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An Identity-Preserved Framework for Human
Motion Transfer
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Abstract—Human motion transfer (HMT) aims to generate
a video clip for the target subject by imitating the source
subject’s motion. Although previous methods have achieved good
results in synthesizing good-quality videos, they lose sight of
individualized motion information from the source and target
motions, which is significant for the realism of the motion in
the generated video. To address this problem, we propose a
novel identity-preserved HMT network, termed IDPres. This
network is a skeleton-based approach that uniquely incorporates
the target’s individualized motion and skeleton information to
augment identity representations. This integration significantly
enhances the realism of movements in the generated videos.
Our method focuses on the fine-grained disentanglement and
synthesis of motion. To improve the representation learning
capability in latent space and facilitate the training of IDPres,
we introduce three training schemes. These schemes enable
IDPres to concurrently disentangle different representations and
accurately control them, ensuring the synthesis of ideal motions.
To evaluate the proportion of individualized motion information
in the generated video, we are the first to introduce a new
quantitative metric called Identity Score (ID-Score), motivated
by the success of gait recognition methods in capturing identity
information. Moreover, we collect an identity-motion paired
dataset, Dancer101, consisting of solo-dance videos of 101
subjects from the public domain, providing a benchmark to
prompt the development of HMT methods. Extensive experiments
demonstrate that the proposed IDPres method surpasses existing
state-of-the-art techniques in terms of reconstruction accuracy,
realistic motion, and identity preservation.

Index Terms—human motion transfer, disentanglement repre-
sentation, gait recognition, video generation.

I. INTRODUCTION

Imitating human motion holds significant importance across
various domains, such as augmented reality (AR) [1], virtual
reality (VR) [2], movie production [3], robotics [4], and
computer vision [5], [6]. With the recent surge of development
in Generative Adversarial Nets (GANs) [7], the human motion
transfer (HMT) task has become a popular way to obtain the
desired human motion imitation. Specifically, HMT aims to
generate a video of one person (Subject B), and this person
performs the same motion as another person (Subject A).

Most HMT methods firstly decompose the motion and
appearance of two subjects and then recompose the source
subject’s motion with the target subject’s appearance [5], [6],
[8]–[14]. Despite the fact that these methods have achieved
remarkable results in synthesizing good-quality videos, a lim-
itation is their tendency to generate videos with unnatural
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Target videosSource video Previous methods Our method

Fig. 1: An example of an unnatural case is presented by
TransMoMo [5]. The motion from the source video (the girl in
white) is transferred to the target videos (the man in blue, and
the girl in red). The synthesized videos from previous methods
show a limitation: regardless of the subjects’ identities, they
tend to exhibit similar postures. In contrast, our proposed
method considers individualized information and generates the
natural posture of each individual.

motion. An example is shown in Fig. 1, where the motion of a
girl in white (source) is transferred to two different individuals
(a man in blue and a girl in red). The synthesized videos
show that both the man in blue and the girl in red perform
motions similar to those of the source video. Nevertheless, the
same motion performed by two individuals in the real world
cannot be exactly the same in all details. This is because each
individual has his/her own personal motion style. Those styles
can be viewed as individualized motion information in human
motion. Existing HMT methods often omit individualized
motion information, leading to incomplete disentanglement for
human motion and suboptimal identity preservation.

In this paper, we suggest that human motion should be
further decomposed into coarse-grained motion content (MC)
and fine-grained individualized motion (IM ). The MC dic-
tates the general type of movements, like raising hands or
kicking, while the IM refers to the nuanced motion of an
individual, like the personal way each person might raise their
hand. Therefore, we consider the HMT task as creating a video
that not only transfers the source’s MC to the target but also
preserves the target’s IM and appearance. In this context,
we specifically refer to appearance as human structure (HS),
which is a static feature, i.e. does not change with motion.

In order to achieve this task, two challenges need to
be addressed. First, decomposing the fine-grained and high-
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Fig. 2: The overview of the proposed IDPres. (a) The overview of the training stage. Our training stage contains specific data
sampling (Section III-C1) and three training schemes: self-reconstruction training (Section III-C2), overlap attribute training
(Section III-C3), and non-overlap attribute training (Section III-C4). (b) The overview of the inference stage. This stage takes
two videos with different subjects and movements as input.

frequency IM information from human motion and using
it to achieve human transfer is difficult. Second, to our
best knowledge, there are no available evaluation metrics for
evaluating the proportion of IM in the generated video.

To address the first challenge, we introduce IDPres, an
identity-preserved network. IDPres employs a skeleton-based
structure [5] for focused motion analysis, unaffected by varia-
tions such as clothing or carrying. IDPres focus on leveraging
the target subjects’ IM and skeleton information (HS men-
tioned above) to improve the reality of motion in generated
videos. Its methodology is detailed in Fig 2. Moreover, IDPres
not only facilitates flexible motion transfer but also aids
in deconstructing human motion components. Inspired by
Group Supervised Learning (GSL) [15], we implement three
training schemes to enhance IDPres’s ability to capture IM
information, detailed in Section III-C. In the inference stage,
leveraging the trained IDPres, users can compose a single
harmonized motion formed by fusing three latent codes via
an intuitive “plug-and-play” interface.

Recent studies have successfully demonstrated that lever-
aging subjects’ personal style (both IM and HS) in walk-
ing is beneficial to identifying individuals [16]–[19]. Gait
recognition methods, based on this principle, employ machine
learning methods to represent personal style during walking,
thereby facilitating identity recognition despite variations such
as multiple camera viewpoints, various clothing, and carried
items. They typically regard this personal style as an indi-
vidual’s identity information. Moreover, we experimentally
found that the gait recognition methods can also recognize
the subject’s identity information based on their non-walking
motion. Thus, we argue that gait recognition methods can
efficiently capture identity information from dance movements
by considering them as identity information extractors. Based
on this extractor, we propose a novel metric, named Identity
Score (ID-Score), for quantitatively evaluating the preservation
extent of IM information in generated motion sequences,
aiming to handle the second challenge.

Moreover, data is essential for achieving a reasonable result
of the deep neural network. Although several publicly avail-

able datasets [20], [21] can satisfy the condition that multiple
subjects perform the same motion, these datasets have rela-
tively few subjects or perform only simple movements. Thus,
we collected a dataset from the Internet, named Dancer101,
with 101 subjects’ solo-dance videos. In the dataset, multiple
subjects perform the same motion (choreography), and the
motions are complex dance motions.

We summarize our contributions as follows:
1) We introduce an identity-preserved human motion trans-

fer framework, IDPres, which utilizes both IM and HS
to alleviate the phenomenon of unrealistic motion in
generated videos. We also present three training schemes
to promote the training of IDPres.

2) We experimentally found gait models also can capture
identity information from non-walking motion. Thus, we
leverage gait models as identity information extractors
and propose a new metric, Identity-Score (ID-Score),
to quantitatively evaluate the preservation extent of IM
information in generated motion sequences.

3) We collected a dataset, named Dancer101, for identity-
preserved human motion transfer, and the dataset con-
tains solo-dance videos from 101 subjects.

4) Extensive experiments are conducted. The results
demonstrate that our methods outperform the state-of-
the-art in both reconstruction performance and ID-Score
on three datasets. Moreover, the visualization shows that
IDPres efficiently transfers the source motion to the
target subject while preserving their IM and HS.

II. RELATED WORKS

A. Human motion transfer

Human motion transfer methods can be roughly divided into
three categories based on data modality: image-based [22]–
[25], video-based [6], [12]–[14], [26]–[28], and skeleton-based
ones [5], [26], [29]–[31].

