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Abstract—Face Anti-spoofing (FAS) is essential to secure face
recognition systems from various physical attacks. However,
recent research generally focuses on short-distance applications
(i.e., phone unlocking) while lacking consideration of long-
distance scenes (i.e., surveillance security checks). In order to
promote relevant research and fill this gap in the community,
we collect a large-scale Surveillance High-Fidelity Mask (SuHi-
FiMask) dataset captured under 40 surveillance scenes, which has
101 subjects from different age groups with 232 3D attacks (high-
fidelity masks), 200 2D attacks (posters, portraits, and screens),
and 2 adversarial attacks. In this scene, low image resolution
and noise interference are new challenges faced in surveillance
FAS. Together with the SuHiFiMask dataset, we propose a
Contrastive Quality-Invariance Learning (CQIL) network to
alleviate the performance degradation caused by image quality
from three aspects: (1) An Image Quality Variable module
(IQV) is introduced to recover image information associated
with discrimination by combining the super-resolution network.
(2) Using generated sample pairs to simulate quality variance
distributions to help contrastive learning strategies obtain robust
feature representation under quality variation. (3) A Separate
Quality Network (SQN) is designed to learn discriminative
features independent of image quality. Finally, a large number
of experiments verify the quality of the SuHiFiMask dataset and
the superiority of the proposed CQIL.

Index Terms—Face anti-spoofing, Dataset, Surveillance scenes.

I. INTRODUCTION

FACE Presentation Attack Detection (PAD) technology is
a crucial step to enhance the security of face recognition

systems and plays an increasingly important role in resisting
malicious attacks, such as print-attack [1], replay-attack [2], or
face-mask [3]. Although current works [4]–[13] have achieved
satisfactory performance in short-distance applications, such
as phone unlocking, face payment, and access authentication,
they are still sensitive to face quality and fail in long-distance
applications, which hinders the expansion of FAS to surveil-
lance scenarios.

With the popularity of remote cameras and the improvement
of surveillance networks, the development of smart cities
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Fig. 1. Performance comparisons on the SiW, HiFiMask, OULU-NPU, and
proposed SuHiFiMask dataset using the same ResNet18 network. It shows
significant performance degradation under surveillance FAS.

has put forward higher requirements for traditional visual
technologies in surveillance. Benefited from the release of face
recognition datasets [14]–[16] in the surveillance scene and
driven by related algorithms [17]–[19], the face recognition
system has gradually got rid of the constraint of verification
distance, and can use the surveillance camera to complete
real-time capture, self-service access control, and self-service
supermarket payment. However, the FAS community is still
stuck in the protection of the face recognition system under
short-distance conditions, and cannot serve for the detection
of spoofing faces under a long-distance natural behavior. We
analyze two reasons that hinder the development of PAD tech-
nologies: (1) Lack of a dataset that can truly simulate the
attack in surveillance. The existing FAS datasets, whether 2D
print or replay attacks [4], [20], [21], or 3D mask attacks [3],
[22]–[25], require the subjects to face the acquisition device
under distance constraints. However, diversified surveillance
scenes, rich spoofing types, and natural human behavior are
important assessment factors for the surveillance FAS dataset
collection. (2) Low-quality faces in the surveillance scenar-
ios cannot meet the requirements of fine-grained feature-
based FAS tasks. The existing FAS algorithms, whether based
on color-texture feature learning [26]–[29], face depth struc-
ture fitting [4], [6], or remote photoplethysmography (rPPG)-
based detection [30]–[32], require high-quality image details
to ensure high performances. As illustrated in Fig. 1, the
resolution of faces under long-distance surveillance is small
and contains noise from motion blur, occlusion, bad weather,
and other bad factors. These are new challenges for algorithm
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design in surveillance FAS.
In order to fill the gap in surveillance scenes of the FAS

community, we target to solve two challenging problems an-
alyzed above from two aspects: data collection and algorithm
design. In Tab. I, we collect a large-scale FAS dataset based on
surveillance scenes, namely SuHiFiMask. It has the following
advantages: (a) Rich surveillance scenes. It includes 40 real
surveillance scenes, such as movie theaters, security gates,
and parking lots, which cover most face recognition scenes
as much as possible. (b) Realistic distribution of human
faces and natural behavior. It involves 101 participants of
different ages, and genders distribution participating in the data
collection. These subjects perform natural behaviors in daily
life. (c) Rich spoofing Attacks. It has 232 high-fidelity masks
(i.e. resin, plaster, silicone, headgear, head mold), 200 2D
attacks (i.e. posters, portraits, and screens), and 2 adversarial
attacks. (d) Realistic lighting and diverse weather. We collect
data under real outdoor scenes with different weather (i.e.,
sunny, snowy day) and light (i.e., day and night).

For the algorithm design, the Contrastive Quality-Invariance
Learning network (CQIL) is proposed in Fig. 5, which includes
an Image Quality Variable (IQV) module and a two-stream
framework consisting of a contrastive learning branch and a
Separate Quality Network (SQN) branch. The IQV module is
used to recover discriminative information related to FAS in
the picture by super-resolution and deliver quality differences
in contrast to the contrastive learning network backbone and
SQN branch. The contrastive learning backbone [38] contains
the online network and the target network. The online network
continuously fits the target network during training, learning to
approximate the same class with different quality distributions
in the shared potential space. The SQN consists of a Quality-
Invariance backbone network (CQI) (composed of a central
differential convolution operator [7]), a quality discrimina-
tor for separating quality, and the main classifier. CQI can
effectively extract fine-grained features under environmental
changes. The sample pairs generated by IQV are fed into CQI
through adversarial learning, which allows CQI to focus on
encoding features related to liveness while separating out the
interference caused by quality. The main contributions of this
paper are summarized below:

• To the best of our knowledge, this is the first work
to extend FAS to real surveillance scenes rather than
mimicking low-resolution images and surveillance envi-
ronments. We promote the development of this scenario
through data collection and algorithm design.

• We collect a large-scale surveillance FAS dataset, SuHi-
FiMask, including 101 participants of different ages, 232
masks and 200 2D attacks. A total of 10, 195 videos were
collected by 7 mainstream cameras in 40 real scenes.

• We propose a novel Contrastive Quality-Invariance
Learning (CQIL) network to enhance the detection of face
attacks in surveillance. Among them, an Image Quality
Variable (IQV) module is designed to recover the FAS
information in images and construct sample pairs to
simulate face quality differences in realistic surveillance.
A contrastive learning branch to obtain features robust

to quality changes. And a Separate Quality Network
(SQN) branch based on adversarial learning is introduced
to further guide the model to learn quality-independent
liveness features.

