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AGRAMPLIFIER: Defending Federated Learning
Against Poisoning Attacks Through Local Update

Amplification
Zirui Gong∗, Liyue Shen∗, Yanjun Zhang, Leo Yu Zhang, Jingwei Wang, Guangdong Bai, and Yong Xiang

Abstract—The collaborative nature of federated learning (FL)
poses a major threat in the form of manipulation of local training
data and local updates, known as the Byzantine poisoning attack.
To address this issue, many Byzantine-robust aggregation rules
(AGRs) have been proposed to filter out or moderate suspicious
local updates uploaded by Byzantine participants.

This paper introduces a novel approach called AGRAMPLI-
FIER, aiming to simultaneously improve robustness, fidelity, and
efficiency of the existing AGRs. The core idea of AGRAMPLIFIER
is to amplify the “morality” of local updates by identifying
the most repressive features of each gradient update, which
provides a clearer distinction between malicious and benign
updates, consequently improving the detection effect. To achieve
this objective, two approaches, namely AGRMP and AGRXAI,
are proposed. AGRMP organizes local updates into patches
and extracts the largest value from each patch, while AGRXAI
leverages explainable AI methods to extract the gradient of the
most activated features. By equipping AGRAMPLIFIER with the
existing Byzantine-robust mechanisms, we successfully enhance
the model robustness, maintaining its fidelity and improving
overall efficiency.

AGRAMPLIFIER is universally compatible with the existing
Byzantine-robust mechanisms. The paper demonstrates its effec-
tiveness by integrating it with all mainstream AGR mechanisms.
Extensive evaluations conducted on seven datasets from diverse
domains against seven representative poisoning attacks consis-
tently show enhancements in robustness, fidelity, and efficiency,
with average gains of 40.08%, 39.18%, and 10.68%, respectively.

Index Terms—Federated Learning, Byzantine-robust Aggrega-
tion, Poisoning Attack, Explainable AI.

I. INTRODUCTION

This article extends the preliminary results presented in [1]. In our prior
work, we focus on a basic approach AGRMP, which draws inspiration from
the max pooling operation to amplify the salient features of local updates.
In this work, we introduce a more advanced approach named AGRXAI to
enhance the distinctions between benign gradients and malicious gradients.
The paper also substantially extends experimental evaluation on seven datasets
across diverse domains, demonstrating the consistent improvement of robust-
ness and fidelity.
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FEDERATED learning (FL) [2]–[6] is a subset of the deep
learning system, where several clients collaboratively

train a central model. It has become more prevalent across
a range of privacy-sensitive tasks and has been implemented
by well-known machine learning techniques. In FL, each client
maintains a private training dataset and trains a local model
based on their datasets. After each local training, clients only
update the gradient to the central server (i.e., the aggregator)
for the global model aggregation. On the server side, the global
model is updated by taking one step downward in gradient
descent; then, the global model is further broadcasted to clients
for the subsequent training cycle. FL enables the training of
high-quality Machine Learning (ML) models with massive
data and eliminates the exposition of private raw data to the
server.

However, the distributed nature of FL makes it susceptible to
client-side poisoning attacks [7]–[16]. One kind called untar-
geted attacks [9]–[14], which aims to corrupt the global model
to low test accuracy, therefore causes the model unusable and
eventually leads to denial-of-service attacks (e.g., an attacker
may perform such attacks on its competitor’s FL system). On
the other hand, targeted attacks [7], [8], [17], also known as
the backdoor attack, where the attacker corrupts the global
model to predict an attacker-chosen label for any testing input
embedded with a trigger while maintaining high test accuracy
on other input.

Several mechanisms have been proposed to defend against
the poisoning attacks [1], [9], [10], [12], [18]–[25]. One rep-
resentative method is called Byzantine-robust defense mech-
anisms [1], [9], [10], [12], [20]–[24], in which the server
employs a robust aggregation algorithm (AGR) to filter out
or moderate suspicious local updates to mitigate the ma-
licious impact of adversary contributions. There are three
widely used AGR mechanisms, i.e., distance-based [20], [21],
prediction-based [10], [12], [22], and trust bootstrapping-based
techniques [9], [23], [24]. Specifically, the distance-based
mechanism compares the collected gradients based on distance
measurements, i.e., Euclidean distance and cosine similarity,
and removes anomalous updates before aggregating the re-
maining ones. The prediction-based mechanism checks the
model’s prediction performance and removes the updates caus-
ing performance degradation, while the trust bootstrapping-
based mechanism computes trust scores for each participant
and uses them as weights when averaging updates.

Triad of Byzantine-robust FL: We articulate the triad of
desirable properties of AGRs as follows. (1) Robustness. The
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AGRs shall minimize the decrease of the global model’s test
accuracy caused by malicious updates. (2) Fidelity. The AGRs
shall not harm the performance of the global model when there
are no malicious updates and shall achieve a test accuracy
close to that of the plain FedAvg [9]. Additionally, the AGRs
should be designed to handle the inherent diversity of data
from different owners. While this data variety can enhance
the generalization of the global model, it can also result in
deviations in the local updates, which existing defenses may
deny. (3) Efficiency. The method shall retain the computation
efficiency and scale in large-scale FL training, particularly in
processing the high-dimensional local updates from a large
number of participants. The primary question this paper ad-
dresses is how to achieve and enhance the triad of robustness,
fidelity, and efficiency for Byzantine-robust aggregators in FL.

Our work: We introduce a novel approach called AGRAM-
PLIFIER, which is built upon the base AGRs, aiming to
achieve robustness, fidelity, and efficiency in FL. The central
idea behind AGRAMPLIFIER is to amplify the influence of
both malicious and benign local updates by focusing on the
gradients of the most prominent features. Through this, we
can make better decisions about removing malicious updates
before global model aggregation. To achieve this goal, we
develop two strategies, AGRMP and AGRXAI.

The AGRMP draws inspiration from the widely used max
pooling operation [26] in Convolutional Neural Networks
(CNN), which can reduce the dimensionality of features and
summarize their most activated presence. By leveraging this
technique, AGRMP seeks to improve the aggregation process
by amplifying the salient features of local updates, thereby
enhancing their impact on the final aggregated output. Specif-
ically, AGRMP initially rearranges each updated gradient
into individual patches. Subsequently, it identifies the most
prominent feature in each patch by extracting the largest value
and returns it as the amplified outcome.

The AGRXAI is motivated by recent progress in the inte-
gration of XAI within the cybersecurity domain [27], [28] and
applies the concept of Explainable AI (XAI) [29] to amplify
the difference between benign gradients and malicious gradi-
ents. Specifically, we employ Grad-CAM [30] to determine
the feature maps that learned the key features. After getting
the importance weights, we rank them in descending order
and select the top p feature maps with the highest weights (p
indicates the percentage we extracted). This selection allows
us to focus on the most significant feature maps. By indexing
the gradients corresponding to these selected feature maps, we
can extract the top p most significant gradients as the amplified
outcome.

The seemingly straightforward strategies are effective in
achieving the triad of Byzantine-robust FL. Firstly, the extrac-
tion of the most activated gradients renders the local updates
more distinguishable after the amplification. As illustrated in
Fig. 1, the benign gradient is reduced from [-0.3, 0.4] to
[0, 0.06] (the y-axis of green dots in Fig. 1a), while the
malicious gradient is reduced from [-0.4, 0.3] to [-0.1, 0.1]
(the y-axis of red dots in Fig. 1b). Therefore, the AGRs
can make robust decisions of detecting maliciousness local
updates (detailed in Section V-A). Secondly, AGRAMPLIFIER

Before amplification After amplificationBefore amplification After amplificationBefore amplification After amplification

(a) Untargeted attack

Before amplification After amplificationBefore amplification After amplificationBefore amplification After amplification

(b) Targeted attack

Fig. 1: Utilizing the PCA method to project gradients onto
a two-dimensional surface. Specifically, we plot a total of 50
local updates at the 70th epoch of the training process using
the LOCATION30 dataset [31]. Within the plotted updates, red
dots represent malicious updates, while green dots represent
benign ones. The attack employs the untargeted label flip [8]
and targeted scale attack [9].

enhances fidelity by providing invariance to distortion arising
from local translations. Analogous to a max pooling layer in
typical CNNs, AGRAMPLIFIER can suppress small changes.
Hence, when no attack is present, it functions as a noise
canceler (detailed in Section V-B). Thirdly, the significant
dimension reduction in the feature space provides substantial
benefits to the efficiency of AGRs. As many existing AGRs [9],
[10] exhibit superlinear time complexity and AGRAMPLIFIER
amplifies the advantages derived from the input size reduction
(detailed in Section V-C).

