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Abstract—Generative Adversarial Networks (GANs) have been
widely used for generating synthetic data for cases where there
is a limited size real-world data set or when data holders are
unwilling to share their data samples. Recent works showed
that GANs, due to overfitting and memorization, might leak
information regarding their training data samples. This makes
GANs vulnerable to Membership Inference Attacks (MIAs).
Several defense strategies have been proposed in the literature
to mitigate this privacy issue. Unfortunately, defense strategies
based on differential privacy are proven to reduce extensively
the quality of the synthetic data points. On the other hand,
more recent frameworks such as PrivGAN and PAR-GAN are not
suitable for small-size training data sets. In the present work, the
overfitting in GANs is studied in terms of the discriminator, and a
more general measure of overfitting based on the Bhattacharyya
coefficient is defined. Then, inspired by Fano’s inequality, our first
defense mechanism against MIAs is proposed. This framework,
which requires only a simple modification in the loss function of
GANs, is referred to as the maximum entropy GAN or MEGAN
and significantly improves the robustness of GANs to MIAs. As
a second defense strategy, a more heuristic model based on mini-
mizing the information leaked from the generated samples about
the training data points is presented. This approach is referred to
as mutual information minimization GAN (MIMGAN) and uses a
variational representation of the mutual information to minimize
the information that a synthetic sample might leak about the
whole training data set. Applying the proposed frameworks to
some commonly used data sets against state-of-the-art MIAs
reveals that the proposed methods can reduce the accuracy of
the adversaries to the level of random guessing accuracy with a
small reduction in the quality of the synthetic data samples.

Index Terms—Generative Adversarial Networks, GANs, Mem-
bership Inference Attacks, Mutual Information, Maximum En-
tropy

I. INTRODUCTION

A. Motivation

Recent advances in the development of novel algorithms
in machine learning and data analysis are mostly due to the
availability of publicly accessible data sets and the possibility
of data sharing. At the same time, several concerns have
been raised regarding the violation of users’ privacy, since
adversaries can infer sensitive information about individuals by
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analyzing the open access data sets [1]–[3]. This is one of the
main reasons why in some fields (e.g., medical applications,
power systems, finances) there is a shortage of public real-
world data sets. A promising solution to this problem is
the development of data generators/synthesizers for producing
synthetic data samples from the same underlying distribution
of a given sensitive real-world data set [4]–[6] while avoiding
sharing data directly.

Generative adversarial networks (GANs) introduced firstly
by Goodfellow et. al [7] have been extensively used for
generating synthetic data in applications where there is lim-
ited access to real-world data sets. Despite their undeniable
benefits, GANs are prone to overfitting and memorization of
their training data sets [8], [9]. This makes them vulnera-
ble to several privacy attacks such as membership inference
attacks (MIAs) [10]–[13]. To be more specific, if a GAN
experiences overfitting or memorizes the training data, it
subsequently facilitates an adversary’s ability to differentiate
between generated samples that originate from the training
dataset and those that do not. Furthermore, its discriminator
assigns elevated scores to the data points that were included in
the training set. This implies that the influence of overfitting
and memorization on the accuracy of Membership Inference
Attacks (MIA) is substantial. This point is discussed in more
detail in subsections II-B& II-C. As a consequence, there is
a high practical interest in developing privacy-aware training
mechanisms for GANs.

B. Related work

MIAs on machine learning models were proposed for the
first time by Shokri et. al in [14]. Recently, many different
MIA strategies have been proposed that are effective on the
classification/regression models [15]–[19]. However, develop-
ing MIAs on generative models is more challenging and the
strategies studied for classification/regression models typically
do not perform well. For example, in [10] an MIA based on
shadow training, inspired by the MIA in [14], was applied to
a GAN trained with LFW face data sets, and the adversary
performance was found to be similar to random guessing.

Membership inference attacks on GAN models can be
generally classified into two categories based on their target,
either focusing on the generator or the discriminator, namely,
Discriminator-based Membership Inference Attacks (DMIA)
and Generator-based Membership Inference Attacks (GMIA).

The first DMIAs were introduced in [10] where the ad-
versary’s goal is to distinguish data points used in the training
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dataset, accomplished by accessing the target GAN’s discrimi-
nator. Empirical results on various datasets reveal the effective-
ness of this strategy, achieving very high accuracy, even 100%
in some cases. In addition, Mukherjee et al. [20] introduced an
upper limit for membership inference accuracy in white-box
MIAs on a GAN’s discriminator, determined by their Total
Variation Distance (TVD) attack, which estimates the total
variation distance between the distribution of discriminator
scores on the training and holdout datasets.

Shifting to GMIAs, a Monte Carlo (MC) attack was intro-
duced in [11]. This MIA leverages Monte Carlo integration to
exploit synthetic samples that are in the vicinity of the target
sample, inferring the likelihood that the target sample belongs
to the training dataset. This approach particularly excels in
set membership inference, where the adversary determines
whether a set of data points belongs to the training dataset
or not. A co-membership inference attack strategy, akin to the
MC approach but using the L2-distance metric, was proposed
in [12]. However, this method is computationally more com-
plex than existing approaches. The first taxonomy of MIAs on
generative models was outlined in [13], introducing a generic
attack model in which the adversary aims to reconstruct the
closest synthetic data point to a target sample. This approach
relies on the generator’s ability to produce synthetic samples
resembling the training set, with the distance between the
reconstructed synthetic sample and the target sample used
to calculate the probability that the target sample belongs
to the training data set. Extensive empirical comparisons
across different scenarios and datasets have demonstrated the
efficiency of this MIA strategy compared to other MIAs
against generative models [13]. Another recent MIA targeting
the generator of GANs was developed in [21], where an
auto-encoder, with the target generator as its decoder, is
trained based on generated samples and their associated latent
samples. During inference, the reconstruction error of a target
sample, processed through the trained auto-encoder, is used to
infer its membership label. This attack proved to be successful
in cases when the number of training samples was small while
not much better than a random attacker in other cases.

Taking into account all the proposed MIAs on GANs, it
is widely acknowledged that the white-box attacks targeting
the GAN’s discriminator (DMIAs), specifically the TVD-based
attack [20] and the MIA introduced in reference [10], are
among the most effective MIAs against GANs. In contrast,
other attack methods do not exhibit significantly improved
performance compared to random attacks. Consequently, in
our study, we assess the effectiveness of the proposed defense
mechanisms based on the MIA strategies outlined in [10], [20].

To address the vulnerability of generative models to MIAs,
several defenses have been presented in the literature. The
main idea of most of these frameworks is based on dif-
ferential privacy (DP) [22]–[26]. Although these frameworks
were shown effective in preventing membership inference by
adversaries, DP-based GANs degrade significantly the quality
of synthetic samples [10], [27]. For more details on DP-
GANs, the reader is referred to [28]. On the other hand, a
regularization technique known as dropout has been suggested
in [10], [11] in order to improve generalization in generative

models and mitigate the membership inference issue. Using
dropout techniques in GANs raises two main issues: deter-
mining the optimal dropout rate and placement, often requiring
trial and error, and the significant slowdown in training, which
can be challenging due to GANs’ inherent instability. More
sophisticated defenses designed specifically against MIAs in
GANs were presented recently, including PrivGan [20] and
PAR-GAN [29]. In both methods, the training data set is split
into N disjoint sub-sets. In PrivGan, a GAN (including a
generator and a discriminator) is trained for each sub-set and
the generators are trained to not only fool their associated
discriminator but also prevent a classifier from distinguishing
their generated samples from the other generators’ samples.
On the other hand, in the PAR-GAN, a single generator is
trained to fight with N discriminators (associated with N dis-
joint data subsets). Considering the empirical results of these
methods applied to several data sets, although both approaches
showed to be effective (particularly for large values of N ) in
improving the generalization and mitigating the information
leakage exploited by MIAs, they increase the computational
complexity of the GAN training procedure quite significantly
without providing any mathematical guarantees for reducing
the overfitting or memorization. In addition, due to the inherent
requirement of these models to use data partitions, they are not
appropriate for cases in which there is a limited-size training
data set. It also should be noted that for the PrivGan which
includes N generators, although a random selection strategy
is suggested in [20], it is not clear what is the best approach
for sharing the final synthetic data samples.