Image-based methods refer to generating an image by
transferring the action of the source subject to the target
subject. In order to generate a video, frames are generated
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one by one separately, and there are no constraints among the
frames. Siarohin et al. [24] employed a conditional generative
adversarial network (cGAN) [32] to transfer the source sub-
ject’s posture to the target subject and then generated images
by a given source skeleton map as conditions. Balakrishnan
et al. [25] presented a modular generative neural network
that synthesized unseen poses by training pairs of images and
poses. Li et al. [23] proposed a feedforward appearance flow
generation module to efficiently encode the dense and intrinsic
correspondences in 3D space for human pose transfer. Li et
al.’s method [23] can address the self-occlusion problem of
skeleton key points. However, the performance of this method
is decided by the quality of human models. To alleviate this
problem, Ren et al. [12] presented a differentiable global-flow
local-attention block to reassemble the inputs at the feature
level for pose generation. Image-based methods omit temporal
context, thus difficult to extract IM from human movements.

Video-based methods can introduce temporal information
that cannot be handled in image-based ones. Wang et al. [27]
implemented video-to-video synthesis by converting semantic
videos into frames level. They employed an off-the-shelf algo-
rithm, DensePose, to estimate the 3D surface of a human body
as the input. Spatio-temporal generators and discriminators are
used to transfer the motion for the target subject. Chan et
al. [26] used skeletons as an intermediate representation for
frame-to-frame transfer. They considered temporal information
by the two consecutive frames as the generator’s input and the
discriminator’s input. Meanwhile, a temporal smoothing loss
function is employed to constrain the temporal representation.
However, video-based methods still face two problems: i)
they cannot be generalized to subjects who are not in the
training set. ii) they tend to fail in generalizing long videos.
To address the first problem, Wang et al. [14] applied few-
shot learning [33] and proposed a few-shot video-to-video
framework to synthesize videos of unseen subjects. To improve
the quality of the generated videos, Huang et al. [13] rendered
a human texture map to a surface geometry (represented as a
UV map). To handle the second problem, Mallya et al. [28]
introduced a novel framework by bolstering video-to-video
models, which was achieved by condensing the 3D world
rendered into a physically-grounded estimate. However, those
methods will introduce extra training parameters that may
increase the difficulty of network training.

Skeleton-based methods are the most intuitive methods
for handling temporal information. They can also have fewer
parameters than image or video-based ones since the input
skeleton data is lower dimensional than images or videos.
Skeleton-based methods normally consist of three steps: video-
to-skeleton estimation, skeleton-to-skeleton transfer (motion
retargeting), and skeleton-to-video [5]. To explore human
motions, skeleton-to-skeleton transfer is a mainstream research
trend for skeleton-based motion transfer. Aberman et al. [29]
proposed a two-branch framework with a part confidence map
as the 2D pose feature to clone the human motions in a video.
Then, a deep neural network is trained to decompose temporal
sequences of 2D poses into three components: abstract motion,
skeleton, and camera view-angle. Recently, Yang et al. [5]
proposed TransMoMo that can be trained in an unsupervised

manner to decompose the aforementioned three components.
However, those methods ignore IM information in human
movements and will result in unrealistic motion generation.

B. Disentangled representation learning

The disentangled representation learning has obtained much
attention in the image or video generation tasks [34]–[36].
As a fundamental technique in network interpretability, disen-
tangled representation learning has been popularly adopted in
human motion transfer. It can infer latent factors from the input
motion, and each latent factor is responsible for generating a
semantic attribute (such as the human skeleton). The pioneer-
ing work by Villegas et al. [37] leveraged two RNNs to capture
the motion context from source sequences and synthesize a
new motion animation, respectively. Specifically, a reference
pose of the target skeleton is provided to the RNN decoder, and
a cycle consistency loss is employed to decompose the motion
context and reference pose information. Lim et al. [38] learned
overall movement frame-by-frame and combined the results to
construct the output sequence. They represented human motion
as the global velocity of the root joint and relative coordinates
from the root joint position. Kim et al. argued that CNNs
are better than RNNs for extracting motion context because
they can capture short-term motions. Some other works [5],
[29] adopted different CNNs encoders to disentangle different
representations. Most previously mentioned methods also use
a classifier or metric learning to decompose different represen-
tations. However, those methods cannot disentangle the IM
information from human movements. How to decompose both
IM and MC from human movements simultaneously is still
an open issue.

C. Gait Recognition

Gait recognition technologies distinguish individuals by
their distinctive walking styles, and these methods are typically
classified into two types: skeleton-based [39]–[42], silhouette-
based methods [16]–[18], [43], [44].

Skeleton-based gait recognition employs the intrinsic
structure of the human form as input, such as the estimated
2D skeleton points, applying deep learning models to learn
identity-related representations for recognition. These gait
representations abstract the visual information to coordinates
of human joints or vectors, aiming to reduce disturbs from
other factors like clothing and carrying. PoseGait [39] is a
representative work, which combines 3D skeleton data with
hand-crafted characteristics to address clothing and viewpoint
variations, GaitGraph [40], [41] introduces a graph convolution
network for 2D skeleton-based gait representation learning,
and Gait-TR [42] further improves accuracy and robustness
using spatial transformer networks and temporal convolution
networks. Although existing methods have achieved significant
progress, no previous work has attempted to apply skeleton-
based methods to dance movement data. Moreover, the skele-
ton estimation results of skeleton-based methods are easily
affected by the environment and the camera’s viewpoints,
significantly impacting recognition accuracy.
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Silhouette-based gait recognition methods mostly learn
gait features from silhouette images, leveraging the potential
informative visual characteristics. With the advent of deep
learning, the focus of these methods is changed to spatial
feature extraction and temporal gait modelling. Specifically,
GaitSet [19] treats the gait sequence as a set and employs a
maximum function to compress the sequence of frame-level
spatial features. GaitPart [16] delves into the intricate local
details of silhouette complementation by capturing temporal
dependencies through a Micro-motion Module. GaitGL [44]
introduces both global and local 3D convolution layers, ad-
dressing the need for a holistic understanding of gait without
neglecting important details [44]. DeepGaitV2 [17], presents
profound insights into deep learning models for outdoor
gait recognition, showing promising performance on various
datasets. Despite the surpassing performance of silhouette-
based methods across different benchmarks, they suffer chal-
lenges such as changes in clothing or carrying and varying
camera viewpoints, which can distort the shape information
in silhouettes and influence recognition performance.

According to the above analysis, we find that compared
with skeleton-based gait recognition methods, silhouette-based
methods are relatively easier to be affected by factors, such as
clothing and carrying conditions. Considering that skeleton-
based gait recognition methods emphasize intrinsic structural
features, such as skeletons [39], which tend to be more robust
against various external factors. Hence, we leverage skeleton-
based methods as identity information extractors. This allows
us to quantitatively evaluate the extent of IM information
from generated motion clips.