It is important to note that the proposed amplifica-
tion process is universally compatible with any existing
AGRs, regardless of the underlying aggregation rules. In
this study, we applied AGRAMPLIFIER to three widely used
mechanisms, including distance-based, prediction-based, and
trust bootstrapping-based aggregators. Specifically, we intro-
duce ten variations of AGRAMPLIFIER, i.e., CosDen MP,
EuDen MP, MergeDen MP, Fang MP, FLTrust MP, Cos-
Den XAI, EuDen XAI, MergeDen XAI, Fang XAI, and
FLTrust XAI. Each of these variations is suitable for different
use cases, which are explored and discussed in Section VI-C.
Overall, our results consistently demonstrate improvement
for all three mechanisms. For instance, when the distance-
based mechanisms are equipped with AGRAMPLIFIER, they
outperform their base versions by 66.26% in robustness,
29.6% in fidelity, and 12.9% in efficiency. Similarly, in the
case of prediction-based mechanisms, AGRAMPLIFIER yields
35.59% improvement in robustness, 47.3% improvement in
fidelity, and 7.7% improvement in efficiency compared to its
counterpart. Furthermore, AGRAMPLIFIER also enhances the
performance of the trust bootstrapping-based mechanisms in
the state-of-the-art aggregator by 18.37% in robustness, 19.4%
in fidelity, and 12.3% in efficiency.

The paper presents several significant contributions to the
field of FL with a focus on robustness, fidelity, and efficiency.
We summarize our contributions as follows.

• A novel Byzantine-robust aggregation method. We
propose AGRAMPLIFIER, containing two approaches,
i.e., AGRMP and AGRXAI. It achieves the triad of ro-
bustness, fidelity, and efficiency through the amplification
of local updates.

• A novel Aggregation Rule (AGR). We design a distance-
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based AGR, which incorporates a top-up component of
density measurement to supplement existing Euclidean
distance and cosine similarity mechanisms.

• The seamless integration of AGRAMPLIFIER with ex-
isting AGRs. We propose ten versions of AGRAMPLIFIER
that integrated three kinds of AGRs.

• A systematic evaluation. We conduct a systematic eval-
uation on seven benchmark datasets against five poison-
ing attacks, demonstrating the notable enhancement of
AGRAMPLIFIER over original Byzantine-robust methods
across all experimented datasets.

II. BACKGROUND AND RELATED WORK

A. Federated Learning

FL enables multiple clients to train a model collaboratively,
which is worked through a central server that iteratively
aggregates the local gradient updates computed by the clients.
Specifically, let r ∈ {1, 2, · · · , R} be the current iteration
of the training process, and ci be one client from C where
|C| = N . At r = 0, the server initializes the global model and
selects Cr ⊆ C clients to broadcast the global model Wr to
each client. Then each client ci calculates the local updates g[r]i

based on its local datasets and uploads g
[r]
i to the server. The

server then applies an aggregation rule on the local updates to
get the global model Wr+1 for the next round of training.

B. Poisoning Attacks Against FL

Poisoning attacks can be divided into untargeted attacks [9]–
[14] and targeted attacks [7], [8] depending on the attacker’s
objectives.

• Untargeted attacks. Untargeted attacks aim to corrupt
the global model to make incorrect predictions for any
testing examples, therefore leading to undermining the
test accuracy and integrity of FL models. One such
technique involves manipulating training data and leading
to a corrupted model (data poisoning attacks) [32]. An-
other approach involves the manipulation of local updates
directly (model poisoning attack) [33]. Recent research
has also explored optimized and adaptive poisoning at-
tacks, which seek to maximally perturb the reference
aggregate in a manner that is detrimental to the model’s
performance while simultaneously evading detection by
a Byzantine-robust aggregator [9].

• Targeted attacks. Targeted attacks refer to a type of
adversarial attack that is designed to target a subset of
the training data and aims to influence the global model’s
predictions towards a particular class while maintaining
overall prediction accuracy [34]. For example, an attacker
might inject specific patterns (trigger or backdoor) into
the training data and change the label of those images
with the trigger to a target class. In the inference stage,
all images with the trigger will be mislabeled as the target
class, while others will remain unaffected [8].

C. Byzantine-robust Aggregation Rules

Dimension-wise Average [35] is a useful aggregation algo-
rithm (AGR) to aggregate clients’ gradients in non-adversarial
FL settings. However, the Average AGR-based FL can be ma-
nipulated by malicious clients. Therefore, multiple Byzantine-
robust AGRs [1], [9], [10], [21]–[24], [36]–[38] are proposed
to defend against poisoning attacks by malicious clients.

• Distance-based mechanism. Most distance-based AGRs
rely on measuring the pairwise distance between local
updates to identify and discard malicious updates. Krum
and Multi-Krum [36] identify one or m local updates that
are similar to others as the global model. Trimmed Mean
and Median [20] employ approach involves coordinate-
wise aggregation, where the AGR separately identifies and
removes the outliers in each dimension and aggregates
the remaining benign update. Another approach, Adap-
tive federated average (AFA) [39], compares the cosine
similarity between the weighted average of collected
gradients and each individual gradient. Gradients with
cosine similarities outside a specified range are discarded,
helping eliminate malicious gradients.

• Prediction-based mechanism. The prediction-based
AGR test the gathered updates on a validation set to assess
its prediction performance. The updates that lead to a
decline in performance are subsequently removed before
aggregation. One example is LoMar [12], which evaluates
the quality of clients’ model updates by analyzing the rel-
ative distribution of neighboring updates and determining
an optimal threshold for differentiating between malicious
and clean updates. Another representative mechanism is
Fang [10], which calculates losses and errors on the
validation set of the updated model to determine whether
the updates originate from malicious or benign clients.
Additionally, Zhang [22] identifies malicious clients by
checking the consistency of their model updates. To
elaborate, the server predicts a client’s model update in
each iteration based on historical model updates and flags
a client as malicious if the received model update is
inconsistent with the predicted update across multiple
iterations.

• Trust bootstrapping-based mechanism. FLTrust [9] is
a typical trust-bootstrapping based AGR. Each client is
given a trust score based on the distance between the
local updates and the reference gradients produced from
a clean, trustworthy dataset. The trust score then serves
as the weight when averaging updates.

The performance of the current Byzantine-robust techniques in
terms of robustness, fidelity, and efficiency varies depending
on the context. For instance, distance-based techniques, such
as Krum [36] and Bulyan [21], might not maintain robustness
and fidelity against a large number of malicious participants.
Fang [10] may not be applicable to large-scale FL because
it requires the extra computation cost for validating the loss
of each individual update using the global model parameters.
The integrity of trust bootstrapping-based approaches, such as
FLTrust [9], may be suppressed if the clean dataset deviates
from the initial distribution.
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D. Explainable Artificial Intelligence

Explainable AI (XAI) [29], [30], [40]–[48] is a collection of
techniques that aim to increase the reliability and transparency
of AI systems.

Gradient-Weighted Class Activation Map (Grad-CAM) [30]
is a widely used XAI technique, which is proposed to identify
the importance of the image region by projecting back the
weights of the output layer onto the convolutional feature
maps. Specifically, it first computes the result of the gradient of
the class score (yc) w.r.t. the feature map in the last convolution
layer (Ak), as ∂yc

∂Ak . Thus, for a given class c, it calculates the
weights αc

k corresponding to class c for feature map k as:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
i,j

, (1)

where Z denotes the number of pixels in the feature map, and
i and j respectively index the width and height of the k-th
feature map Ak.

III. AGRAMPLIFIER

A. Problem Statement

1) Attack Model: We evaluate the proposed AGRAMPLI-
FIER method against untargeted and targeted attacks. Specif-
ically, we consider an attack model which is in favor of the
poisoning adversary among prior research [7]–[9], [33] which
allows the adversary to have the full knowledge of gradients
generated by all participants, including those from benign
ones. This enables the optimized and adaptive poisoning
attacks and demonstrates compelling attack performance in
recent studies [9], [33]. The attacker can also decide whether
to inject malicious updates for the current round. We assume
the attacker does not compromise the central aggregator.

2) Defense Model: We consider the defense strategy to be
implemented on the server side. The server can gather a clean,
small validation dataset for FL training. Since we only need
a small clean dataset, e.g., 100 training examples, manual
gathering and labeling on the server side is feasible.

The defense aims to achieve Byzantine robustness against
malicious clients and maintain fidelity and efficiency. Specif-
ically, the strategy should not compromise the global model’s
classification accuracy, and it should be as accurate in non-
adversarial conditions as the global model learned by FedAvg.
Also, the method should retain computation efficiency and
scalability in large-scale FL training.

B. AGRAMPLIFIER Overview

In AGRAMPLIFIER, the server first collects local updates
from participants and then extracts the most activated features
(i.e., using AGRMP or AGRXAI) to amplify the differences
between benign gradients and malicious gradients. Then, the
amplified gradients are concatenated for the following check.
The detailed steps of AGRMP and AGRXAI are as follows.

1) AGRMP: Fig. 2 and Algorithm 1 demonstrate the
AGRMP method. Initially, the server acquires local updates
gi from N participants. Then, it divides each gi into patches
using a kernel size of kp × kp to do the max filter. This
involves computing the maximum value of each patch, which
indicates the gradient of the most activated feature (function
MAXFILTER in Algorithm 1. After the max filter process,
the amplified gradients are concatenated to facilitate cross-
checking in the ensuing steps.

Algorithm 1 AGRMP’s amplification process.

Input: gi - received gradients from client i; N - number of
participants; kp - the kernel size of each patch; Hin -
the height of g; Win - the width of g; Restore − size
- whether restore the amplified gradients in the original
size, default to being false.

