.4 0.6 0.8 1.0

Hin∞

0.0

0.2

0.4

0.6

0.8

1.0

E
x
tr

a
ct

io
n

effi
ci

en
cy

(η
)

(0.76697, 0.5761)

(0.76697, 0.9728)

(0.03947, 0.2146)

(0.03947, 0.4948)

Old bound

New bound

(d)

Fig. 2. Performances of linear correctors from OBC and NBC for Hout, 1
∞ ≥ 0.999 and extraction efficiency according to the old and the new bound.

cyclic codes generally results in smaller area requirements.
This is because they can be implemented with only several
registers and XOR gates, utilizing the well-known generator
or parity-check polynomial constructions [14], [25]. To also
provide optimal extracting correctors based only on cyclic
codes, we form two new sets out of OBC and NBC, consisting
only of cyclic constructions – OBCCYC and NBCCYC. The
OBCCYC and NBCCYC sets consist out of 803 and 637
correctors, respectively. Comprehensive lists of elements in all
four sets, accompanied by corresponding weight distributions
for the NBC and NBCCYC sets, are publicly available via our
Github repository [26].

Once the design parameter Hout, 1
∞ has been set, we cal-

culate the code rate k/n and Hin, req
∞ according to (3) for

each corrector in the OBC and OBCCYC sets such that
Hout, tot

∞ = k−1+Hout, 1
∞ is reached. Likewise, by numerically

solving (44) via bisection for the same Hout, tot
∞ , we obtain

Hin, req
∞ and the code rate for every corrector in the NBC

and NBCCYC sets. If Hin, req
∞ is smaller than Hout, 1

∞ , the
corrector can be used for increasing the min-entropy rate and
is referred to as an appropriate corrector. We form the subsets
of appropriate correctors from each of the four corrector sets.
Finally, we construct sets of optimal extracting correctors
from sets of appropriate correctors, which we also call Pareto

frontier (PF) correctors. It is important to note that, due to
the disparity between the new and old bound, the optimal
extracting correctors within the NBC/NBCCYC sets generally
do not correspond to the optimal extracting correctors within
the OBC/OBCYC sets.

C. Practical Corrector Selection and Efficiency Comparisons

In this work, we use Hout, 1
∞ = 0.999, as it is the maximum

between the requirement of the latest version of AIS-31 [3]
(0.98) and NIST SP 800-90B [1] upper bound for the min-
entropy rate after non-cryptographic post-processing (0.999).
With this setting, we identified 24, 221 appropriate correctors
from the OBC set, 15, 873 from the NBC set, 522 from the
OBCCYC set and 435 from the NBCCYC set.

We evaluated the improvement in lowering Hin, req
∞ offered

by the new bound by calculating the difference between the
Hin, req

∞ values for Hout, 1
∞ = 0.999 according to the new

and the old bound for 9, 908 appropriate correctors common
to both the OBC and NBC sets. Our analysis revealed that
the new bound yields a considerable relative improvement in
Hin, req

∞ surpassing 15% for most constructions. We found that
the greatest absolute improvement is achieved for the Reed-
Muller [256, 93, 32] code-based corrector, for which the new
bound lowers Hin, req

∞ from 0.854296 to 0.407964, while the

12

0.0 0.2 0.4 0.6 0.8 1.0

Hin, req∞

0.0

0.2

0.4

0.6

0.8

1.0

C
o
d

e
ra

te

Extraction limit

OBCCYC PF correctors (191)

NBCCYC PF correctors (174)

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Hin∞

0.0

0.2

0.4

0.6

0.8

1.0

E
x
tr

a
ct

io
n

effi
ci

en
cy

(η
)

(0.8843, 0.59)

(0.8843, 0.9534)

(0.03955, 0.1754)

(0.03955, 0.4947)

Old bound

New bound

(b)

Fig. 3. Performances of optimal linear correctors from OBCCYC and NBCCYC for Hout, 1
∞ ≥ 0.999 and extraction efficiency according to the old and the

new bound.