III. METHOD

We begin by presenting the preprocessing details of our
collected dataset, Dancer101 (Section III-A). Subsequently,
an overview of IDpres is provided in Fig. 2. Following
this, various components within IDpres are described, with
a detailed explanation of the training scheme. Finally, the new
metric ID-Score is described. In particular, IDPres consists
of two blocks: a disentanglement block (formulated E) and
a generator block (formulated G), which are described in
Section III-B1 and Section III-B2, respectively. The disen-
tanglement block contains three well-designed encoders, i.e.
a motion content aware encoder (EMC) for capturing MC,
an individualized-aware encoder (EIM ) for capturing IM ,
and a skeleton-aware encoder (EHS) for capturing HS. The
generator block consists of several well-designed identity-
broadcasted upsampling blocks (IBup). IBup can achieve an
accurate fusion for MC, IM and HS. To further model long-
range dependencies, identity information (both IM and HS)
can be adequately fused to the receptive field of different
scales. In Section III-C, we introduce three training schemes,
self-reconstruction training, overlap attribute training, and non-
overlap attribute training, all promoting disentanglement and
generation for IDPres network. Finally, we describe the de-
tailed design of ID-Score in Section III-D.

A. Data preparation and preprocessing

Collecting a dance dataset with paired motion and identity
is crucial for disentangling IM from movements. Although
open-source datasets like Mixamo [20] and UTD-MHAD [21]
offer motion-identity pairing, they are constrained by animated
environments or simplistic movements. To overcome these
limitations, we collect a new dataset, named Dancer101,
consisting of solo dance videos from 101 individuals perform-
ing complex and identical dance routines. Each video, last-
ing approximately three minutes and forty seconds, presents
identical choreography and background music, captured in
various real-world settings with a resolution of 1080 ˆ 1920
pixels. This dataset provides an excellent opportunity to study
IM information in a disentangled manner. The processing of
Dancer101 involved several steps:

Video rescaling and movement alignment. The videos
are rescaled to a uniform resolution of 512 ˆ 512 pixels,
maintaining the original body proportions. Subsequently, we
manually synchronize the subjects’ movements using their
audio tracks, which is thanks to all the dance movements
being driven by the same background music. Despite temporal
alignment being imperfect, with errors within a five-frame
range, this process is beneficial in constructing a dataset that
pairs identity and motion effectively, facilitating the study of
IM information.

Acquisition of motion clips. Utilizing OpenPose [45], a
pose estimation algorithm, we extract 2D human skeleton
points from the videos, forming motion sequences. In our
paper, we focus on the first fifteen points of the BODY 25
format. In particular, the points are nose (0), neck (1), right
shoulder (2), right elbow (3), right wrist (4), left shoulder (5),
left elbow (6), left wrist (7), mid hip (8), right hip (9), right
knee (10), right ankle (11), left hip (12), left knee (13), and
left ankle (14). Considering the complex nature of the dance
movements in Dancer101, samples of missing points in the
skeleton maps are inevitable. To mitigate this, frames with
more than one-third missing points are discarded. For frames
with partial missing points, we interpolate these missing points
using average values from five adjacent frames. We then
segment these sequences into 81 non-overlapping motion clips
per subject, each comprising 64 consecutive frames.

Annotation and Dataset Division. The 8,181 motion clips
(101 ˆ 81 “ 8, 181), obtained from the 101 subjects, are
annotated with sequential numbers, i.e. ID # 0 to ID # 100.
Similar to identity annotation, we annotate motion clips per
subject into 81 different classes (MC # 0 to MC # 80). We
divide these clips into training and testing sets based on the
subject level, ensuring no overlap. The training set has 91
subjects with 7,371 (91 ˆ 81 “ 7, 371) motion clips, and
the testing set has 10 subjects with 810 (10 ˆ 81 “ 810)
motion clips. Further, for IM information evaluation using our
proposed ID-Score metric, the testing set is split into gallery
and probe sets, where the former’s identity labels are known,
and the latter’s require prediction. We allocate 40% of each
subject’s motion clips to the gallery set and the remainder to
the probe set. The training set is utilized to train both the gait
recognition models and our proposed IDPres.
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TABLE I: Comparisons between two widely-used motion datasets and our collected datasets Dancer101 and Dancer99.

Dataset
Subject number

(ID labels)

Number of motion
clips per subject

(MC labels)
Resolution Collect manner Complexity

of motion
training testing training testing W ˆ H

Mixamo 32 4 799 64 - animation complex motion(# 0 ´ # 31) (# 32 ´ # 35) (# 0 ´ # 798) (# 0 ´ # 63)

UTD-MHAD 6 2 27 27 640 ˆ 480 laboratory basic motion(# 0 ´ # 5) (# 6 ´ # 7) (# 0 ´ # 26) (# 0 ´ # 26)
Dancer101

(Our collected)
91 10 81 81 1080 ˆ 1920 open domain complex motion(# 0 ´ # 69,

# 80 ´ # 100) (# 70 ´ #79) (# 0 ´ # 80) (# 0 ´ # 80)

Dancer99
(Our collected)

- 99 - 32 1080 ˆ 1920 open domain complex motion- (# 0 ´ # 98) - (# 0 ´ # 31)

To effectively evaluate the cross-domain capabilities inher-
ent in various HMT methods, we collect an additional dataset
of 99 solo dance videos, referred to as Dancer99. These
videos also have the same choreography and background
music, but both the choreography and background music
differ from Dancer101. We leverage the same preprocessing
protocols used for Dancer101 to prepare Dancer99, yielding
3,168 motion clips, with each subject contributing 32 clips.
The detailed comparison and division of the datasets are
presented in Table I.

B. IDPres network architecture

1) Disentanglement block: The disentanglement block,
termed E, is designed to separate three different representation
attributes from the input data. One of the unique advantages
of our proposed method is the individualized-aware repre-
sentation disentanglement, which can be used for identity-
preserved human motion transfer. As illustrated in Fig. 3,
our disentanglement block contains three encoders of different
architectures. The three encoders are the motion content aware
encoder (EMC) for capturing MC, the individualized-aware
encoder (EIM ) for capturing IM , and the skeleton-aware
encoder (EHS) for capturing HS.

As discussed above, the EMC mainly extracts motion
content from human movements. We employ several temporal

convolution layers in EMC to capture time-sensitive repre-
sentations. Then, the instance normalization (IN) [46] layer
is applied after each temporal convolution layer to control
local statistics in human movements, in other words, IM
information. Benefiting from the IN layer, coarse and low-
frequency details in the temporal dimension are captured (i.e.
global motion).

In the EIM , unlike EMC , the IN layer is not applied since
the IM information needs to be preserved. The IM represen-
tation is one of the fine-grained individualized representations
in the temporal space. Considering this, we leverage a temporal
pyramid pooling (TPP) layer [47] and our proposed learnable
identity weight Wid to capture the IM feature. The TPP layer
is used to capture the local representations in the temporal
space, and Wid is applied to refine the IM information from
numerous local representations. The details are shown in Fig. 3
(a). In particular, TPP has B scales in the temporal space,
where b P B “ t1, 2, 4, ¨ ¨ ¨ , Nu, lenpBq “ B. The feature
extracted by temporal convolution layers divide B group, each
group split 2b´1 bins on the temporal dimension, i.e.