Output: Gamp the amplified gradients collection.
1: function AGRMP(g1, g2, g3, ...)
2: for i = 1, 2, 3, ..., N do
3: giamp ← MAXFILTER(gi)
4: if Restore− size then
5: Fill the dropped gradients in giamp with 0s
6: end if
7: end for
8: Gamp ←

{
giamp | i = 1, 2, . . . , N

}
9: return Gamp

10: end function
11: function MAXFILTER(g)
12: Hout ← Hin/kp
13: Wout ←Win/kp
14: for ho = 1, 2, 3, ...,Hout do
15: for wo = 1, 2, 3, ...,Wout do
16: gamp ← max({ghi,wi|hi ∈ [kp ∗ (ho − 1) +

1, kp ∗ ho], wi ∈ [kp ∗ (wo− 1) + 1, kp ∗ wo]})
17: end for
18: end for
19: return gamp
20: end function

2) AGRXAI: Fig. 3 and Algorithm 2 demonstrate the
AGRXAI method to extract the most activated gradients.
Given that the last convolutional layer of the CNN typically
has a satisfactory balance between high-level semantics and
detailed spatial information, the gradient information flowing
into this layer is utilized to understand the importance of each
neuron for a specific decision of interest.

Initially, a small clean training set D is collected by the
server (lines 4 in Algorithm 2). After the server reviews
gradients gi from N clients, it will make a copy of the original
gradients as gogi . The server then deploys D to the received
local model, where the gradient of the score w.r.t. the feature
maps Ak is computed (lines 6 in Algorithm 2). These gradients
flowing back are global-average-pooled over the width and
height dimensions (indexed by i and j respectively) to obtain
the importance weights αk = 1

Z

∑
i

∑
j

∂y
∂Ak

i,j

(lines 7 in
Algorithm 2). After getting the importance weights, we rank
them in descending order and select the top p feature maps
with the highest weights. This selection allows us to focus on
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Fig. 2: The amplification process on the collected gradients
using AGRMP.
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Fig. 3: The amplification process on the collected gradients
using AGRXAI.

the most significant feature maps (need to note that AGRXAI
only focuses on the gradients of the last convolutional layer).
By indexing the gradients corresponding to these selected
feature maps, represented as Gamp, we can utilize them for
conducting the following defense check.

Algorithm 2 AGRXAI’s amplification process.

Input: gi - received gradients from client i; gogi - a copy of
original gradients N - number of participants; D - server-
side clean dataset; αk - contribution weight of feature map
k; Ak - feature maps of a convolutional layer.

Output: Gamp the amplified gradients collection.
1: function AGRXAI(g1, g2, g3, ...)
2: for i = 0, 1, 2, ..., N do
3: gogi ← copy gi
4: Pass D through the received model
5: y ← final output logits
6: Backpropagate the weight ∂y

∂Ak

7: αk ← 1
Z

∑
i

∑
j

∂y
∂Ak

i,j

8: Sort and select the top p feature maps
9: giamp ← index to the corresponding gradients

stored in gogi
10: if Restore− size then
11: Fill the dropped gradients in giamp with 0s
12: end if
13: Gamp ←

{
giamp | i = 1, 2, . . . , N

}
14: end for
15: return Gamp

16: end function

C. Equipping AGRAMPLIFIER with Byzantine-robust Aggre-
gation Rules

This section outlines the technical details of adapting
AGRAMPLIFIER to support Byzantine-robust aggregators. The

focus of the discussion is on three categories of aggregation
mechanisms, and an overview of the workflow of AGRAM-
PLIFIER for Byzantine-robust mechanisms is provided in Fig.
4. Specifically, the collected gradients G are first amplified
to Gamp and used to calculate pairwise distances, loss value
(LRR), and test accuracy (ERR), as well as trust scores
for distance-based, prediction-based, and trust bootstrapping
mechanisms, respectively. In the case of prediction-based
mechanisms, the amplified gradients Gamp are restored to their
original size by filling the dropped gradients in giamp with 0.
The distance-based and prediction-based aggregators output
a white list of benign participants denoted as Gdetox, and
the original gradients belonging to Gdetox are fed to FedAvg
for global model computation. For trust bootstrapping-based
mechanisms, it will first compute a trust score for each gi,
and the trust score then serves as the weight when averaging
updates. Subsequent sections provide detailed information
on AGRAMPLIFIER’s implementation for each of the three
categories of aggregation mechanisms.

1) AGRAMPLIFIER for Distance-based Aggregation
Rules: Before aggregating the gradients, distance-based ag-
gregation rules [20], [21] examine the collected gradients
and use distance measurements (e.g., Euclidean distance and
cosine similarity) to measure the difference between malicious
and benign ones. However, previous distance-based techniques
primarily focus on anomaly detection, which becomes less
effective as the number of malicious nodes rises. To address
this issue, we design a density measurement component to
supplement the traditional distance-based mechanisms by us-
ing the knowledge that malicious gradients tend to be sparsely
distributed, while benign ones are denser [12]. Our proposed
method involves evaluating the density of the neighborhood
surrounding each gradient. The neighborhood is defined as a
set of K neighbors, where K must exceed half of the total
number of participants N . The approach considers gradients
residing in denser neighborhoods benign, whereas those in
sparser areas are malicious. To implement this method, we
first select the K nearest neighbors of each participant’s update
based on distance measurement and record the scores of each
measurement. Then, we sum up the score of the K neighbors
as the density score. The top Nt participants with the highest
density scores are then included in the whitelist. This density
measurement is integrated into the distance-based mechanisms
as a top-up component, illustrated in the right box in the upper
part of Fig. 4, to improve the efficacy of the original approach.

Fig. 5 demonstrates the effectiveness of the AGRAMPLI-
FIER mechanism, as observed in both targeted and untargeted
attacks. The number of malicious participants in the neighbor-
hood of a benign participant is notably reduced after amplifica-
tion, as evidenced by a decrease from 8 to 0 for the untargeted
attack and from 1 to 0 for the targeted attack. Additionally,
the summed cosine similarity in the neighborhood undergoes a
significant increase after amplification, with values escalating
from 8.97 to 27.73 for the untargeted attack and from 13.86
to 21.73 for the targeted attack. The pseudocode of AGRAM-
PLIFIER for Distance-based Aggregation Rules is displayed in
Supplemental Document A.
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Fig. 4: Workflow of AGRAMPLIFIER for Byzantine-robust mechanisms.
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Fig. 5: A benign participant is selected (the blue arrow),
and the K-nearest neighbors are determined using cosine
similarity. The neighboring participants are further categorized
as malicious (the red lines) or benign (the green lines).

2) AGRAMPLIFIER for Prediction-based Aggregation
Rules: The Prediction-based mechanism [10] applies the col-
lected gradients to a validation dataset to evaluate the model’s
prediction performance in terms of LRR and ERR. It removes
those clients degrading the model performance before aggrate
the gradients. The middle section of Fig. 4 indicates how
AGRAMPLIFIER works for a prediction-based mechanism. The
amplification of the gathered parameters is first carried out by
AGRAMPLIFIER. Then, we calculate the LRR and ERR, and
those that perform better in prediction are added to the white
list, which will be sent to global aggregation. The pseudocode
of AGRAMPLIFIER for Prediction-based Aggregation Rules is
displayed in Supplemental Document B.

3) AGRAMPLIFIER for Trust Bootstrapping-based Ag-
gregation Rules: This mechanism [9] utilizes a trustworthy
clean dataset to generate clean gradients. By contrasting each
participant’s update with the clean gradients, a trust score is
assigned to each participant. Then, the server utilizes the trust
score as the weight to aggregate updates for the global model.
The bottom section of Fig. 4 indicates how AGRAMPLIFIER
works for a Trust Bootstrapping-based mechanism. In addition
to amplifying the collected gradients gi, AGRAMPLIFIER also
applies amplification to the gradient produced from the trust
validation set. The trust score for each participant is calcu-
lated by utilizing the ReLU-clipped cosine similarity of the
amplified gradients. The local model update data magnitudes
are then normalized and combined to form the global model,
weighted by their corresponding trust scores. The pseudocode
of AGRAMPLIFIER for Trust Bootstrapping-based Aggregation
Rules is displayed in Supplemental Document C.

IV. EXPERIMENTAL SETUP

In this section, we conduct experiments to determine the
triad of Byzantine-robust for the proposed method.

A. Datasets

We use seven real-world datasets for evaluation which are
widely used in AGR literature. We follow previous work [10]
to distribute the training samples.

CIFAR-10 [48] consists of 60, 000 images, each sized by
32×32, divided into 10 classes. In our study, we employ pre-
trained convolutional layers of ResNet56 [49], and the last
three fully connected (FCN) layers have a size of {64, 1024,
10}. Each participant is provided with an IID version.

MNIST dataset [50] consists of 70, 000 grayscale images
of handwritten digits, each with a size of 28× 28 pixels. The
dataset is divided into 10 classes representing the digits 0-9.
For our experiments, we employ the FCN with layer sizes of
{784, 512, 10}. Each participant in the study is provided with
the an IID version.

Fashion-MNIST [51] is a 10-class fashion image for clas-
sification tasks, using a training set of 60, 000 images and
a testing set of 10, 000 images with a resolution of 28x28
pixels. Here, we use the FCN with size {784, 512, 10} for
our experiments, and each participant in the study is provided
with an IID version.