In this work, we adopt measures from information theory
and statistics to modify the GAN framework for the sake of
making it robust to MIA. To gain a deeper understanding of
overfitting in GANs, we utilize the Bhattacharyya coefficient,
calculated at the discriminator’s output, as a metric for overfit-
ting assessment. Subsequently, we introduce a defense mech-
anism that addresses this measure of overfitting, named the
Maximum Entropy GAN (MEGAN). MEGAN is a straight-
forward modification of the conventional GAN that ensures
robust learning of training data distributions while reducing
MIA accuracy to a level akin to random attacks. Additionally,
our study puts forth a second heuristic defense approach, the
Mutual Information Minimization GAN (MIMGAN), which
minimizes the mutual information between generated and
training data through a variational representation, offering a
practical strategy for guarding against MIAs. Experimental
studies are done using four commonly used datasets including
MNIST, fashion-MNIST, Chest X-ray images (Pneumonia),
and Anime Faces datasets. The performance of the proposed
defense mechanisms is evaluated compared with state-of-the-
art models such as PrivGAN and DP-GAN, in terms of their
robustness against MIAs and the fidelity and diversity of
generated samples.

C. Contributions
The main contributions of this work can be summarized as

follows:
• We study overfitting in GANs in terms of the discrimi-

nator by using the Bhattacharyya coefficient and discuss
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its relation and advantage over the classical notion of
overfitting (i.e., generalization gap).

• Considering this new perspective of overfitting and the
well-known Fano’s inequality applied to the discrim-
inator error, we propose the maximum entropy GAN
(MEGAN) as a defense mechanism to state-of-the-art
MIAs. MEGAN is a simple modification of the vanilla
GAN that ensures learning the distribution of training
data and at the same time reducing the MIAs accuracy
to a level similar to that of a random attacker.

• As a second defense framework, a heuristic model based
on minimizing the mutual information between the gen-
erated data and training data is proposed. In order to
provide a simple implementation of this idea, we consider
a variational representation of the mutual information.
This method is referred to as the mutual information
minimization GAN (MIMGAN) in the following.

Organization of the paper: The rest of the paper is orga-
nized as follows. In Section II we present a background on
GANs, the notions of overfitting and memorization in GANs,
and MIAs on GANs. Then, in Section III, the state-of-the-art in
MIAs on GANs is considered from a new perspective and two
defense mechanisms, MEGAN and MIMGAN, are proposed
and discussed in detail. Extensive experimental results are
presented and discussed in Section IV. Finally, concluding
remarks are given in Section V.

Notation and mathematical conventions: Throughout this
article, we use bold-face small letters, e.g. x to denote random
variables, regular-face small letters, e.g. x to denote specific
realizations, and the capital letters, e.g. X to refer to the set
of values. P refers to the probability measure. p is either a
probability density function or a probability mass function.
We use p(x|y) to denote the conditional probability density
function of x given y. Only when it is necessary to avoid
confusion we include a subscript in p. E[·] is the expectation
with respect to the joint distribution of all random variables
involved; H(x) is the Shannon entropy of random variable x
and I(x;y) is the mutual information between x and y.

II. BACKGROUND

A. Generative Adversarial Networks

The generative adversarial network (GAN) is comprised
of two deep neural networks: a generator G(z; θg), with
parameters θg , and a discriminator D(x; θd), with parameters
θd, that are trained by competing in a minimax game. The
generator receives random samples from the latent space (noise
data z ∼ pz) as the input and aims to generate synthetic data
by learning pxtr , the probability distribution of the training
dataset Xtr. On the other hand, the discriminator aims to
determine the authenticity of the training data points versus
the synthetic data points, by producing a real-valued number
in the range [0, 1] interpreted as the probability that its input
comes from original data rather than from the generator. The

GAN framework is trained by playing the following minimax
game with the value function V (G,D) [7]:

min
G

max
D

V (G,D) = E
[
logD(xtr)

]
+

E
[
log(1−D(G(z)))

]
, (1)

where the training data points are modeled as independent and
identically distributed (i.i.d.) samples of the random variable
xtr ∼ pxtr . It can be shown that minimizing the GAN loss
in equation (1) results in pxg = pxtr , i.e. the generator dis-
tribution would be identical to the distribution of the training
dataset [7]. After training the GAN framework, the generator
can be used for generating synthetic samples resembling real
training data samples.

B. Overfitting and Memorization in GANs

In discriminative models (classification and regression),
overfitting is defined in terms of the difference between
the performance of a model on the training data set and
its performance on the test/hold-out data samples. In other
words, a model overfits if it performs significantly better on
the training data compared with the test data. However, for
generative models, there is no generally accepted notion of
overfitting. In the literature, overfitting in GANs is typically
defined in terms of the discriminator output for the training and
test data samples [7], [20], [25], [29]–[31]. This sometimes
is referred to as the generalization gap and is defined as
follows [29]:

gDGAN = E
[
ϕ
(
D(xtr)

)]
− E

[
ϕ
(
D(xte)

)]
, (2)

where gDGAN is the generalization gap and ϕ(x) is selected as
log(x) or simply as x.

Regarding memorization, the nearest neighbor test has been
used extensively in the literature [7], [30]–[34], especially
for the cases where a global sense of memorization is of
interest [35]. More specifically, considering the premise that
memorization in GANs occurs when the generated data sam-
ples are closer to the training dataset than the actual samples
from the test set, equation (3) is used:

mG
GAN =

E
[

min
x∈XTR

d (xte, x)

]
E
[

min
x∈XTR

d
(
G(z), x

)] , (3)

where mG
GAN is the measure of memorization in GANs, and

d(·, ·) is a distance function (e.g., the Euclidean distance).
It should be noted that mG

GAN > 1 can be interpreted as
memorization.

C. Membership Inference Attack

In a membership inference attack (MIA) to a GAN, the
goal of the attacker is to determine whether a specific data
sample x ∈ X was used in the training of the target GAN or
not. In these attacks, an adversary aims to infer whether an
instance or a set of target samples was used to train a specific
model or not. Depending on the information available to the



4

adversary, the MIAs are categorized into two main families:
black-box attacks and white-box attacks. In the former, it is
assumed that the adversary can only get (unlimited) query
access to the target model, while in the latter the adversary
has full knowledge of the model parameters. In most MIA
frameworks on GANs, it is assumed that the attacker has
access to a data pool X that includes the training data set
(i.e., Xtr ⊂ X) without having knowledge about training
data samples. Therefore, an attacker seeks to learn a mapping
MGAN : X −→ [0, 1], where MGAN(x) can be interpreted as
the likelihood of x ∈ Xtr.

For discriminative models, the relation between the gen-
eralization gap and MIAs was studied in [15]. Regarding
GAN frameworks, this relation was proposed by Wu et.al. [25]
where they theoretically showed how this generalization gap
can be bounded for a GAN trained with a differentially private
learning algorithm. In addition, this notion is asserted by other
studies such as [29], [36], [37]. Incorporating this general-
ization gap in the attack mechanism is the main intuition
beyond the membership inference attack proposed by Hayes
et al. [10] which assumes a white-box scenario where the
adversary not only can get queries from the discriminator
but also has access to a substantial data pool and is aware
of the size of the training dataset used in training the target
generative model. As discussed before, this MIA has shown
to be effective on GANs and has been considered widely for
evaluating defense mechanisms [20], [29]. More precisely, this
attack is performed based on the discriminator response to the
target data samples. When the generalization gap is large, it
means the discriminator overfits to the training dataset and
therefore it returns high values (probability values close to
one) for the training data samples and small values for the
hold-out and synthetic data samples. By knowing the size of
the training dataset and having access to a pool of datasets,
the attacker can incorporate the discriminator confidence on
the pool data samples to infer the training data samples. Fig. 1
represents the details of this MIA strategy.