largest relative improvement of 61.62% is obtained for the
Reed-Muller [512, 130, 64] corrector, as indicated in Fig. 1. It
is worthwhile to note that the old bound fails to guarantee
that every output bit will have at least some entropy for
Hin

∞ = 0.274447 in the case of [512, 130, 64] corrector and
Hin

∞ = 0.407964 in the case of [256, 93, 32] corrector, by
taking a conservative approach to calculating the output min-
entropy rate Hout, 1

∞ = max (Hout, tot
∞ − k + 1, 0). Even for

correctors based on codes with very large minimum distances,
such as the [512, 10, 256] corrector, our bound still offers
a discernible improvement of 0.01%. This indicates that
the state-of-the-art min-entropy bound for these correctors is
already quite close to the new bound, underscoring that further
improvements for the same Hout, 1

∞ are not feasible.
Appropriate correctors from OBC and NBC sets in a code

rate - required input min-entropy plane are shown in Fig. 2a
– 2c. The dash-dotted lines show the theoretical extraction
limit for Hout, 1

∞ = 0.999, i.e., the highest possible code rate
of Hin

∞/Hout, 1
∞ for Hin

∞ < Hout, 1
∞ . Fig. 2c displays optimal

extracting (PF) correctors from both sets to examine the ben-
efits of the new bound. Although the NBC set of appropriate
correctors is much smaller than its OBC counterpart, the
optimal extracting solutions obtained by our bound always
dominate over the solutions with the old bound. Further, the
new bound provides more optimal extracting correctors than
the old one, though the correctors from the OBC set are
more evenly spread. Our analysis also revealed that the OBC
set’s optimal extracting correctors have the smallest Hin, req

∞
value of 0.022275, whereas the NBC set’s optimal extracting
correctors have the smallest Hin, req

∞ value of 0.020351. These
results suggest that the new bound permits a marginally
broader range of admissible raw bit min-entropies.

Fig. 2d shows the extraction efficiency for targeted Hin
∞ in

the common range for both bounds – (0.022275, 0.999), by
using the optimal extracting correctors selected according to
the state-of-the-art and the new bound from the OBC and NBC
sets, respectively. The extraction efficiency is calculated using
(6). For the old bound, we obtained Hout, tot

∞ as described in
(3), while for the new bound, we utilized (44). As indicated

by peaks in the graph, extraction efficiency reaches local
maxima for targeted min-entropies that coincide with Hin, req

∞
of the optimal extracting correctors. Here, we observe that
the extraction efficiencies for both bounds are consistently
greater than 0.5 starting from Hin

∞ = 0.08374 and that the
new bound extraction efficiency outperforms the old bound
one for the entire input min-entropy range. The largest absolute
efficiency difference of 0.39668 is reached for Hin

∞ = 0.76697,
while the highest relative efficiency increase of 130.56% is
achieved for Hin

∞ = 0.03947049. Additionally, we computed
the average relative efficiency increase resulting from the new
bound to be 41.2%, while starting from Hin

∞ = 0.1777221
this relative increase consistently exceeds 20%. The perfor-
mances of optimal correctors from both sets for nine targeted
input min-entropies are summarized in Table I, together with
constructions of corresponding correctors.

The code rates of the optimal extracting correctors based
only on cyclic codes from OBCCYC and NBCCYC sets versus
their Hin, req

∞ is depicted in Fig. 3a. In this case, there are
fewer optimal correctors from the NBCCYC set, but we found
that the new bound still provides a narrowly larger range of
admissible input min-entropies, as the values of the smallest
Hin, req

∞ for correctors in OBCCYC and NBCCYC sets are
identical to the ones in OBC and NBC sets, respectively. Based
on the results shown in the plot of Fig. 3b, which displays the
relationship between the extraction efficiency and the targeted
Hin

∞, it is evident that the extraction efficiency achieved with
the new bound-selected cyclic correctors always surpasses that
of the old bound-selected cyclic correctors for all targeted Hin

∞.
Notably, the maximum relative efficiency increase of 182.04%
achieved for Hin

∞ = 0.03955041 in this case is higher than the
increase observed without imposing the cyclicity restriction.
Table II summarizes the performances and constructions of
optimal correctors based on cyclic codes for nine targeted input
min-entropies. Optimal extracting corrector constructions from
all sets and their Hin, req

∞ are available in our online repository
[26].