CATvsDOG Kaggle [52] contains 25, 000 images of dogs
and cats, each labeled accordingly. We use the FCN with size
{2880, 512, 2} for our experiments, and each participant in
the study is provided with an IID version.

PURCHASE100 [53] contains 197, 324 records with 600
binary features of shopping histories and are classified into
100 distinct categories. For our experiments, we utilize the
FCN with a size of {600, 1024, 100}. Notably, the dataset is
observed to be non-IID, with the number of samples in each
label varying between 106 and 5214.

LOCATION30 [31] is comprised of mobile users’ location
“check-ins” in the Foursquare social network [53]. The dataset
consists of 5, 010 data samples, each with 446 binary features,
and is classified into 30 distinct categories. We utilize the FCN
with a size of {446, 512, 30} for our experiments. Notably, the
dataset is observed to be non-IID, with the number of samples
in each label varying between 97 and 308.

TEXAS100 [53] consists of 67, 330 records, each with
6, 169 binary features of hospital stay records, and are classi-
fied into 100 distinct categories [53]. For our experiments, we
employ the FCN with a size of {6169, 1024, 100}. Notably,
the dataset is observed to be non-IID, as the number of samples
in each label varied between 236 and 3046.
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Fig. 6: Illustration of the evaluation metrics.

B. Poisoning Attacks

We consider the AGRAMPLIFIER strategy against both
untargeted and targeted attacks.

• Grad-Ascent attack (G-asc) is to revise the gradient
towards the adversarial direction. Prior works [11], [13]
have shown that manipulating the gradients can effec-
tively degenerate the performance of the global model.

• Optimized and adaptive attack (S&H Attack) [54]
is a cutting-edge Byzantine robust aggregation attack.
The attack is formalized as an optimization problem
to maximally perturb the reference aggregation in the
malicious direction while being adaptive to avoid AGR
detection.

• Label-flip attack (L-flip) is a widely referenced
poisoning attack [9], where the adversary manipulates the
local training data, intentionally switching the label for
training data. we utilize the setting as [1], which flips the
label y to M − y − 1, where M denotes the number of
labels.

• <L-flip>+<G-asc> We propose a novel attack ap-
proach denoted as <L-flip>+<G-asc>, which com-
bines the techniques of label flipping and gradient ascent
attacks. This attack involves the incorporation of the
malicious updates generated by both methods, resulting
in a more potent and effective attack. Specifically, the
<L-flip>+<G-asc> approach involves the summation
of the perturbations generated by the label flipping and
gradient manipulation techniques.

• Scale attack [9] is a targeted attack that duplicates a
certain percentage of targeted local training examples and
alters their labels to the target label. Then, each mali-
cious client calculates its local model update using the
augmented local training data throughout each iteration
of FL and sends it to the server. To amplify the impact of
the malicious effect updates, the malicious clients scale
up the gradient by a factor before updating them to the
server. Specifically, we use the setting as [9] and set
scaling factor λ = n, where n denotes the number of
clients.

• Distributed Backdoor Attack (DBA) [55] is a targeted
attack in which the trigger pattern is equally split into
d parts and embedded into the local training data of d
malicious client groups. Specifically, we use the same
setting as [22] and split the trigger into four parts.

C. Evaluated Defenses

We introduce ten variations of AGRAMPLIFIER, which inte-
grate three categories: distance-based mechanisms, prediction-
based mechanisms, and trust bootstrapping-based mechanisms.
For each category, we compare our AGRMP and AGRXAI
equipped versions it’s base AGRs.

1) Distance-based Mechanisms:
• Cosine similarity, Euclidean distance, Merged dis-

tance with the Density measurement.
The evaluation focuses on density-based mechanisms,
which are applied to the original gradients G without
any amplification. We propose two mechanisms: CosDen
and EuDen, combining cosine similarity and Euclidean
distance with Density measurement, respectively. We also
introduce MergeDen, which merges CosDen and EuDen
by taking an intersection of their white lists.

• CosDen, EuDen, MergeDen with AGRAMPLIFIER.
We evaluate CosDen, EuDen, MergeDen equipped with
AGRMP and AGRXAI, which we refer to as Cos-
Den MP, EuDen MP, MergeDen MP, CosDen XAI,
EuDen XAI, and MergeDen XAI. This allows us to
assess the effectiveness of the mechanisms when applied
to amplified gradients.

2) Prediction-based Mechanisms:
• Fang’s defence. We merge LRR and ERR for optimal

performance in Fang’s defense [10], which serves as the
based AGR for the prediction-based mechanism.

• Fang’s defense with AGRAMPLIFIER. We also evaluate
Fang’s defense equipped with AGRMP and AGRXAI,
which we refer to as Fang MP and Fang XAI. In this
case, the merged LRR and ERR are computed from the
amplified gradients using AGRAMPLIFIER.

3) Trust Bootstrapping-based Mechanisms:
• FLTrust. We also evaluate FLTrust, which is a typi-

cal trust bootstrapping-based mechanism [9]. To achieve
better performance, we set the trust set size as 2000
for CIFAR-10 [48], MNIST [53], Fashion-MNIST [51],
CATvsDOG Kaggle [52], PURCHASE100 [53] and
TEXAS100 [53], and 300 for the LOCATION30 dataset
[31].

• FLTrust with AGRAMPLIFIER. Furthermore, we evalu-
ate FLTrust equipped with AGRMP and AGRXAI, which
we refer to as FLTrust MP and FLTrust XAI. In this
case, the trust score is computed based on the amplified
gradients using AGRAMPLIFIER.

D. Evaluation Metrics

We evaluate our AGRAMPLIFIER against targeted and un-
targeted attacks and take the distance-based, prediction-based,
and trust bootstrapping-based aggregation rules as baselines to
compare under the following evaluation metrics.

For untargeted attacks, we use the test accuracy rate (TA)
of the global model to evaluate the performance. We denote
ar as the TA at iteration r without attack, while âr denote
the test accuracy at iteration r under attack. The running time
has a great impact on the TA [1]. Therefore, we utilize the
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averaged TA over a monitoring period as the evaluation metric,
which can also alleviate the impact of irrelevant factors such
as overfitting on the performance evaluation. We calculate this
averaged metric L as:

L =
1

R1 −R0

R1∑
r=R0

ar − âr.

We illustrate L as the blue shaded area (then divided by
the round number) in Fig. 6a, which is generated on the
CATvsDOG Kaggle dataset with the G-asc attack.

In targeted attacks, the goal is to maintain the test accuracy
rate while inducing the global model to predict towards the
target class. Therefore, we employ Attack Success Rate (ASR)
as the evaluation metric. The ASR is determined by analyzing
the test data containing a trigger that is misclassified as the
target class by the global model. By measuring the ASR, we
are able to evaluate the extent to which the poisoning attack
influences the global model’s behavior and its ability to induce
incorrect predictions toward the target class. We denote the
ASR at iteration r as Eq. (2):

sr = ∥{d̂ |d̂∈D̂,ωr(d̂)=c}∥/∥D̂∥, (2)

where D̂ denote the malicious set, ωr denote the global model
at iteration r and c is the target label. Then we calculate the
average ASR as Eq. (3) to evaluate the performance:

S =
1

R1 −R0

R1∑
r=R0

(sr) . (3)

We illustrate S as the red shaded area (then divided by
the round number) in Fig. 6b, generated on the CATvsDOG
Kaggle dataset with scale attack.

E. FL Settings

We train a five-layer CNN with two convolution layers, one
max-pooling layer, and two dense layers. By default, each
round involves the participation of 50 clients. We employ
the global communication rounds are Rg = 200. Each local
client conducts 2 epochs with a batch size of 64. The attacker
initiates the attack at round Rg = 50, and we record test
accuracy systematically every 10 round.

It’s worth noting that in the default setting, we choose a
higher malicious rate (i.e., 30%) compared to previous works
[9], [10] (around 20%) to demonstrate the advantage of our
method in defending against a stronger attack which compro-
mises high proportion of malicious clients. In Section V-D,
we also discuss the influence of the proportion of malicious
clients, which ranges from 0.2 to 0.4.

V. EXPERIMENT RESULTS

In this section, we discuss the performance of AGRAMPLI-
FIER: CosDen MP, EuDen MP, MergeDen MP, Fang MP,
FLTrust MP, CosDen XAI, EuDen XAI, MergeDen XAI,
Fang XAI, FLTrust XAI against the five state-of-the-art poi-
soning attacks in terms of robustness, fidelity and efficiency
against targeted and untargeted attacks. The results show that
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Fig. 7: Run-time TA for untargeted attacks and run-time ASR
for targeted attacks.

AGRAMPLIFIER outperforms its base mechanisms on all three
properties.

In particular, EuDen XAI shows the highest robustness
against targeted attacks, while Fang XAI performs the best
against untargeted attacks. Furthermore, the fidelity of Cos-
Den MP is superior, followed closely by CosDen XAI. Ad-
ditionally, FLTrust MP exhibits superior efficiency with small
to medium network sizes, whereas CosDen MP delivers the
best efficiency with large networks. Now, we demonstrate a
comprehensive performance analysis of AGRAMPLIFIER.