Fig. 1. A membership inference attack strategy against GANs based on the
target discriminator [10]. In its black-box format where the discriminator of
the target GAN is not given, an auxiliary GAN based on the synthetic data
points is trained, and then its discriminator is used instead.

During this study, following the literature, we opt to evaluate
our defense frameworks based on the proposed MIA in Fig. 1.
Additionally, in this work, we will utilize the TVD attack, as
proposed in [20], to establish an upper limit for the attackers’
performance in inferring the training samples.

III. PROPOSED FRAMEWORKS

A. Measure of overfitting

It was mentioned that the accuracy of the membership
inference attacker is closely connected to the generalization
gap. Thus, most of the defense mechanisms proposed in
the literature, such as those based on differential privacy or
more recent frameworks such as PrivGAN [20] and PAR-
GAN [29], were developed based on the idea of decreasing
the generalization gap. In our work, we want to explore the
relation between the generalization gap and the accuracy of
membership inference attackers from another, more general,
point of view. In fact, we show that although reducing the
generalization gap can reduce the accuracy of MIAs, there
might be other cases in which we can reduce the inference
performance of the attacker without reducing the generaliza-
tion gap.

In a GAN framework, the discriminator is a binary classifier
that aims to distinguish between the real data samples (training
data samples) and the fake/synthetic sample points crafted
by the generator. However, the notion of overfitting in the
discriminator of GANs is different from that of a regular
classifier. When the discriminator overfits on training samples,
it usually returns significantly high values for the training data
samples and small values for the other samples including fake
and test samples. This point is discussed more empirically in
Fig. 2 where a GAN is trained on MNIST data and the density
of the output of the discriminator is presented at different
training epochs for the training, test, and fake data samples.
From this figure, it can be seen that at the initial epochs, the
discriminator returns high scores for the train and test data
samples while very small values for the fake samples. Once
the generator is able to generate real-looking samples, the
discriminator responds the same for fake and real (train and
test) data (see results of epoch 100). However, after several
hundred epochs, the discriminator overfits on the training data
and starts returning high values for train data samples and
small values for the fake and test data points. It should be
noted that the discriminator responses are almost the same for
the fake and test data samples and the generator is able to
generate real-looking samples. This can be observed in the
generated samples in Fig. 2. It can clearly be seen from Fig. 2
that overfitting in the discriminator increases the generalization
gap. During the training process, although test data are not
available, the generalization gap can be approximated from
the discriminator responses to fake and train data samples.
This generalization gap can be exploited by the attacker to
infer the membership of data samples. However, it is not
clear how the MIA accuracy and the generalization gap are
related mathematically. In the following, we introduce the so-
called Bhattacharyya coefficient, defined at the output of the
discriminator, as a measure of overfitting and we discuss its
relationship with the MIA performance.

Consider a GAN framework trained on a training data set
XTR. Let the score set S be defined as follows:

S = {s : s = D(x), x ∈ X},
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Fig. 2. An example of the meaning of overfitting in the discriminator of a GAN in terms of the evolution of the discriminator response to training, test, and
fake data samples over the training epoch.

where X is a publicly available data pool that includes XTR.
Consider an MIA that aims to infer the training set XTR using
the score set S. Let ω1 and ω0 refer to the class of scores
associated with the training and non-training data samples,
respectively. The minimum error of any membership inference
attacker modeled as a binary classifier Md

GAN : S −→ {ω0, ω1}
is equal to the Bayes error defined below [38]:

Pm
e = P(s ∈ R1, ω0) + P(s ∈ R0, ω1), (4)

where Pm
e is the error of membership inference attacker,

Ri , i = 0, 1 is the score space in which the attacker decides
in favor of ωi and P(., .) is the joint probability. As it is
mentioned by Kailath [39], considering π0 and π1 as the a
priori probabilities, this error can be bounded as follows:

1

2
− 1

2

√
1− 4π0π1ρ2 ≤ Pm

e ≤
√
π0π1ρ, (5)

where, considering likelihood functions p(s|ω0) and p(s|ω0),
the Bhattacharyya coefficient ρ is defined below [39]:

ρ :=

∫ √
p(s|ω0)p(s|ω1)ds. (6)

From the error bound (5) it can be seen that maximiz-
ing ρ can be used to limit the performance of the mem-
bership inference attacker. In statistics, the Bhattacharyya
coefficient is used as a separability measure between two
classes/populations [38]. Therefore, maximizing ρ can be
interpreted as maximizing the overlap (minimum separability)
between score classes ω0 and ω1. This point is directly related
to overfitting in the discriminator since ω1 (the class of score
associated with the training samples) and ω0 (the class of score
associated with the non-training samples) have maximum
separability in the case of overfitting discriminator. This fact
is illustrated in Fig. 2 as discussed previously. As mentioned
before, in this paper, we consider the Bhattacharyya coefficient
ρ, instead of generalization gap gDGAN in equation (2), as a
measure of overfitting. More specifically, a value of ρ close
to one (large overlap) is interpreted as a case with smaller
overfitting, while a value of ρ close to zero is associated with
high overfitting in the GAN.

In the following, we analyze in more detail the Bhat-
tacharyya coefficient for the Gaussian scenario in order to gain

more insight and discuss its relationship with the generaliza-
tion gap.

Proposition 1: [38] Consider the Gaussian case where the
densities p(s|ω0) and p(s|ω1) are, respectively, N

(
µ0, σ

2
0

)
and N

(
µ1, σ

2
1

)
. In this case, the Bhattacharyya coefficient

would be as follows:

ρ = exp

−1

4
ln

1
4

(
σ2
1

σ2
0

+
σ2
0

σ2
1

+ 2

)− 1

4

[
(µ0 − µ1)

2

σ2
0 + σ2

1

].

(7)
From equation (7), it can be seen that for fixed variances,

reducing the differences between the mean values can in-
crease ρ (and thus reduce overfitting). This corresponds to
the definition of the generalization gap. Nevertheless, equa-
tion (7) also illustrates that increasing the variances (even
for fixed mean values) can increase the ρ. In other words,
the Bhattacharyya coefficient is a more general indicator of
overfitting compared with the generalization gap. From a GAN
point of view, the Bhattacharyya coefficient between the score
densities associated with training samples and fake samples
can be calculated and used as a measure of overfitting in the
discriminator. It is worth noting again that once the generator
learns to generate real-looking samples, the discriminator
responds almost equally to synthetic and test data samples (see
Fig. 2). Thus, the Bhattacharyya coefficient associated with the
training and synthetic samples can be used as an estimation of
the Bhattacharyya coefficient associated with the training and
test data samples.

In the next subsections, two new GAN frameworks will
be presented as defense mechanisms against membership
inference attacks and the Bhattacharyya coefficient defined in
equation (6) will be used to quantify the overfitting.

B. Maximum Entropy GAN (MEGAN)

In this section, the first defense framework against mem-
bership inference attacks for GANs is presented. To this
end, overfitting is studied in terms of the discriminator error
(as a binary classifier) and we discuss how overfitting and
discriminator error are inversely related.