• Extensive experiments are conducted on the SuHiFiMask
and three other public datasets to demonstrate the chal-
lenges of the SuHiFiMask and the effectiveness of the
proposed method.

II. RELATED WORK

In this section, we review the current FAS works in con-
strained environments and some preliminary attempts in the
surveillance scenes.

FAS under constrained Environments.
Face spoofing (e.g., presentation attacks) is the typical

physical attack to deceive the face recognition systems, where
attackers present faces from spoof mediums, such as a pho-
tograph, screen, or mask, instead of a living human. Ac-
cording to the spoof mediums, we can roughly classify the
existing attacks into 2D [4], [20], [21] and 3D attacks [3],
[25]. Replay-Attack [2] and CASIA-FASD [1] are early FAS
datasets, commonly used as benchmark for domain gener-
alization evaluation. The spoof medium of the former is an
electronic screen, while the latter introduces additional paper
mediums based on different resolutions. With the advancement
of acquisition equipment in mobile phones, there are also some
high-resolution datasets recorded by replaying face video with
a smartphone, such as Replay-Mobile [39], OULU-NPU [20],
and SiW [4]. CelebA-Spoof [40] introduces rich attribute
annotation information, which can be used as an auxiliary
task to improve the generalization of the model in various
attacks. Recently, with the cost reduction of multi-spectral
sensors and the popularity of use scenes, some new sensors
have been introduced to provide more possibilities for FAS
methods. Holger et al. [23] use multi-spectral short wave
infrared (SWIR) imaging to ensure the authenticity of a face
even in the presence of partial disguises and masks. Zhang et
al. [21] collect a CASIA-SURF dataset with 3 modalities (i.e.,
RGB, Depth and NIR) using Intel RealSense SR300 camera,
and propose a multi-modal multi-scale fusion method for FAS.
Similarly, Liu et al. [41] introduce a CASIA-SURF CeFA
dataset, covering 3 ethnicities, 1, 607 subjects, and 23, 538
videos with 1280 × 720 resolution. As attack techniques are
constantly upgraded, some new types of attacks have emerged,
e.g., face mask [3], [25], [29]. Nesli et al. [3] provide a
3DMAD which is recorded using the Microsoft Kinect sensor
and consists of Depth and RGB modalities with 3D masks.
George et al. [29] introduce a WMCA database with four
channels, e.g., color, depth, near-infrared, and thermal, for
face PAD which contains a wide variety of 2D and 3D
presentation attacks, and propose MC-CNN method aiming
to detect sophisticated attacks with multiple channels informa-
tion. Heusch et al. [42] collect an HQ-WMCA database, which
can be viewed as an extension of the WMCA [29] database via
adding a new sensor acting in the shortwave infrared (SWIR)
spectrum. A large-scale High-Fidelity Mask dataset, namely
CASIA-SURF HiFiMask (briefly HiFiMask) was collected by
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TABLE I
COMPARISON OF PUBLIC FACE ANTI-SPOOFING DATASETS. * NOTES THAT SUHIFIMASK IS FOCUSED ON SURVEILLANCE SCENES WHERE BOTH REAL
PEOPLE AND FAKE ATTACKS APPEAR AT THE SAME TIME. THEREFORE, THE NUMBER OF REAL VIDEOS AND THE NUMBER OF FAKE VIDEOS ARE BOTH

10195.

Dataset, Year #sub. Distance
(Long/Short) Materials Scenes Light, Weather Attacks Devices #Videos

(#Live/#Fake)
3DMAD [33], 2013 17 Short Paper, Resin Constrained scenes Adjustment 2D/2.5D image Kinect 255(170/85)

3DFS-DB [22], 2016 26 Short Plastic Office Adjustment 2D/2.5D image, 3D Mask Kinect, Carmine 1.09 520(260/260)

BRSU [23], 2016 137 Short Silicone, Plastic,
Resin, Latex

Disguise,
Counterfeiting Adjustment 2D image SWIR, Color 141(0/141)

MARsV2 [34], 2016 12 Short ThatsMyFace,
REAL-F Office Six directions of light 3D Mask

Logitech C920, Industrial Cam,
EOS M3, Nexu 4, IPhone 6,
Samsung S7, Sony Tablet S

1008
(504/504)

SMAD [35], 2017 Online Short Silicone - Varying light 2D image, 3D Mask Varying Cam 130(65/65)

MLFP [36], 2017 10 Short Latex, Paper Indoor, Outdoor Daylight 2D image Visible,
Near infrared, Thermal

1350
(150/1200)

ERPA [37], 2017 5 Short Resin, Silicone Indoor Room light 3D Mask Xenic Gobi, Thermal Cam 86

WMCA [29], 2019 72 Short Plastic,
Silicone, Paper Indoor Office/LED/Day light 2D image, 3D Mask Intel RealSense SR 300,

Seek Thermal, Compact PRO
1670

(347/1332)

3DMask [26], 2020 48 Short Plaster Indoor, Outdoor Six directions of light 2D image, 3D Mask Apple, Huawei, Samsung 1152
(288/864)

HiFiMask [25], 2021 75 Short Transparent,
Plaster, Resin

White, Green,
Tricolor, Sunshine,

Shadow, Motion
Six directions of light 2D image, 3D Mask IPhone 11, IPhone X,

MI10, P40, S20, Vivo, HJIM
54,600

(13,650/40,950)

SuHiFiMask (ours), 2022 101 Long Resin, Plaster,
Silicone, Paper

Security check lane,
Theater, Parking lot 1

Day/Night light,
Sunny/Windy/

Cloudy/Snowy day

2D image, Video replay,
3D Mask Surveillance cameras2 10,195*

(10,195/10,195)

1 40 real surveillance environments, including indoor as well as outdoor. Please see Fig.2 in Appendix for more details.
2 dahua: DH-IPC-HFW4843M, DH-P80A1-SA; HIKVISION: DS-2CD3T87WD-L, DS-2CD3T86FWDV2-I3S; TP-LINK: TL-IPC586FP, TL-IPC586HP;

ZHONGDUN: ZD5920-Gi4N (Brand name: Camera model) .

Liu et al. [25]. Specifically, it consists of a total amount of
54, 600 videos which are recorded from 75 subjects with 7
kinds of sensors. Although the resolution and fidelity of these
datasets are increasing high (i.e., resolution from 320×240 [2]
to 1, 920 × 1, 080 [4], and spoofing types from print [1] to
mask [25]), they are all oriented to FAS in a close constrained
environment, ignoring the application requirements of remote
surveillance scenes.