13

TABLE II
OPTIMAL LINEAR CORRECTORS BASED ON CYCLIC CODES AND

PERFORMANCES FOR Hout, 1
∞ ≥ 0.999

Target Hin
∞

Corrector construction Extraction efficiency (η)
OBCCYC NBCCYC Old bound New bound

0.1 [511, 31, 219]a [511, 31, 219]a 0.60665234
0.60665360
(+0.0002%)

0.2 [255, 29, 95]a,b [255, 37, 91]a,b 0.56862
0.72549

(+27.59%)

0.3 [255, 47, 85]a,b [255, 63, 63]a,b 0.61437
0.82353

(+34.04%)

0.4 [127, 29, 43]* [117, 36, 32]*, c 0.57086
0.76921

(+34.75%)

0.5 [127, 35, 36]* [127, 50, 27]a,b 0.55117
0.78740

(+42.86%)

0.6 [127, 42, 32]* [127, 64, 19]d 0.55117
0.83989

(+52.38%)

0.7 [55, 21, 15]* [127, 78, 15]a,b 0.54543
0.87738

(+60.86%)

0.8 [23, 11, 8]* [127, 85, 13]a,b 0.59779
0.83661

(+39.95%)

0.9 [63, 35, 12]* [255, 215, 11]a,b 0.61727
0.93682

(+51.77%)

* BKLC code from [39] a BCH code from [28] b BCH code from [41]
c Code from [46] d Quadratic residue code from [43]

Hin, req
∞

0.00
0.25

0.50
0.75

1.00 Code rate0.00
0.25

0.50
0.75

1.00

Area
(GEs)

0

800

1600

2400

3200

Fig. 4. Optimal area-efficient cyclic code-based correctors.

D. Implementation Cost Criterion

As a final selection criterion, we take an estimation of the
implementation cost (chip area) of the correctors based on
cyclic codes. Cyclic codes possess a distinct structure that
results in a simplified implementation compared to general
codes. Our objective is to find a balance between the code
rate, required input min-entropy, and the area the corrector
based on cyclic code would occupy. In doing so, we ensure
that the chosen correctors not only provide a small reduction in
throughput and high extraction efficiency but are also practical
for real-world applications.

To evaluate the implementation cost of each corrector in the
NBCCYC set, without including a controller counter, we esti-
mate the number of gate equivalents (GEs). The area of each
corrector is assessed based on two distinct implementation
methods, utilizing the generator and parity-check polynomials
of the corresponding code, as delineated in [25]. We employ
XOR2 1 and DFFR X1 gates from the NanGate 45 nm open

TABLE III
OPTIMAL AREA-EFFICIENT LINEAR CORRECTORS BASED ON CYCLIC

CODES AND PERFORMANCES FOR Hout, 1
∞ ≥ 0.999 (NEW BOUND)

Target Hin
∞

Corrector
construction

Extraction
efficiency (η)

Area
(NanGate 45 nm)

0.1 [51, 1, 51] 0.1959 8.67 GEs
0.2 [127, 15, 55] 0.5905 122.05 GEs
0.3 [63, 9, 28] 0.4762 68.03 GEs
0.4 [11, 1, 11] 0.2270 8.67 GEs
0.5 [87, 31, 22] 0.7126 244.77 GEs
0.6 [127, 64, 21] 0.8399 484.88 GEs
0.7 [15, 5, 7] 0.4761 39.35 GEs
0.8 [23, 12, 7] 0.6521 94.04 GEs
0.9 [31, 21, 5] 0.7527 162.07 GEs

TABLE IV
IMPLEMENTATION COST COMPARISONS FOR DIFFERENT

POST-PROCESSING ALGORITHMS

Post-processing Reference Technology Area

Keccak-f [1600] [50]a NanGate 45 nm 31, 361 GEs
Keccak-f [1600] [51]a NanGate 45 nm 28, 100 GEs