Proposition 2: In a GAN framework, the discriminator is a
binary classifier that aims to measure the likelihood of each
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sample being real. Particularly, considering the binary random
variable re ∈ {r, f}, we can say:

D(x) = pre|x(r|x), ∀x ∈ X, (8)

or equivalently, pre|x(f |x) = 1 − D(x) denotes the proba-
bility that x is a fake sample. Let the regions Rr and Rf ,
respectively, refer to the sample spaces in which we decide in
favor of the sample being real and fake. Then, the Bayes error
of the discriminator, as a binary classifier, can be written as
follows:

P d
e = P(x ∈ Rr, re = f) + P(r ∈ Rf , re = r)

= P(x ∈ Rr|re = f)p(f) + P(x ∈ Rf |re = r)p(r) (9)

= p(f)

∫
Rr

p(x|f)dx+ p(r)

∫
Rf

p(x|r)dx

(i)
=

∫
Rr

p(f |x)p(x)dx+

∫
Rf

p(r|x)p(x)dx

(ii)
=

∫
Rr

(1−D(x))p(x)dx+

∫
Rf

D(x)p(x)dx

(iii)
= p(r)−

∫
Rr

(2D(x)− 1)p(x)dx

(iv)
= p(f)−

∫
Rf

(1− 2D(x))p(x)dx.

where (i) is due to the Bayes rule, (ii) is based on the
equation (8), and (iii) and (iv) are based on the following:

p(r) =

∫
Rr

D(x)p(x)dx+

∫
Rf

D(x)p(x)dx,

p(f) =

∫
Rf

(1−D(x))p(x)dx+

∫
Rr

(1−D(x))p(x)dx.

When the discriminator overfits on the training data sam-
ples, D(x) is generally larger for x ∈ Xtr ⊂ Rr than for
x /∈ XTR. Thus, from equation (9), both last and second last
equalities, it can be seen that the discriminator error decreases
as D(x) increases in the region x ∈ Xtr. In other words,
overfitting in the GAN discriminator is directly related to the
error of the discriminator. More specifically, a smaller error
in the discriminator usually gives a larger overfitting on the
training data samples. Therefore, to limit the performance
of membership inference attacks, we need to control the
minimum error of the discriminator of the GAN in order to
avoid overfitting. This can be done by considering the so-
called Fano’s inequality from the field of information theory
to obtain a bound on P d

e .
Proposition 3: From Fano’s inequality [40], we have

P d
e ≥ H(re|x)− 1

log 2
≈

E
[
H(D(x))

]
− 1

log 2
. (10)

From (10), it can be seen that maximizing E[H(D(x))] can
avoid the discriminator error from being very small and thus
can be used to control overfitting.

Motivated by Proposition 4, we propose a novel framework
to learn the distribution of training data and simultaneously
reduce the accuracy of the membership inference attackers
by decreasing overfitting through maximization of the lower
bound in equation (10). Similar to the GAN, this framework

includes a generator and a discriminator but, unlike the GAN,
the generator is trained to maximize the entropy of the dis-
criminator outputs. More specifically, this framework named
Maximum Entropy GAN (MEGAN) is developed by solving
the following multi-objective optimization problem:

MEGAN : max
D,G

(h1, h2) , (11)

with

h1 =E
[
logD(xtr)

]
+ E

[
log(1−D(G(z)))

]
, (12)

h2 =E
[
H
(
D(G(z))

)]
, (13)

where H(p) = −p log p − (1 − p) log(1 − p) is the entropy
of a Bernoulli random variable with parameter p [40]. On the
one hand, the first optimization problem in (11) is exactly the
discriminator optimization in the original GAN framework [7].
Therefore, for a fixed generator, following the proof proposed
in [7] the optimum discriminator would be as follows:

D∗(x) =
pxtr(x)

pxtr(x) + pxg(x)
. (14)

On the other hand, since the binary entropy H(p) is maximized
for p = 0.5, the solution for the second optimization problem
in (11) is D(G(z)) = 0.5. Thus, considering (14), the
MEGAN optimization problem (11) converges to its optimum
when pxg = pxtr . This means that, as in classical GANs,
MEGAN can learn the underlying distribution of the training
data points. However, in vanilla GANs, the generator learns the
distribution through a minimax optimization by trying to fool
the discriminator into confusing real and fake data samples,
while the generator in MEGAN learns the distribution by
maximizing the uncertainty of the discriminator. The exper-
imental results will show how this can reduce the accuracy
of MIAs. The training algorithm for MEGAN is explained in
detail in Algorithm 1. It should be noted that, at each training
iteration of the discriminator, the generator is generally trained
for several iterations since, unlike the discriminator which is
a simple binary classifier, the generator has a more difficult
task.

C. Mutual Information Minimization GAN (MIMGAN)

In this section, we propose a more general framework moti-
vated by the fact that synthetic samples might leak information
regarding the training data points which can be used by mem-
bership inference attackers. To prevent such an information
leakage, besides learning the training distribution, we train the
generator to produce samples that give minimum information
about the training data set Xtr = {xtr,i}ni=1. By defining
the joint random variable xn

tr = (xtr,1,xtr,2, . . . ,xtr,n),
the mutual information between the synthetic data and the
training data points, i.e. I(xn

tr;xg), is considered. Basically,
minimizing this mutual information means that each generated
sample should leak minimum information about the whole
training dataset. However, minimizing this mutual information
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Algorithm 1: Maximum Entropy GAN (MEGAN): Batch size B and
number of steps to apply to the Generator k are hyperparameters.

1: for number of training iterations do
2: Sample minibatch of B noise samples {z1, . . . , zB} from noise

distribution pz.
3: Sample minibatch of B examples {x1, . . . , xB} from training data

set distribution pxtr .
4: Compute the gradient of LD(θd), approximated empirically for

minibatch, with respect to θd and update θd by applying the Adam
optimizer [41].

LD(θd) := − 1
n

∑n
i=1

[
logD(xi) + log(1−D(G(zi)))

]
.

5: for k steps do
6: Sample minibatch of B noise samples {z1, . . . , zB} from noise

distribution pz.
7: Compute the gradient of LG(θg), approximated empirically for

minibatch, with respect to θg and update θg by applying the
Adam optimizer.
LG(θg) :=

1
n

∑n
i=1

[
D(G(zi)) logD(G(zi))+(
1−D(G(zi))

)
log

(
1−D(G(zi))

) ]
.

8: end for

9: end for

directly is generally very cumbersome. Thus, we look for a
surrogate upper bound to optimize instead:

I(xn
tr;xg) = H(xn

tr)−H(xn
tr|xg)

(i)
=

n∑
i=1

H(xtr,i)−H(xn
tr|xg)

(ii)
≤ n×H(xtr,j)−H(xtr,j|xg) (15)
= (n− 1)×H(xtr) + I(xtr,j;xg),

where step (i) is due to the assumption that training data
points are independent and identically distributed (i.i.d.) and
(ii) is based on the fact that the joint entropy is larger than
each marginal entropy, where j ∈ [1, n] is selected randomly.
Therefore, instead of working with the I(xn

tr;xg), its upper
bound in the equation (15) can be minimized. Since for a
fixed training data set the first term of the upper bound in the
equation (15) is a constant, the I(xtr,j;xg) can be minimized.
It should be emphasized that the index j ∈ [1, n] here is
selected randomly. This is along with the nature of GANs,
where the outputs of the generator are not labeled and so
generally there are no pre-defined pairs of samples in the
format (xtr, xg). Therefore, in the process of training our
GAN framework, for each generated sample, a random data
point from the training dataset should be paired with it. From
now on, for the sake of convenience, the term I(xtr;xg) is
used instead of I(xtr,j;xg). This term can be added as a
regularization term to the GAN loss in equation (1). However,
to simplify this regularization term, we consider an arbitrary
conditional distribution qxtr|xg

and note that:

I(xtr;xg) = H(xtr)−H(xtr|xg) = H(xtr)+

E
[
log qxtr|xg

]
+ KL

(
pxtr|xg

∥qxtr|xg

)
≥

H(xtr) + E
[
log qxtr|xg

]
, (16)

where KL(.∥.) is the Kullback–Leibler divergence, a mea-
sure of how a probability distribution (the first term in KL

function) is different from another probability distribution
(the second term in KL function) [40], and the last inequal-
ity is due to the fact that the KL is non-negative. Since
KL
(
pxtr|xg

∥qxtr|xg

)
= 0 when pxtr|xg

= qxtr|xg
, the mutual

information I(xtr;xg), considering equation (16), can be
written as follows:

I(xtr;xg) = H(xtr)+ max
qxtr|xg

E
[
log qxtr|xg

]
, (17)

where the expectation is with respect to the true distribution
pxtr|xg

. Since the first term in equation (17) is constant,
the minimization of the mutual information I(xtr;xg) would
end up with a minimax problem between the generator and
another network (named as adversary network). Adding the
minimax game (17) to the minimax formulation of the GAN in
equation (1), the total formulation of our proposed framework
is as follows:

min
G

max
D, A

V (G,D,A) = E
[
logD(xtr)

]
+

E
[
log(1−D(G(z)))

]
+ (18)

λ× E
[
log qxtr|xg

]
,

where λ is the Lagrangian coefficient and A(z; θa) is the
adversary network with parameter θa.

It should be noted that for the cases where qxtr|xg
is the

probability density function of a continuous random variable,
it can be approximated by a conditional Gaussian distribu-
tion, i.e. qxtr|xg

(xtr|xg) = N
(
xtr;µA(xg),ΣA(xg)

)
where

N (x;µ,Σ) = det(2πΣ)−1/2 exp
[
− 1

2 (x− µ)TΣ−1(x− µ)
]

is the probability distribution function of the Gaussian dis-
tribution [42]. Therefore, the GAN framework is updated by
adding an adversary network that receives synthetic data at
its input and outputs the vector of means µA and covariance
matrix ΣA of the Gaussian distribution. More precisely, this
adversary network aims to estimate the vector of means and
the covariance matrix through maximizing qxtr|xg

(maximum
likelihood estimation). In this way, the generator learns to
minimize I(xtr;xg).

The complete training algorithm for the proposed frame-
work is explained in Algorithm 2. It should be noted that in
the loss function of the generator, to get rid of the satura-
tion, instead of minimizing E

[
log(1−D(G(z)))

]
the term

E
[
− log(D(G(z)))

]
is minimized [7].

IV. NUMERICAL RESULTS AND DISCUSSION

In this study, four data sets that are commonly used in the
literature are considered where the results of the MNIST and
fashion-MNIST are presented here while the results for the
Chest X-Ray Images (Pneumonia) dataset and Anime Faces
dataset are shown in the Appendix. For all the experiments
(except those that are explained explicitly) the models are
trained on 10% of the total data points and the other 90% is
used as the test or hold-out data points. Therefore, the accuracy
of a random guessing strategy in inferring the training data
points is 10%. The MIA strategy based on the discriminator,
proposed in [10], is used to assess the performance of the
models. It is assumed that the attacker is aware of all the data
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Algorithm 2: MIMGAN: Privacy-preserving GAN based on min-
imum information leakage about the training data set. Batch size
B and the number of steps k to apply to the adversary and
discriminator networks are hyperparameters. The least expensive
choice, i.e. k = 1, is used in this study.

1: for number of training iterations do
2: for k steps do
3: Sample minibatch of B noise samples {z1, . . . , zB} from noise

distribution pz.
4: Sample minibatch of B examples {x1, . . . , xB} from training

data set distribution pxtr .
5: Compute the gradient of LD(θd), approximated empirically for

minibatch, with respect to θd and update θd by applying the
Adam optimizer [41].

LD(θd) := − 1
B

∑B
i=1

[
logD(xi) + log(1−D(G(zi)))

]
6: Compute the gradient of LA(θa), approximated empirically for

minibatch, with respect to θa and update θa by applying the
Adam optimizer.

LA(θa) := − 1
B

∑B
i=1 logN

(
xi;µA(G(zi)),ΣA(G(zi))

)
7: end for
8: Sample minibatch of B noise samples {z1, . . . , zB} from noise

distribution pz.
9: Sample minibatch of B examples {x1, . . . , xB} from training data

set distribution pxtr .
10: Compute the gradient of LG(θg , θd, θa, λ), approximated

empirically for minibatch, with respect to θg and update θg by
applying the Adam optimizer.

LG(θg , θd, θa, λ) :=
1
B

∑B
i=1

[
− logD(G(zi))+

λ× logN
(
xi;µA(G(zi)),ΣA(G(zi))

) ]
11: end for

points and knows that 10% of that data was used to train the
target GAN.

A. Effect of overfitting on the performance of MIA

As discussed previously, the membership inference attack
proposed by Hayes et al. [10] relies on overfitting of the
discriminator to the training data samples, i.e., the discrim-
inator returns higher values for the training data than for
the test (real unseen) data samples. In the following, we
examine overfitting in relation to MIAs based on the MNIST
dataset. To this end, different DCGAN frameworks are trained
on the 10% of the total MNIST data points. To check if
the discriminator is overfitting to training data samples, the
discriminator output for the train, test (hold-out), and the
synthetic data points are monitored at each iteration and a gap
between the discriminator output for the train and test data
samples is considered as overfitting. The ideal case is when
the discriminator returns 0.5 for both train and test data. In
addition, assigning the same value to test and synthetic data
points by the discriminator is of interest since it means the
generator is able to generate synthetic samples that match the
real data samples. Fig. 3 presents the results of discrimina-
tor overfitting for three cases where GAN with very strong
discriminator, strong discriminator, and mild discriminator
is used, respectively. In this study, the overfitting in the
discriminator is quantified by the Bhattacharyya coefficient
defined in equation (6) where the density of train and test data
samples at the output of discriminator is used (see Fig. 3).
In addition, the memorization is measured using the mG

GAN

defined in equation (3). In Table I, the results of overfitting
in discriminator (based on the generalization gap defined in
equation (2) and the Bhattacharyya coefficient), memorization
in generator (calculated based on 2000 synthetic samples), and
accuracy of MIA are presented for different GAN structures
of Fig. 3.

Fig. 3. Examples of discriminator overfitting with (a) a highly overfitting case,
(b) a case with moderate overfitting, and (c) a case with small overfitting. All
three cases are trained on MNIST data set with the same train and test data
samples but with different discriminator structures (see Appendix 1).

Considering Table I, from Fig. 3 (a) it can be seen that
when the overfitting of the discriminator is significant, the
distribution of the discriminator scores for training samples
does not overlap perfectly with the one for test samples. This
can be used by the attacker to take apart more confidently
the training samples from the test samples. On the other
hand, Figs. 3 (b) & (c) show that reducing overfitting in the
discriminator can reduce the attacker’s inference ability.

TABLE I
EXAMINING THE DISCRIMINATOR OVERFITTING AND GENERATOR

OVERFITTING IN RELATION TO MEMBERSHIP INFERENCE ATTACK BASED
ON THE MNIST DATA SET.

GAN structure* gDGAN ρ mG
GAN MIA TVD Att.

very strong
discriminator 0.55 0.50 1.18 60.37% 0.75

strong
discriminator 0.15 0.66 0.98 54.36% 0.59

mild
discriminator 0.03 0.86 0.96 31.91% 0.35

*see Appendix 1.