The essence of FAS is a defensive measure for face recog-
nition systems and has been studied for over a decade. Early
works were mainly based on color texture [2], [43] and motion
analysis [44]. The former is based on the consideration that
the fake face is different from the live face in texture details,
such as color distortions, and specular highlights, due to the
intervention of spoofing mediums. However, these algorithms
are not accurate enough because of the use of handcrafted
features, such as LBP [2], HoG [45], and SURF [46]. The
latter analyzes the attack samples as static or non-rigid motion
compared with live faces from the perspective of motion.
Unfortunately, these methods become vulnerable if someone
presents a replay attack or a print attack with cut eye/mouth
regions. Instead of using pre-defined features such as LBP
and HOG, CNN-based methods [47], [48] design a unified
framework of feature extraction and classification in an end-to-
end manner. However, they treat FAS as a binary classification
task, and will highly depend on the liveness-unrelated cues,
such as color distortion, shape deformation, or background
information. Intuitively, the live faces in any scene have con-
sistent face-like geometry. Inspired by this, some works [4],
[7], [49] leverage the physical-based depth information instead
of binary classification loss as supervision, which are more
faithful attack clues in any domain. Another works [8], [9],
[50]–[52] treat FAS as a feature disentangled representation
learning. Although these CNN-based methods achieve near-
perfect performance under known attack clues, they still show
poor generalization in the face of unknown attacks. To solve

this problem, there are also some methods [53]–[56] that focus
on improving the generalization of FAS in unknown domains.
Examples are MADDG [5], SSDG [57], are SSAN [58], which
aim to learn a generalized feature space via adversarial training
and triplet loss strategies. In the case of FMeta [59], MT-
FAS [60], D2AM [11], and SDA [61], they aim to find the
generalized feature directions via meta-learning strategies.

FAS in Surveillance Environments. The task of face recogni-
tion in surveillance has been widely concerned by researchers,
including data collection and algorithm design. SCface [16]
was the first face recognition dataset released to simulate
research in surveillance scenes, which contains 4, 160 still
images captured by five different quality cameras. The QMUL-
Survface dataset [14] further complements the low-resolution
face recognition dataset by collecting 463, 507 face images
from 15, 573 different identities in the real world using surveil-
lance cameras. Then, IJB-C [15] aims to improve the repre-
sentation of the global population by adding a list of names
containing specific occupations such as artists, public speakers,
and journalists from different countries to the surveillance
scenario. In addition, based on these datasets, face recognition
algorithms for surveillance scenes have been in full swing.
Li et al. [18] introduce the adversarial generative networks
and fully convolutional architectures to recognize ground-
resolution faces in supervised discriminative learning. Consid-
ering the incompleteness of these datasets, Zhong et al. [19]
propose a sigmoid-constrained hypersphere loss (SFace) to
reduce the intra-class distance of high-quality samples while
preventing over-fitting label noise. Kim et al. [17] propose
an adaptive marginal function to adjust the importance of
different samples by emphasizing the role of clean samples
in classification.

In the FAS community, Chen et al. [62] explore the face
anti-spoofing in surveillance scenes for the first time and
proposed a dataset and benchmark. As for the dataset, they
release the GREAT-FASD-S, which is first collected by two
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multi-modal cameras, and then processed into low-quality
images. And for the method, they propose the DAM-SE
module to select the most informative channels and recover
the image with the nearest neighbor interpolation algorithm.
Aravena et al. [63] demonstrates that discarding a suitable
percentage of low-quality samples can effectively improve
the performance of the PAD algorithm. However, the nearest
neighbor interpolation algorithm can not recover the original
information by filling pixels with low-resolution images, and
the method of directly discarding low-quality samples does
not directly face the challenge of FAS in surveillance scenes.

Fig. 2. An overview of some characteristics of SuHiFiMask. From top to
bottom: forms of attack, diverse weather, and surveillance scenes.

III. SUHIFIMASK

In order to fill the gap in the face anti-spoofing dataset
of surveillance scenes and promote the research of related
algorithms, we collected the SuHiFiMask dataset that has the
following advantages over existing datasets:

Advantage 1: To the best of our knowledge, SuHiFiMask
is the first dataset collected based on real surveillance scenes,
rather than the low-quality datasets obtained by manual degra-
dation, such as GREAT-FASD-S [62]. Compared to previous
PAD datasets in controlled environments, the one we present
inevitably introduces low-resolution face, pedestrian occlusion,
changeable posture, motion blur, and other challenging situ-
ations, which greatly increases the challenge of FAS tasks.
In addition, as shown in the third column of the Tab. I, we
define the dataset with the distance between the camera and
the subject less than one meter as the short distance dataset,
while the dataset with the distance between the camera and
the subject greater than three meters is defined as the long-
distance type. Advantage 2: SuHiFiMask considers the most
comprehensive attack types, each of which contains diverse
spoofing methods. As shown in Tab. I, 2D image, video
replay and 3D mask all appear in SuHiFiMask to evaluate
the algorithm’s perception of changes for paper color, screen
moire and face structure in surveillance scenes. Different from
the attack type under classical more constrained environments,
as shown in Fig. 2, we introduce paper posters, humanoid
stand-ups in 2D image, and headgear, head mold in the 3D
mask to minimize the spoofing trace in the surveillance scenes.
In order to effectively prevent criminals from hiding their
identities through local occlusion during security inspection,

we introduce two most effective adversarial attacks (ADV),
instead of simply masking the face with paper classes [29]
and partial paper [64]. Advantage 3:

We designed 40 common real-world surveillance scenes,
including daily life scenes (e.g., cafes, cinemas, and theaters)
and security check scenes (e.g., security check lanes and park-
ing lots) for deploying face recognition systems. In fact, the
rich natural behaviors in different surveillance scenes greatly
increase the difficulty of PAD due to pedestrian occlusion and
non-frontal views. Advantage 4: We collect data in four types
of weather (e.g., Sunny, Windy, Cloudy and Snowy days) and
natural lighting (e.g., Day and Night lights) to fully simulate
the complex and changeable surveillance scenes. Different
weather and light bring diverse image style information and
image artifacts, which will put forward higher requirements
for the generalization of PAD technology.

Based on the above acquisition advantages, our SuHiFiMask
contains 10, 195 videos from 101 subjects of different age
groups, which are collected by 7 mainstream surveillance
cameras and see Fig.1 in Appendix for more details. In
particular, as shown in the second and third rows of Fig. 2,
SuHiFiMask is focused on surveillance scenes, and both real
and fake attacks appear at the same time.