SHA-256 [52] NanGate 45 nm 15, 000 GEs
Keccak-f [1600] [51]b NanGate 45 nm 12, 800 GEs

SHA-256 [53] STD110 0.25µm 8, 588 GEs
Keccak-f [1600] [54]b UMC 0.13 µm 5, 522 GEs
Linear corrector
[511, 484, 7]

This workc NanGate 45 nm 3443.04 GEs

a round-based b serial (slice-based)
c largest optimal area-efficient NBCCYC corrector

standard-cell library [49]. Each XOR2 1 gate consumes 2
GEs, while the DFFR X1 gate utilizes 6.67 GEs. Here, one
GE corresponds to the size of a NAND2 X1 gate. We first
calculate the area of each corrector using both implementation
flavors. Subsequently, for each individual corrector, we select
the implementation yielding the smaller area. We then conduct
a three-dimensional optimization to derive a set of optimal
area efficiency correctors. A corrector based on cyclic code is
optimal area-efficient if there are no other codes in NBCCYC
that concurrently exhibit a higher code rate, equal or lower
Hin, req

∞ , and a smaller area.
The 434 optimal area-efficient correctors that we found are

displayed in Fig. 4. Table III provides an overview of the
constructions and performances of these correctors for nine
targeted input min-entropies. Comparing these correctors to
the correctors found with the new bound listed in Table II,
it is immediately evident that the correctors in Table III
exhibit significantly lower extraction efficiency, particularly
for Hin, req

∞ = 0.1 and Hin, req
∞ = 0.4. However, these con-

structions require only 8.67 GEs, whereas correctors based on
[511, 31, 219] and [117, 36, 32] codes require 224.77 GEs and
272.12 GEs, respectively. On the other hand, for Hin, req

∞ =
0.5, the efficiency of the [87, 31, 22] corrector differs from that
of the [127, 50, 27] corrector by only 0.0748, while consuming
much less area: 375.50 GEs vs 244.77 GEs. The estimated
implementation costs for all correctors from the NBCCYC set
are also available in [26].

14

Table IV shows the area usage (in GEs) for the largest
optimal area-efficient linear corrector [511, 484, 7] and several
implementations of two NIST-approved cryptographic hash
functions that can be used for post-processing (conditioning)
[1] – SHA-3 (based on Keccak-f [1600]) and SHA-256. It
can be observed that the areas of various implementations
of Keccak-f [1600] and SHA-256 vary significantly due to
the technology and architectural choices. However, even the
implementation of the largest linear corrector [511, 484, 7]
from our work demonstrates a remarkable reduction in the
area footprint, consuming only 3443.04 GEs. This represents
a considerable saving in comparison to the cryptographic
post-processing algorithms. Further, when considering only
implementations using identical technology – Nangate 45 nm,
the [511, 484, 7] corrector is more than three times smaller than
the most area-efficient implementation of Keccak-f [1600].

VI. CONCLUSION

In this paper, we have presented a novel tight bound on
the output min-entropy of linear correctors based on the
weight distribution of the corresponding binary linear code.
Our proposed bound, which relies on the code’s weight
distribution, enables more efficient use of linear correctors
than the old bound, which only requires knowledge of the
code’s minimum distance. We have demonstrated how the new
bound can be used to select an optimal extracting corrector
that meets output min-entropy rate requirements and maxi-
mizes throughput. Moreover, we have made publicly available
optimal constructions for general correctors and correctors
based on cyclic codes for Hout, 1

∞ = 0.999, allowing for easy
implementation and integration into existing TRNG designs.
Our findings indicate a potential for advancements in optimal
extracting solutions through further research in characterizing
binary linear codes’ weight distributions. Future work will
concentrate on constructing tight output min-entropy bounds
for a wider spectrum of non-IID noise sources and, potentially,
non-linear correctors.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their useful feedback and highlighting the connection
between our findings and those presented in the work by
Redinbo [36] using Fourier methods.