In addition to reducing the MIA accuracy, Fig. 4 compares
the case (a) in Fig. 3, as an extreme case, with the case (c),
as a mild case, in terms of the class distribution and samples
quality. From this figure, it can be seen that although both
cases can generate synthetic data samples of almost the same
quality (same precision), the extreme case (in terms of the
discriminator overfitting) tends to generate some classes more
than others (small recall).
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Fig. 4. Comparing two GANs trained on MNIST data set wherein (a) the
discriminator is highly overfitting to the training data samples - case (a) in
Fig. 3- and in (b) the overfitting of the discriminator is avoided as much as
possible by reducing the gap between the discriminator outputs for train and
test - case (c) in Fig. 3-. The histograms present the class distributions based
on a pre-trained classifier on MNIST data sets.

It is worth noting that such a policy, i.e., simplifying the
discriminator architecture, cannot completely prevent mem-
bership inference attackers from inferring membership labels.
This can be seen from Table I where for the case with a mild
discriminator, the white-box attack accuracy is still far from
random guessing accuracy 10%.

B. Evaluation of the proposed frameworks against MIAs

In this subsection, the experimental results of the proposed
frameworks are presented and compared with the standard
GAN. The model architectures and hyperparameters of each
framework are listed in Appendix 2 and Appendix 3.

First, we present the results of the MEGAN model trained
on the MNIST and fashion-MNIST data sets. Fig. 5 shows
the convergence of the MEGAN in terms of the loss functions
of the discriminator and generator. In addition, the discrim-
inator output for the train, test, and synthetic data samples
is represented. From Fig. 5 it is clear that the MEGAN can
converge and reach stability and is able to generate real-
looking synthetic data samples. In addition, it can be seen
that the density of the output of the discriminator for training
and test data samples overlaps perfectly. Therefore, it can
significantly reduce the accuracy of the membership inference
attacker.

Regarding the MIMGAN, for different values of λ (see
equation (18)) the histogram of the discriminator output for
the train and test data sets along with examples of the
generated data samples is presented in Fig. 6. From this
figure, it can be seen that by increasing the value of λ the
amount of overlapping between the train and test density at
the output of the discriminator increases. Thus, similar to
MEGAN, we can expect MIMGAN to reduce the accuracy
of the membership inference attackers. However, it should be
noted that there is a clear difference between the MEGAN
and MIMGAN approaches in reducing the accuracy of MIA.
In MEGAN the overlapping between the discriminator output
densities is done by making them distributed mainly around
0.5 i.e., the optimum point of the discriminator, while the
MIMGAN increases the variance of the discriminator output.

To quantify this view, the overfitting of the discriminator and
generator for GAN, MEGAN, and MIMGAN are examined in
Table II in terms of the accuracy of MIA and the overfitting
parameters (i.e. generalization gap defined in equation (2) and
the Bhattacharyya coefficient proposed in equation (6)).

Looking at Table II, compared with GAN, it was expected
that MEGAN would reduce the discriminator overfitting sig-
nificantly. In addition, the generator in MEGAN has less
overfitting than the one in GAN and so it is expected to
reduce the accuracy of MIA extensively. The MIMGAN can
also reduce the accuracy of MIA to discriminator where the
overlapping parameter increases by increasing the value of
λ while the generalization gap is almost unchanged. The
MIMGAN is a good example to show why Bhattacharyya
coefficient ρ should be used (instead of the generalization
gap gDGAN) as the measure of overfitting in the discriminator.
MIMGAN has also the best performance in terms of reducing
memorization. Thus, we expect that for MIAs on the generator,
MIMGAN would have the best performance.

C. Precision-recall comparison with non-private GANs

So far, our comparison has focused on assessing MEGAN
and MIMGAN against the vanilla GAN in terms of their
effectiveness in mitigating overfitting and their performance
in countering MIAs. In terms of the quality (precision) and
diversity (recall) of the generated data samples, although
Figs.5 & 6 provide visual examples of the generated data
points, these concepts can also be quantified through alterna-
tive metrics, such as GAN-test and GAN-train measures [43].
GAN-test represents the accuracy of a classifier trained on real
data samples and evaluated on generated data points, akin to
precision, where high accuracy signifies high-quality generated
data samples. Conversely, GAN-train measures the accuracy
of a classifier trained on generated samples and evaluated
using real data points, similar to recall, where higher values
indicate greater diversity among the generated samples. In this
study, we employed the classifier outlined in Appendix 4 to
compute GAN-test and GAN-train values for both MEGAN
and MIMGAN, comparing them with the performance of the
standard GAN. The results of this evaluation are illustrated in
Fig.7, alongside MIA accuracy. Examining this figure reveals
that while both MEGAN and MIMGAN exhibit a slight reduc-
tion in precision and recall compared to the standard GAN,
their substantial improvement in reducing MIA accuracy is
evident. Furthermore, the figure highlights that in scenarios ap-
proaching extreme privacy (where MIA accuracy approximates
randomness), MEGAN marginally outperforms MIMGAN in
terms of precision and recall. However, MIMGAN offers
flexibility by allowing control over the parameter λ, enabling
users to reach their desired privacy-utility trade-off.

D. Comparison with other private GANs

In this section, our objective is to conduct a comparative
analysis of our proposed models in comparison to other
privacy-preserving GANs, specifically PrivGAN [20] and DP-
GAN [23], across several key metrics. These metrics encom-
pass MIA accuracy, the number of training parameters utilized
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Fig. 5. Examining the convergence in MEGAN based on the discriminator and generator loss functions, the output of discriminator per epoch, and the
histogram of the output of discriminator used for white-box MIA on (a) fashion-MNIST and (b) MNIST data sets. For the sake of visibility, the loss functions
are shown just for the first 100 epochs of the training process.

TABLE II
COMPARISON OF THE MEGAN AND MIMGAN MODELS WITH GAN IN TERMS OF OVERFITTING, MEMORIZATION, AND MIA ACCURACY.

Dataset Model gDGAN ρ MIA* mG
GAN TVD Att.

MNIST

GAN 0.03 0.86 31.91% 0.96 0.35

MEGAN 0.00 0.99 11.68% 0.93 0.06

MIMGAN
λ = 10 0.03 0.95 21.94% 0.94 0.25

λ = 20 0.04 0.97 16.73% 0.89 0.18

λ = 100 0.04 0.99 11.30% 0.81 0.09

fashion-MNIST

GAN 0.13 0.83 33.41% 0.93 0.39

MEGAN 0.00 ∼1.00 11.01% 0.86 0.02

MIMGAN
λ = 10 0.020 0.94 21.71% 0.90 0.24

λ = 20 0.03 0.97 15.96% 0.87 0.16

λ = 100 0.03 0.99 11.47% 0.82 0.08
*Random attacker has MIA accuracy of 10%.

Fig. 6. Performance of the MIMGAN for different values of λ applied to
(a) MNIST and (b) fashion-MNIST data sets. For the sake of visibility, the
histograms are not normalized.

Fig. 7. Evaluation of the GAN, MEGAN, and MIMGAN based on the (a)
GAN-test and (b) GAN-train approaches versus the MIA accuracy.

within each framework, and GAN-test accuracy, as introduced
in Section IV-C. It is important to emphasize that we employ a
classifier with an identical structure, as detailed in Appendix
4, for all models. Additionally, the GAN structure remains
consistent for each framework when applied to both datasets.
Regarding DP-GAN, the same architecture as the vanilla GAN
and MEGAN is used. Moreover, DP-GAN is implemented
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with differential privacy1 with a parameter of δ = 1e−4.
Consequently, for each model, the initial step involves training
the classifier using generated data samples, followed by its
evaluation on a pre-determined test dataset. The results of
this comprehensive comparison are presented in Table III. The
table unequivocally illustrates that while DP-GAN and Priv-
GAN exhibit the capacity to reduce MIA accuracy to a level
approaching that of a random attacker, their performance in
downstream utility is significantly compromised in comparison
to MEGAN and MIMGAN, which are introduced in our work.
More precisely, when we take into account both robustness
against membership inference attacks and utility, as measured
by GAN-test accuracy, our proposed models, MEGAN and
MIMGAN, outperform Priv-GAN and DP-GAN. Notably, our
MEGAN achieves this superiority while maintaining the same
number of learning parameters as the standard GAN. In con-
trast, Priv-GAN has almost twice the number of parameters,
making it significantly more computationally expensive. It is
worth noting that this comparison is specifically conducted
for the MNIST and fashion-MNIST datasets, primarily due to
computational constraints.