As shown in the Fig. 3, the existing FAS dataset of a video
contains only one real person or one type of attack. The subject
faces the camera and remains stationary during the shooting
to ensure the clarity of the collected data. In contrast, videos
based on a surveillance scene contain multiple real people and
multiple types of attacks. Subjects are not required to face the
camera and move randomly in the scene while filming. This
leads to low-resolution of face images, pedestrian occlusions,
non-frontal poses, and other disturbances that affect the stabil-
ity and generalization of the algorithm. Thus, the surveillance
scene-based FAS dataset poses a greater challenge than the
existing FAS dataset.

Fig. 3. Comparison of the existing FAS dataset and the surveillance scene-
based dataset. The left image is from MARsV2 and the right image is from
the proposed SuHiFiMask.

A. Acquisition Details of SuHiFiMask.

Scenes and props. In order to cover real surveillance
environments as much as possible, we carefully selected
and rented 40 real-world scenarios that include daily places,
such as cafes, yoga studios, and movie theaters, as well as
security checkpoints, such as security lanes, parking lots, and
entrance/exit gates. We provide 232 masks as the candidate
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TABLE II
STATISTICAL INFORMATION FOR EACH PROTOCOL OF THE PROPOSED SUHIFIMASK DATASET. NOTE THAT 1, 2, 3 IN THE FOURTH COLUMN MEAN RESIN,

SILICONE, AND PLASTER. 4 REPRESENTS HEADGEAR AND HEAD MOLD.

Pro. Subset #Subject Mask Quality score #Live #Mask #Other attack #All

1
Train 40 1&2&3&4 [0, 1] 118,520 60,715 22,333 201,568
Dev 10 1&2&3&4 [0, 1] 23,304 11,856 5663 40,823
Test 51 1&2&3&4 [0, 1] 69,878 42,569 19,743 132,190

2.1
Train 101 1&2&3 [0, 1] 100,990 40,454 0 141,444
Dev 101 1&2&3 [0, 1] 20,521 19,608 0 40,129
Test 101 4 [0, 1] 42,539 21,199 0 63,738

2.2
Train 101 1&2&4 [0, 1] 78,961 36,829 0 115,790
Dev 101 1&2&4 [0, 1] 20,505 19,052 0 39,557
Test 101 3 [0, 1] 42,521 28,366 0 70,887

2.3
Train 101 1&3&4 [0, 1] 77,952 28,994 0 106,946
Dev 101 1&3&4 [0, 1] 20,594 17,714 0 38,308
Test 101 2 [0, 1] 42,498 44,104 0 86,602

2.4
Train 101 2&3&4 [0, 1] 79,102 29,087 0 108,189
Dev 101 2&3&4 [0, 1] 20,627 18,068 0 38,695
Test 101 1 [0, 1] 42,513 42,887 0 85,400

3
Train 101 1&2&3&4 [0.4, 1] 64,276 35,898 58,889 159,063
Dev 101 1&2&3&4 [0.3, 0.4) 37,990 24,031 27,255 89,276
Test 101 1&2&3&4 [0, 0.3) 84,368 43,820 36,369 164,557

pool for selection according to the scene requirements. Among
them, some high-fidelity plaster and resin masks are from
HiFiMask [25], and silicone material headgear and head mold
masks are new additions to reduce the forgery traces exposed
in the monitoring perspective, where the numbers of plaster
masks, resin masks, silicone masks, headgear, and head mold
were 93, 93, 23, 10, and 13, respectively. In addition to mask
attacks, we printed 2D images of 50 subject in the form
of humanoid upright cards and posters and provided video
attacks by displaying images on a movable TV. In particular, in
order to effectively prevent criminals from hiding their identity
information during security checks in surveillance scenes, we
crafted adversarial mask [65] and adversarial hat [66] that can
induce face recognition systems to categorize the registered
identity as unknown identity, aiming to increase the challenge
to algorithm stability.

Data collection and processing rules. To ensure the quality
and challenge of data, we implemented the following criteria
before each shot: a) Device adjustment. We adjusted the
positions and angles of each camera to ensure that the entire
scene is captured. b) Sample balance. We arranged a consistent
number of live and fake subjects to ensure sample balance
in SuHiFiMask. c) Static 2D attacks. We deployed posters
and humanoid upright-card and electronic screen-based photos
with the same identity as the subjects at random locations.

We also considered the following criteria during each shot:
a) We designed specific movement routes for each subject
to ensure adequate pedestrian occlusion, versatile posture
and comprehensive perspective. b) We requested subjects in
different scenes to perform scene-related behaviors, such as
eating and chatting in daily scenes, and self-service check-in
security check scenes.

After data collection, we performed the following pre-
processing: a) Face detection. We used RetinaFace [67] to
detect the face in each frame of the original video, and
discarded those frames where the face could not be detected.
b) Face tracking. We use face similarity to track the position
of faces in consecutive frames and name each of the different
face tracking boxes. c) Video sampling. We sample each video
in 10-frame intervals and store the cropped face image in the

corresponding face tracking box folder. d) Dataset naming
rules. We named the folder of this video according to the
following rule: Group Scene Camera Epoch T ime.

Ethical and legal considerations. Since we collected our
filming scenes from real-world environments, we have a
responsibility to maintain the public environment and protect
pedestrian safety. We commissioned two companies to legally
authorize the scenes for data collection. SuHiFiMask is a
dataset consisting of videos taken from subjects of different
age groups, and although this is not a subject explicitly
modeled for human behavior, the relevant challenge factors
are related to humans. Based on the consideration of the
protection of human rights and legal interests, our collection
process follows a strictly ethical procedure. We commission
a data acquisition company to develop strict standards and
obtain the signature authorization of all human subjects. The
collected images and videos will be used to develop, train
and optimize face anti-spoofing technologies to the extent
permitted by Chinese laws. The dataset is balanced in terms of
gender and age, that is, there is no hazard in terms of ethics.

B. Evaluation protocol and Statistics.

We define three protocols for SuHiFiMask to fully evaluate
the performance in surveillance environments: Protocol 1-ID,
Protocol 2-Mask, and Protocol 3-quality.

Protocol 1-ID. Protocol 1 aims to evaluate the comprehen-
sive performance of the algorithm being migrated to long-
distance surveillance scenes. Compared with the classical
constrained environment datasets, protocol 1 includes various
unique factors in surveillance scenes, such as low resolution,
pedestrian occlusion, changeable posture, motion blur, and
other complex weather, which pose greater challenges to
algorithm design. As shown in Tab. II, we divide the training
set, development set, and testing set according to the identity
information, including 40, 10, and 50 subjects, respectively.