řB
b 2b´1

bins in total. Next, we employ global average pooling (GAP)
and global max pooling (GMP) to capture the local repre-
sentations for each bin. In other words, the TPP layer lever-
ages multiple temporal pooling layers with different receptive
fields to achieve temporal local representations from human

IBup

FC

Transpose

FC

GAP

1D-Conv s=2

IN

1D-Conv s=1

1D-Conv s=1

FC

TPP
GAP+GMP

C

bins

bins

AdaIN

1D-Conv s=1

AdaIN

C
Upsample

block

FC

FC
Faltten

(a) Disentanglement block (b) IBup block

Fig. 3: The overview of (a) disentanglement block, E and (b) identity-broadcasted upsampling blocks, IBup. In subfigure (a),
1D-Conv s=i represents the temporal convolutional layer with a stride of i and a LeakyReLU activation function, IN means
instance normalization, T is the number of frames, Ckpk P tMC, IM,HSu) is the number of channels of k, GAP and GMP
are temporal-level global average pooling and global max pooling respectively. FC means the full-connection layer. In subfigure
(b), FC is used to learn the mean and variance of IM , z is a Gaussian noise to improve the diversity of generated motions.
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Fig. 4: The different data pairs for training. Real datasets
typically lack pairs of samples that share the same HS while
differing in the other two attributes (MC, IM ). To overcome
this limitation, we employ a technique called limb scaler
operation [5]. This method allows us to artificially create a
new sample, denoted as M01

r , which maintains consistency in
two attributes (MC and IM ) but exhibits a different HS.

movements. The TPP layer is followed by identity weight
learning. The identity weight is Wid P R

řB
b 2b´1

ˆCinˆCout .
The design lets the encoder EIM focus on fine-grained IM
representations.

The combinations of temporal convolution layers and global
average pooling layer have widely been utilized to obtain
HS representation [5], [29], [31]. However, they typically
ignore the fact that the HS representation is a spatial-level
representation. To address this problem, we design a spatial-
level network to focus on extracting HS representation. In
particular, EHS has several spatial-level linear layers in place
of the traditional temporal convolution layers.

2) Motion generator: The motion generator is formulated
as Mf “ GpMC, IM,HSq, which needs three input features
achieved by the disentanglement block E. Since those three
representations have different distributions in the latent space,
fusing these representations is one of the major goals for
the generator. Some previous methods [5], [29] bypass this
issue by concatenating these features directly. Those methods
only partially explore interactions or correlations among multi-
distribution representations but are difficult to provide the
generated motions in good quality. In our method, the IBup
block is specifically designed to fuse the multi-distribution
representations, and its structure is shown in Fig. 3 (b). In
IBup, adaptive instance normalization (AdaIN) layers [46] are
used to fuse the MC and IM representations. Concretely, the
AdaIN layers can achieve mutual integration by normalizing
and scaling operations, and it is formulated as follows:

AdaINpMC, IMq “ σpIMq
MC ´ µpMCq

σpMCq
`µpIMq, (1)

where σ and µ are the variance and mean.
In order to improve the diversity of the synthetic motions,

the Gaussian noise is added before AdaIN. Moreover, we
repeat the HS feature in the temporal dimension and con-
catenate it in the channel dimension with the aforementioned
feature map. In order to broadcast IM and HS representations
in the generator, we fuse these representations in each scale of

D
iscrim

inator

Real / Fake

Fig. 5: The self-reconstruction pipeline.

the IBup block. In this manner, it mitigates the issue of IM
information from being dissipated after a series of upsampling
layers.

C. IDPres training schemes

Inspired by Group Supervised Learning (GSL), we in-
troduce three training schemes: self-reconstruction training,
overlap attribute training, and non-overlap attribute training.
For effective training, it is essential that each subject in the
dataset is represented with all attributes necessary for the
training process. Our collected dataset, Dancer101, perfectly
aligns with this requirement, encompassing 101 subjects, each
performing an identical set of movements. Additionally, we
have developed a data sampling strategy to support three
training schemes. It is important to note that these phases are
executed simultaneously rather than sequentially.

1) Data sampling and augmentation: The videos V “

t0, 1, 2, 3u from the dataset are formed into three different
pairs for training. The pairs are for the same MC, the
same IM and non-overlap videos (no attributes overlap),
as is shown in Fig. 4. The 2D skeletons of these videos
are extracted by a lightweight pose estimation algorithm,
OpenPose [45], and the extracted motion data is denoted as
M “ tM0

r ,M
1
r ,M

2
r ,M

3
r u. Furthermore, due to the fact that

there are no samples in the real dataset with the same HS
while differing in the other two attributes (MC, IM ), we
employ limb scaler operation [5] to augment the samples to
meet the requirement. As a result, the real motion space M
can be denoted as tM0

r ,M
01

r ,M
1
r ,M

2
r ,M

3
r u.

2) Self-reconstruction training: To improve the fidelity of
motion reconstruction and generation, we introduce a self-
reconstruction training pipeline for all sampled motion clips.
In this step, the disentanglement block and generator block
are used to reconstruct the input motion clips M i

r, i P

t0, 1, 2, 3, 01u, as shown in Fig. 5. The generated motion
clips are termed as M i

f . In this training scheme, the ground
truth motion clips are M i

r, since the goal of this stage is to
reconstruct each input motion sequence. Thus, this process is
formulated as:

EpM i
f q “ GpEpM i

rqq. (2)

To further improve the reconstruction quality of our model,
the reconstruction loss is presented as follows:

Lirec “ EMi
r„M}M i

r ´M i
f }, (3)

where M represent the space of real motion sequences in
Fig. 3. Moreover, to improve the fidelity of synthetic motion
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Input 1

Input 2

Ouput 1

Output 2

Exchange

(a) Overlap attribute training pipeline.

Name Exchange
content (Input 1, Input 2) (Output 1, Output 2) Lrec

Overlap MC MC pM0
r ,M

3
r q pM300

f ,M033
f q

LMC
rec

(Eq. 9)

Overlap IM IM pM0
r ,M

2
r q pM020

f ,M202
f q

LIMrec
(Eq. 10)

Overlap HS HS pM0
r ,M

01

r q pM0001

f ,M01010
f q

LHSrec
(Eq. 11)

(b) Three different cases for inputs, outputs, exchanging contents and loss
functions.

Fig. 6: (a) Overlap attribute training pipeline. The yellow trapezoids are the disentanglement encoders, and the green trapezoids
are the generators. (b) M i,j,k

f , i, j, k P t0, 2, 3, 01u means generated motions with MC from M i
r, IM from M j

r , and HS from
Mk
r respectively.

clips, a discriminator is used to measure the domain discrep-
ancy between real and synthetic motion clips. Therefore, the
adversarial loss for i-th motion clip is formulated as:

Liadv “ EMi
r„M

„

1

2
logDpM i

rq `
1

2
logp1 ´DpM i

f qq

ȷ

. (4)

3) Overlap attribute training: To disentangle each attribute
(MC, IM , or HS) in the latent representations efficiently, we
swap the attributes in latent space to generate expected motion
clips. Specifically, two motion clips with one attribute with
identical values should be reconstructed into nearly the original
motion clips when the latent representations for that attribute
are swapped, as shown in Fig. 6. For sampling three group
motion clips pM0

r ,M
3
r q, pM0

r ,M
2
r q, pM0

r ,M
01

r q, we conduct
the overlap training pipeline and compute reconstruction loss
functions of IM , MC, and HS, respectively. Specifically,
regarding the disentanglement of MC, when provided with
two motion clips (named M0

r , and M3
r ) sharing the same dance

movements, disentanglement block (Fig. 3 (a), we named it
as E), used to respectively obtain two motion clips’ MC,
IM , and HS representations, named pMC0, IM0, HS0q and
pMC3, IM3, HS3q. This process is formulated as:

pMC0, IM0, HS0q “ EpM0
r q,

pMC3, IM3, HS3q “ EpM3
r q.

(5)

Then, the MC0 and MC3 representations are swapped in
latent space, i.e. pMC3, IM0, HS0q and pMC0, IM3, HS3q

are obtained. Next, the generator block (Fig. 3 (b), we named
it as G) is employed to generate motion clips that have
corresponding attributes for the two groups’ representation.
This process can be formulated as:

M300
f “ GppMC3, IM0, HS0qq,

M033
f “ GppMC0, IM3, HS3qq.