REFERENCES

[1] M. S. Turan, E. Barker, J. Kelsey, K. McKay, M. Baish, and M. Boyle,
“NIST special publication 800-90B: Recommendation for the entropy
sources used for random bit generation,” Tech. Rep., Nat. Inst. Standards
Technol., Gaithersburg, MD, USA, Jan. 2018.

[2] W. Killmann and W. Schindler, “A proposal for: Functionality classes
for random number generators,” ser. BDI, Bonn, 2011.

[3] M. Peter and W. Schindler, “A proposal for functionality classes for
random number generators, version 2.35 – draft,” ser. BDI, Bonn, 2022.

[4] J. Balasch, F. Bernard, V. Fischer, M. Grujić, M. Laban, O. Petura,
V. Rožić, G. van Battum, I. Verbauwhede, M. Wakker, and B. Yang,
“Design and testing methodologies for true random number generators
towards industry certification,” in Proc. 2018 IEEE 23rd Eur. Test Symp.
(ETS), 2018, pp. 1–10.

[5] B. Yang, V. Rožić, M. Grujić, N. Mentens, and I. Verbauwhede, “ES-
TRNG: A High-throughput, Low-area True Random Number Generator
based on Edge Sampling,” IACR Trans. on Cryptograph. Hardw. Embed.
Syst., vol. 2018, no. 3, pp. 267–292, Aug. 2018.

[6] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet, “A
survey of AIS-20/31 compliant TRNG cores suitable for FPGA devices,”
in Proc. 26th Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2016,
pp. 1–10.

[7] Y. Ma, T. Chen, J. Lin, J. Yang, and J. Jing, “Entropy estimation for
adc sampling-based true random number generators,” IEEE Trans. Inf.
Forensics Security, vol. 14, no. 11, pp. 2887–2900, 2019.

[8] D. Johnston, Random Number Generators—Principles and Practices, A
Guide for Engineers and Programmers. Berlin, Boston: De Gruyter,
Sep. 2018.

[9] J. Von Neumann, “Various techniques used in connection with random
digits,” Appl. Math. Ser., vol. 12, pp. 36–38, 1951.

[10] Y. Peres, “Iterating von Neumann’s procedure for extracting random
bits,” Ann. Statist., pp. 590–597, 1992.

[11] P. Elias, “The efficient construction of an unbiased random sequence,”
Ann. Math. Statist., pp. 865–870, 1972.

[12] R. B. Davies, “Exclusive or (xor) and hardware random number genera-
tors,” Author-hosted manuscript at http://www.robertnz.net/pdf/xor2.pdf,
2002.

[13] M. Dichtl, “Bad and good ways of post-processing biased physical
random numbers,” in Proc. Int. Workshop Fast Softw. Encryption, 2007,
pp. 137–152.

[14] P. Lacharme, “Post-processing functions for a biased physical random
number generator,” in Proc. Int. Workshop Fast Softw. Encryption, 2008,
pp. 334–342.

[15] ——, “Analysis and construction of correctors,” IEEE Trans. Inf. Theory,
vol. 55, no. 10, pp. 4742–4748, 2009.

[16] A. Tomasi, A. Meneghetti, and M. Sala, “Code generator matrices as
RNG conditioners,” Finite Fields Appl., vol. 47, pp. 46–63, Sep. 2017.

[17] M. Grujić and I. Verbauwhede, “TROT: A three-edge ring oscillator
based true random number generator with time-to-digital conversion,”
IEEE Trans. Circuits Syst. I, vol. 69, no. 6, pp. 2435–2448, 2022.

[18] A. Zeh, A. Glew, B. Spinney, B. Marshall, D. Page, D. Atkins,
K. Dockser, M.-J. O. Saarinen, N. Menhorn, and R. Newell, “RISC-V
cryptographic extension proposals,” Online available at: https://github.
com/riscv/riscv-crypto, 2021.

[19] M.-J. O. Saarinen, G. R. Newell, and B. Marshall, “Development of the
RISC-V entropy source interface,” J. Cryptograph. Eng., vol. 12, no. 4,
pp. 371–386, Jan. 2022.