A. Robustness Boosting

AGRAMPLIFIER shows its capability to boost the robustness
of untargeted and targeted attacks. We examine it as follows.

1) Untargeted attack: The AGRAMPLIFIER demonstrates
its ability to improve the robustness of the FL system in gen-
eral, as evidenced by the results presented in Fig. 7a. Specif-
ically, the AGRAMPLIFIER-equipped AGR achieves higher
TA than its counterpart, outperforming it by 45.21%. These
findings are supported by the experimental results presented
in Table I. Specifically, AGRMP outperforms its counter-
part base aggregator in distance-based, prediction-based, and
trust bootstrapping-based mechanisms with 62.21%, 35.63%,
and 16.19%, respectively. Similarly, AGRXAI exhibits supe-
rior performance over its base aggregator in distance-based,
prediction-based, and trust bootstrapping-based mechanisms
by 88.68%, 2.41%, and 71.11%, respectively. We further report
several observations.
Negative pulse mitigation. In FL training, the presence of
these malicious actors can cause significant disruptions to the
training process and can severely degrade the accuracy and
performance of the shared model. One of the observed phe-
nomena associated with such attacks is the “negative pulse”,
which is characterized by an abrupt reduction in the model’s
TA caused by the poisoning adversary at the early stage of
the attacks. This phenomenon is consistently observed across
different datasets and FL frameworks, indicating the need
for effective defense mechanisms to mitigate it. We observe
that AGRAMPLIFIER shows promise in effectively mitigating
negative pulses as shown in Fig. 8.
Base mechanism matters. Also, it should be noted that the
efficacy of the AGRAMPLIFIER-equipped version is predicated
on the effectiveness of its base aggregator. If the base aggrega-
tor exhibits a weakness in a specific context, this vulnerability
may propagate to the amplified version. For instance, the
distance-based CosDen MP defense demonstrates an L error
rate of 16.95% against L-flip attacks on LOCATION30.
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Fig. 8: Run-time TA. (a): Negative pulse at round 50 (the
attack starts round). (b) (c): AGRAMPLIFIER mitigates the
negative pulse.

While the CosDen MP defense improves its performance,
achieving an L error rate of 5.96%, it still falls behind other
defenses that achieve an average L error rate of 0.28%.

2) Targeted attack: Targeted attacks in FL show a signif-
icant challenge for detection due to the subtle and incon-
spicuous nature of the triggers that are designed to blend
in with normal model updates. However, our AGRAMPLI-
FIER exhibits promising performance in detecting targeted
attacks. Specifically, Fig. 7b presents the results of a tar-
geted attack against base aggregators and AGRAMPLIFIER,
demonstrating that AGRXAI outperforms its base aggrega-
tor counterpart by achieving a 34.94% lower S. Specifi-
cally, AGRMP outperforms its counterpart base aggregator
in distance-based, prediction-based, and trust bootstrapping-
based mechanisms with 25.02%, 48.4%, and 5.5%, respec-
tively. Similarly, AGRXAI exhibits superior performance over
its base aggregator in distance-based, prediction-based, and
trust bootstrapping-based mechanisms by 59.22%, 18.89%,
and 39.70%, respectively.

It has been observed that the AGRXAI-based AGRAMPLI-
FIER outperforms the AGRMP-based AGRAMPLIFIER, indi-
cating the potential of XAI techniques in improving targeted
attack detection in FL. Specifically, this enhanced performance
can be attributed to AGRXAI’s ability to capture the significant
features of an image that has a high probability of contain-
ing the trigger. By selectively manipulating these features,
AGRXAI is able to effectively detect the presence of triggers
in model updates. These findings highlight the potential of
XAI techniques for improving targeted attack detection in
FL and suggest that AGRXAI may be a promising approach
for enhancing the robustness of FL models against targeted
attacks.

The Scale attack and DBA attack against each defense
mechanism for seven benchmark datasets are presented in
Table I. Among the evaluated defenses, Fang XAI exhibits
consistently strong defense performance across all datasets,
followed by Fang MP, which demonstrates effective defense
against non-image datasets. However, FLTrust MP shows an
abnormal performance on TEXAS100, with a 63.76% ASR
for Scale attacks. This can be attributed to the fact that
the trust bootstrapping-based mechanism heavily relies on the
representativeness of the validation set. Section V-D4 presents
a detailed evaluation of how the distribution of the validation
dataset can impact the performance of our proposed method.

TABLE I: Averaged TA loss (L) for untargeted attacks and
ASR (S) for targeted attacks (presented in percentage). The
best defense for each attack (row-wise) is in bold.

Attack No def Distance-based Prediction-based Trust-based
C E M CM EM MM CX EX MX F FM FX T TM TX

Untargeted attacks
CIFAR-10
G-asc 1.12 0.71 1.70 0.23 -0.03 -0.02 0.07 1.07 0.21 1.06 0.07 0.38 1.02 1.44 1.56 1.92
S&H 0.12 0.07 -0.09 0.23 -0.10 0.12 -0.18 0.01 0.09 0.23 -0.11 0.11 0.12 1.96 1.45 1.01
L+G 2.87 5.88 2.95 1.70 0.36 4.02 0.41 1.70 -1.52 1.25 0.50 0.51 1.74 2.03 1.82 1.18

MNIST
G-asc 1.02 1.33 0.24 0.27 0.23 0.01 0.14 0.07 -0.06 0.30 0.21 0.21 1.72 5.63 2.27 0.62
S&H 0.41 0.40 0.41 0.30 0.11 0.29 0.36 0.88 0.82 -0.17 0.14 0.14 0.03 1.70 2.18 1.27
L+G 0.73 2.63 85.86 2.23 1.39 0.38 0.16 0.14 -1.06 -0.58 -0.08 -0.08 0.10 5.60 2.35 -0.54

CAT-DOG
G-asc 6.80 6.92 4.36 4.02 2.65 5.36 1.94 8.91 3.04 3.09 6.14 9.67 6.42 5.60 -0.48 0.93
S&H 3.19 4.28 4.65 3.92 -2.83 2.06 -0.21 -0.18 0.50 -2.58 1.74 -0.55 -0.54 8.43 5.54 -0.13
L+G 28.54 0.07 3.42 5.45 2.89 -2.04 1.49 -3.22 -4.69 3.46 1.32 0.14 1.32 7.18 -3.32 0.08

FASHION-MNIST
G-asc 5.02 5.02 3.20 3.02 2.55 4.29 1.90 1.07 0.19 0.90 4.42 9.77 3.92 2.89 -0.12 1.22
S&H 2.10 3.09 3.29 2.08 2.01 2.09 -0.31 2.88 -3.82 0.27 1.59 0.01 0.83 5.09 -0.42 2.27
L+G 20.04 2.61 4.98 2.01 2.01 0.32 0.21 -3.14 1.02 -0.28 2.09 0.12 0.60 6.47 2.31 0.34

LOCATION30
G-asc 8.48 16.95 0.50 3.77 5.98 1.89 3.14 - - - 3.40 4.28 - 5.74 8.67 -
S&H 0.69 -0.24 1.31 2.76 -0.65 0.02 0.20 - - - 2.40 1.35 - 4.26 0.50 -
L+G 6.50 3.17 11.34 9.37 -0.45 6.44 3.23 - - - 1.33 1.86 - 2.74 8.36 -

PURCHASE100
G-asc 12.82 17.49 17.61 1.64 0.96 2.25 2.52 - - - 0.75 1.04 - 2.69 2.55 -
S&H 0.04 0.34 1.34 1.81 0.16 1.54 1.69 - - - 0.66 0.89 - 3.52 1,87 -
L+G 33.78 14.22 19.22 2.75 0.54 1.07 0.75 - - - 1.06 1.48 - 4.82 2.64 -

TEXAS100
G-asc 1.98 1.39 1.17 2.64 1.17 1.58 1.49 - - - 2.00 0.52 - 1.66 -0.15 -
S&H 1.46 0.58 1.87 2.51 0.53 1.91 1.99 - - - 1.93 0.51 - 0.51 -0.45 -
L+G 2.33 3.23 5.52 5.20 1.25 4.00 2.79 - - - 2.40 1.96 - 2.20 1.39 -

Targeted attacks
CIFAR-10
Scale 94.44 17.35 14.60 10.03 2.64 1.89 1.09 2.81 0.25 1.74 49.60 2.70 0.49 12.25 9.91 4.21
DBA 85.64 12.64 10.43 15.01 9.03 9.22 8.61 8.99 6.00 3.95 15.12 5.32 3.88 13.29 18.00 13.38

MNIST
Scale 16.58 0.37 0.89 2.19 0.57 0.37 0.39 2.81 0.25 1.74 5.54 0.24 0.49 3.59 0.35 0.79
DBA 16.95 2.95 2.41 1.96 0.34 10.09 0.63 7.83 0.90 0.42 5.39 1.27 0.23 3.20 0.46 1.80

CAT-DOG
Scale 80.26 37.14 27.90 26.13 27.14 16.40 16.13 16.18 14.36 12.50 24.23 14.03 10.68 20.53 10.30 6.88
DBA 95.23 24.47 23.53 22.24 14.03 14.37 13.83 12.24 13.28 17.63 19.52 10.43 20.07 12.79 10.39 10.23