(6)

Similarly, the IM and HS undergo the same process with
MC. The overlap-IM training schemes can be formulated
as:

pMC0, IM0, HS0q “ EpM0
r q,

pMC2, IM2, HS2q “ EpM2
r q,

M020
f “ GppMC0, IM2, HS0qq,

M202
f “ GppMC2, IM0, HS2qq.

(7)

The overlap-HS training schemes can be formulated as:

pMC0, IM0, HS0q “ EpM0
r q,

pMC01

, IM01

, HS01

q “ EpM01

r q,

M0001

f “ GppMC0, IM0, HS01

qq,

M01010
f “ GppMC01

, IM01

, HS0qq.

(8)

Then, three motion consistency loss functions are employed:
the MC consistency reconstruction loss, the IM consistency
reconstruction loss, and the HS consistency reconstruction
loss. Their definitions are as follows:

LMC
rec “ }M0

r ´M300
f } ` }M3

r ´M033
f }, (9)

LIMrec “ }M0
r ´M020

f } ` }M2
r ´M202

f }, (10)

LHSrec “ }M01

r ´M0001

f } ` }M0
r ´M01010

f }, (11)

where, M i,j,k
f , i, j, k P t0, 2, 3, 01u means generated motion

clips with MC from M i
r, IM from M j

r , and HS from Mk
r

respectively.
In addition, in the field of disentanglement [48]–[50], the

metric loss is also widely used. To obtain expected disen-
tanglement performance, the triplet loss [51] is used in our
disentanglement method. Specifically, a triplet is denoted as
m “ pτ, υ, ψq, where τ represents the anchor feature, υ is a
feature with the same label as the anchor τ and ψ is a feature
with a label different from that of the anchor τ . Thus, the
triplet loss is formulated as follows:

Ltripmq “ maxt0, δ `Dτ,υ ´Dτ,ψu, (12)

where δ is the margin parameter, Dτ,υ and Dτ,ψ are the
intra-class distance and the inter-class distance respectively.
Note that three triplet losses are applied to decompose three
different latent representations, and the details of the training
algorithm are shown in Algorithm 1.

4) Non-overlap attribute training: To handle the case of
no attribute paired, we introduce a cycle-based reconstruction
training pipeline. This pipeline is implemented on all example
pairs, regardless of whether they share an attribute or not.
However, we may not have ground truth for generated motion
clips in our training set. For example, we do not have samples
of both M1

r ’s HS and M0
r ’s IM in the dataset when swapping

the HS attribute. To address the problem, inspired by Cycle-
GAN [52], we re-decompose and re-generate for generated
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Random exchange

Same exchange

No overlap

Fig. 7: The overview of non-overlap attribute training pipeline.
Given any examples without overlapping attributes, we ran-
domly exchange an attribute.

Algorithm 1 Training regime.
Input: Real motion dataset M
Output: Loss items: Lcycle, LIM

rec , LMC
rec , LHS

rec , Lrec, Ltri,
Ladv

1: Sample motions from M, which are regarded as M i
r, i P t0, 1, 2, 3u

2: For M0
r , using the limb scaler operation and obtaining the motion

regarded as M01

r
3: # Self-reconstruction training
4: for i P t0, 1, 2, 3, 01u do
5: MCi Ð EMCpM i

rq

6: IM i Ð EIM pM i
rq

7: HSi Ð EHSpM i
rq

8: M i
f Ð GpMCi, IM i, HSiq

9: Lrec Ð Lrec ` E
”

}M i
r ´ M i

f }

ı

10: Ladv Ð Ladv ` E
”

1
2
logDpM i

rq ` 1
2
logp1 ´ DpM i

f qq

ı

11: end for
# Computing triplet loss by Equation 12

12: Ltri Ð LtrippMC0,MC3,MC2qq`

LtrippIM0, IM2, IM3qq`

LtrippHS0, HS2, HS01
qq

13: # Overlap attribute training
# Overlap MC

14: M300
f Ð GpMC3, IM0, HS0q

15: M033
f Ð GpMC0, IM3, HS3q

16: LMC
rec Ð Equation 9 Ð pM300

f ,M033
f ,M0

r ,M
3
r q

# Overlap IM
17: M020

f Ð GpMC0, IM2, HS0q

18: M202
f Ð GpMC2, IM0, HS2q

19: LIM
rec Ð Equation 10 Ð pM020

f ,M202
f ,M0

r ,M
2
r q

# Overlap HS
20: M0001

f Ð GpMC0, IM0, HS01
q

21: M01010
f Ð GpMC01

, IM01
, HS0q

22: LHS
rec Ð Equation 11 Ð pM0001

f ,M01010
f ,M0

r ,M
01

r q

23: # Non-overlap attribute training
24: β „ tIM,MC,HSu # Random sample an attribute
25: z0 Ð pMC0, IM0, HS0q,

z1 Ð pMC1, IM1, HS1q

26: pMup
f ,Mdown

f q Ð GpSwappz0, z1, βqq

27: ẑ0 Ð pEMCpMup
f q, EIM pMup

f q, EHSpMup
f qq,

ẑ1 Ð pEMCpMdown
f q, EIM pMdown

f q, EHSpMdown
f qq

28: pM0
f ,M

1
f q Ð GpSwappẑ0, ẑ1, βqq

29: Lcycle Ð Equation 13 Ð pM0
f ,M

1
f ,M

0
r ,M

1
r q

motion clips, as is shown in Fig. 7. Given a paired of no
attribute overlapped motion clips M0

r and M1
r , we first obtain

their corresponding representations by the disentanglement
block, then randomly exchange an attribute’s representation
(IM , MC, or HS), finally generate motion clips by generator.
In order to recover the generated motion clips, we employ
the same exchanging operation, i.e. if the MC attribute is

Gallery Probe

Probe

R
econstructed

Probe

Reconstructed
 probe features

Probe

C
rossed
Probe

Crossed
probe features

new
 subject

Search

Search Search

Test set

Gallery
features

Identity latent space

Raw
probe features

Identity Information
Extractor
(          )

Identity
Information

FC

Number

 of subjects

Training set

Identity
latent space

(a) The training pipeline
of     

(b) Schematic diagram for ID-Score

Fig. 8: The overview of the metric of ID-Score. (a) The
training pipeline of Egait. Ltri means triplet loss function,
and Lce means cross-entropy loss function. FC means the fully
connected layers. Typically, in gait recognition methods, they
just use identity information (the representation before the FC
layer) to conduct evaluation and recognition, the details can be
found in [18]. (b) The schematic diagram for ID-Score. The
Raw, Cross, and Rec denote the raw data stage, cross-stage,
and reconstruction stage evaluation pipeline, respectively.

TABLE II: The recognition accuracy of three gait recognition
methods on different datasets.

Dataset
Gait methods GaitGraph [40] GaitGraph 2 [41] Gait-TR [42]

Dancer101 60.00% 73.06% 81.22%
Mixamo [20] 93.59% 96.79% 98.72%

UTD-MHAD [21] 97.06% 97.06% 100%

exchanged in the first exchange stage, the MC attribute is also
exchanged in the second stage. The formula of this process is
shown in Algorithm 1, lines 24 to 28. Finally, we use the cycle
reconstruction loss to optimize the parameters of the networks,
which are formulated as follows:

Lcycle “ Ei„t0,1u}M i
r ´M i

f }. (13)

It is important to note that these phases are executed
simultaneously rather than sequentially. The disentanglement
block and the motion generator in all training schemes share
the parameters. The complete training regime is shown in
Algorithm 1.