Protocol 2-Mask. Protocol 2 evaluates the generalization
of the algorithm for the ‘unseen’ 3D facial mask type. The
diversity and unpredictability of mask materials are important
characteristics of spoofing means and are easily interfered with
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by other liveness-unrelated factors. Thus, the generalization
to mask materials is an important evaluation index. In this
work, we divide protocol 2 into four sub-protocols by using the
‘leave-one-type-out testing’ method, in which one unknown
3D mask material is divided into the testing set for each sub-
protocol. As shown in Tab. II, ‘1’, ‘2’, ‘3’, and ‘4’ in the fourth
column indicate that the 3D mask material is headgear/head
mold, resin, silicone, and plaster, respectively.

Fig. 4. Some samples from protocol 3. The number below the image
represents the quality score of the faces. Samples with different score intervals
are proportionally categorized as the training set, development set, and testing
set.

Protocol 3-Quality. Protocol 3 evaluates the robustness of
the algorithm to image quality degradation. Variable quality
and disturbances are factors that affect the stability of the
algorithm. Therefore, the robustness of the algorithm to quality
degradation is an important metric to be evaluated. In this
work, as shown in Fig. 4, we use the SER-FIQ [68] algorithm
to calculate the image quality score which ranges from 0 to
1. As shown in the fifth column of Tab. II, we assign images
with scores [0.4, 1] as the training set, scores [0.3, 0.4) as the
development set, and scores [0, 0.3) as the testing set.

IV. METHODOLOGY

In this section, we present a Contrastive Quality-Invariance
Learning (CQIL) network for FAS tasks based on long-
distance surveillance scenes. As shown in Fig. 5, CQIL
contains an Image Quality Variable module (IQV) and a dual-
stream framework with a contrastive learning branch and a
Separate Quality Network (SQN) branch. IQV processes low-
quality images into high-quality images by super-resolution
and sends them to the contrastive learning branch and the SQN
branch. The contrastive learning branch trains the network
by using high-quality and low-quality images as input to
the online network and the target network, respectively. The

SQN branch makes the features extracted by the encoder
independent of quality by adversarial learning. In addition,
CQI uses high-quality images after super-resolution as input
to extract richer discriminative features.

Image Quality Variable Module (IQV). In contrast to the
classical constrained environment, the difficulty of the FAS
task based on surveillance scenes is the low resolution and
variable quality of the images, which leads to insufficient
information contained in the images and severely interferes
with the extraction of robust features. To solve this problem,
a possible solution is to increase the resolution of the image
and extract robust invariant features. Inspired by CSRI [69],
we introduce the Image Quality Variable (IQV) module to
improve the image resolution of SuHiFiMask and recover
information relevant to the FAS task. In addition, IQV tags
the images processed by the SR network with label 0 and
the original images with label 1. Then IQV sends them to
the contrastive learning branch and the SQN branch. Since
SuHiFiMask is the first unconstrained PAD dataset, there is
no high-quality image as ground truth to optimize the super-
resolution network. Thus, we use the existing high-definition
PAD dataset to train the super-resolution network. As shown in
Fig. 5, this process can be expressed as follows: 1) We degrade
the high-fidelity dataset OULU-NPU [20] into a low-quality
dataset using pre-processing methods such as interpolation and
gaussian blurring. 2) We feed degraded low-resolution images
into an SR network and use its original data for supervision
to train the SR network. 3) We use the SR network with
shared parameters to process SuHiFiMask’s images into high-
quality images. Unlike the standalone super-resolution tasks,
we combine the SR tasks with the FAS tasks by integrating
the IQV module into the framework with the following two
advantages below:

• Training the FAS network with SR network-boosted
resolution images can improve the performance of the
FAS network.

• The improved performance of other networks in CQIL
can better guide the SR network to recover information
related to the FAS task in the image.

Finally, MSE loss is used to constrain the super-resolution
network:

Lmse =
1

n

∑
(ŷi − yi)

2 (1)

where n represents the number of pixels in the image, ŷi, yi

denote the pixel value of the image after super-resolution and
the pixel value of ground truth respectively.

Contrastive Learning Branch. To improve the robustness of
FAS networks in a quality-variant surveillance environment,
we propose a branch based on contrastive learning. Inspired
by the BYOL [38], this branch obtains robustness to quality
variations by fitting the distribution of potential features for
different quality pictures. Specifically, during the training
process, due to the constraints of Eq. 2 and Eq. 3, the online
network will gradually fit the target network by closing the
same class in the potential feature space for pairs of images
of different quality, which makes it to obtain a powerful
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Fig. 5. Contrastive Quality-Invariance Learning (CQIL) network. IQV recovers information from the images and constructs sample pairs of different qualities.
Sample pairs are sent to the contrastive learning branch and the SQN branch. The contrastive learning branch consists of an online network (encoder, projector,
predictor) and a target network (encoder, projector). Above the image the SQN branch is shown, which contains the discriminator, CQI, GRL, and the main
classifier.

feature representation while ignoring the negative impact from
different quality distributions.

Lθ,ξ ,
∥∥qθ (zθ)− z̄′ξ

∥∥2
2

= 2− 2 ·

〈
qθ (zθ) , z

′
ξ

〉
‖qθ (zθ)‖2 ·

∥∥∥z′ξ∥∥∥
2

(2)

Lcontra = Lθ,ξ + L̃θ,ξ (3)

where qθ (zθ) is the prediction of the online network output
and z′ξ is the projection of the target network output, then we
use `2-normalize to turn qθ (zθ) and z′ξ into qθ (zθ) and z̄′ξ.
In addition, L̃θ,ξ is the result of Lθ,ξ symmetrization.

As shown in Fig. 5, image pairs of different quality gen-
erated by IQV are sent to the online and target networks.
The online network is composed of an encoder network
(Interchangeable backbone networks), a projector (Projection
of extracted features into the latent space), and a predictor
(with the same multi-layer perceptron structure). Similarly, the
target network has an encoder and a projector with different
weights from the online network. Unlike the weight update of
the online network, the parameters of the target network are
not updated in gradient descent [38], and the process can be
expressed as follows:

ξ←τξ + (1− τ)θ (4)

The parameters ξ and θ represent the parameters to be updated
for the target network and the online network, respectively.
The parameters θ of the online network are updated by the
optimization of the loss function, the parameters ξ of the target
network are updated by perceiving an exponential moving-
average [70] of the online parameters and we perform the
moving-average after each step by target decay rate τ .