FASHION-MNIST
Scale 79.95 22.76 19.85 14.29 2.70 9.85 4.12 14.70 13.96 3.44 12.45 2.41 14.3 14.39 4.83 3.20
DBA 80.01 13.32 14.34 17.95 3.89 4.51 4.18 15.02 12.09 0.22 23.21 3.32 10.32 13.45 3.24 2.33

LOCATION30
Scale 53.45 3.13 7.32 2.34 8.46 12.6 13.6 - - - 5.54 1.39 - 3.59 4.68 -
DBA 65.32 3.21 3.66 2.40 2.74 2.98 1.93 - - - 7.43 2.34 - 6.23 3.56 -

PURCHASE100
Scale 74.78 0.56 3.21 2.67 1.73 2.82 0.04 - - - 0.05 1.02 - 0.41 1.11 -
DBA 69.03 4.21 3.23 1.35 3.89 4.51 4.18 - - - 2.23 3.12 - 4.26 1.23 -

TEXAS100
Scale 99.03 11.16 32.02 12.43 33.1 14.4 0.03 - - - 0.01 0.03 - 35.59 63.76 -
DBA 89.21 13.35 12.32 10.78 21.02 12.65 3.54 - - - 2.01 3.12 - 34.04 15.54 -

† In this table, we use No def to stand for no defense, C to stand for CosDen, CM for
CosDen MP, CX for CosDen XAI, E to stand for EuDen, EM for EuDen MP, EX for
EuDen XAI, M to stand for MergeDen, MM for MergeDen MP, MX for
MergeDen XAI, F to stand for Fang, FM for Fang MP, FX for Fang XAI, T to stand
for FLTrust, TM for FLTrust MP, TX for FLTrust XAI (The abbreviation also applies
to Tables II, III, and IV).

TABLE II: Performance loss L in terms of fidelity.
Datasets Distance-based Prediction-based Trust-based

C E M CM EM MM CX EX MX F FM FX T TM TX
CIFAR-10 -0.07 0.50 0.68 0.08 0.01 0.24 0.17 0.27 0.29 0.15 0.23 0.29 1.48 1.38 1.29

MNIST 0.41 0.74 0.62 048 0.72 0.88 0.14 0.13 0.10 0.64 0.54 0.15 0.62 1.39 0.13
CAT-DOG 0.43 0.42 0.44 0.42 0.41 0.40 0.42 0.45 0.41 0.38 0.39 0.38 0.48 0.62 0.42

FASHION-MNIST 0.51 0.63 0.55 0.46 0.39 0.23 0.21 0.30 0.24 0.34 0.25 0.21 0.35 0.43 0.20
LOCATION30 0.00 2.84 3.59 -0.15 1.35 1.69 - - - 3.64 1.29 - 3.21 1.87 -

PURCHASE100 0.53 1.23 1.69 0.28 1.48 1.29 - - - 0.69 0.94 - 3.17 1.98 -
TEXAS100 0.68 0.98 1.49 0.18 1.48 1.18 - - - 1.30 0.38 - 0.31 -0.53 -

B. Fidelity Boosting

Fidelity is a crucial factor in assessing an aggregator’s
effectiveness in preserving helpful information during the FL
process. Fig. 9 presents a comparison of the fidelity scores
between AGRAMPLIFIER and their base AGRs. Our results
demonstrate that AGRAMPLIFIER (indicated by the pink and
green bars) outperforms the original base aggregators (indi-
cated by the blue bars) by showing significantly less fidelity
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Fig. 9: Averaged performance loss L across all datasets in
terms of fidelity.

TABLE III: Time consumption (in second) of aggregation on
CIFAR-10.

Hidden layer C CM CX F FM FX T TM TX

512 330.8 241.0 2128.4 439.8 341.1 2383.3 316.4 233.2 2340.8
1024 328.6 240.6 2308.1 426.9 340.2 2352.7 324.8 233.1 2401.1
2048 374.3 306.8 3542.3 442.6 412.3 2342.8 320.2 295.3 2538.7

loss. These findings suggest that AGRAMPLIFIER is effective
in improving the fidelity of base aggregators, which is essential
for preserving the quality of the trained model and enhancing
the robustness of the federated learning process.

Our evaluation reveals that the distance-based CosDen MP
aggregator performs the most promisingly, achieving an aver-
age fidelity loss of 0.18%. Furthermore, the prediction-based
Fang XAI aggregator also demonstrates desirable fidelity with
an average loss of 0.68%. However, the performance of
trust bootstrapping-based FLTrust XAI highly depends on the
dataset used. Notably, this approach can significantly reduce
the fidelity loss in some datasets. Still, it may yield a higher
fidelity loss on others, such as LOCATION30 and PUR-
CHASE100, where the validation dataset distribution differs
from the original training set, potentially leading to biased
global models. The detailed results are given in Table II.

C. Efficiency Boosting

Table III presents the time consumption of AGRAMPLIFIER
experiments carried out on CIFAR-10 utilizing the NVIDIA
GeForce RTX 3080 device. For AGRMP-based methods, the
time complexity of the amplification process is O(N ∗ Pn)
in each iteration, (where N is the number of clients and
Pn is the number of parameters in the model). Since the
value of Pn is significantly reduced by the amplification, our
AGRMP effectively lowers the computational cost for AGR,
particularly for large-size neural networks. Specifically, as is
shown in Table III, AGRMP reduces total time consump-
tion by 20% from 369.38 seconds to 293.73 seconds, on
average. However, AGRXAI-based methods exhibit increased
time consumption due to the additional computation involved
in collecting feature weights. The time complexity of the
AGRXAI amplification process is O(N ∗ (Nc + P 2

n)), where
Nc is the total number of computations involved in the forward
pass and gradient calculation [30].

The space complexity of AGRAMPLIFIER is equivalent to
that of the traditional FL method, i.e., O(N ∗ Pn), which
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Fig. 10: Performance of run-time TA for untargeted attacks
with a large number of participants.

exhibits linear growth with respect to both N and Pn.

D. Influence Factors

This section presents an evaluation of AGRAMPLIFIER’s
performance in varying scenarios concerning 1) the number
of participants, 2) the malicious factor, and 3) the proportion
of the extracted gradient. Specifically, in Section V-D1, we
consider 30, 50, and 100 participants while fixing the per-
centage of malicious participants at 30%. In Section V-D2,
we consider 20%, 30%, and 40% proportions of malicious
participants, with a fixed number of participants at 50. In
Section V-D3, we consider the kernel size to be within the
range of 2×2, 3×3, 5×5, 7×7, and 9×9 for AGRMP, and the
proportion of the extracted gradient to be top 10%, 25%, 50%,
and 75% for AGRXAI.

1) Impact of Participant Number: Fig. 11 demonstrates the
run-time ASR of AGRAMPLIFIER for targeted attacks and
TA for untargeted attacks on MNIST, varying the participant
count. Our findings reveal that AGRAMPLIFIER outperforms
the base aggregator and achieves comparable performance to
FedAvg when the number of participants ranges from 30 to
100. Furthermore, we find that Base aggregators underperform
when there is a large number of participants (500 and 1000
participants), leading to a reduction in overall performance for
all considered aggregators. However, our proposed AGRMP
still maintains good performance, as shown in Fig. 10.

2) Impact of Malicious Client Proportion: This section
examines the effect of varying ratios of malicious participants
(Mf ) on the performance of AGRAMPLIFIER. The results
are presented in Fig. 12, which depicts the run-time TA
and ASR of AGRAMPLIFIER on MNIST with Mf values
ranging from 0.2 to 0.4. The performance of FedAvg (without
defense) is shown to drop significantly as the proportion of
malicious participants increases. However, the performance of
AGRAMPLIFIER remains stable and exhibits high TA even
when Mf reaches 40%.

3) Impact of the Proportion of the Extracted Gradient:
In this section, we investigate how the proportion of the
extracted gradient affects the performance of AGRAMPLIFIER.
First, for AGRMP, the varying kernel sizes can affect the
selection of the extracted gradients. Specifically, the kernel size
is experimented within the range of 2×2, 3×3, 5×5, 7×7, and
9×9. The results indicate that the distance-based CosDen MP
and prediction-based Fang MP are not significantly impacted
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Fig. 11: (a) run-time ASR for targeted attacks, (b) run-time TA for untargeted attacks with different numbers of participants
on MNIST.
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Fig. 12: (a) run-time ASR for targeted attacks, (b) run-time TA for untargeted attacks with different proportions of malicious
participants on MNIST.
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Fig. 13: The impact of kernel size for AGRMP on CIFAR-10.
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Fig. 14: The impact of the proportion of the extracted gradient
for AGRXAI on CIFAR-10.

by the kernel size, whereas the trust bootstrapping-based
FLTrust MP shows a slight decrease in performance with
larger kernel sizes such as 7×7 and 9×9. This mechanism
computes the reference updates on a small trust set, which
may result in non-negligible information loss when the kernel
size is too large. The findings are presented in Fig. 13.