[20] K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama,
K. Yoshimura, and M. Inubushi, “Real-time fast physical random number
generator with a photonic integrated circuit,” Opt. Express, vol. 25, no. 6,
pp. 6511–6523, Mar 2017.

[21] R. Ali, Y. Wang, Z. Hou, H. Ma, Y. Zhang, and W. Zhao, “Pro-
cess variation-resilient STT-MTJ based TRNG using linear correcting
codes,” in Proc. 2019 IEEE/ACM Int. Symp. Nanoscale Architectures
(NANOARCH), 2019, pp. 1–6.

[22] J. Park, S. Cho, T. Lim, and M. Tehranipoor, “QEC: A quantum entropy
chip and its applications,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst, vol. 28, no. 6, pp. 1471–1484, 2020.

[23] T. Lyp, N. Karimian, and F. Tehranipoor, “LISH: A new random number
generator using ECG noises,” in Proc. 2021 IEEE Int. Conf. Consum.
Electron. (ICCE), 2021, pp. 1–6.

[24] N. Massari, A. Tontini, L. Parmesan, M. Perenzoni, M. Gruijć, I. Ver-
bauwhede, T. Strohm, D. Oshinubi, I. Herrmann, and A. Brenneis, “A
monolithic SPAD-based random number generator for cryptographic ap-
plication,” in Proc. IEEE 48th Eur. Solid State Circuits Conf. (ESSCIRC
2022), 2022, pp. 73–76.

[25] S.-H. Kwok, Y.-L. Ee, G. Chew, K. Zheng, K. Khoo, and C.-H. Tan,
“A comparison of post-processing techniques for biased random number
generators,” in Proc. IFIP Int. Workshop Inf. Security Theory Practices.
Springer, 2011, pp. 175–190.

[26] M. Grujić and I. Verbauwhede, “Optimal linear correctors - repository,”
https://github.com/KULeuven-COSIC/Optimizing-Linear-Correctors/,
2023.

[27] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting
codes. Elsevier, 1977, vol. 16.

[28] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
Applications. Pearson-Prentice Hall, 2004.

[29] J. MacWilliams, “A theorem on the distribution of weights in a system-
atic code,” Bell Syst. Tech. J., vol. 42, no. 1, pp. 79–94, 1963.

http://www.robertnz.net/pdf/xor2.pdf
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/KULeuven-COSIC/Optimizing-Linear-Correctors/

15

[30] H. Zhou and J. Bruck, “Linear extractors for extracting randomness from
noisy sources,” in Proc. 2011 IEEE Int. Symp. Inf. Theory, Jul. 2011,
pp. 1738–1742.

[31] ——, “Linear transformations for randomness extraction,” arXiv preprint
arXiv:1209.0732, 2012.

[32] A. Meneghetti, M. Sala, and A. Tomasi, “A weight-distribution bound
for entropy extractors using linear binary codes,” arXiv preprint
arXiv:1405.2820, 2014.

[33] I. Sason, “Entropy Bounds for Discrete Random Variables via Maximal
Coupling,” IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7118–7131,
Nov. 2013.

[34] D. Sullivan, “A fundamental inequality between the probabilities of
binary subgroups and cosets,” IEEE Trans. Inf. Theory, vol. 13, no. 1,
pp. 91–94, Jan. 1967.

[35] M. Živković, “On two probabilistic decoding algorithms for binary linear
codes,” IEEE Trans. Inf. Theory, vol. 37, no. 6, pp. 1707–1716, Nov.
1991.

[36] G. Redinbo, “Inequalities between the probability of a subspace and the
probabilities of its cosets,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp.
533–536, Jul. 1973.

[37] A. Meneghetti, “Optimal Codes and Entropy Extractors,” Ph.D. disser-
tation, Università degli studi di Trento, 2017.

[38] W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I.
The user language,” J. Symbolic Comput., vol. 24, no. 3-4, pp. 235–265,
1997.