Separate Quality Network (SQN). For FAS data in surveil-
lance scenes, which contains many variations (e.g., environ-

ment, light, weather), we need operators that are more robust
to variations to describe the required fine-grained information.
Inspired by central differential convolution (CDC) [7], we use
CDC to form a quality-independent backbone network (CQI)
in the second branch, exploiting its powerful representation
ability to extract fine-grained features under environmental
variations. In addition, we use cross-entropy loss as a supervi-
sion of CQI, so that this network can capture the cues related
to liveness more robustly.

The sample pairs generated by the IQV module have the
following characteristics: 1) Both the super-resolution network
processed images and the original images contain the object of
the face (live or attack) in the center of their images, so even
samples with very different quality share the same semantic
feature space. 2) Although the quality of each image is differ-
ent, they all contain discriminative information. Therefore, we
make the discriminative features extracted by CQI independent
of quality by adversarial learning. Specifically, we use the
adversarial loss to optimize the backbone network CQI. And
the gradient reversal layer (GRL) [71] allows the parameters
of the quality discriminator to be optimized in the reverse
direction. This process can be formulated as follows:

min
D

max
C
Ladv(C,D) =

− E(x.y)∼(X,YQ)

N∑
i=1

1[i = y]logD(C(x))
(5)

where YQ is the set of quality labels, N is the number of
images of different quality, C stands for the CQI network
backbone where we extracted the liveness-related information,
and D represents the quality discriminator. Finally, we con-
catenate the features extracted by CQI with those extracted by
the contrastive learning branch and input them to the classifier
for classification.
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Algorithm 1 Contrastive Quality-Invariance Learning (CQIL)
Input: image set X , label set Y , HD image set H .

1: Initialize: encoder fθ, projector gθ, predictor qθ
2: Initialize: encoder f ′ξ, projector g′ξ
3: Initialize: network n of IQV, encoder c of CQI
4: while not end of training do
5: sample batch A ← {xi ∼ X}Ni=1, B ← {yi ∼ Y }Ni=1

6: sample batch H ← {hi ∼ H}Ni=1

7: for xi ∈ A do
8: li ← hi . Degradation into lq images
9: compute Lmse, see Eq. 1

10: xi1 ← n(xi), xi2 ← xi . Generate image pairs
11: yi1, yi2 ← xi1, xi2 . Generate quality labels
12: z1 ← gθ (fθ (xi1)), z2 ← gθ (fθ (xi2))
13: z′1 ← gθ (fθ (xi2)), z2′ ← gθ (fθ (xi1))
14: compute Lcontra, see Eq. 2, Eq. 3
15: X ← [xi1, xi2], Y ← [yi1, yi2], Z ← c(X )
16: compute Ladv , by Eq. 5
17: z3 ← c(xi), z4 ← fθ(xi)
18: compute Lcls, Lcdc, Ltotal, by Eq. 6
19: end for
20: end while
21: ∆θ = backward (Ltotal)
22: θ ← θ−learningrate ·∆θ
23: update ξ by Eq. 4
24: update network n, encoder c

Overall Loss. As mentioned, CQI is used to extract quality-
independent discriminative features, and these features are
concatenated with the robust features extracted from the con-
trastive learning branch and fed to the main classifier. There-
fore, the cross-entropy loss Lcdc and Lcls is well constrained
for both CQI and the main classifier. In summary, the overall
loss function Ltotal for stable and reliable training can be
formulated as follows:

Ltotal = λ1 · Lcls + λ2 · Lcontrast + λ3 · Ladv
+λ4 · Lcdc + λ5 · Lmse

(6)

whereλ1, λ2, λ3, λ4 and λ5 are five hyper-parameters to
balance the proportion of the different loss functions.

V. EXPERIMENTS

A. Experiments Settings

Dataset and Protocols. In experiments, a total of five
datasets were used: OULU-NPU [20], CASIA-MFSD [1],
RepalyAttack [2], MARsV2 [34] and the SuHiFiMask dataset.
First, we conducted ablation experiments on three protocols of
the proposed SuHiFiMask to demonstrate the effectiveness of
each component of the proposed CQIL. Second, we present
the respective baselines for the different protocols for the
proposed dataset. Finally, we design several different cross-
testing experiments to demonstrate the importance of the
proposed dataset and the effectiveness of the method.

Training Setting. Our proposed method is implemented
with Pytorch. In the training stage, models are trained with

Adam optimizer and the initial learning rate is 2e − 4. The
batch size is set to 6 for CQIL. The epoch of the intra-testing
is set to 10, and the lr decreases by 0.2 times per epoch. The
epoch of the inter-testing is 300, and lr decreases by 0.2 times
per 50 epochs. λ1, λ2, λ3, λ4 and λ5 are set to 2, 1.5, 0.5,
1.5, 0.5 respectively.

Performance Metrics and Implementation Details. We
accept the Attack Presentation Classification Error Rate
(APCER), Bonafide Presentation Classification Error Rate
(BPCER), and ACER [72] as the evaluation metrics in our
experiments. The ACER on each testing set is determined by
the threshold value of the performance on the development
set. In cross-testing experiments, we use Half Total Error
Rate (HTER) [73] and Area Under Curve (AUC) as evalu-
ation metrics. We use the ResNet18 [48], ViT [74], and the
CDCN [7] network as the backbone, and report their results
in experiments.

B. Ablation Study.

Here we conduct ablation experiments to verify the con-
tribution of each module of the proposed CQIL on the three
protocols of the SuHiFiMask dataset.

TABLE III
THE ABLATION STUDY OF DIFFERENT COMPONENTS. THE EVALUATION

METRIC IS ACER (%).

Method Prot.1 Prot.2 Prot.3
ResNet18 12.58 16.55±51.71 17.64

CQIL-Model-1 11.97 16.01±50.23 17.45
CQIL-Model-2 11.75 15.67±48.12 16.54
CQIL-Model-3 10.90 15.14±46.66 16.13
CQIL-Model-4 10.69 14.90±45.92 15.98

Advantage of the proposed architecture. We compare four
architectures with ResNet18 to demonstrate the advantages of
each module of the proposed method. The CQIL-model-1 is a
contrastive learning network with ResNet18 as its backbone.
Since the training of the contrastive learning network requires
the output of the IQV module, we use images processed by cu-
bic interpolation and nearest-neighbor interpolation to mimic
samples of different quality to eliminate the impact of the IQV
module on performance. In addition, we additionally supervise
the training of the online encoder using cross-entropy loss. In
the testing phase, we use the features extracted by the online
encoder for classification. As shown in Tab. III, CQIL-model-
1 has a significant improvement in performance on all three
protocols compared to ResNet18, which demonstrates that the
contrastive learning branch using quality change as a contrast
improves the robustness of the network in surveillance scenes.