TABLE III
COMPARISON OF THE MEGAN AND MIMGAN MODELS WITH OTHER

PRIVATE GAN MODELS.

Dataset Model MIA* GAN-test Acc. # parameters
(×106)

MNIST

GAN 59.20% 96.88% 4.69

MEGAN 12.08% 94.16% 4.69

MIMGAN (λ = 100) 13.01% 92.97% 9.65

PrivGAN (λ = 10, N = 2) 12.18% 77.51% 9.49

DP-GAN (δ = 1e−4) 10.07% 59.67% 4.69

fashion-MNIST

GAN 44.52% 81.04% 4.69

MEGAN 12.24% 77.24% 4.69

MIMGAN (λ = 100) 11.44% 77.69% 9.65

PrivGAN (λ = 10, N = 2) 12.96% 67.07% 9.49

DP-GAN (δ = 1e−4) 10.35% 56.23% 4.69
*Random attacker has MIA accuracy of 10%.

V. SUMMARY AND CONCLUDING REMARKS

We have considered the problem of MIAs in GANs. First,
we have revised the notion of overfitting in GANs and
showed the limitations of the generalization gap. In particular,
the Bhattacharyya coefficient between the distribution of the
discriminator scores for training and non-training data points
was introduced as a more complete measure of overfitting. The
advantage of this coefficient is that it considers the shape of the
distributions instead of only mean values. This was clarified
with a Gaussian example in detail. Second, we proposed a
new optimization framework for the GAN to mitigate the risks
of membership inferences by maximizing the entropy of the
discriminator scores for fake samples during training. This
approach termed MEGAN was found to be quite effective
in reducing the effectiveness of MIAs. Third, we consider
another approach to try to mitigate the risks of MIAs by
considering the leakage of information in fake samples. In
this case, the GAN framework also was modified to include

1https://github.com/tensorflow/privacy

an additional network and a regularization term in the loss
function to control the amount of information being leaked.
The advantage of this scheme is that it provides a direct
control, through the weight of the regularization term, over
the amount of information leakage that is allowed. Thus, it is
more flexible than the former approach. In all cases, there are
trade-offs between the diversity and fidelity (quality) of the
generated samples and the robustness against MIAs, as shown
in Fig. 7. This is a topic worth of further research that may
be considered in the future.
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APPENDIX 1: MODEL ARCHITECTURES FOR EFFECT OF
DISCRIMINATOR OVERFITTING ON THE PERFORMANCE OF

MIA

The model architectures of the generators and discriminators
used to produce Fig. 3 are presented along with the optimizer.
It should be noted that the same generator was used for all
three examples and an Adam optimizer with a learning rate
of 0.0002 and β = 0.5 was used for optimization.

Generator
- Dense (units = 7×7×512, input size = 100)
- LeakyReLU (α = 0.2)
- Reshape ( target shape = (7,7,512))
- Conv2DTranspose (filters = 128, kernel size = (5,5),

strides = (2,2), padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2DTranspose(filters = 128, kernel size = (5,5),

strides = (2,2), padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D (filters = 1, kernel size =(5,5), activation =

’sigmoid’,padding = ’same’)
discriminator (a)

- Conv2D (filters = 32, kernel size = (5,5), strides = (2,2),
padding = ’same’)

- LeakyReLU (α = 0.2)
- Conv2D (filters = 64, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D(filters = 128, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Flatten()
- Dense(units = 1, activation = ’sigmoid’)

discriminator (b)
- Conv2D (filters = 64, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D(filters = 128, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Flatten()
- Dense (units = 1, activation = ’sigmoid’)

discriminator (c)
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- Conv2D (filters = 64, kernel size = (5,5), strides = (2,2),
padding = ’same’)

- LeakyReLU (α = 0.2)
- Conv2D(filters = 64, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Flatten()
- Dense (units = 1, activation = ’sigmoid’)

APPENDIX 2: MODEL ARCHITECTURES FOR THE MEGAN
The model architectures of the generators and discriminators

used for MEGAN are presented along with the optimizer.
The same architecture is used for both MNIST and fashion-
MNIST datasets. The Adam optimizer with a learning rate of
0.0002 and β = 0.5 was used for optimization in Algorithm 1.

Generator
- Dense (units = 7×7×512, input size = 100)
- LeakyReLU (α = 0.2)
- Reshape ( target shape = (7,7,512))
- Conv2DTranspose (filters = 128, kernel size = (5,5),

strides = (2,2), padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2DTranspose(filters = 128, kernel size = (5,5),

strides = (2,2), padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D (filters = 1, kernel size =(5,5), activation =

’sigmoid’,padding = ’same’)
discriminator

- Conv2D (filters = 32, kernel size = (5,5), strides = (2,2),
padding = ’same’)

- BatchNormalization()
- LeakyReLU (α = 0.2)
- Conv2D(filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- BatchNormalization()
- LeakyReLU (α = 0.2)
- Flatten()
- Dense (units = 1, activation = ’sigmoid’)

APPENDIX 3: MODEL ARCHITECTURES FOR THE MIMGAN
The model architectures of the generator, discriminator,

and Adversary used in MIMGAN to produce the results for
MNIST and fashion-MNIST datasets are outlined here. For
all cases, the same generator and Adversary architectures
were used. In addition, an Adam optimizer with a learning
rate of 0.0002 and β = 0.5 was used for optimization.

Generator
- Dense (units = 7×7×512, input size = 100)
- LeakyReLU (α = 0.2)
- Reshape ( target shape = (7,7,512))
- Conv2DTranspose (filters = 128, kernel size = (5,5),

strides = (2,2), padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2DTranspose (filters = 128, kernel size = (5,5),

strides = (2,2), padding = ’same’)

- LeakyReLU (α = 0.2)
- Conv2D (filters = 1, kernel size = (5,5), activation =

’sigmoid’, padding = ’same’)
Adversary

- Conv2D (filters = 64, kernel size = (3,3), strides = (2,2),
padding = ’same’)

- LeakyReLU (α = 0.2)
- Conv2D(filters = 64, kernel size = (3,3), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Flatten()
- Dense(units = 28×28×2)

discriminator (MNIST)
- Conv2D (filters = 64, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D (filters = 64, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Flatten()
- Dense (units = 1, activation = ’sigmoid’)

discriminator (fashion-MNIST)
- Conv2D (filters = 64, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D(filters = 128, kernel size =(5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Flatten()
- Dense (units = 1, activation = ’sigmoid’)

APPENDIX 4: CLASSIFIER ARCHITECTURE FOR GAN-TEST
AND GAN-TRAIN MEASURES

- Conv2D (filters = 32, kernel size =(3,3), activation=’relu’)
- MaxPooling2D(pool size = (2, 2))
- Conv2D (filters = 64, kernel size =(3,3), activation=’relu’)
- Conv2D (filters = 64, kernel size =(3,3), activation=’relu’)
- MaxPooling2D (pool size = (2, 2))
- Flatten()
- Dense (units = 100, activation = ’relu’)
- Dense (units = 10, activation = ’softmax’)

SGD optimizer with a learning rate of 0.01 and momentum of
0.9 was used for optimization.