We also investigate how the proportion p affects the perfor-
mance of AGRXAI. We conduct experiments by extracting the
top 10%, 25%, 50%, and 75% of the gradient gi. It shows a
similar result as AGRMP, where the trust bootstrapping-based
FLTrust XAI shows a slight decrease in performance with a
large reduction size such as 10%. The detailed findings are
presented in Fig. 14 and 15. The results indicate that extracting
the top 50% of the gradients has the best performance for both
untargeted and targeted attacks. This choice not only achieves
the best evaluation metric but also exhibits the smoothest trend.
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Fig. 15: The impact of the proportion of the extracted gradient
on CATvsDOG Kaggle.

4) Impact of the validation datasets: In the case of Fang
and FLTrust-based defenses, which require the aggregator to
hold a small validation dataset, we consider two scenarios [9]
to evaluate the impact for validation dataset distribution:

• Case I: In this scenario, we assume the aggregator has
the capability to construct a well-balanced validation
dataset that represents the distribution of the training
data. To achieve this, we uniformly and randomly sample
the validation dataset from the clean local training data
of clients.

• Case II: We assume a validation dataset with a different
distribution compared to the training data, specifically
biased towards a particular class (class 1 in our case).
We use bias probability (θ) to represent the fraction of
examples from that specific class and set the other 1− θ
examples to be uniformly sampled from the other classes.

Table IV presents the model TA based on different bias
probabilities (θ), and the result shows that the impact of data
distribution on these methods differs:
For the Fang-based methods, they consistently perform well
across various bias probabilities. In contrast, the FLTrust-based
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methods demonstrate varying performance. The base FLTrust
method fails when the bias probability is 0.4. However,
our AGRAMPLIFIER-equipped approach displays improved
resilience and can handle a bias probability up to 0.9. This
difference in performance can be attributed to the underlying
mechanisms of the base methods. The Fang-based approach
evaluates local models based on their error rates on the clean
validation dataset. It remains effective even in the presence of
dataset bias, as the benign model continues to make accurate
predictions. On the other hand, the FLTrust-based methods
train a clean model using its own clean dataset and assign
trust scores to each update by comparing them with the
clean model. Consequently, it becomes vulnerable to highly
biased validation datasets. However, our approach mitigates
this vulnerability by amplifying the differences between be-
nign and malicious gradients. Even when trained on biased
data, the gradients remain sufficiently close to the benign
ones, facilitating the distinction of malicious gradients. This
insight highlights the effectiveness of our approach in handling
validation dataset biases.

TABLE IV: The TA of FLTrust and Fang based methods
under G-asc attack on the CIFAR dataset when the vali-
dation dataset is sampled with different bias probabilities. We
highlight 0.1 in bold, which indicates that the training fails to
converge.

Bias 0 0.2 0.4 0.6 0.8 0.9 1
None 0.60 0.61 0.59 0.60 0.60 0.60 0.59

T 0.57 0.57 0.1 0.55 0.1 0.1 0.1
TM 0.59 0.58 0.58 0.57 0.57 0.1 0.1
TX 0.58 0.58 0.58 0.57 0.58 0.58 0.1
F 0.58 0.57 0.56 0.55 0.54 0.53 0.54

FM 0.59 0.58 0.56 0.55 0.55 0.52 0.55
FX 0.60 0.59 0.59 0.58 0.56 0.56 0.55

VI. DISCUSSION AND LIMITATIONS

A. Effect of Dataset’s Heterogeneity

Our observations indicate that the performance of the three
categories of Byzantine-robust mechanisms varies depending
on the dataset employed. Previous studies have shown that
the generalization bound of ML is linked to the diversity
of the training data [56]. As the model’s generalization ca-
pacity decreases, poisoning attacks become more effective,
as it enhances the attacker’s ability to increase the loss on
poisoned examples. Conversely, a well-generalized model is
better equipped to handle varied input and thus exhibits greater
resilience to malicious injections.

Our experimental findings provide evidence of a correlation
between the heterogeneity of datasets and the efficacy of
defense mechanisms. We measure the heterogeneity of the
datasets by computing the average intra-label cosine similarity
using the approach outlined in [56]. Specifically, given a
training set label ξ denoted as Dξ, and the number of classes in
the dataset denoted as E, the heterogeneity scores is computed
as:

1− 1

E

E∑
ξ=1

∑
Dξ ·D⊤

ξ

∥Dξ∥2
. (4)

TABLE V: Heterogeneity of the datasets.

MNIST CIFAR-10 LOCATION30 PURCHASE100 TEXAS100 CAT-DOG FASHION-MNIST
0.15 0.24 0.12 0.03 0.61 0.41 0.21

Table V presents the heterogeneity scores for each dataset.
Our analysis indicates that datasets with lower heterogeneity,
as measured by larger intra-label cosine similarity, confer
advantages to defenders, particularly against the scale attack.
For instance, the scale attack on PURCHASE100 and LOCA-
TION30 exhibits the lowest success rates (less than 10%) when
defensive mechanisms are applied. Furthermore, we find that
the performance of trust bootstrapping-based mechanisms is
significantly impacted when the training data’s heterogeneity
is extremely high, as observed in TEXAS100, with the highest
heterogeneity score.

B. Limitations Inherited from the Base Mechanisms

It has been recognized that the AGRAMPLIFIER approach
may not be able to overcome certain inherent constraints of
the underlying mechanisms. For instance, in the case of trust
bootstrapping-based mechanisms, AGRAMPLIFIER may prove
ineffective if the trusted set is poisoned [9]. Additionally,
for certain base aggregation rules, such as distance-based
aggregators, which necessitate knowledge of the malicious
fraction Mf , AGRAMPLIFIER also relies on this assumption.
However, it may not always be feasible for the aggregator to
obtain such information in practical applications.

C. Comparison of AGRMP and AGRXAI

In terms of robustness, AGRXAI outperforms AGRMP,
especially for targeted attacks. The enhanced performance of
AGRXAI can be attributed to its ability to capture signifi-
cant features containing triggers, thereby improving detection
performance. In terms of fidelity, AGRXAI also outperforms
AGRMP in general, but both AGRMP and AGRXAI show
significantly less fidelity loss compared to the base AGRs.
In terms of efficiency, AGRAMPLIFIER reduces gradient size,
resulting in reduced time consumption, particularly for larger
neural network architectures. However, the AGRXAI approach
demonstrates higher time consumption due to additional com-
putations required for individual update feature weights.

Specifically, EuDen XAI demonstrates the highest robust-
ness against targeted attacks, while Fang XAI performs the
best against untargeted attacks. In terms of fidelity, Cos-
Den MP exhibits superior performance, closely followed by
CosDen XAI. Furthermore, FLTrust MP demonstrates supe-
rior efficiency with small to medium network sizes, while
CosDen MP delivers the best efficiency with large networks.

In conclusion, investigating the trade-off between robust-
ness, fidelity, and efficiency in the ten proposed versions is
a promising direction for future research. By considering the
factors mentioned above and conducting rigorous experiments,
researchers can gain valuable insights into the interplay be-
tween these aspects and make informed decisions to achieve
the desired balance in real-world scenarios.
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D. Furture Works

Several promising directions for future research are of
interest. Firstly, we aim to explore and establish a better
trade-off between robustness, fidelity, and efficiency. Secondly,
ongoing efforts are dedicated to enhancing the explainability of
Natural language processing (NLP) tasks [57], [58]. Therefore,
our AGRXAI-based approach, which leverages Explainable
AI (XAI), holds promise for extension into NLP tasks and
improves the identification and understanding of significant
features within participants’ updates. We will also investigate
other defense mechanisms, such as frequency-domain analy-
sis for detecting malicious updates and style transformation
techniques for converting malicious updates into benign ones.

VII. CONCLUSION

This study presents AGRAMPLIFIER, a mechanism specif-
ically designed to enhance the robustness, fidelity, and effi-
ciency of FL methods against Byzantine adversaries. Through
comprehensive evaluations across various scenarios, our ap-
proach demonstrates an average reduction of 40.07% in the
ASR while maintaining high levels of fidelity and efficiency.
These results highlight the effectiveness of AGRAMPLIFIER
in mitigating the impact of Byzantine adversaries in FL.
Furthermore, AGRAMPLIFIER presents the first work that
incorporates XAI into the domain of malicious detection. This
integration not only enhances the performance of existing
methods but also opens up new avenues for future research
and exploration.
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[13] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice et al.,
“Towards poisoning of deep learning algorithms with back-gradient
optimization,” in Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, 2017, pp. 27–38.

[14] V. Shejwalkar and A. Houmansadr, “Manipulating the byzantine: Opti-
mizing model poisoning attacks and defenses for federated learning,” in
Proceedings of 28th Annual Network and Distributed System Security
Symposium (NDSS), 2021.

[15] Y. Zhang, G. Bai, M. A. P. Chamikara, M. Ma, L. Shen, J. Wang,
S. Nepal, M. Xue, L. Wang, and J. Liu, “Agrevader: Poisoning
membership inference against byzantine-robust federated learning,” in
Proceedings of the ACM Web Conference 2023, 2023, pp. 2371–2382.

[16] J. Wei, Y. Zhang, L. Y. Zhang, C. Chen, S. Pan, K.-L. Ong, J. Zhang,
and Y. Xiang, “Client-side gradient inversion against federated learning
from poisoning,” arXiv preprint arXiv:2309.07415, 2023.