D. ID-Score metric

Based on previous training, IDPres can decompose IM ,
MC, and HS from dancing movements, and recompose
them to generate new dancing movements. To quantify the
preservation of IM information, we have developed a novel
evaluation metric known as the Identity-Score (ID-Score),
which is based on gait recognition. Gait recognition has
successfully demonstrated that leveraging subjects’ identity
information (both IM and HS) in walking is beneficial
to identifying individuals. We assume that gait recognition
methods can similarly represent identity information from
dance movements. To validate this point, we train all three
gait recognition methods on three different dance datasets via
pipeline in Fig. 8 (a), with results detailed in Table II. Notably,
the recognition accuracy was 81.22% for Dancer101, 98.72%
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for Mixamo [20], and 100.00% for UTD-MHAD [21] using
the skeleton-based gait recognition model Gait-TR [42]. These
high recognition accuracies indicate that gait recognition meth-
ods are indeed effective in extracting identity information
information from dance movements.

The ID-Score metric operates through three stages: raw
data evaluation (Raw), reconstruction data evaluation (Rec),
and cross-subject identity information evaluation (Cross), as
illustrated in Fig. 8. In the Raw stage, an identity information
extractor (Egait) is used to map both the raw probe data
and gallery data into an identity latent space. The similarity
between each motion clip in the probe set and the gallery
set is computed to predict identity labels. The recognition
accuracy, known as Rank1, evaluates this stage. During the
Rec stage, probe data is reconstructed using the evaluated
HMT methods, and then projected into the identity latent
space using the Egait. This stage’s accuracy, Rankrec1 , is then
calculated. In the Cross stage, a new subject performs as the
target subject, and all probe data as source subjects, leveraging
IDPres to transfer the target’s IM and HS information to
each source. Then, the generated motion clips are projected
into the identity latent space via Egait. The resulting accuracy,
Rankcross1 , is expected to be lower since the new subject is not
registered in the gallery set. Moreover, the crucial point is that
poor reconstruction performance can also diminish Rankcross1

performance. Therefore, the difference between Rankrec1 and
Rankcross1 is used to counteract this issue, resulting in the
ID-Score. Higher ID-Score values indicate better preservation
of IM information information.

ID-Score “ Rankrec1 ´Rankcross1 . (14)

IV. EXPERIMENTS

A. Datasets

In this paper, we utilize four different datasets, Mix-
amo [20], UTD-MHAD [21], our dataset Dancer101 and
Dancer99, to train the models and evaluate the performance
of them. Dancer99 is used to evaluate the cross-domain
ability for different methods. Dancer101 and Dancer99 are
described in Section III-A.

Adobe’s Mixamo [20] provides animated 3D characters for
games, films, and other applications. The data is fully virtual
data and is not collected from a real scenario. Inspired by [29],
we project the animated 3D models into 2D from 7 different
view angles. We divide each motion into several motion
animations of 64 frames. Then, we also split the datasets into a
training set and a test set. The training set contains 32 subjects,
and each subject contains 799 motion animations. The testing
set contains 4 subjects, and each subject contains 64 motion
animations.

UTD-MHAD dataset [21] was collected in a real scenario
for action recognition. So, we used a similar processing with
Dancer101 on UTD-MHAD. The UTD-MHAD dataset has 8
subjects, and each subject has 27 motion animations. All the
subjects have been split into 6 for training and 2 for testing
without overlap. The statistics of the 3 datasets are shown in
Table I.

B. Experimental Settings

1) Implementation details: In the training stage, the number
of input frames is T “ 64, and the number of joints is 15. In
the inference phase, our proposed method can handle videos
of variable lengths. In the disentanglement block, we set the
numbers of channels of the outputs as CMC “ 128, CIM “

128, CHS “ 8 respectively. The setting of TPP scalers is the
same to [19], i.e. B “ t1, 2, 4, 8, 16u. In the discriminator,
four 1D temporal convolution layers are employed, and the
number of the last channel of the discriminator is 128. The
adversarial losses are adopted from least squares generative
adversarial networks (LSGAN) [53], and they can constrain
the distribution of generated motions similarly to real motions.

In the skeleton-to-video render stage, we adopt the VQ-
GAN [54] model as the backbone, which is originally for
image-to-image translation, to render skeletons to RGB images
frame by frame. In order to handle the one-by-one translation
problem [14], i.e. a subject corresponds to a model parameter,
additional conditional images are introduced. Those condi-
tional images mainly provide the RGB information to the
model. In particular, we randomly choose an image with the
same subject as the conditional input, and that concatenates the
channel axes of the conditional and skeleton images as input to
the VQGAN model. The resolution of all images is 512ˆ512
in our experiments, and other settings for hyperparameters are
strictly following [54].

We utilize a model-based gait recognition method, Gait-
Graph [40], GaitGraph 2 [41], and Gait-TR [42], to evaluate
the synthetic motion clips. The gait recognition models are
trained on the training sets of different datasets.

2) Evaluation metrics: Four quantitative metrics are in-
volved to evaluate the performance of our method and SOTA
methods. The metrics are mean square error (MSE), mean av-
erage error (MAE), and Frechet Motion Distance(FMD) [55],
and the proposed ID-Score. For the FMD metric, we employ
GaitGraph [40] to achieve the inception features, which can
be formulated as follows:

FMD “ }µFpMrq ´ µFpMf q}2

´ Trp
ř

FpMrq `
ř

FpMf q ´2
ř

FpMrq

ř

FpMf qq,

(15)

where, µFpMrq represents the mean and standard deviation of
FpMrq, FpMrq means the GaitGraph feature of real motion,
Tr is the trace of the matrix, and

ř

FpMrq is the covariance
matrix of the feature map.

C. Comparisons with state-of-the-art methods

We compared the proposed IDPres with TransMoMo [5],
Learning Character-Agnostic Motion (LCM) [29], Mo-
CaNet [31] on several aspects.

1) Evaluation of reconstruction quality: In order to quan-
titatively compare the motion reconstruction quality of ID-
Pres with that of the previous methods, three well-accepted
metrics are adopted: mean square error (MSE), mean average
error (MAE), and Frechet Motion Distance (FMD). Table III
offers motion reconstruction quantitative results, our method
generally performs better than previous methods. We see
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TABLE III: The reconstruction metrics on the three datasets.

Datasets Methods MSE(Ó) MAE(Ó) FMD(Ó)

Mixamo

TransMoMo 0.023 0.115 0.343
LCM 0.354 0.392 0.269

MocaNet 0.007 0.054 0.017
Ours 0.023 0.097 0.005

UTD-MHAD

TransMoMo 0.342 0.433 0.037
LCM 0.550 0.520 0.104

MocaNet 0.314 0.285 0.024
Ours 0.284 0.340 0.014

Dancer101

TransMoMo 0.184 0.300 0.129
LCM 0.514 0.511 0.146

MocaNet 0.188 0.244 0.081
Ours 0.152 0.267 0.055

LCM

TransMoMo

Ours

Ground Truth

T

、

MoCaNet

Fig. 9: The reconstructed skeletons by different methods. The
proposed IDPres provides the best reconstruction quality.

that MoCaNet outperforms our method in the MAE, but our
method reduces FMD values when compared to MoCaNet.
Note that FMD is a significant measure to evaluate the identity
preservation of reconstructed motion clips. The results demon-
strate the effectiveness of the method in motion reconstruction.