APPENDIX 5: MORE EXPERIMENTAL RESULTS

In this section, the experimental results of the proposed
defense models applied to more datasets are proposed.

Regarding the Chest X-Ray Images (Pneumonia) dataset,
the model architectures of the networks used in GAN,
MIMGAN, and MEGAN are outlined here. For all cases, the
kernels of each layer is initialized by a zero-mean random
normal with σ = 0.02. Moreover, the Adam optimizer with a
learning rate of 0.0002 and β = 0.5 was used.

Generator
- Dense (units = 8×8×128, input size = 100)
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Fig. 8. Experimental results of (a) GAN, (b) MEGAN, (c) MIMGAN with
λ = 10, and (d) MIMGAN with λ = 20 applied to the Chest X-Ray Images
(Pneumonia) dataset [44]. For this experiment, 80% of the total data are
considered as the test data set.

TABLE IV
ADDITIONAL EXPERIMENTAL RESULTS OF THE PROPOSED MODELS FOR

THE CHEST X-RAY IMAGES (PNEUMONIA) DATASET.

Dataset Model gDgan ρ MIA* mG
gan TVD Att.

Chest X-Ray
Images (Pneumonia)

GAN 0.39 0.74 36.39% 1.01 0.49

MEGAN 0.03 0.98 21.23% 0.98 0.06

MIMGAN λ = 10 0.05 0.97 24.49% 0.96 0.09

λ = 20 0.04 0.98 21.75% 0.91 0.08
*Random attacker has MIA accuracy of 20%.

- LeakyReLU (α = 0.2)
- Reshape ( target shape = (8,8,128))
- Conv2DTranspose (filters = 128, kernel size = (4,4),

strides = (2,2), padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2DTranspose (filters = 128, kernel size = (4,4),

strides = (2,2), padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2DTranspose (filters = 128, kernel size = (4,4),

strides = (2,2), padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2DTranspose (filters = 128, kernel size = (4,4),

strides = (2,2), padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2DTranspose (filters = 128, kernel size = (4,4),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D (filters = 3, kernel size = (5,5), activation =

’sigmoid’, padding = ’same’)

Adversary (MIMGAN)

- Conv2D (filters = 32, kernel size = (5,5), padding =
’same’)

- LeakyReLU (α = 0.2)
- Conv2D(filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D(filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D(filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D(filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Flatten()
- Dense(units = 128×128×3×2)

discriminator (MIMGAN, GAN)

- Conv2D (filters = 64, kernel size = (5,5), padding =
’same’)

- LeakyReLU (α = 0.2)
- Conv2D (filters = 64, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D (filters = 64, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D (filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D (filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D (filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Flatten()
- Dropout(0.5)
- Dense (units = 1, activation = ’sigmoid’)

discriminator (MEGAN)

- Conv2D (filters = 32, kernel size = (5,5), padding =
’same’)

- LeakyReLU (α = 0.2)
- Conv2D (filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D (filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D (filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D (filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
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- Conv2D (filters = 32, kernel size = (5,5), strides = (2,2),
padding = ’same’)

- LeakyReLU (α = 0.2)
- Flatten()
- Dropout(0.5)
- Dense (units = 1, activation = ’sigmoid’)

Fig. 9. Experimental results of (a) GAN, (b) MEGAN, (c) MIMGAN with
λ = 20, and (d) MIMGAN with λ = 100 applied to the Anime Faces dataset.
For this experiment, 80% of the total data are considered as the test data set.

TABLE V
ADDITIONAL EXPERIMENTAL RESULTS OF THE PROPOSED MODELS FOR

THE ANIME FACES DATASET.

Dataset Model gDgan ρ MIA* mG
gan TVD Att.

Anime Faces
GAN 0.48 0.70 48.53% 0.762 0.58

MEGAN 0.06 0.99 22.32% 0.777 0.08

MIMGAN λ = 20 0.17 0.93 33.77% 0.757 0.27

λ = 100 0.06 0.99 21.80% 0.743 0.07
*Random attacker has MIA accuracy of 20%.

Regarding the Anime Faces dataset, the model architectures
of the networks used in GAN, MIMGAN, and MEGAN are
outlined here where in all the cases the Adam optimizer with
a learning rate of 0.0002 and β = 0.5 was used.

Generator
- Dense (units = 4×4×512, input size = 100)
- LeakyReLU (α = 0.2)
- Reshape ( target shape = (4,4,512))
- Conv2DTranspose (filters = 512, kernel size = (4,4),

strides = (2,2), padding = ’same’)
- BatchNormalization(momentum=0.9, epsilon=0.0001)
- LeakyReLU (α = 0.2)

- Conv2DTranspose (filters = 256, kernel size = (4,4),
strides = (2,2), padding = ’same’)

- BatchNormalization(momentum=0.9, epsilon=0.0001)
- LeakyReLU (α = 0.2)
- Conv2DTranspose (filters = 128, kernel size = (4,4),

strides = (2,2), padding = ’same’)
- BatchNormalization(momentum=0.9, epsilon=0.0001)
- LeakyReLU (α = 0.2)
- Conv2DTranspose (filters = 64, kernel size = (4,4), strides

= (2,2), padding = ’same’)
- BatchNormalization(momentum=0.9, epsilon=0.0001)
- LeakyReLU (α = 0.2)
- Conv2D (filters = 3, kernel size = (5,5), activation =

’tanh’, padding = ’same’)
Adversary (MIMGAN)

- Conv2D (filters = 32, kernel size = (5,5), padding =
’same’)

- LeakyReLU (α = 0.2)
- Conv2D(filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D(filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D(filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Conv2D(filters = 32, kernel size = (5,5), strides = (2,2),

padding = ’same’)
- LeakyReLU (α = 0.2)
- Flatten()
- Dense(units = 64×64×3×2)

discriminator (MIMGAN, GAN)
- Conv2D (filters = 64, kernel size = (3,3), padding =

’same’)
- LeakyReLU (α = 0.2)
- BatchNormalization()
- Conv2D (filters = 64, kernel size = (3,3), padding =

’same’)
- LeakyReLU (α = 0.2)
- BatchNormalization()
- MaxPooling2D(pool size=(3,3))
- Dropout(0.2)
- Conv2D (filters = 64, kernel size = (3,3), padding =

’same’)
- LeakyReLU (α = 0.2)
- BatchNormalization()
- Conv2D (filters = 64, kernel size = (3,3), padding =

’same’)
- LeakyReLU (α = 0.2)
- BatchNormalization()
- MaxPooling2D(pool size=(3,3))
- Dropout(0.3)
- Flatten()
- Dense(64)
- LeakyReLU (α = 0.2)
- Dense(64)
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- LeakyReLU (α = 0.2)
- Dense (units = 1, activation = ’sigmoid’)

discriminator (MEGAN)
- Conv2D (filters = 64, kernel size = (3,3), padding =

’same’)
- LeakyReLU (α = 0.2)
- BatchNormalization()
- Conv2D (filters = 64, kernel size = (3,3), padding =

’same’)
- LeakyReLU (α = 0.2)
- BatchNormalization()
- MaxPooling2D(pool size=(3,3))
- Dropout(0.2)
- Conv2D (filters = 64, kernel size = (3,3), padding =

’same’)
- LeakyReLU (α = 0.2)
- BatchNormalization()
- Conv2D (filters = 64, kernel size = (3,3), padding =

’same’)
- LeakyReLU (α = 0.2)
- BatchNormalization()
- MaxPooling2D(pool size=(3,3))
- Dropout(0.3)
- Flatten()
- Dense(32)
- LeakyReLU (α = 0.2)
- Dense(32)
- LeakyReLU (α = 0.2)
- Dense (units = 1, activation = ’sigmoid’)
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