[17] D. Wang, S. Wen, A. Jolfaei, M. S. Haghighi, S. Nepal, and Y. Xi-
ang, “On the neural backdoor of federated generative models in edge
computing,” ACM Transactions on Internet Technology (TOIT), vol. 22,
no. 2, pp. 1–21, 2021.

[18] C. Zhu, J. Zhang, X. Sun, B. Chen, and W. Meng, “Adfl: Defending
backdoor attacks in federated learning via adversarial distillation,”
Computers & Security, p. 103366, 2023.

[19] C. Xie, M. Chen, P.-Y. Chen, and B. Li, “Crfl: Certifiably robust
federated learning against backdoor attacks,” in International Conference
on Machine Learning. PMLR, 2021, pp. 11 372–11 382.

[20] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in Proceedings of
the 35th International Conference on Machine Learning. PMLR, Jul.
2018.

[21] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulnera-
bility of distributed learning in byzantium,” in Proceedings of the 35th
International Conference on Machine Learning. PMLR, Jul. 2018.

[22] Z. Zhang, X. Cao, J. Jia, and N. Z. Gong, “Fldetector: Defending
federated learning against model poisoning attacks via detecting ma-
licious clients,” in Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2022, pp. 2545–2555.

[23] G. Geng, T. Cai, and Z. Yang, “Better safe than sorry: Constructing
byzantine-robust federated learning with synthesized trust,” Electronics,
vol. 12, no. 13, p. 2926, 2023.

[24] J. Xu, X. Tong, and S.-L. Huang, “Communication-efficient and
byzantine-robust distributed stochastic learning with arbitrary number
of corrupted workers,” in ICC 2022-IEEE International Conference on
Communications. IEEE, 2022, pp. 5415–5420.

[25] M. Ma, Y. Zhang, P. C. M. Arachchige, L. Y. Zhang, M. B. Chhetri, and
G. Bai, “Loden: Making every client in federated learning a defender
against the poisoning membership inference attacks,” in Proceedings
of the 2023 ACM Asia Conference on Computer and Communications
Security, 2023, pp. 122–135.

[26] K. Yamaguchi, K. Sakamoto, T. Akabane, and Y. Fujimoto, “A neural
network for speaker-independent isolated word recognition.” in Proceed-
ings of the First International Conference on Spoken Language (ICSLP).
ISCA, Nov. 1990, pp. 1077–1080.

[27] F. Charmet, H. C. Tanuwidjaja, S. Ayoubi, P.-F. Gimenez, Y. Han,
H. Jmila, G. Blanc, T. Takahashi, and Z. Zhang, “Explainable artificial
intelligence for cybersecurity: a literature survey,” Annals of Telecom-
munications, vol. 77, no. 11-12, pp. 789–812, 2022.

[28] A. Kuppa and N.-A. Le-Khac, “Adversarial xai methods in cybersecu-
rity,” IEEE transactions on information forensics and security, vol. 16,
pp. 4924–4938, 2021.

[29] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable AI:
A review of machine learning interpretability methods,” Entropy, vol. 23,
no. 1, p. 18, Dec. 2020.

[30] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam et al., “Grad-CAM:
Visual explanations from deep networks via gradient-based localization,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 618–626.

[31] D. Yang, D. Zhang, and B. Qu, “Participatory cultural mapping based
on collective behavior data in location-based social networks,” ACM



14

Transactions on Intelligent Systems and Technology (TIST), vol. 7, no. 3,
pp. 1–23, 2016.

[32] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in Proceedings of the 29th International Conference
on Machine Learning (ICML), Jun. 2012.

[33] M. Jagielski, A. Oprea, B. Biggio, C. Liu et al., “Manipulating ma-
chine learning: Poisoning attacks and countermeasures for regression
learning,” in Proceedings of the 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 19–35.

[34] P. Kairouz, H. B. McMahan, B. Avent et al., “Advances and open
problems in federated learning,” Foundations and Trends® in Machine
Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[35] J. Dean, G. Corrado, R. Monga, K. Chen et al., “Large scale distributed
deep networks,” Advances in neural information processing systems,
vol. 25, 2012.

[36] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,”
in Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information, vol. 30. Curran Associates, Inc.,
2017.

[37] A. Singhal et al., “Modern information retrieval: A brief overview,”
IEEE Data Eng. Bull., vol. 24, no. 4, pp. 35–43, 2001.

[38] E. Deza and M. M. Deza, Encyclopedia of Distances. Springer, 2009.
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SUPPLEMENTAL DOCUMENT FOR AGRAMPLIFIER

A. Algorithm: AGRAMPLIFIER for Distance-based Mecha-
nism

The proposed algorithm involves processing the original
gradients through an amplifier (line 1 in Algorithm 3), fol-
lowed by a distance measurement step that employs a pair-
wise comparison approach, such as Cosine similarity or Eu-
clidean distance. This distance measurement step determines
the density of each gradient’s neighborhood, consisting of
K neighbors, where K is set to a value greater than N/2,
with N representing the number of participants. The algo-
rithm considers gradients residing in denser neighborhoods
as benign ones. For each participant’s update, the algorithm
selects the K-nearest neighbors based on their similarity score
and calculates the cumulative score in their neighborhood
(lines 4-10). The top Nt participants with higher scores are
then added to the white list, which can be considered a
hyperparameter chosen by the practitioner and submitted for
aggregation (lines 12-19). Therefore, the proposed algorithm
utilizes a novel approach to improve the performance of FL
by selecting benign participants through a similarity-based
analysis of gradient neighborhoods.

Algorithm 3 AGRAMPLIFIER for Distance-based Mechanism.

Input: gi, gj - the gradients collected from i-th and j-th
clients; giamp - the amplified gradients from client i; N
- number of participants; Mf - the fraction of malicious
participants; K - number of neighbors examined.

Output: Gdetox the detoxed gradients collection.
1:

{
g1amp, g

2
amp, . . .

}
← AGRAMPLIFIER (g1, g2, . . .)

2: for i = 0, 1, 2, ..., N do
3: for j = 0, 1, 2, ..., N do
4: // Pair-wise cosine similarity
5: Ci,j ←

gi
amp·g

j
amp

∥gi
amp∥·∥gj

amp∥
6: end for
7: // Sum up the similarity of the K-nearest neighborhood

as Si

8: Ci ← Descending-sort (Ci,j | j = 1, 2, 3, . . . N)
9: Si ←

∑
(Ci,j | j = 1, 2, 3, . . .K)

10: end for
11: Whitelist ← ∅
12: for i = 0, 1, 2, ..., N do
13: // Add into white-list of i is with larger Si

14: if Si in the largest (1−Mf ) ∗N values ∀Si then
15: Whitelist ← Whitelist ∪ {i}
16: end if
17: end for
18: Gdetox ← {gi | i ∈ Whitelist }
19: return Gdetox

B. Algorithm: AGRAMPLIFIER for Prediction-based Mecha-
nism

The AGRAMPLIFIER algorithm initially performs gradient
amplification while ensuring that the size of the collected

gradients is restored (line 1 in Algorithm 4). This is accom-
plished by retaining the maximum value in each feature map
and replacing the dropped features with zeros. Subsequently,
the restored gradients undergo calculation of LRR and ERR
[10], and those leading to superior prediction performance are
included in the white list (line 3).

Algorithm 4 AGRAMPLIFIER for Prediction-based Mecha-
nism.
Input: G - the collected gradients, equivalent to
{g1, g2, g3, . . .}; Gamp - the amplified gradients; gi
- the collected gradient from i-th client in G.

Output: Gdetox the detoxed gradients collection.
1: Gamp ← AGRAMPLIFIER(G,Restore− size = True)
2: Whitelist ← LRR (Gamp) ∩ ERR (Gamp)
3: Gdetox ← {gi | i ∈ Whitelist, gi ∈ G}
4: return Gdetox

C. Algorithm: AGRAMPLIFIER for Trust Bootstrapping-based
Mechanism

The AGRAMPLIFIER algorithm not only conducts gradient
amplification on the collected gradients to produce giamp (line
1 in Algorithm 5) but also amplifies the gradient generated
from the trusted validation set for trust bootstrapping to
produce g0amp (line 2). The trust score TSi for each participant
is subsequently determined by computing the ReLU-clipped
cosine similarity between the amplified gradients giamp and
g0amp (line 4). The collected local model update magnitudes
are then normalized (line 5), weighted by their respective trust
scores, and aggregated to form the global model (line 7).

Algorithm 5 AGRAMPLIFIER for Trust Bootstrapping-based
Mechanism.
Input: giamp - the amplified gradients from client i; gi - the

collected gradient from client i; g0 - the gradient generated
from the trusted root dataset.

Output: Gdetox the detoxed gradients collection.
1:

{
g1amp, g

2
amp, . . .

}
← AGRAMPLIFIER (g1, g2, . . .)

2: g0amp ← AGRAMPLIFIER (g0)
3: for i = 1, 2, . . . , N do

4: TSi ← ReLU

(
gi
amp·g

0
amp

∥gi
amp∥·∥g0

amp∥

)
5: ḡi ← ∥g0∥

∥gi∥ · gi
6: end for
7: gdetox ← 1∑N

j=1 TSj

∑N
i=1 TSi · ḡi

8: return Gdetox
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