[39] M. Grassl, “Bounds on the minimum distance of linear codes and
quantum codes,” Online available at: http://www.codetables.de, 2007.

[40] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent
intractability of certain coding problems (corresp.),” IEEE Trans. Inf.
Theory, vol. 24, no. 3, pp. 384–386, 1978.

[41] M. Terada, J. Asatani, and T. Koumoto, “Weight Distribution,” Online
available at: https://isec.ec.okayama-u.ac.jp/home/kusaka/wd/.

[42] T. Sugita, T. Kasami, and T. Fujiwara, “The weight distribution of the
third-order Reed-Muller code of length 512,” IEEE Trans. Inf. Theory,
vol. 42, no. 5, pp. 1622–1625, Sep. 1996.

[43] N. J. Sloane, “List of weight distributions in the on-line encyclopedia
of integer sequences,” Online available at: https://oeis.org/wiki/List of
weight distributions.

[44] T.-K. Truong, Y. Chang, and C.-D. Lee, “The weight distributions of
some binary quadratic residue codes,” IEEE Trans. Inf. Theory, vol. 51,
no. 5, pp. 1776–1782, 2005.

[45] M. Tomlinson, C. J. Tjhai, M. A. Ambroze, M. Ahmed, and M. Jibril,
Error-Correction Coding and Decoding: Bounds, Codes, Decoders,
Analysis and Applications. Springer Nature, 2017.

[46] D. Schomaker and M. Wirtz, “On binary cyclic codes of odd lengths
from 101 to 127,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 516–518,
1992.

[47] Y. Desaki, T. Fujiwara, and T. Kasami, “The weight distributions of
extended binary primitive BCH codes of length 128,” IEEE Trans. Inf.
Theory, vol. 43, no. 4, pp. 1364–1371, 1997.

[48] T. Fujiwara and T. Kasami, “The weight distribution of (256, k) extended
binary primitive bch code with k<= 63, k>= 207,” IEICE, IT97, Tech.
Rep., 1993.

[49] Silvaco, “Nangate 45 nm open cell library.” [Online]. Available:
https://si2.org/open-cell-library/

[50] D. Knichel and A. Moradi, “Composable gadgets with reused fresh
masks: First-order probing-secure hardware circuits with only 6 fresh
masks,” IACR Trans. Cryptograph. Hardw. Embedded Syst., pp. 114–
140, Jun. 2022.

[51] B. Bilgin, J. Daemen, V. Nikov, S. Nikova, V. Rijmen, and G. Van Ass-
che, “Efficient and first-order dpa resistant implementations of Keccak,”
in Proc. 12th Int. Conf. Smart Card Res. Adv. Appl. (CARDIS), 2014,
pp. 187–199.

[52] L. Baldanzi, L. Crocetti, F. Falaschi, M. Bertolucci, J. Belli, L. Fanucci,
and S. Saponara, “Cryptographically secure pseudo-random number
generator IP-core based on SHA2 algorithm,” Sensors, vol. 20, no. 7, p.
1869, 2020.

[53] M. Kim, J. Ryou, and S. Jun, “Efficient hardware architecture of sha-256
algorithm for trusted mobile computing,” in Proc. Inf. Security Cryptol.,
2009, pp. 240–252.

[54] P. Pessl and M. Hutter, “Pushing the limits of SHA-3 hardware im-
plementations to fit on RFID,” in Cryptograph. Hardw. Embed. Syst. –
CHES 2013, 2013, pp. 126–141.

http://www.codetables.de
https://isec.ec.okayama-u.ac.jp/home/kusaka/wd/
https://oeis.org/wiki/List_of_weight_distributions
https://oeis.org/wiki/List_of_weight_distributions
https://si2.org/open-cell-library/

	Introduction
	Our Contributions

	Preliminaries
	Notations and Definitions
	Coding Theory

	Previous Work
	Improving the Min-entropy Bound
	Selection of the Linear Correctors
	Optimal Extracting Linear Correctors
	Construction of Corrector Sets
	Practical Corrector Selection and Efficiency Comparisons
	Implementation Cost Criterion

	Conclusion
	References