Advantage of SQN branch. Our proposed SQN branch
takes sample pairs of different qualities generated by the
IQV module as input and lets the discriminative features
extracted by the encoder CQI be independent of the quality by
adversarial learning. CQIL-model-2 extends the SQN branch
on the basis of CQIL-model-1. In the testing phase, we
concatenate the features extracted by the contrastive learning
branch with the features extracted from CQI in the SQN
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branch for classification. As shown in Tab. III, the performance
of CQIL-model-2 is significantly improved on all three proto-
cols, and the performance improvement is especially obvious
in protocol 3, which verifies that SQN trained with samples
of different quality have the ability to extract discriminative
features independent of quality.

Advantage of IQV module. CQIL-model-3 extends the
complete IQV module based on CQIL-model-2 but uses low-
quality original images to train the CQI encoder. CQIL-model-
4 extends CQIL-model-3 by training CQI encoders using
high-quality images generated by SR networks. The improved
performance of CQIL-model-3 in Tab. III demonstrates that
the sample pairs constructed by IQV more closely match
the quality variation in the surveillance scene and IQV can
effectively improve the performance of the SQN branch and
contrastive learning branch. The improved performance of
CQIL-Model-4 further validates the two advantages of IQV
modules: 1) The SR network processed images can be used
for CQI encoder training, thus improving the performance
of the FAS task. 2) The performance-improved FAS network
can better guide the SR network to recover the discriminative
information of the images.

C. Intra-Testing.

Here, we conduct experiments on three different protocols
of SuHiFiMask, showing that SuHiFiMask poses a challenge
to existing FAS studies while also testing the performance of
our proposed CQIL method in different data distributions.

TABLE IV
THE RESULTS OF INTRA-TESTING ON THREE PROTOCOLS OF

SUHIFIMASK.

Prot. Method APCER% BPCER% ACER%

1

ResNet18 13.59 11.57 12.58
ViT 13.45 9.89 11.67

CDCN 20.46 18.95 20.41
CQIL (ours) 11.09 10.29 10.69

2

ResNet18 20.46±184.60 12.74±1.43 16.60±51.05
ViT 19.56±181.71 12.25±0.42 15.89±45.01

CDCN 24.88±55.77 24.44±12.51 24.66±16.46
CQIL (ours) 18.83±169.37 10.88±0.34 14.86±46.04

3

ResNet18 21.04 13.64 17.64
ViT 19.61 13.95 16.78

CDCN 28.70 25.89 27.30
CQIL (ours) 19.14 12.82 15.98

Experiments on Protocol 1-ID. In protocol 1, the data
distribution is similar for different sets. The training set,
development set, and testing set contain all attack types,
and also contain data for all quality scores. The protocol is
appropriate to evaluate the performance of the FAS algorithm
in long-distance surveillance scenes. As shown in Tab. IV,
the proposed CQIL ranks first for three performance metrics
(11.09%, 10.29%, 10.69%, respectively) compared to the
generic network backbone ResNet, ViT, and the FAS task
network CDCN with robust feature representation on the
Protocol 1, showing that the proposed method performs well in
the FAS task based on surveillance scene with low resolution
and many interferences.

Experiments on Protocol 2-Mask. We verify the algo-
rithm’s ability to discriminate between different types of masks

by protocol 2. As shown in Tab. V, our proposed CQIL
achieved good results except for the APCER on protocol 2.1
and protocol 2.2 which was not the highest performance,
which proves that our method can extract discriminative
features in low-quality mask images. It is worth mentioning
that the testing set of protocol 2.1 is composed of headgear
and head mold. These two types of masks are very similar
to the human head structure, so the algorithm can no longer
use features such as mask contours as a basis for prediction.
Thus, the performance of CQIL on protocol 2.1 demonstrates
the importance of CQI encoders that can extract fine-grained
features.

TABLE V
THE RESULTS OF INTRA-TESTING ON FOUR SUB-PROTOCOLS OF

SUHIFIMASK PROTOCOL 2.

Prot. Method APCER% BPCER% ACER%

2.1

ResNet18 43.33 13.96 28.65
ViT 42.54 12.05 27.29

CDCN 35.47 20.69 28.08
CQIL (Ours) 41.18 11.81 26.49

2.2

ResNet18 8.50 11.58 10.04
ViT 8.56 11.40 9.98

CDCN 14.72 21.41 18.06
CQIL (Ours) 8.88 10.26 9.57

2.3

ResNet18 17.52 11.51 14.52
ViT 13.70 12.33 13.02

CDCN 26.62 29.20 27.91
CQIL (Ours) 13.61 10.92 12.27

2.4

ResNet18 12.48 13.90 13.19
ViT 13.33 13.20 13.26

CDCN 22.72 26.47 24.59
CQIL (Ours) 11.64 10.54 11.09

TABLE VI
THE RESULTS OF CROSS-DATASET TESTING FOR CASIA-MFSD,

REPLAY-ATTACK AND SUHIFIMASK. THE EVALUATION METRIC IS
HTER(%).

Method Train CASIA-MFSD ReplayAttack

Test Replay-
Attack

SuHiFi-
Mask (Ours)

CASIA-
MFSD

SuHiFi-
Mask(Ours)

ResNet18 36.3 44.5 50.9 42.1
ViT 34.9 42.8 44.8 45.9

CDCN 15.6 45.9 32.6 41.4
AUX.(Depth) 27.6 43.8 28.4 39.6

TABLE VII
CROSS-TESTING RESULTS ON THE MARSV2 DEGRADED WITH DIFFERENT

SIZE OF THE GAUSSIAN KERNEL WHEN TRAINED ON THE PROPOSED
SUHIFIMASK.

Method
Train SuHiFiMask (ours)
Test MARsV2 MARsV2-3×3 MARsV2-5×5

Metric HTER(%)↓ AUC(%)↑ HTER (%)↓ AUC (%)↑ HTER(%)↓ AUC (%)↑
ResNet18 27.2 79.6 29.5 79.2 32.5 75.5

CDCN 37.6 66.8 41.6 61.7 51.2 52.7
AUX.(Depth) 26.8 79.4 41.1 63.7 48.7 54.5
CQIL (ours) 21.8 87.5 26.2 81.4 30.9 74.0

Experiments on Protocol 3-Quality. Protocol 3 evaluates
the stability of the algorithm to image quality degradation.
Since the training, development, and testing sets of this pro-
tocol differ only in quality, the algorithm is needed to learn a
general feature extraction method on data with different quality
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distributions. As shown in Tab. IV, our algorithm ranks first on
protocol 3 (APCER, BPCER, and ACER are 19.14%, 12.82%,
15.98%, respectively), which proves that our algorithm is
effective in extracting discriminative features independent of
quality.