In order to analyze the reconstruction quality visually, Fig. 9
provides representative motion reconstruction examples of our
IDPres and other three comparable methods, where examples
are selected from the Dancer101 dataset. We observe that
the reconstructed skeletons by IDPres are more similar to the
ground truth than those by previous methods.

2) Evaluation of motion transfer quality: Evaluating mo-
tion transfer quality remains challenging due to the absence
of ground-truth motion clips in most datasets. In this paper, we
utilize our proposed ID-Score metric to quantitatively evalu-
ate the extent of IM information preservation of synthetic

LCM MoCaNet

TransMoMo Ours

Fig. 10: The identity histogram of different methods.
DistpMf ,Msourceq (orange) and DistpMf ,Mtargetq (blue)
are calculated using the Euclidean metric within the identity
space, representing how closely the generated motion Mf dis-
tance with the source Msource the target Mtarget respectively.
The x-axis means the distance values, and the y-axis means
the number of distance values.

motion clips, thereby reflecting the performance of motion
transfer. Therefore, we employ three gait recognition models
as identity information extractors to calculate the ID-Score on
three datasets, as presented in Table IV. As we can see, our
method significantly outperforms the previous three methods
with three gait recognition models across all datasets. This
improvement is due to the fact that previous methods only
consider HS information, but IDPres takes into account IM
information in addition to HS information.

3) Evaluation of the ability of cross-domain: To quantita-
tively evaluate the cross-domain capabilities of our method and
competitive methods, we adopt Dancer99 as the evaluation
dataset. This dataset, distinct in choreography and subjects,
differs from Dancer101, ensuring a robust evaluation of our
method’s adaptability to different domains. Specifically, we
train all methods on the Dancer101 dataset and conduct
testing on Dancer99. The metrics include Rankrec1 , MSE,
MAE, and FMD, and the results as shown in Table V. It
is evident that IDPres surpasses all competitive methods on
four evaluation metrics. Notably, our method outperforms
MoCaNet by 6.06% in Rankrec1 , keeping consistent with
results in Table IV. These results further demonstrate the
superiority of our method in both IM information preservation
and motion reconstruction from a cross-domain perspective.

4) Visualization of identity histogram: In order to visualize
the identity preservation performance of our method, we use
Euclidean distances to measure the similarity between the
generated motion clips and the source motion clips, as well
as the generated motion clips and the target motion clips, as
shown in Fig. 10. Regarding Euclidean distance histograms
of different methods in Fig. 10, we first randomly sample 128
motion clips from the testing set of Dancer101 (Msource) and
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TABLE IV: Experimental results for ID-Score metrics. While Raw represents the upper bound of performance for the current
dataset.

Datasets
Gait models GaitGraph [40] GaitGraph 2 [41] Gait-TR [42]
Generative
methods

Rankrec1 Rankcross1 ID-Score Rankrec1 Rankcross1 ID-Score Rankrec1 Rankcross1 ID-Score
(%)(Ò) (%)(Ó) (%)(Ò) (%)(Ò) (%)(Ó) (%)(Ò) (%)(Ò) (%)(Ó) (%)(Ò)

Mixamo

TransMoMo 67.31 25.00 42.31 83.97 21.79 62.18 76.92 25.00 51.92
LCM 57.69 32.69 25.00 58.97 39.74 19.23 73.72 46.15 27.57

MoCaNet 76.28 27.56 48.72 83.97 23.08 60.89 96.15 25.00 71.15
Ours 91.03 25.64 65.39 87.18 25.00 62.18 98.08 25.00 73.08
Raw Rank 1: 93.59% Rank 1: 96.79% Rank 1: 98.72%

UTD-MHAD

TransMoMo 79.41 52.94 26.47 79.55 50.00 29.55 84.09 50.00 34.09
LCM 82.35 64.71 17.64 76.47 55.88 20.59 77.27 61.36 15.91

MoCaNet 89.71 52.94 36.77 85.29 47.06 38.23 84.09 50.00 34.09
Ours 91.18 50.00 41.18 94.12 50.00 44.12 95.45 50.00 45.45
Raw Rank 1: 97.06% Rank 1: 97.06% Rank 1: 100.0%

Dancer101

TransMoMo 36.33 10.41 25.92 32.86 17.55 15.31 34.69 18.37 16.32
LCM 30.61 18.57 12.04 30.20 23.47 6.73 34.08 22.65 11.43

MoCaNet 34.90 10.00 24.90 41.63 15.51 26.12 47.96 16.53 31.43
Ours 46.53 10.61 35.92 55.92 10.00 45.92 53.06 10.20 42.86
Raw Rank 1: 60.00% Rank 1: 73.06% Rank 1: 81.22%

Source Target OursTransMoMo LCM MoCaNet

Fig. 11: The rendered results of quantitative comparisons. Red boxes are the main differences between our method and other
methods. Our proposed IDPres can make the target person follow the source person to dance, but with his/her own style.

TABLE V: The results of cross-domain on the in-the-wild
dataset Dancer99.

Methods Rankrec1 MSE(Ó) MAE(Ó) FMD(Ó)(%)(Ò)
TransMoMo 6.06 0.17 0.28 0.20

LCM 3.47 0.45 0.48 0.43
MoCaNet 11.62 0.84 0.49 0.16

Ours 17.68 0.15 0.25 0.06
Raw 40.09 -

a corresponding in-the-wild dataset (Mtarget), respectively.
Subsequently, using the cross pipeline depicted in Fig. 8 to
obtain generated motion clip Mf . The Euclidean distances are
then computed between Mf and Msource/Mtarget to indicate
the extent of IM information preservation. The Euclidean
distance distribution peaks, situated closer to the y-axis (more
left axis), indicate that the synthetic motion clips have a high
similarity to the motion clips they’re compared with. As we

can see, the distribution peak of our proposed method is around
0.25, outperforming those from LCM, MoCaNet, and Trans-
MoMo, which stand at 0.4, 0.35, and 0.4, respectively. Hence,
the results of Euclidean distance distribution show that the
synthetic motion clips of our proposed method preserve more
information about the target’s identity information compared
to previous methods. It proves our method takes full use of
IM information when conducting the HMT task.

5) Results of rendered videos: In Fig. 11, we further present
the rendered video results of different methods in the wild
videos. The first two columns indicate the source and target
video clips and the first column of each method means
the synthetic motion clips. Our method achieves better IM
performance than competitive methods. These results mean
that the target subject can follow the source subject’s dance
content, but strongly with her/his own style. These findings
demonstrate our proposed method can effectively capture the
IM information from the dance movements of target subjects,
addressing the unnatural issue mentioned in Fig. 1.
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Fig. 12: The results of representations in latent space using t-SNE for test datasets of Dancer101 and Mixamo. MC ` IM
means concatenate MC and IM in channel axis before t-SNE. In addition, all results are shown for ten labels only.

D. Performance comparison of different disentanglement com-
binations

In this experiment, we generate videos by the permutation
of IM , MC, and HS representations. Our primary aim is
to evaluate how these different attributes contribute to a sub-
ject’s identity information. We employ recognition accuracy
as our evaluation metric, with the results for different attribute
combinations on the Dancer101 dataset detailed in Table VI.
GaitGraph [40] is utilized as the Egait to extract identity
information for all motion clips. The results reveal that the
transfer of different attributes impacts recognition accuracy
in varying ways. These findings prove that our method can
effectively disentangle and reassemble the three attributes.
Notably, accuracy substantially decreases when preserving the
target subject’s IM or HS, whereas preserving the target
subject’s MC only slightly reduces accuracy, from 46.53%
to 35.31%. Interestingly, we observed that preserving the
target subject’s IM yields better recognition performance than
preserving HS, suggesting that the human skeleton is more
influential than individualized motion in identity preservation,
a conclusion also echoed in other gait recognition studies [18],
[44]. This observation is further substantiated by the visual-
izations in Fig. 14 Exp3.