D. Inter-Testing.

To evaluate the difficulty of surveillance-based FAS tasks
and the effectiveness of CQIL working on low-quality datasets,
we design a number of cross-testing experiments.

Cross-dataset. To further evaluate the difficulty of the long-
distance PAD task based on surveillance scenes, we design
two cross-dataset experiments. (1) We train the model on the
CASIA-MFSD dataset and perform the cross-test evaluation
on the proposed SuHiFiMask and ReplayAttack datasets. (2)
We train the model on the ReplayAttack dataset and evaluate
it on the SuHiFiMask and CASIA-MFSD datasets for cross-
testing. As shown in Tab. VI, the performance of the model
tested on the proposed SuHiFiMask is significantly degraded
relative to the performance testing on ReplayAttack or CASIA-
MFSD. For example, the HTER (%) of the CDCN trained
on CASIA-MFSD was increased by 30.3% for the test on
the proposed dataset compared to the test on ReplayAttack.
This shows the performance of existing algorithms degrades
significantly when they encounter negative factors such as low
resolution, motion blur, and occlusion. In particular, CQIL is
a PAD method based on low-quality data and requires low-
resolution images as input. So the generality of the method
will be evaluated in the next subsection.

Cross-quality. To demonstrate the generality of our method
to low-quality datasets, we design a series of experiments
across the quality. We train the different methods on the
proposed SuHiFiMask and test them on MARsV2 after the
degradation of gaussian kernels of different sizes. Specifically,
since no existing work has provided available low-quality
PAD datasets, we simulate low-quality datasets with different
degrees of degradation by means of a gaussian kernel to verify
the generality of different methods on low-quality datasets.
Fig. 6 shows several samples of MARsV2 after treatment with
gaussian kernels of different sizes. As shown in Tab. VII, our
CQIL achieves good performance on the MARsV2 dataset at
all degradation degrees. This demonstrates that our method can
encode quality-independent discriminative features. However,
there is a domain gap between the manually degraded low-
quality dataset and the dataset based on the surveillance
scenes. This results in CQIL not being able to take full
advantage of encoders trained on low-quality data in real
surveillance scenes.

Fig. 6. MARsV2 with different sizes of the gaussian kernel processing.

E. Visualization Analysis

In this section, we further visualize the difficulties that low-
quality data poses to FAS work and the performance of CQIL
in surveillance scenes. First, we compare the features learned
by ResNet18 on protocol 1 of HiFiMask, a dataset for the
constrained environment, and on protocol 1 of SuHiFiMask, a
proposed surveillance scene-based dataset. As shown in Fig 7,
the performance of the algorithm degrades significantly on
SuHiFiMask, which indicates that the low-quality data in the
surveillance scenes add difficulties to the FAS work. Next,
we compare the features learned by CQIL and ResNet18
on protocol 3 of the proposed SuHiFiMask. Compared with
ResNet18, the proposed CQIL is able to better distinguish
between real faces and attacks, which demonstrates the better
discriminative representation capacity of the proposed CQIL
in surveillance scenes.

Fig. 7. Feature distribution comparison on HiFiMask and SuHiFiMask using
t-SNE [75]. The points with different colors denote features from different
classes (blue: real faces; red: attack samples).

VI. CONCLUSION

In this paper, we release the first large-scale FAS dataset
based on surveillance scenes, SuHiFiMask, with three chal-
lenging protocols. We hope that this will fill the gap in FAS
research in long-distance surveillance scenes. In addition, we
propose a Contrastive Quality-Invariance Learning (CQIL)
network to recover image information using super-resolution
and enhance the robustness of the algorithm to quality vari-
ations by fitting the quality variance distribution. Finally, we
conduct comprehensive experiments on SuHiFiMask and three
other datasets to verify the importance of the datasets for the
FAS task and the effectiveness of the proposed method.
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Appendix
A. Sample of faces

As shown in the Fig. 8, we have listed some samples of
pre-processed face images. The figure contains six sections,
which are listed as close-up samples of real people, resin
masks, silicone masks, plaster masks, headgear, head molds
and other forms of attacks. Each column in the first five
sections of the figure represents a mainstream surveillance
camera, where C1 to C7 represents DS-2CD3T87WD-L, DS-
2CD3T86FWDV2-I3S, TL-IPC586HP, TL-IPC586FP, DH-
IPC-HFW4843M, DH-P80A1-SA, and ZD5920-Gi4N cam-
eras. Each row in the first five sections of the figure represents
a weather or shooting time, with samples taken on sunny days,
cloudy days, windy days, snowy days, and nights, respectively.
The sixth section of the figure lists head molds and other forms
of attack, from left to right, in each column are adversarial
masks, adversarial hats, replay attacks in electronic screens,
posters, cardboards, and head molds.

B. Sample of scenes

As shown in the Fig. 9, we have listed all 40 scenes included
in the SuHiFiMask, which include daily life scenes (e.g., cafes,
cinemas, and theaters) and security check scenes (e.g., security
check lanes and parking lots) for deploying face recognition
systems. On the left side of the figure is the number of each
scene in the row, which is the basis for naming the videos in
the dataset. In addition, we need to increase the relevance of
the data content and surveillance scenes by asking the subjects
do scene-related behaviors in the scenes, such as asking the
subjects sit around a coffee table and drink coffee in the coffee
shop scenes. It is worth mentioning that some scenes in real
life are vulnerable to attack in both day and night, so we
identify the day and night of this scene as two different scenes,
such as parking lot (day) and parking lot (night).
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Fig. 8. We show some samples taken on snowy, cloudy, windy, sunny and night time days. Among them, C1 to C7 represents the surveillance cameras with
DS-2CD3T87WD-L, DS-2CD3T86FWDV2-I3S, TL-IPC586HP, TL-IPC586FP, DH-IPC-HFW4843M, DH-P80A1-SA, and ZD5920-Gi4N, respectively.
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Fig. 9. We show the 40 surveillance scenes included in SuHiFiMask, S1-S40 on the left side of the figure are the numbers of each scene.
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