E. Disentanglement visualization

Feature visualization can give an intuitive and straightfor-
ward impression of the performance of representation dis-
entanglement. We try to compare the proposed IDPres and
TransMoMo method [5] by visualization. The MC, IM , and
HS features are extracted by the disentanglement block E.
Then, t-SNE [56] is used to project the disentangled features
into a 2D space. The results are from different subjects (in
different colours) by TransMoMo and our proposed IDPres)
are shown in Fig. 12. The TransMoMo method, can not

TABLE VI: The rank 1 accuracies of gait recognition on
Dancer101. Here ’A’ means the source, and ’B’ means the
target. ✓ means the current attribute is from the corresponding
subject (A or B). MABA

f means MC and HS are from the
source (A), and IM is from the target (B).

Aliases Input
Motions MC IM HS Rank 1 (%)

Mrec
f

(Ò) A ✓ ✓ ✓ 46.53B

MABA
f

(Ó) A ✓ ✓ 25.71B ✓

MABB
f

(Ó) A ✓ 10.61B ✓ ✓

MAAB
f

(Ó) A ✓ ✓ 14.29B ✓

MBAA
f

(Ò) A ✓ ✓ 35.31B ✓

disentangle IM representation from human movements. So,
we use MC ` IM to represent the human movements. In
order to provide fair comparisons, we provided 4 kinds of
disentangled representation by IDPres. They are MC ` IM ,
MC, IM and HS.

According to Fig. 12, we can find the MC ` IM and HS
results tend to gather as a cluster if they are from the same
category (the same colour in the figure) on both datasets. The
results from the two methods all follow this rule. We can also
find the IM results by IDPres gathered into different clusters
on both datasets. This phenomenon demonstrates that the
disentanglement block of IDPres can effectively decompose
the IM representation. Moreover, the clusters on the Mixamo
dataset are tighter than those on the Dancer101. The reason
should be that data from Mixamo is virtual 3D animations, and
not many variations are in the data. The data from Dancer101
was collected by cameras in real scenarios.
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Fig. 13: The ablation study of triplet loss on Mixamo dataset.
Both IM and HS information (IM + HS) typically represent
the identity information of a subject.

F. Ablation study

We train different models to study the impact of different
modules, such as triplet loss in disentanglement block, TPP
layer in EIM , learn-able identity weight in EIM , the methods
of different fusion, and different training schemes.

1) Effectiveness of triplet loss: It is known that triplet loss
aims to pull intra-class samples close to each other while
pushing inter-class samples away from each other [51]. To
verify the effectiveness of the employed triplet loss, we train
two model variants on the Mixamo dataset: w triplet loss and
w/o triplet loss. Fig. 13 shows the distribution in latent space
as mentioned in three attributes. The result shows that triplet
loss plays a vital role in decomposing different attributes.

2) Effectiveness of TPP layer and learnable identity weight
(Wid): Our TPP layer and the learnable identity weight
are responsible for extracting the local details and picking
individualized-related information from the many local tex-
tures, respectively. Using the same settings as the experiments
in Table VI, Table VII shows the recognition accuracies of
different synthetic motions by composing at different feedback
levels in EIM . The recognition accuracy will increase as the
TPP layer and the learnable weight are adopted. This proves
that the TPP layer and the learnable identity weight have
positive effects on extracting the IM representation in motion.

3) Effectiveness of different fusion methods: In the pro-
posed method, we use AdaIN in IBup block to fuse IM
and MC representations. The w/o AdaIN means not using
AdaIN and using a concatenate operator on the channel
axis for IM and MC. Quantitative results of the different

Female sample

Male sample

Target Motion
(B)

Source M
otion

(A)

Self-
reconstruction

Overlap

Non-overlap

Self-
reconstruction

Overlap

Non-overlap

Self-
reconstruction

Overlap

Non-overlap

Fig. 14: Ablation experiments for different training schemes.

metrics are reported in Table VII. The results show that using
AdaIN outperforms concatenate fusion settings. Since AdaIN
operations after each convolution layer of the IBup block can
modify the second-order statistics of IM representations and
act on different motion scales.

4) Effectiveness of different training schemes: Some ex-
amples of different training schemes are shown in Fig. 14. In
Experiment Exp1, the generated motion MABB

f (blue motion)
still preserves the IM of the target subject. It can be seen that
as training steps increase, the quality of the generated motion
MABB
f has positive effects. The results show the benefits of

adopting the transferring motion training schemes (overlap and
non-overlap) over only the self-reconstruction. Our designed
training schemes provide powerful information swapping for
the disentanglement block and the generator, which allows
us to effectively disentangle different attributes and then map
them correctly to the corresponding input motion.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce an innovative identity-preserved
human motion transfer method, IDPres, capable of generating
realistic human motion videos while preserving the target
subject’s identity information. The key to achieving realistic
motion transfer is the consideration of IM information. To
effectively disentangle IM from human movements, IDPres
contains three efforts: the TPP and learnable identity weight,
the implementation of a triplet loss function, and the appli-
cation of overlap and non-overlap training schemes. Addi-
tionally, thanks to the success of gait recognition methods
in capturing identity information, we leverage gait models as
identity information extractors and design a novel metric, ID-
Score, to evaluate the effectiveness of both IM information
disentanglement. Considering the absence of public datasets
with paired identity-movement data and complex motion, we
collect a dataset, Dancer101, where different subjects perform
identical dance motions, facilitating the study of identity-
preserved HMT. Our experimental findings demonstrate that
our method can generate natural human motion videos, en-
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TABLE VII: Ablation experiments for our IDPres model on Dancer101 dataset.

Setting
Performances

Mrec
f (Ò) MABA

f (Ó) MABB
f (Ó) MAAB

f (Ó) MBAA
f (Ò)

Rank1(%) Rank1(%) Rank1(%) Rank1(%) Rank1(%)
w/o TPP and w/o Wid 24.08 20.0 9.18 10.61 23.47

w/o Wid 30.41 16.33 10.00 12.24 28.16
w/o TPP 42.86 30.20 10.20 15.10 33.88

Our full model 46.53 25.71 10.61 14.29 35.31
w/o AdaIN 27.96 13.47 10.00 11.02 25.31

abling the target subject to imitate the source subject’s motion
while maintaining more identity information.

HMT is a very challenging research topic because the data
is in the spatio-temporal domain. There are still no effective
HMT methods to generate a high-resolution and realistic long
video. The proposed method involves identity preservation
to improve the movement’s quality. To continuously improve
HMT, training on a large dataset is needed. The data collection
and labelling are difficult and time-consuming. A possible so-
lution is contrastive learning with unlabeled data. To improve
the quality, another direction is to disentangle more attributes,
including gender, age, clothing, etc. A fine-grained description
of human motion can be obtained by a lot of attributes, and
the quality of HMT will also be improved.
Privacy concerns. The datasets Dancer101 and Dancer99
were collected in accordance with Standard both YouTube
and Bilibili License. The release of these datasets is executed
through the provision of links to videos on YouTube and
Bilibili, and pre-processed skeleton points data, fully following
good practice of similar data collection [5], [17], [57].
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